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Abstract

In this paper, we propose to consider the estimation of a reference shape from
a set of different segmentation results using both active contours and information
theory. The reference shape is then defined as the minimum of acriterion that ben-
efits from both the mutual information and the joint entropy of the input segmen-
tations. This energy criterion is here justified using similarities between informa-
tion theory quantities and area measures, and presented in acontinuous variational
framework. This framework brings out some interesting evaluation measures such
as the specificity and sensitivity. In order to solve this shape optimization prob-
lem, shape derivatives are computed for each term of the criterion and interpreted
as an evolution equation of an active contour. Amutualshape is then estimated
together with the sensitivity and specificity. Some synthetical examples allow us
to cast the light on the difference between our mutual shape and an average shape.
The applicability and robustness of our framework has also been tested for the
evaluation of different segmentation methods of the left ventricular cavity from
cardiac MRI.

Keywords: Active contours, segmentation evaluation, shape gradients, shape
optimization, average shape, cardiac MRI.
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1. Introduction

Constructing a reference shape from a set of different segmentation results
is an important point when dealing with segmentation evaluation without know-
ing the gold standard. It can also be useful in order to combine different expert
segmentations in a single reference shape. The reference shape must then take
advantage of the information provided by each input shape while being robust to
outliers. The estimation of such a reference shape can then be modeled using in-
formation theory (mutual information and joint entropy) through the definition of
a shape optimization problem. In this paper, we propose to compute what we call
a “mutual shape” using the framework of active contours and shape gradients. Our
method is illustrated on a cardiac Magnetic Resonance Imaging (MRI) study and
applied to the estimation of a reference shape of the left ventricular cavity, using
the contours provided by six different algorithms.

As far as segmentation evaluation without gold standard is concerned, let us
note that two main strategies have been classically adopted. The first one consists
in choosing one parameter and in evaluating the performancelevel of each seg-
mentation algorithm according to the relevance of this parameter within a selected
database (e.g. in the domain of cardiac MRI, the left ventricular ejection fraction
is the most important global physiological parameter depicting the myocardial
contraction). Such an evaluation may be performed without aground truth using
some assumptions on the distribution of the chosen parameter (see for example
[30, 40]). The second strategy consists in the estimation ofa reference shape from
all the segmentation entries. Each individual segmentation is then compared to
the estimated reference contour using some quantitative measures (average dis-
tance to the reference contour, Hausdorff distance, Dice coefficient, specificity
and sensitivity measures ...). We can say that this strategycorresponds to a verifi-
cation step of the proposed algorithms accuracy, while in the former strategy, this
is rather a validation step according to the user goal (e.g. ejection fraction). As
far as the verification issue is concerned, the STAPLE algorithm (Simultaneous
Truth and Performance Level Estimation) proposed by Warfield et al. [42] is now
classically used in this difficult context. Their algorithmconsists in one instance
of the EM (Expectation Maximisation) algorithm where the true segmentation is
estimated by maximizing the likelihood of the complete data. Their pixel-wise
approach leads to the estimation of a reference shape simultaneously with the
sensitivity and specificity of each input segmentation. From these measures, the
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performance level of each input segmentation can be estimated and a classification
of all the segmentation entries can be performed.

The algorithms proposed above in order to estimate a shape reference are local
and treat each pixel independently. The MAP-STAPLE [7] is semi-local by using
a small window or patch around the pixel. Moreover, the reference domain does
not appear in the proposed model since it is defined only through the union of
the selected pixels or through a thresholding of some features. Using such local
or semi-local approaches, it appears difficult to introduceglobal information on
the estimated shape (e.g information on the regularity of the contour or continuity
of the labels within a given domain). In order to cope with these drawbacks, we
propose to revisit the seminal work of Warfield [42] within a continuous optimiza-
tion setting by considering such a shape estimation under the umbrella of shape
optimisation tools [12] and deformable models [22]. Indeed, the computation of
a reference shape can be advantageously modeled as the optimum of a well cho-
sen energy criterion and estimated by a shape gradient descent that corresponds
to the deformation of an active shape. Such an estimate is also closely related to
the introduction of shapes similarity measures. For example, such shape optimiza-
tion algorithms have already been proposed in order to compute shape averages
[6, 38] or more recently median shapes [2] by minimising different shape metrics
like the Hausdorff distance in [6] or the symmetric area difference between shapes
in [38]. Some other approaches also take advantage of well-appropriated distances
between level-set shapes (see for example [32]).

However, the shapes obtained using the previous variational algorithms cannot
be considered as reference shapes especially in the case of outliers segmentation.
One of the contributions of this paper is then to take advantage of the analogies
between information theory and area measures in order to estimate what we call
a “mutual shape”. We propose to maximize the mutual information between the
n input segmentations while minimizing the joint entropy. Such a statistical cri-
terion can be interpreted as a robust measure of the symmetric area difference.
In this variational setting, we propose to add a classical regularization term based
on the curvature of the deformable contour. Such a term is weighted using a reg-
ularization parameter that controls the smoothness of the obtained contour. The
statistical model brings out both the sensitivity and specificity parameters and
these parameters are estimated jointly with the reference mutual shape in similar
to the STAPLE algorithm. However, the energy criterion is different from STA-
PLE and justified using analogies between information theory quantities and area
measures. Moreover, the advantage of our formalism is to make explicitly appear
the domain and the associated contour. Such a formalism may also be interesting
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in order to add some geometrical or photometric priors directly in the criterion to
minimize.

The proposed algorithm is first tested on synthetic examplesshowing the dif-
ferences between a classic average variational shape basedon a symmetric area
minimization [38], a simple majority voting shape and the proposed mutual shape.
It is also evaluated in order to classify the performance levels of different seg-
mentation methods of the left ventricular cavity. The obtained mutual shape is
compared with a classic average shape and with a reference shape drawn by an
expert. The robustness of the estimation to some outliers isalso tested for these
real examples.

In section 2, our mathematical framework and the proposed criterion for the
estimation of the mutual shape are both presented. The criterion is then estimated
in a continuous framework and expressed using domain or contour integrals in sec-
tion 3. Such a continuous criterion can then be derived usingshape optimization
tools in order to compute the mutual shape (see section 4). Experimental results
on synthetic examples are detailed in section 5 and on MR images in section 6.

2. Problem statement

Let U be a class of domains (open regular bounded sets, i.e.C2) of Rd (with
d = 2 or 3). In this paper theoretical results are stated ford = 2 or d = 3 but the
experimental results are conducted on 2D-images. We denoteby Ωi an element
of U of boundary∂Ωi . We consider{Ω1, ...,Ωn} a family ofn shapes where each
shape corresponds to the segmentation of the same unknown object O in a given
image. The image domain is denoted byΩ ∈ R

d. Our aim is to compute a ref-
erence shapeµ that can closely represent the true objectO (Fig.1). We propose
to define the problem through a statistical representation of shapes embedded in
an information theory criterion. Let us first recall the mainshape representation
models and criteria proposed in the literature.

2.1. Shape representation

The computation of a reference shape is closely linked to thechoice of a rep-
resentation. An analytical representation may be used as in[23] where the authors
propose a statistical study of shapes by representing them as a finite number of
points. Some authors prefer to choose an implicit representation of shapes which
avoids the parametrization step. For example, in [2, 5] shapes are represented us-
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FIGURE 1: Diagram of the problem statement : evaluation of a reference shapeµ from a
set ofn segmented shapes of the same object.

ing their characteristic function as follows :

di(x) =
{

1 if x ∈ Ωi

0 if x 6∈ Ωi
(1)

wherex ∈ Ω is the location of the pixel within the image. We denote byΩi the
complementary shape ofΩi in Ω with Ωi ∪Ωi = Ω.

One may also takes advantage of the distance function associated to each
shape. In [32] the authors propose to perform a principal component analysis on
shapes in order to provide a statistical shape prior. In the same vein, some statisti-
cal shape priors have been proposed by [10, 34] using this implicit representation.

More recently shapes have been represented using Legendre moments in or-
der to define shape priors for segmentation using active contours [16, 17]. This
representation can also be easily included in a variationalsetting [16, 17, 31].

We may also consider that each shape is a realization of a random variable.
Such a representation has been introduced in [42] in order toevaluate a refer-
ence shape in a statistical framework, in [41] for the morphological exploration of
shape spaces and statistics, and also in [19, 25] for image segmentation using in-
formation theory. In this paper, we take advantage of this statistical representation
that appears to be well adapted to the definition of a statistical criterion. The shape
is represented through a random variableDi whose observation is the characteris-
tic functiondi defined in (1). The reference shapeµ is also represented through an
unknown random variableT with the associated characteristic functiont(x) = 1
if x ∈ µ andt(x) = 0 if x ∈ µ.

2.2. Definition of average shapes

We also need to formalize the unknown shape using the definition of a criterion
to minimize. In the literature, average shapes are defined through the minimization
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of the sum of the distances of the unknown shapeµ to each shapeΩi as follows :

µ= argmin
µ∗

n

∑
i=1

d(Ωi ,µ
∗) (2)

Of course, the definition of the distanced is crucial and may lead to different
results and average shapes. For example, an average shape can be computed by
minimizing the area of the symmetric differences [38] usingd(Ωi ,µ) := |Ωi△µ|
where|.| stands for the cardinal of the considered domain. In a continuous opti-
mization framework, the criterion to minimize according toµ can be expressed as
follows :

SD(µ) =
n

∑
i=1

|Ωi△µ|=
n

∑
i=1

(∫
µ
(1−di(x))dx+

∫
µ
di(x)dx

)

(3)

In [5, 6], the authors prefer to introduce the Hausdorff distance to perform shape
warping while in [2], the authors modify the previous criterion in order to compute
a median shape.

In addition to the previous works, we can also cite [41] wherethe authors pro-
pose to explore shape spaces using mathematical morphology. The optimal shape
is computed using a watershed performed on the squared sum ofthe distance
functions or using a morphological computation of a median set. Another class of
algorithms was proposed for the estimation of an unknown shape from multiple
channels (color or multimodal segmentation). We can cite the work of Chan et al.
[4] or the multimodal segmentation approaches proposed in [19, 24]. These works
were not designed at first for segmentation evaluation but they are worth men-
tioning because they propose to treat the different channels in a single criterion
(may also be useful for information fusion). Moreover in [19, 24], some informa-
tion theory quantities are used. Our work is different especially due to the fact
that we consider both the maximization of mutual information coupled with the
minimization of joint entropies and the joint estimation ofevaluation quantities
(sensitivity and specificity measures).

2.3. Proposition of a criterion for the estimation of a mutual shape

Our goal is here to mutualize the information given by each segmentation to
define a reference shape. Such a reference shape cannot be considered as a sim-
ple average shape. In this context, we propose to take advantage of the analogies
between information measures (mutual information, joint entropy) and area mea-
sures.
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FIGURE 2: Mutual information and joint entropy as area measures

As previously mentioned,Di represents the random variable associated with
the characteristic functiondi of the shapeΩi andT the random variable associated
with the characteristic functiont of the reference shapeµ. Using these notations,
H(Di ,T) represents the joint entropy between the variablesDi andT, andI(Di ,T)
their mutual information. In [36, 43], it is shown that Shannon’s information mea-
sures can be interpreted in terms of area measures as follows:

H(Di ,T) = mes(D̃i ∪ T̃) and I(Di ,T) = mes(D̃i ∩ T̃), (4)

with X̃ the abstract set associated with the random variableX and mes a signed
measure defined on an algebra of sets with values in]−∞,+∞[. The signed mea-
sure must satisfy mes( /0) = 0 and mes(

⋃n
k=1Ak) = ∑n

k=1mes(Ak) for any sequence
{Ak}

n
k=1 of disjoint sets. Each quantity can then be viewed as an operation on the

sets (Fig.2). These properties will help us to better understand the role of each
term chosen in our criterion.

When estimating a classic average shape using the criterion (3), one performs
the minimization of the sum of the union of the shapesΩi with µ while maximiz-
ing the sum of the intersection between the same shapes. By analogy with this
criterion, we prefer to minimize a measure of the union whilemaximizing a mea-
sure of the intersection through the use of information quantities. In other words,
the sum of the joint entropies (union of sets) will be minimized while the sum
of the mutual information quantities (intersection) will be maximized. In order to
minimize a single criterion, we use the classic relation between mutual informa-
tion and conditional entropy :I(Di ,T) = H(Di)−H(Di/T). SinceH(Di/T) ≥ 0
andH(Di) is independent ofT, we will rather minimizeH(Di ,T). Due to all these
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considerations and properties, we propose to minimize the following criterion :

E(T) =
n

∑
i=1

(H(Di ,T)+H(Di/T)) = JH(T)+MI(T), (5)

where the sum of joint entropies is denoted byJH(T) = ∑n
i=1H(Di ,T) and the

sum of conditional entropies byMI(T) = ∑n
i=1H(Di/T).

Note that this criterion is implicitly based on the assumption that random vari-
ablesDi are considered as being independent. This assumption can beconsidered
by the fact that the differentΩi are generated from different and independent seg-
mentation algorithms. In order to get rid of this assumption, one can think of
maximizing the mutual information of joint random variables I(D1,D2, ..,Dn,T)
but this criterion also leads to some computational issues that are difficult to solve.

3. Expression of the criterion in a continuous framework

In order to take advantage of the previous statistical criterion (5) within a con-
tinuous shape optimization framework, we propose to express the joint and condi-
tional probability density functions according to the reference shapeµ. This step
is detailed in this section for both the mutual information and the joint entropy.

3.1. Maximization of mutual information (MI)
Here we try to expressMI(T) = ∑n

i=1H(Di/T) in a continuous setting accord-
ing to the unknown shapeµ. Denoting byt anddi the observations of the random
variablesT andDi, the conditional entropy ofDi knowing T can be written as
follows :

H(Di/T) =− ∑
t∈{0,1}

[

p(t) ∑
di∈{0,1}

p(di/t) log(p(di/t))

]

, (6)

with p(T = t) = p(t) andp(Di = di/T = t) = p(di/t).
The conditional probabilityp(di = 1/t = 1) corresponds to the sensitivity param-
eterpi (true positive fraction) :

pi(µ) = p(di = 1/t = 1) =
1
|µ|

∫
µ
di(x)dx. (7)

The conditional probabilityp(di = 0/t = 0) corresponds to the specificity param-
eterqi (true negative fraction) :

qi(µ) = p(di = 0/t = 0) =
1
|µ|

∫
µ
(1−di(x))dx. (8)
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In the rest of the paper, for the sake of simplicity,pi(µ) is replaced bypi and
qi(µ) by qi. The random variableT takes the value 1 with a probabilityp(t = 1) =
|µ|/|Ω| and 0 with a probabilityp(t = 0) = |µ|/|Ω|. TheMI criterion can then be
expressed according toµ :

MI(µ) =−
n

∑
i=1

[ |µ|
|Ω|

((1− pi) log(1− pi)+ pi logpi) (9)

+
|µ|
|Ω|

(qi logqi +(1−qi) log(1−qi))
]

.

The parameterspi andqi depend explicitly onµ, which must be taken into account
in the optimization process. Indeed ifµ is updated in an iterative process, the
parameterspi and qi must also be updated which implies a joint estimation of
these quantities with the unknown mutual shape.

3.2. Minimization of joint entropy
Let us now express, according toµ and in a continuous setting, the sum of

the joint entropiesJH(T) = ∑n
i=1H(T,Di). The following expression of the joint

entropy is considered :

H(Di ,T) =− ∑
t∈{0,1}

∑
di∈{0,1}

p(di , t) log(p(di , t)) , (10)

with p(Di = di ,T = t) = p(di , t).
The following estimates for the joint probabilities are then used (a= 0 ora= 1) :

p(di = a, t = 1) =
1
|Ω|

∫
µ
((1−a)(1−di(x))+adi(x))dx, (11)

p(di = a, t = 0) =
1
|Ω|

∫
µ
((1−a)(1−di(x))+adi(x))dx. (12)

The criterion to minimize is now denoted byJH(µ) and can be written as follows :

JH(µ) =−
1
|Ω|

n

∑
i=1

[

∫
µ
((1−di(x)) log(Ai(µ))+di(x) log(Bi(µ)))dx

+
∫

µ
((1−di(x)) log(Ai(µ))+di(x) log(Bi(µ)))dx

]

+C, (13)

with Ai(µ) =
∫

µ
(1−di(x))dx , Ai(µ) =

∫
µ
(1−di(x))dx (14)
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and Bi(µ) =
∫

µ
di(x)dx , Bi(µ) =

∫
µ
di(x)dx. (15)

The termC is equal tonlog(Ω) is independent fromµ.

3.3. Continuous expression of the criterion

Using the two previous sections, we can express the global criterion to mini-
mize according toµ as follows :

E(µ) = JH(µ)+MI(µ)

= −
n

∑
i=1

[ |µ|
|Ω|

((1− pi) log(1− pi)+ pi logpi)

+
|µ|
|Ω|

(qi logqi +(1−qi) log(1−qi))

+
1
|Ω|

∫
µ
((1−di(x)) log(Ai(µ))+di(x) log(Bi(µ)))dx

+
1
|Ω|

∫
µ
((1−di(x)) log(Ai(µ))+di(x) log(Bi(µ)))dx

]

+C, (16)

wherepi, qi, Ai andBi are some quantities depending on the unknown shapeµ
expressed using integrals overµ.

In this given form, the minimization of such a criterion can be considered
using active contours and shape gradients as detailed in thefollowing section.

4. Optimization using shape gradients

In order to compute a local minimum of the criterionE, we propose to take ad-
vantage of the framework developed in [1] which is based on the shape optimiza-
tion tools proposed in [12, Chap.8]. The main idea is to deforman initial curve
(or surface) towards the boundaries of the region of interest. Formally, the contour
then evolves according to the following Partial Differential Equation (PDE) :

∂Γ(z,τ)
∂τ

= v(x,µ)N(x) (17)

whereΓ(z,τ) is the evolving curve,z a parameter of the curve,τ the evolution
parameter,v(x,µ) the amplitude of the velocity inx = Γ(z,τ) directed along the
normal of the curveN(x,τ). The evolution equation and more particularly the
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velocityv must be computed in order to make the contour evolve towards an opti-
mum of the energy criterion (16). From an initial curveΓ0 defined by the user, we
will have lim

τ→∞
Γ(τ) = µ at convergence of the process.

The main issue lies in the computation of the velocityv in order to find the
unknown shapeµ at convergence. This term is deduced from the derivative of
the criterion according to the shape. The method of derivation is explained in
details in [1, 20] and is based on shape derivation principles developed formally
in [12, 39]. For completeness, we recall some useful definitions and theorems and
we then explain briefly how the evolution equation of an active contour can be
deduced from the shape derivative. For each part of the criterion, the associated
shape derivatives are computed with some explanations on the derivation.

4.1. Main mathematical tools

The following theorem is the central theorem for derivationof integral do-
mains of the form

∫
µk(x,µ)dx. It gives a general relation between the Eulerian

derivative and the shape derivative for region-based terms.

Theorem 1 Let Ω be a C1 domain inRn and V a C1 vector field. Let k be a
C1 function. The functional J(µ) =

∫
µk(x,µ)dx is differentiable and its Eulerian

derivative in the direction ofV is the following :

< J′(µ),V >=
∫

µ
ks(x,µ)dx−

∫
∂µ

k(x,µ)(V ·N)da (18)

where ks is the shape derivative of k defined by ks(x,µ) = limτ→0
k(x,µ(τ))−k(x,µ)

τ .
The termN denotes the unit inward normal to∂µ and da its area element (inR2,
we have da= ds where s stands for the arc length).

The Eulerian derivative ofJ in the directionV is defined as

< J′(µ),V >= lim
τ→0

J(µ(τ))−J(µ)
τ

if the limit exists, withµ(τ) = Tτ(V)(µ) the transformation ofµ through the vector
field V. The proof of the theorem can be found in [12, 20].

4.2. Methodology for the computation of the evolution equation

The following proposition gives us a way to compute the evolution equation
of the active contour when the Eulerian derivative can be expressed as an integral
over the boundary of the domain.
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Proposition 1 Let us consider that the shape derivative of the criterion J(µ) in
the directionV may be written in the following way :

< J′(µ),V >=−
∫

∂µ
v(x,µ)(V ·N)da (19)

Interpreting this equation as the L2 inner product on the space of velocities, the
straightforward choice in order to minimize J(µ) consists in choosingV = vN for
the deformation. We can then deduce that, from an initial contour Γ0, the boundary
∂µ can be found at convergence of the following evolution equation :

∂Γ
∂τ

= v(x,τ)N (20)

with v the velocity of the curve andτ the evolution parameter.

The shape derivatives of the criteriaSD(µ) (3), MI(µ) (9) andJH(µ) (13), can be
written in the form (19) which allows us to find some geometrical PDEs of the
form (20) for each criterion. The derivation is developed thereafter.

4.3. Shape derivatives

This paragraph details the computations of the shape derivatives ofSD(µ) (3),
MI(µ) (9) andJH(µ) (13).

4.3.1. Shape derivative for the criterion SD(µ)
Theorem 2 The shape derivative in the directionV of the functional SD(µ) de-
fined in (3) is :

< SD′(µ),V >=−
∫

Γ

N

∑
i=1

(1−2di(x))(V ·N)da (21)

Corollary 1 From Theorem(1), the velocity that will drive an active contour to-
wards a minimum of the criterion SD(µ) is reduced to :

vSD=
N

∑
i=1

(1−2di(x)) (22)

where vSD is directed alongN.
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4.3.2. Shape derivative for the criterion MI(µ)
The computation of the shape derivative ofMI(µ) is more complex because

the functions inside the integrals depend onµ.

Theorem 3 The shape derivative in the directionV of the functional MI(µ) de-
fined in (9) is :

< MI ′(µ),V >=−
∫

Γ

( 1
|Ω|

n

∑
i=1

[

(1−di(x)) log

(

qi

1− pi

)

(23)

+di(x) log

(

1−qi

pi

)

])

(V ·N)da (24)

with N the inward normal of the boundary of µ (denoted byΓ).

Corollary 2 From the Theorem(1) and (3), the velocity that will drive an active
contour towards a minimum of the criterion JH(µ) is then equal to :

vMI =
1
|Ω|

n

∑
i=1

[

(1−di(x)) log

(

qi

1− pi

)

+di(x) log

(

1−qi

pi

)

]

(25)

where vMI is directed alongN.

4.3.3. Shape derivative for the criterion JH(µ)
Theorem 4 The shape derivative in the directionV of the functional JH(µ) de-
fined in (13) is :

< JH′(µ),V >=−
∫

Γ

( 1
|Ω|

n

∑
i=1

[

di(x) log

(

Bi(µ)
Bi(µ)

)

(26)

+(1−di(x)) log

(

Ai(µ)
Ai(µ)

)

])

(V ·N)da

whereN is the inward normal of the boundary of µ (denoted byΓ) and where the
functionals Ai and Bi are given by equations(14)and (15).

Corollary 3 From Theorem(1) and(4), the velocity that will drive an active con-
tour towards a minimum of the criterion JH(µ) takes the following expression :

vJH =
1
|Ω|

n

∑
i=1

[

di(x) log

(

Bi(µ)
Bi(µ)

)

+(1−di(x)) log

(

Ai(µ)
Ai(µ)

)

]

(27)

where vJH is directed alongN.
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4.4. Global evolution equations for the different criteria

A standard regularization term is added in the criterion to minimize in order
to favor smooth shapes :

Reg(µ) =
∫

∂µ
ds.

This term corresponds to the minimization of the curve length. It is balanced with
a positive coefficientλ in the energy criterion and leads to the following velocity
in the evolution equation :

vReg= κ (28)

whereκ is the curvature of the contourΓ(τ).
Finally, we propose to define our mutual reference shape through the mini-

mization of a global criterion calledJIT (Information Theoretic criterion) :

JIT (µ) = JH(µ)+MI(µ)+λReg(µ). (29)

In order to minimize this criterion, the following evolution equation is used :
(

∂Γ
∂τ

)

IT
= (vJH +vMI +λvReg)N (30)

wherevMI , vJH andvRegare defined respectively in equations (25), (27) and (28).
In the experimental results, the mutual reference shape is also compared to the
classic average shape that corresponds to the minimizationof the following crite-
rion :

JSD(µ) = SD(µ)+λReg(µ). (31)

In order to minimize this second criterion, the following evolution equation is
applied :

(

∂Γ
∂τ

)

SD
= (vSD+λvReg)N (32)

wherevSD andvRegare defined respectively in equations (22) and (28).
Note also that using this formalism, some other prior information (photometric

or geometric) can be inserted by adding some additional velocities in the PDE. For
example, we may take advantage of the tools developed in [3, 11, 17, 31, 34].
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5. Experimental results on a synthetic example

The behaviour of our mutual shape estimation is tested on a synthetic example.
We propose to compare the mutual shape with the classic average shape and with
a simple majority voting. We also study the joint evolution of the sensitivity and
specificity parameters.

5.1. Difference between a mutual shape and a classic average shape

In this section, the behaviour of such a mutual informative shape is illustrated
by a synthetic example that highlights the difference between the mutual shape
and a classic average shape. A test sequence consisting of different segmentations
of a lozenge (Fig.3) was built. The first entry is the true segmentation mask, the
other entries represent the segmentation of 1/4 of the true lozenge (Fig.3(b)).

(a) (b)

FIGURE 3: The image to segment is given in (a) and the different segmentation entries
(masks) for this image are given in (b).

When computing the average of the different characteristic functions using the
formula :∑n

i=1di/n, we can remark (Fig.4(b)) that some masks share an intersec-
tion. Indeed the values of the average image belong to the interval [0,0.6]. The
value 0 corresponds to black points in Fig.4(a) and the value0.6 corresponds to
the white grey level in this image. We then binarize this average imageIA in an
image namedIAT displayed in (Fig.4(b)). IfIA(x)≥ 0.5 thenIAT = 0 (black points)
and if IA(x) < 0.5 thenIAT = 255 (white points). This procedure gives us a sim-
ple majority voting procedure. The result is the black line inside the lozenge. The
result obtained using this procedure is also dependent on the threshold parameter
choice.

Then an active contour evolves according to the evolution equation of the mu-
tual shape (30) and of the SD shape (32). The initial contour for the evolution
is chosen as a circle including the lozenge (Fig.5(a) and Fig.6(a)). The mutual
shape algorithm is able to recover the whole lozenge and is then different from a
classic average shape (see Fig.5 and Fig.6). The curve evolves and segments the
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(a) (b)

FIGURE 4: The average imageIA (a) and the corresponding binarized average imageIAT

(b) of the masks of the Fig.3(b) (simple majority voting procedure).

whole lozenge by an iterative process (images resulted fromdifferent iterations in
Fig.5(b) and Fig.5)(c)). The final contour is given in Fig.5(d). The mutual shape is
compared to a shape average computed using the minimizationof the classic sym-
metrical difference (criterionJSD with evolution equation (32)). The evolution is
given in Fig.6. In this case, the final contour is similar to the result obtained by
computing a binarized meanIAT (Fig.4(b)) since it corresponds to a line due to
the small overlap between masks 2 and 5. The same small value is taken for the
regularization parameterλ in order to give an higher importance to the data term.

(a) Initial contour (b) It. 80 (c) It. 140 (d) Mutual shape

FIGURE 5: Evolution using the mutual shape (evolution equation (30) withλ = 10). In the
first image (a), the initial contour is in white (circle) and the other white lines represent
the boundaries of the different segmentation entries. Intermediate results obtained from
80 and 140 iterations are displayed in images (b) and (c) and the final estimatedmutual
shape in (d) (240 iterations).

5.2. Difference between the mutual shape and the union of the masks

An outlier (Fig.7(a)) was introduced in the initial sequence of masks in order
to test the robustness of the mutual shape estimation. Indeed, our goal is to test
that the mutual shape is also different to a simple union of the different masks. In
Fig.7, the different steps of the evolution of the contour are displayed. The final
contour (Fig.7(d)) fits the lozenge and excludes the outlierfrom the final contour.
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(a) Initial contour (b) It. 300 (c) It. 400 (d) SD shape

FIGURE 6: Evolution using the SD shape (evolution equation (32) withλ = 10). In the
first image, the initial contour is in white (circle) and the other white lines represent the
boundaries of the different segmentation entries. Intermediate results obtained from 300
and 400 iterations are displayed in images (b) and (c) and the final estimated SD shape in
(d) (600 iterations).

(a) Input outlier (b) Initial (c) It. 100 (d) It. 380 (e) Mutual shape

FIGURE 7: Introduction of an outlier (a) in the initial sequence of masks (Fig.3.a b) and
estimation of the mutual shape (evolution equation (30) withλ = 10). In the image (b),
the initial contour is in white and the other white contours and lines represent the different
boundaries of the initial masks (the segmentation entries and the outlier).

5.3. Joint evolution of the sensitivity and specificity parameters

When the active contour evolves using the evolution equation(30), the param-
eterspi andqi are estimated jointly with the mutual shape as proposed in STAPLE
[42]. The joint evolution of these parameters associated toeach segmentation re-
sult are shown in Table 1. These results are obtained when considering the differ-
ent entries displayed in the first row of this Table. According to the final values
reported in Table 1, we can conclude that the best segmentation corresponds to the
shape 1 withp1 = 1 andq1 = 1 and that the shape 6 is an outlier since the sensitiv-
ity coefficient is equal to 0. The other segmentations correspond to one quarter of
the lozenge which leads to a sensitivity parameter around the value of 0.25. Note
that the initial values ofpi andqi are computed directly using the initial contour
as an intial guess of the reference shapeµ.

We can notice that the parameterqi is less relevant. Indeed this parameter
is estimated using the external domain (¯µ) and is then estimated using a higher
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number of pixels. It should be normalized in order to be comparable to thepi

value. One solution consists in the selection of a smaller working area (a mask
that includes the union of masks and that limits the size of the region outside this
union in order to get two regions with a comparable size).

In order to give an idea of the computational cost, it takes around 5 s. to per-
form the estimation of the mutual shape for an image 256∗ 256 using an Intel
Core i7 2.70GHz and a code written in C++ within the image processing library
Pandore1.

Iterations mask 1 mask 2 mask 3 mask 4 mask 5 mask 6
It. 0 p1 = 0.35 p2 = 0.09 p3 = 0.09 p4 = 0.08 p5 = 0.09 p6 = 0.15

(Fig. 7.b) q1 = 1 q2 = 1 q3 = 1 q4 = 1 q5 = 1 q6 = 1
It. 100 p1 = 0.60 p2 = 0.15 p3 = 0.15 p4 = 0.13 p5 = 0.16 p6 = 0.27

(Fig. 7.c) q1 = 1 q2 = 1 q3 = 1 q4 = 1 q5 = 1 q6 = 1
Final p1 = 1 p2 = 0.24 p3 = 0.26 p4 = 0.22 p5 = 0.27 p6 = 0

(Fig. 7.d) q1 = 1 q2 = 1 q3 = 1 q4 = 1 q5 = 1 q6 = 0.93

TABLE 1: Joint evolution of the contour and of the sensitivity and specificity coefficients
pi andqi for the all the segmentation entries (masks 1 to 6) corresponding to the evolution
of the contour displayed in Fig.7 (initial contour, iteration 100 and final contour).

6. Application to the evaluation of different segmentationmethods of the left
ventricular cavity from cardiac MRI

The estimation of such a mutual shape is here tested for the unsupervised eval-
uation of segmentation methods of the left ventricular cavity from cardiac cine-
MRI. It takes place in a larger project on medical segmentation evaluation first
introduced in [26, 18] and developed thereafter in [21, 27, 29, 30]. To illustrate
our method, one image is extracted from a series acquired with a SSFP sequence
in a short axis orientation. The test carried out on this image can be used for all
the images from all the series.

In order to compare a given shapeΩ with a reference shapeΩre f , we mainly
use three quantitative values : the classic Dice coefficient(DC), the maximum and

1. available at https ://clouard.users.greyc.fr/Pandore/
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the average distance to the reference contour (dmax anddmean). The quantity DC
[13] is a similarity measure between two sets that ranges into the interval[0,1] :

DC(Ω,Ωre f) =
2|Ω∩Ωre f |

|Ω|+ |Ωre f |
. (33)

This measure is equal to 1 when the two sets are equal and 0 whenthey are dis-
joints.
The distance between a point of the contourΓ to the contourΓre f is computed as
follows :

d(y,Γre f) = inf
x∈Γre f

(||y−x||). (34)

From this previous definition, we can compute the maximum andthe average
distance (in pixels) using :

dmax(Γ,Γre f) = max
y∈Γ

d(y,Γre f), (35)

dmean(Γ,Γre f) =
1
|Γ| ∑

y∈Γ
d(y,Γre f). (36)

where|Γ| gives the number of pixelsy ∈ Γ.

6.1. Estimation of the mutual shape for one slice

The segmentation inputs correspond to the segmentation results obtained by
different research teams [8, 9, 14, 15, 28, 31, 37] for a MRI slice of the 2009
MICCAI challenge database (SCN05, slice 4, time 20) [35] (Fig.8). The corre-
sponding contours of the different entries of the algorithmare given in Fig.8. The
expert contour is available for this slice and represented in Fig.8(g).

6.1.1. Comparison of the mutual shape with the expert contour and the SD shape
The mutual shape is estimated using the evolution equation (30) from the

masks of the Fig.8. The initial contour is chosen near the contour of the masks
union and the regularization parameter is fixed to the value 100.

The estimated mutual shape is shown in Fig.9(a) as well as theshape obtained
using SD in Fig.9(c). The maximum distance to the expert contour (dmax) and the
mean distance to the expert contour (dmean) were calculated in order to validate
the robustness of our algorithm. The mutual shape is nearer the expert contour
in terms of distance. In Fig.9(b) and (d), the expert contouris drawn in white
while the estimated shape is drawn in different colors according to the distance to
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(a) method 1 (b) method 2 (c) method 3

(d) method 4 (e) method 5 (f) method 6

(g) Expert contour

FIGURE 8: The final contours of the six methods are given in (a),(b),(c),(d),(e),(f). These
methods all aim to segment the left ventricular cavity from a MRI slice (SCN05,slice 4,
time 20). The expert contour is also given in (g).

the expert contour. DC is equal to 0.89 for the mutual shape and to 0.87 for the
SD shape using the same regularization parameterλ = 100. The influence of this
parameter is developed in the next section.

6.1.2. Influence of the regularization parameter
The influence of the parameterλ that controls the weight of the regularization

parameter was then tested.We report in Table 2 the differentvalues of the three
parametersdmean, dmaxandDC for the two shapes “mutual shape” and “SD shape”
according to the regularization parameterλ. We also show the influence of this
parameter on the different contours obtained for the mutualshape in Fig.10. In
both cases, a value ofλ around 100 may improve the evaluation coefficientsDC,
dmeananddmax. This can be easily explained by the fact that the left ventricular
cavity is a convex structure. Choosing a high value forλ may then help to provide
such a convex shape. Reasonable values for the segmentation of this structure
range into the interval[100−300]. The best value is probably around 100 for the
mutual shape and 300 for the SD shape but there are very few differences when
taking a regularization parameter into the interval[100− 300]. When taking a
higher value forλ, the regularization term takes a higher importance than thedata
term leading to an under-segmentation of the cavity.
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(a) mutual and expert shape (b) distances to the expert for the mutual shape
(in red and green) (dmean= 1.65,dmax= 3.35,DC= 0.89)

(c) SD and expert shape (d) distances to the expert for the SD shape
(in red and green) (dmean= 1.80,dmax= 5.22,DC= 0.87)

FIGURE 9: Qualitative and quantitative comparisons of the mutual shape ((a) and (b)) and
the SD shape ((c) and (d)). In the images (a) and (c), the final contours are given in red
and the expert contour in green (λ = 100)). In the images (b) and (d) the expert contour
(in white) is superimposed with the final contour (the different colors correspond to the
distance to the expert contour : the pointx of the contour is in blue whend(x) ≤ 2, in
green when 2< d(x)≤ 4 and in red whend(x)> 4).

6.2. Robustness to outliers

In order to study the robustness, we introduce some outliersshapes represented
in Fig.11. The outliers (1) and/or (2) and/or (3) were introduced to the initial
sequence of masks (Fig.8). The variation of the chosen parameters (DC, dmean,
dmax) is then studied. The results are reported in Table 3 and compared to the
ones obtained while estimating the reference shape using the classic symmetric
difference (32). We remark that the quantitative parameters are quite stable when
adding outliers to the initial sequence up to 3 added outliers which represent half
of the number of initial masks. Using the SD shape, the coefficient is not as stable
as with the mutual shape.
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(a) λ = 0 (b) λ = 10 (c) λ = 100 (d) λ = 300

dmean= 1.86 dmean= 1.86 dmean= 1.65 dmean= 1.66

dmax= 5.00 dmax= 5.00 dmax= 3.35 dmax= 3.54

FIGURE 10: Influence of the parameterλ on the final mutual shape. In the images (a), (b)
and (c), the expert contour (in white) is surimposed with the final contour (in different
colors according to the distance to the expert contour : the pointx of the contour is in blue
whend(x)≤ 2, in green when 2< d(x)≤ 4 and in red whend(x)> 4).

The evolution of the curve with both the mutual shape and the SD shape is
displayed in Fig.12. The initial contour is chosen near to the union of the mask
(choosing exactly the union can sometimes conduct to local minima due to the
initial values ofqi that are all equal to 1).

Outlier shape (1) Outlier shape (2) Outlier shape (3)

FIGURE 11: Contours of the different outliers.

6.3. Joint estimation of the sensitivity and specificity parameters

During the curve evolution, the parameterspi andqi are estimated jointly with
the mutual shape and allow us to perform a classification of the performance level
of each segmentation. According to the final values reportedin Table 4, we can
conclude that the best segmentation corresponds to shape 3 and that the shapes 1
and 2 have smaller sensitivity and specificity values. Such aclassification seems
to be visually coherent.
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(a) Mutual shape
λ 0 10 100 300 500

DC 0.885 0.884 0.887 0.886 0.861
dmean 1.86 1.86 1.65 1.66 1.94
dmax 5.00 5.00 3.35 3.54 4.72

(b) SD shape
λ 0 10 100 300 500

DC 0.867 0.869 0.873 0.873 0.870
dmean 1.98 1.87 1.80 1.78 1.84
dmax 5.83 5.83 5.22 5.00 5.22

TABLE 2: Influence of the regularization parameterλ on the final shape for both the mutual
shape (a) and the SD shape (b).

When computingpi andqi note that it works better when the regions inside
and outside the contour have a comparable number of pixels. Indeed adding a pixel
in each region will then lead to a comparable change in the computation ofpi and
qi . In this work, in order to deal with this issue, a region of interest outside the
contour is defined at the beginning of the evolution. However, a region of interest
that evolves during the curve evolution could be a better solution but needs further
investigation and probably the framework introduced in [33].

7. Conclusion

In this work, we propose a continuous optimization framework for the STA-
PLE algorithm using a different criterion to minimize that comes from informa-
tion theory. We take advantage of information theory quantities such as the mutual
information and joint entropy. We propose a new criterion based on the minimiza-
tion of a robust area difference that can be expressed using mutual information
and joint entropy. We search for an unknown reference shape that minimizes the
sum of joint entropies while maximizing the sum of mutual information between
each entry shape and the unknown reference shape. The optimization is performed
using active contours by computing a shape gradient and the associated evolution
equation. Shape derivatives are detailed for the given criterion but also for a clas-
sic area difference minimization. Our theoretical formalism is valid for 2D slices
or 3D images. Some experimental results are provided in 2D images on both syn-
thetic and real cardiac cine-MRI images. The robustness of such an estimate is
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(a) Quantitative results with the mutual shape (evolution equation(30))
Outlier shape number(s)

Comparison meas. none 1 2 1+2 3 1+2+3
DC 0.887 0.887 0.884 0.884 0.887 0.870

dmean 1.65 1.65 1.65 1.69 1.65 1.84
dmax 3.35 3.35 3.35 3.35 3.35 5.03

(b) Quantitative results with the symmetric difference (evolution equation (32))
Outlier shape number(s)

Comparison meas. none 1 2 1+2 3 1+2+3
DC 0.873 0.860 0.860 0.797 0.871 0.788

dmean 1.80 1.96 2.00 2.67 1.82 2.75
dmax 5.22 5.41 5.66 8.94 5.66 9.39

TABLE 3: Comparison of the final contour with the expert contour in presence ofoutliers.

Classification usingpi andqi

i 1 2 3 4 5 6
qi 0.93 0.97 0.97 0.91 1 0.99
pi 0.77 0.68 0.98 0.85 0.83 0.92

TABLE 4: Specificity and specificity parameterspi andqi for the different segmentation
methods of the left ventricular cavity displayed in Fig.8 (without considering the outliers).

tested by adding some outliers to the input sequence. We showthat the mutual
shape acts differently and is more robust to outliers than other conventional ap-
proaches.

As far as perpectives are concerned, one of the main issues may concern the
choice of the main objective for the evaluation. Indeed in our case, in cardiac
imaging, the goal was to estimate the volume of the cardiac cavity. In this case,
adding a prior term on the shape of the endocardium may be valuable. If the ob-
jective is different, some other prior shapes may be added (such as the homogene-
ity of the inside region for example). Our mathematical framework seems well
adapted for this purpose since other information may be easily added in the cri-
terion to minimize. Our work in progress concerns also the comparison of our
method to STAPLE algorithms and will be extended to a larger database of real
cardiac cine-MRI images.
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(a) Initial contour (red) (b) iteration 900 (c) Mutual final shape

(d) SD final shape

FIGURE 12: Evolution of the curve for the mutual shape and the SD shape. The initial
contour is given in red (a) surimposed on the contours of the different segmentation entries
(blue). For the mutual shape, the iteration 900 is shown in (b) while the final contour given
in (c). In order to compare, we show the final contour for the SD (symmetrical difference)
criterion.
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Annexes

We give here some proofs in order to detail the computation ofshape deriva-
tives.

Proof of theorem 2
Proof : The criterion (3) can be divided into two parts : the first one depends

on the domainµ and is denoted bySD1(µ) with SD1 =
∫

µ(1−di(x))dx while the
second one depends on the complementary domain ofµ and is denoted bySD2(µ)
with SD2 =

∫
µdi(x)dx.

From Theorem (1) and using the fact that the derivativeks is equal to 0 (di is
independent ofµ), the following equation can be obtained :

< SD′
1(µ),V >=−

∫

∂µ

k(x,µ)(V ·N)da
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with k(x,µ) = 1−di(x).
In order to deriveSD2, the same theorem is applied :

< SD′
2(µ),V >=−

∫

∂µ

di(x)(V ·N2)da

with N2 the inward normal of the boundary ofµ.
Sinceµ andµ share the same boundaryΓ with opposite normal vectors (i.e.N =
−N2), we find the derivative given in (21).

�

Proof of theorem 3

Proof : Using Theorem (1), the shape derivatives ofpi andqi are equal to :

< p′i ,V >=
1
|µ|

∫
Γ
(pi −di(x))(V ·N)da,

< q′i ,V >=
1
|µ|

∫
Γ
(1−di(x)−qi)(V ·N)da.

Let us denoteKi(µ) = |µ| f (pi) with f (pi) = (1− pi) log(1− pi)+ pi log(pi), we
can deduce :

<K′
i (µ),V >=−

∫
Γ

f (pi)+(pi −di) f ′(pi)(V ·N)da.

with f ′(pi) = log pi
1−pi

the classic derivative off according to the variablepi. After
simplifications, we get :

< K′
i (µ),V >=−

∫
Γ
(di logpi +(1−di) log(1− pi))(V ·N)da.

In the same manner,Ei(µ) = |µ| f (qi) with f (qi) = (1−qi) log(1−qi)+qi logqi

and then :

< E′
i (µ),V >=

∫
Γ
((1−di(x)) logqi +di(x) log(1−qi))(V ·N)da.

By adding the different terms, we find the final shape derivative.

�
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Proof of theorem 4

Proof : As with the theorem 2, the criterion is separated in different terms,
such thatJH(µ) =− 1

|Ω| ∑n
i=1(JHi

1(µ)+JHi
2(µ))+C with :

JHi
1(µ) = logAi(µ)

∫
µ
(1−di(x))dx+ logBi(µ)

∫
µ
di(x)dx,

JHi
2(µ) = logAi(µ)

∫
µ
(1−di(x))dx+ logBi(µ)

∫
µ
di(x)dx.

The termC denotes a constant independent ofµ.
The shape derivative ofAi(µ) lead to< A′

i(µ),V >=−
∫

Γ(1−di(x))(V ·N)da and
respectively< B′

i(µ),V >=−
∫

Γ di(x)(V ·N)da.
The classic theorems for the derivation of products and functions can be ap-

plied to deriveJHi
1, which leads to :

< (JHi
1)

′(µ),V >= − logAi(µ)
∫

Γ
(1−di)(V ·N)da+

< A′
i(µ),V >

Ai(µ)

∫
µ
(1−di)dx

− logBi(µ)
∫

Γ
di(V ·N)da+

< B′
i(µ),V >

Bi(µ)

∫
µ
di dx.

Replacing the shape derivative ofAi(µ) andBi(µ) by their expressions in the above
formula, we find :

< (JHi
1)

′(µ),V >=−
∫

Γ
((1−di) logAi(µ)+di logBi(µ)+1)(V ·N)da.

In a similar manner, using the fact that the inward normal of the moving boundary
of µ is equal to−N, we find :

< (JHi
2)

′(µ),V >=
∫

Γ
((1−di(x)) logAi(µ)+di(x) logBi(µ)+1)(V ·N)da.

By adding the two derivatives, the shape derivative ofJH(µ) is finally obtained.

�
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