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ABSTRACT

Cognitive load refers to the amount of used working memory resources, which is limited

in both capacity and duration. Predicting cognitive load from raw electroencephalogram

(EEG) recordings remains a challenge because of the high degree of noise due to technical

variations in the recording process and the multi-factorial nature of the mapping between

the EEG data and cognitive load. We present parameter-optimized deep convolutional

neural network (CNN) models to predict four levels of cognitive load. We use eigenspace-

based bootstrap sampling and Generative Adversarial Network (GAN) to address the issue

of noise and a small number of samples in EEG. We transform time-series signals into a

spatial-spectral representation called Topomap, which maintains both spatial and spectral

information embedded in EEG recordings. We use two different EEG data representations

for cognitive load prediction. First, we use power spectral densities of three individual fre-

quency bands (Theta, Alpha, Beta) to create the topomap. Second, we combine all three

bands to develop a composite representation. We performed empirical evaluations to de-

termine the role of individual frequency bands in predicting cognitive load. The prediction

accuracy of CNN models built using Theta, Alpha, Beta bands, and composite representa-

tion are 89%, 89%, 91%, and 92%, respectively. The results suggest that the Beta band

has the most predictive power and composite representation produces higher accuracy

than the individual frequency bands.
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CHAPTER 1. INTRODUCTION

Working memory (WM) provides temporary storage and processing of information

necessary for performing cognitive tasks such as reasoning, decision-making, and language

comprehension Baddeley (1992). The amount of used WM resources is known as a

cognitive load (CL). The WM is limited in both capacity and duration. According to

Hick’s law, the reaction time to a stimulus increases logarithmically with the number of

available choices Hick (1952). Excessive WM usage can lead to cognitive overload, which

has adverse effects on performing cognitive tasks Paas et al. (2003).

According to Sweller Sweller et al. (1998), there are three types of cognitive load: intrinsic,

extraneous, and germane cognitive load. Intrinsic CL arises from the inherent complexity

of the task to be learned; extraneous cognitive load comes from how information is

presented to a learner, and germane cognitive load refers to the effort put into creating

permanent storage of knowledge (schema). Measuring and minimizing extraneous cognitive

load is critical in applications such as instruction design, brain-computer interface(BCI)

Ozkan and Kahya (2018); Roy et al. (2013), human-computer interaction(HCI) Kumar and

Kumar (2016); Chen et al. (2011); Hollender et al. (2010), and learning institutions Paas

et al. (2010); Niederhauser et al. (2000); Choi et al. (2014). Therefore, accurate prediction

of cognitive load is critical to ensure effective WM usage while performing a task.

Neuro-imaging techniques such as electroencephalogram (EEG), functional magnetic

resonance imaging (fMRI), and positron emission tomography (PET) are the primary

means of collecting brain activities Puce and Hämäläinen (2017); Junghöfer et al. (2006);

Nasrallah and Dubroff (2013). The EEG is the most widely used method due to its high

temporal resolution and affordable cost. Time-frequency analyses, such as Fast Fourier
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transform (FFT), Short term fast Fourier transform (STFFT), and wavelet transform, are

commonly used methods to extract features from EEG signals Zarjam et al. (2013); Amin

et al. (2015); Bashivan et al. (2015); Liang et al. (2005); Mazher et al. (2017).

Many reported literature used machine learning and spectral features to predict cognitive

load or estimate working memory capacity. For example, in Bashivan et al. (2015), the

wavelet entropy and band-specific powers from single-trial EEG data were used to classify

cognitive load with 92% accuracy. Support vector machine(SVM) was used in Nuamah

et al. (2017) to predict cognitive task using task engagement index (ratio of EEG power

bands (beta/(alpha + theta)) features with an average accuracy of 93.33%. Recently,

Convolutional neural network (CNN) was employed in classifying CL with 93% Liu and

Liu (2017). Nevertheless, deep learning has not been extensively used for cognitive load

prediction mainly due to the lack of adequate EEG data to train the models, which is

essential in achieving a satisfactory model performance.

In this work, we propose a spatial-spectral representation of EEG recordings called

topomap to capture spatial-spectral features and use deep CNN architecture to learn the

representation (features) and predict (extraneous) cognitive load for individuals engaging

in a WM auditory task. The topomap represents the distribution of electrical activity

across the brain as measured using electrodes locations whose position is known. It

captures both spectral and spatial information of EEG recordings. Moreover, topomaps

allow us to use the CNN model to extract and learn both low-level and high-level features

from the spatial-spectral representation of the signal.

The proposed approach addresses the issues related to excessive noise in EEG recordings

and a small sample problem that inhibits the application of deep learning models on EEG

data. To reduce the technical noise prevalent in the raw EEG data, we use event-related

potential (ERP) averaged over a number of trials. We applied eigenspace-based bootstrap

sampling (randomly sampled with replacement) for ERP calculation, followed by
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Generative Adversarial Network (GAN)-based data generation to reduce noise and obtain

adequate samples for training and testing CNN models. We built parameter-optimized

CNN models to determine the role of the individual frequency bands (Theta, Alpha, Beta)

in predicting four levels of cognitive load. A single frequency band may not contain all

information embedded in the entire EEG signal. Thus, we combine three bands to create a

composite representation to capture the full range of spatial-spectral information. We

perform empirical analyses to understand the predictive power of individual frequency

bands and compare their performance with composite representation.

The key contributions are:

1. Implementation of eigenspace-based bootstrap sampling and GAN to address the

challenge of the limited amount of EEG data in training deep CNN model.

2. Transformation of the EEG recordings into spatial-spectral representation to capture

the spatial relationship that is missing in time-series data.

3. Developing parameter optimized CNN models to predict four levels of (extraneous)

cognitive load.
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CHAPTER 2. REVIEW OF LITERATURE

Predicting cognitive load from EEG signals using machine learning involves modeling the

relationship between features extracted from the signal and different mental load levels.

Connectivity, entropy, and power spectral density features are the most reported EEG

features used in predicting cognitive load Quatieri et al. (2016); Friedman et al. (2019);

Amin et al. (2015); Zarjam et al. (2013); Trejo et al. (2015); Kumar and Kumar (2016).

Among these features, power spectral density (PSD) features are the most admired due to

the relationship between different frequency bands and WM activities at different cognitive

load states, as reported in various literature Kumar and Kumar (2016); Dai et al. (2017);

Clark et al. (2004); Tort et al. (2009). Classical machine learning models such as SVM,

K-nearest neighbors (KNN), and Random forest have been extensively applied to PSD

features for cognitive load prediction. However, due to the high degree of noise in EEG

data, implementing these models involves a tedious feature selection. Also, to avoid the

curse of dimensionality, the current state-of-the-art methods limit their WM analysis to

band-specific featuresJohannesen et al. (2016); Trejo et al. (2015); Bashivan et al. (2015);

Nuamah et al. (2017); Zarjam et al. (2013). Besides being tedious and band-specific,

current WM analysis methods ignore spatial information available through EEG

electrodes.

The above challenges show the need for a robust method to learn the spatial-spectral

features from inherently noisy EEG data. One such method is deep learning. A few works

have adopted deep learning for working memory analysis and cognitive load classification.

Sahal Saha et al. (2018) used Stacked Denoising Autoencoder (SDAE) and multilayer

perceptron to classify cognitive load from EEG signal. They attempted to reduce the noise
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by using a denoising autoencoder with only data from four participants, which may not be

enough to train deep learning models and achieve a high and reliable classification. An

attempt to preserve the EEG signal’s spatial-spectral structure was made in Bashivan

et al. (2015). Similar to our work, they transformed EEG signals into 2D spatial-spectral

images, which were used to classify cognitive load using deep recurrent CNN. While the

work achieved a competitive performance, it did not provide a framework for EEG noise

reduction. In addition, the data augmentation approach used in the paper by randomly

adding noise to the images failed to improve classification performance.

To contribute to the current effort in predicting cognitive load, we propose a data-driven

approach (CNN) capable of learning spatial-spectral representations of EEG data and

helping avoid tedious hand-crafted feature engineering and classification on a sub-optimal

set of features. We also solve the challenges facing the application of machine learning and

deep learning to EEG data by (i) reducing the noise and augmenting data samples

through eigenspace-based bootstrap sampling for ERP calculation followed by GAN, (ii)

transforming EEG signal into spectral topomaps to maintain spatial-structure of EEG

data, and (iii) learning the representations with CNN models to predict cognitive load. To

the best of our knowledge, the proposed method is the first deep learning-based approach

to address the challenges of noise in EEG data and scarcity of data samples while

preserving the EEG signal’s spatial-spectral structure and achieving high and reliable CL

prediction performance.
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CHAPTER 3. METHODS AND PROCEDURES

3.1 Data

In our analysis, we used, with permission, auditory WM data utilized in Bashivan (2016).

Experimental details and behavior results are given in Bashivan (2016). In brief, a total of

15 participants (female: 8 and male: 7) were engaged in the auditory WM experiment.

The continuous EEG signals were recorded with 64 sintered Ag/AgCl electrodes placed

around the scalp at standard 10-10 locations (Neuroscan, Quik-cap) with a sampling rate

of 500Hz.

During the experiment, participants listened to a series of English characters (SET), each

300ms long with a 700 ms delay in between. After playing SET, there was a 3 seconds

delay during which participants were instructed to memorize the characters. After the

delay, a test character (TEST) was played, and participants were asked to press one of the

two buttons to indicate whether the TEST was among SET or not. This process is

summarized in Fig. 3.1. Per request, we received pre-processed auditory task EEG

recordings from 11 participants.

Among the three stages of the WM experiment (encoding, maintenance, recall), we focus

on the encoding stage, which covers the SET characters’ presentation time. In each of the

60 experimental trials, the number of SET characters is 2, 4, 6, and 8. The size of SET

reflects the level of cognitive load corresponding to the mental effort put into encoding

SET in the memory. Throughout this paper, we label SET sizes 2, 4, 6, and 8 as cognitive

load levels 1, 2, 3, and 4, respectively. Therefore, this work’s classification task is to



7

Figure 3.1 Audio task: Series of 300ms English characters were played with
700ms time delay between them. After listening to audio characters,
listeners were given 300ms prior to listening to a TEST after Which
they pressed a button to indicate whether a TEST character was
among SET. Source:Bashivan (2016)

predict these four levels of cognitive load using spatial-spectral features extracted from

their corresponding EEG recordings.

3.2 Eigenspace-based Bootstrap Sampling for Noise Reduction

and Data Augmentation

Excessive noise in EEG recordings and insufficient samples are the common roadblocks

that hinder the adoption of deep learning techniques for EEG data classification tasks.

The common technique to reduce noise from single-trial data is by extracting

Event-Related Potential(ERP). ERP is computed by averaging a participant’s single-trial

EEG signals, which removes random brain activities and produces low noise signal Coles

and Rugg (1995). However, due to the small number of participants, computing ERP

using all trials would not generate enough samples for training deep CNN models. To solve

this problem, we obtained our ERP data through bootstrap sampling by averaging 20

single-trial signals selected randomly with replacement from the original 45 trials per task.

We repeated this process 2000 times to generate 2000 samples for each participant per one

cognitive load level.
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However, sampling with replacement may generate redundant data as some trials can be

repeatedly selected in multiple iterations. Our objective is to produce samples with

significant noise reduction while having enough variance in the generated population.

Therefore, we used principal components analysis (PCA) to create eigenspace for our

original population (raw EEG data). After making eigenspace, we projected every

bootstrap sample to this space and reconstructed it. We then used a distribution of

reconstruction errors to pick samples that fall within the quartile range of 25% and 75%

hence eliminating samples whose samples belong within the lowest and the highest 25% of

reconstruction error distribution. This process dropped 50% of bootstrap samples which

are not well represented in the original population’s eigenspace. Samples with very low

reconstructed as reconsidered redundant since they are very similar to original noisy data.

Similarly, samples with very highest reconstruction error should be eliminated as they are

far from direction of maximum variance of the original data.

Figure 3.2 Cumulative explained variance ratio for raw EEG data for four cogni-
tive load levels)
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3.2.0.1 Principal Components Analysis (PCA) and Eigenspace Creation

Principal components of a data matrix can be obtained by calculating the eigenvectors of

the covariance matrix of the data. PCA is widely used for dimension reduction. In our

case, we used PCA to find eigenspace that well represents our raw EEG data. Our raw

EEG time-series signals have 176 time points. To create the eigenspace, we first selected

the number of principal components that capture the direction of maximum variance in

the data and then used these components to create our eigenspace. To find the optimal

number of principal components (K), we first fit PCA to our data and use the cumulative

explained variance ratio to find the first components most of the data variance. Fig.3.2

shows the plot cumulative explained variance ratio against the number of principal

components for four levels of cognitive load. The figure shows that the first 75 components

cover nearly 100% of data variance. Hence we used k = 75 to create our eigenspace to

which we projected our bootstrap samples. Example histogram of reconstruction errors is

shown in Fig.3.3.

Figure 3.3 Histogram of log reconstruction errors. The reconstruction errors is
obtained by subtracting the reconstructed signal from original signal.
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After ERP calculation and samples selection using eigenspace, the size of the data reduces

from 2000 to 1000 samples per subject per cognitive load level. So, since we have 11

subjects and four CL levels, the total size of the dataset is 44000 images at this point.

3.3 EEG Spatial-spectral Features

Various frequency bands of EEG signals have been linked to the brain’s WM processes.

Standard five EEG frequencies are Delta (0.5 to 3Hz), Theta (3 to 7.5Hz), Alpha (7.5 to

12.5Hz), Beta (12.5 to 30Hz), and Gamma (> 30Hz). Frequency bands that are reported

to be mostly correlated with the increase or decrease of cognitive load are Theta, Alpha,

and Beta Dai et al. (2017); Clark et al. (2004); Tort et al. (2009). The traditional

representation of EEG spectral features uses feature vectors aggregating mean PSD values

from all 64 electrodes. However, this representation ignores the spatial structure of the

EEG signal. In this work, we use a spatial-spectral representation of EEG data by

transforming the signal into 2D images (topomap), preserving both the spatial and

spectral structure of the data. Our objective is to use spatial-spectral features and

learning by the convolutional neural network in predicting four cognitive load levels.

First, we investigate the predictive power of individual frequency bands. Band specific

average PSD were extracted from ERP signal of encoding period by applying FFT to the

time series signal using welch method provided by MNE software’s time-frequency analysis

function (mne.time frequency.psd welch()) Gramfort et al. (2014). Since we used 64

channel EEG data, we generated 64 average PSD values for each FFT calculation.

Second, we hypothesize that a single frequency band may not contain all WM information

necessary to achieve a high and stable CL classification performance. Thus, beyond

band-specific topomap, we develop a composite spatial-spectral representation by stacking
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together topomap images from Theta, Alpha, and Beta bands. This feature fusion gives a

three-channel image with each channel corresponding to an individual frequency band.

3.4 Topomap Generation

The spatial information available from EEG electrode locations is usually left out in most

current state-of-the-art techniques for CL prediction. Our goal is to preserve the data’s

spatial and spectral structure by projecting PSD values to a 2D montage. A montage is a

representation of EEG channel positions in 2D or 3D space. We used MNE software

Gramfort et al. (2014) to obtain 2D channel positions by projecting their corresponding

positions in 3D space to 2D montage using a sphere as a reference. Fig.3.4 shows 3D (left)

and 2D (right) space of 64 EEG channels.

To generate PSD topomap images, we interpolate PSD values over the brain scalp surface

montage approximating the values between channel positions. For individual frequency

bands, topomaps are obtained by projecting 64 average PSD values for Theta, Alpha, and

Beta bands over the scalp surface ( MNE function:mne.viz.plot topomap()). We obtain

composite topomap by stacking together topomaps from individual frequency bands.

Fig.3.5 summarises the above transformation of ERP signal into topomap images.

3.5 Data Augmentation with GAN

GAN stands for Generative Adversarial Networks, and it was first proposed in 2014 by

Goodfellow et al. (2014). GANs belong to the type of unsupervised generative machine

learning models such as AutoEncoders (AE)Ng et al. (2011), and Variational Autoencoder

(VAE) Pu et al. (2016), and Convolutional Autoencoder (CAE) Chen et al. (2017).

Generative models have shown a surprisingly big success in data generation, data

encoding, information retrieval, and image super-resolution applications.
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(a) 3D channel positions (b) 2D channel positions

Figure 3.4 64 EEG channel positions (a),(b) in 3D and 2D space respec-
tively(Gramfort et al. (2014))

Autoencoder-based generative models for image generation uses an encoder network to

down-sample input image to a smaller dimension latent feature space which a decoder

network will learn to regenerate the original image. On the other hand, GAN samples

from a complex low dimension noise and learns the transformation from sampled latent

space to original distribution. GAN models are composed of two deep neural networks,

generator and discriminator, trained simultaneously in a two-player zero-sum game way.

The generator network takes a fixed length random latent space vector drawn from a

random noise such as Gaussian distribution and generates samples through a generative

process. After training, the points in this latent will be mapped to their corresponding

points in the real domain (real sample space). The discriminator network takes samples

from real data distribution and generator and learns to classify them as real or fake.

Therefore, during the training, the discriminator learns to accurately discriminate between

actual samples from fake samples generated by the generator. So, the generator tries to

fool the discriminator by generating samples as close as possible to real samples. The
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Figure 3.5 Overview of EEG signal to spatial-spectral representation: A) We ex-
tract ERP signal from raw EEG data. B) We apply FFT to ERP sig-
nal to get average PSD density from three frequency bands. C) We
project PSD values over scalp surface to obtain spectral topography
maps.D) Single-frequency topomaps are stacked horizontally to form a
composite topomap

training continues till when the discriminator can longer distinguish fake from real

samples. At the end of the training, we remove the discriminator network and use the

generator to generate new samples.

Fig.3.6 shows a general overview and architectural difference between autoencoders (left).

and GAN (right).

GAN uses Minimax loss, an optimization used during simultaneous training of generator

and discriminator networks. Mathematically, the discriminator tries to maximize the log

probabilities assigned to real images logD(x) and log of the inverted probability of

generated fake images log(1−D(G(Z)). On the other hand, the generator tries to

minimize the log of inverted probabilities assigned fake images log(1−D(G(Z)). Minimax

loss optimization for GAN models is summarized below:
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• Discriminator: Maximize {logD(X) + log(1−D(G(Z))}

• Generator : Minimize log(1−D(G(Z))

(a) Autoencoder (b) GAN

Figure 3.6 Autoencoder and GAN network overview: (a) Autoencoder down-sam-
ples input sample X to produce a compressed representation Z which
is then learned by decoder network to reconstruct X ′. (b) GAN sam-
ples from random latent variable to produce fake examples which will
be fed to a discriminator network together with real samples for clas-
sification. The error is back-propagated through both networks with
generator trying to minimize it (fooling the discriminator)

In this work, we used GAN to increase the number of spatial-spectral topomaps for

cognitive load classification. GAN will allow us to further reduce the redundancy in data

generated through bootstrap sampling and arguably improve model generalization. To

achieve this goal, we randomly selected (without replacement) 22, 000(50%) topomap

images from 44000 images generated eigenspace-based bootstrap sampling to train GAN.

Due to a small number of training samples, we designed a shallow GAN network with a

total of 10, 941, 187 trainable parameters. The Generator network starts with a 100 long

latent vector sampled from a standard normal distribution (mean (µ)=0) and standard

deviation (σ) =1) followed by a dense layer, three successive deconvolution layers

(upsampling) and one convolution layer with output shape of 224× 224× 3 which is the
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dimension of real images. The discriminator network consists of two successive convolution

and dropout layers, followed by one dense layer and a sigmoid layer. Fig.3.7 Shows the

architectures generator and discriminator networks of our GAN model.

(a) Generator network (b) Discriminator network

Figure 3.7 Generator and Discriminator architectures:(a) Generator network takes
a 100 latent vector as input and generate a 224 × 224 × 3 image. (b)
Discriminator takes a 224× 224× 3 images from real data set or Gener-
ator images and returns probability of the image being real

We train the GAN model for 100 epochs with a batch size of 32 images. Fig.3.8 shows

training loss curves for the GAN model trained on composite topomaps. From the figure,

we can see that as training continues, discriminator loss starts to increase, whereas

generator loss decreases until both losses become close to each other.

Fig. 3.9 shows example of real image used to train GAN and image generated using the

trained GAN. From the figure, we can see that GAN is capable of producing that look like

real images.
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Figure 3.8 Discriminator and Generator Losses. The figures shows how discrimi-
nator generator networks losses change for the GAN model trained on
stack topomaps (CL-3) for 100

3.6 Cognitive Load Classification with Convolution Neural

Networks

The above sections described the data generation workflow, including data augmentation

through Eigenspace bootstrap sampling and GAN, and data transformation from time

series to spatial-spectral representation. The next step is to use the generated dataset and

CNN for cognitive load classification. We used Convolutional Neural Networks (CNN) as

our classifier due to its ability to learn spatial features from EEG topomaps. To evaluate

the efficacy of our data generation technique performed empirical evaluation of the CNN

model performance on data set generated though bootstrapping, and GAN. In both cases,

we first test the role of the individual frequency band in predicting cognitive load, and

second we compare the performance of individual band and composite topomaps.
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(a) Real topomap (b) Fake Topomap

Figure 3.9 Example image generated with GAN:(a) example image from real
dataset. (b) Example image generated using GAN

3.6.1 Model Selection and Hyper-parameter Optimization

All CNN models were designed using Keras API, which uses Tensorflow as a backend. To

ensure maximum performance of our CNN models, we have implemented hyper-parameter

optimization using Hyperopt. Hyperopt is an open-source python library for Bayesian

hyper-parameter optimization Bergstra et al. (2013). Traditional non-bayesian

optimization techniques such as random search or grid search choose hyper-parameters for

the model by exhaustive search through the entire search space. Optimization methods

such as random search are not suitable for learning models with many hyper-parameters or

hyper-parameters with a continuous range. Unlike random search, Hyperopt utilizes the

search history from previous trials to suggest the best hyper-parameters for the next trial

using Tree-structured Parzen Estimator (TPE) Bergstra et al. (2011). TPE starts

optimization by finding pairs of hyper-parameters x and corresponding losses y from

previous trials; then it splits the probability p(x/y) into two distributions l(x) and g(x)

where l(x) is associated with a subset of hyper-parameters with smallest loss values and
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g(x) for the rest. TPE aims at maximizing expected improvement EI given by the

equation:

EI∗y =

∫ +∞

−∞
(y∗ − y)p(x/y) dy

which leads to

EI∗y =

∫ +∞

−∞
(y∗ − y)

p(x/y)

p(x)
dy

, where y∗ is expected performance. The authors prove from the above equation that EI is

proportional to (g(x)
l(x)

)−1. Therefore, throughout successive optimization trials, TPE finds

set of hyper-parameters values x that minimize the ratio
g(x)

l(x)
or x∗ = argminx

g(x)

l(x)

Figure 3.10 CNN architecture for Eigenspace-based stacked band dataset. Fea-
ture extraction network consists of six Convolution and MaxPooling
sets followed by a dropout layer , and classification network consists
of Flatten layer, a single Dense layer with 1024 nodes and a SoftMax
layer with 4 nodes

We used Hyperport to find both the best hyper-parameters and the architecture of our

models. The search space for the models includes activation function, convolution layers

dropout probability, convolution hidden layers probability, convolution kernel size, fully

connected units multiplier, optimizer, pooling type, and kernel size for the residual

network (if any).

Fig.3.10 shows the architecture of a model built using hyperopt. The architecture of the

CNN model shown in Fig.3.10 consists of six Convolution layers as a feature extractor, and
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a classification network made of one dense layer and softmax layer. Each Convolution

layer is followed by the batch normalization, Relu, and MaxPooling layer. The kernel size

of all Convolution layers is 3×3 except for the first layer (7×7) and the second (5×5). The

number of filters in the Convolution layer started at 32, doubled the number of filters for

each successive layer, and stopped at 256 for the last two Convolution layers. For the

classification network, we used a single fully connected layer with 1024 nodes and a

SoftMax dense layer to learn the decision surface to separate different levels of topomap

images. The Softmax layer has an output shape of four, representing the four cognitive

load classes.

We applied an L2-norm weight regularization penalty of 0.01 to the last three Convolution

layers to account for over-fitting. Also, we used a single dropout layer with a dropout ratio

of 0.4 before the Soft-Max layer.

All CNN models were trained to minimize a categorical cross-entropy loss function using a

decreasing learning rate criterion starting from 0.0001 with a decreasing factor of 0.2 for

100 epochs. To train the CNN architectures, we have randomly split the available images

using a 70% - 30% split ratio for training and testing, respectively.
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CHAPTER 4. RESULTS

In Chapter 3, we described our approach for noise reduction, data augmentation,

transformation of the signal into spatial-spectral representations, and modeling of a CNN

architecture capable of learning these representations. The main objective of going

through the above process was to find a data-drive approach robust against the noise and

capable of learning both spatial and spectral information of EEG data to reach a reliable

prediction of extraneous cognitive load. In this section, we show the performance of our

deep CNN models trained on spatial-spectral features from individual frequency bands and

composite topomaps.

The performance metrics used in evaluating the models are accuracy, precision, recall,

weighted average F1-score, and and Area Under the Receiver Operating Characteristic

Curve (ROC AUC). Accuracy is the most used evaluation metric for supervised machine

learning classifiers. Precision, recall, and F1-score are also useful in determining the effect

of false positive and false negative results on model performance, especially when these

two quantities are very high or there is an uneven number of samples among classes. Our

results show how the above metrics values change from one frequency band to another,

reflecting their respective predictive power. We used data generated through two

methodologies, namely bootstrap sampling and bootstrap sampling combined with GAN.

Sections.4.1 and 4.2 summarize cognitive load classification performance on dataset from

methods
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4.1 CNN Models’ CL classification Performance on

Eigenspace-based Bootstrap Sampling Dataset

First, we trained the deep CNN model on topomap images from three frequency bands

(Theta, Alpha, Beta) obtained through a transformation from ERP time series to

spatial-spectral representation. ERP data were obtained through the bootstrap sampling

process described in the section. 3.2. Second, we trained the model on composite topomap

images resulting from the fusion of individual band topomaps. For each band and

composite representation, we have 44000 images from four different cognitive load levels

with 11000 images(samples) each. To train the CNN architecture, we randomly split the

available images using a 60% - 25%-15% split ratio for training, testing, and

validation.The validation set is important because our images come from bootstrap

sampling, which may in rare cases generate duplicate images in both train and test sets,

which can lead to a biased model performance. We trained the models for 100 epochs with

different batch sizes. Fig.4.2 shows the performance of our CNN models in predicting four

levels of cognitive load.

Fig.4.1 shows accuracy and loss curves (learning curves) for the CNN model trained on

composite topomap. The learning curves are very useful in evaluating the learning process

of the model from one epoch to another. The curves help us to see whether the model is

underfitting or overfitting the data. From our learning curves, we can see a good fit of the

model to dataset since training and validation loss curves gradually and smoothly decrease

and reach a stable point with a minimal gap between them (generalization gap). Similarly,

we see a smooth and gradual increase of training and validation curves reaching stable and

steady optimal points after 60 epochs. We trained the model for 100 epochs to ensure that

the training process does not end immaturely. Here we show the learning curves for
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composite since it gave the best model performance. Training curves for Theta, Alpha,

and Beta bands are shown in APPENDIX.

(a) Loss curve for stack band topomap (b) Accuracy curve for stack band repre-
sentation

Figure 4.1 Training and validation curves for CNN model trained on Stacked band
topomaps. The model was trained over 100 epoch with a batch size of
32 images

Fig.4.2 shows cognitive load prediction performance in terms of accuracy, precision, recall,

F1-score, and Area Under the Receiver Operating Characteristic Curve (ROC AUC). From

the figure, we can deduce that the Beta band carries more cognitive load predictive power

than Theta and Alpha since it outperformed the other two bands in predicting four

cognitive levels with an accuracy of 88%. Further, we did not find a significant difference

between alpha and theta bands’ predictive power as the performance of CNN models

trained on their corresponding topomaps is approximately the same with the accuracy of

86% and 85% respectively. Though we achieved a good classification performance from

individual frequency bands, combining the individual bands improved the performance

significantly up to the accuracy of 90%.

In Fig.4.3, we show the confusion matrix of the CNN model trained on Theta, Alpha,

Beta, and composite representation. Looking at the confusion matrices, we can see that

for all bands, our model has more misclassifications at the upper intermediate cognitive

load level ( CL-3), which could result from high signal variations during the transition

from low to high cognitive loads. On the other hand, the CNN models easily discriminated
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Figure 4.2 Cognitive load classification results with CNN model: Accuracy, pre-
cision, recall, and F-1 score were used to evaluate the model model on
spatial-spectral topomap from theta, alpha, beta bands, and composite
topomap in predicting four levels of cognitive load

other loads: load-1(SET size =2), load-2( SET size =4 ), and load-4(SET size = 8), which

shows the steadiness of EEG signals at low and high memory loads.

4.2 CNN models’ CL classification Performance on Combined

Bootstrap Sampling and GAN Dataset

In this section, we report cognitive load classification performance from CNN models

trained on topomap data from a combination of samples from the bootstrap process and

GAN, see section .3.5 for details. A half of data used here came from bootstrap sampling,

and another half was generated using GAN. Similar to Section. 4.1, we trained the deep
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(a) Theta band (b) Alpha band

(c) Beta band (d) Composite topomap

Figure 4.3 Confusion matrices of CNN models trained on spectral topomap from
theta (a), alpha (b), beta (c) bands, and composite topomap (d)

CNN model on topomap images from Theta, Alpha, Beta frequency bands, and composite

representation. The goal here is to test whether adding GAN to our data generation

framework significantly improves classification performance and generalization. We

followed the same training procedure described in Section.4.1.

The models were trained for 100 epochs to minimize categorical cross entropy. Fig. 4.4

shows training and validation curves (loss and accuracy) for the CNN model trained on

stacked bands representation. From the figure, we see fluctuations in the curves for the

first few epochs followed by a more smooth training after 60 epochs. The rough training at

the beginning can be caused by the slight difference between real and GAN generated

images which the model overcomes as training continues.

Fig.4.5 summarizes the classification performance of CNN models trained on real data

combined with GAN generated topomaps. The figure shows performance improvement of

3%,4%, 2%, and 2% for theta, alpha, beta, and stack topomaps respectively. These results



25

(a) Loss curve for stack band topomap (b) Accuracy curve for stack band repre-
sentation

Figure 4.4 Training and validation curves for CNN model trained on Stacked band
topomaps from real and GAN topomaps. The model was trained over
100 epoch with a batch size of 32 images

proves the robustness of GAN in generating reliable data for image classification. Looking

at confusion matrices in Fig. 4.6 we observe similar trend as in Fig. 4.3 where models have

difficulty in discriminating the third cognitive load level (CL-3) from other levels. In terms

of role of frequency bands in predicting cognitive load, Beta band has the highest

performance compared to other bands and composite representation shows the highest

performance.

Overall, our results show that without tedious hand-crafted feature selection, and while

preserving the spatial-spectral structure of EEG data, the CNN model can learn the

mapping between EEG signal and different levels of cognitive load with high accuracy.

Moreover, we can reach higher performance beyond individual frequency bands by training

the CNN model on the composite band representation. Further, we can solve the small

sample problem in EEG through bootstrap sampling and GAN, enabling us to model deep

neural network models and improve model generalization.
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Figure 4.5 Cognitive load classification results with CNN model: Accuracy, pre-
cision, recall, and F-1 score were used to evaluate the model model on
spatial-spectral topomap images generated through GAN and boot-
strap sampling in predicting four levels of cognitive load
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(a) Theta band (b) Alpha band

(c) Beta band (d) Composite topomap

Figure 4.6 Confusion matrices of CNN models trained on spectral topomap from
theta (a), alpha (b), beta (c) bands, and composite topomap (d) gener-
ated through GAN and bootstrap sampling
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CHAPTER 5. SUMMARY AND DISCUSSION

This work presented a data-driven approach to learn the spatial-spectral representation of

EEG signals recorded from participants performing an auditory working memory

experiment. CNN models were used to learn and map the EEG representations to four

levels of CL corresponding to the complexity introduced into WM tasks. Data

augmentation using eigenspace-based bootstrap sampling in computing the ERP to reduce

the noise followed by GAN allowed us to obtain enough and low noise data to find

bias-variance trade-off in building CNN models. Also, the transformation of ERP data into

spectral topomap images allowed us to preserve the spatial-spectral structure of EEG

signals. Further, we used deep CNN architecture to alleviate the tedious feature extraction

and selection commonly used in classical machine learning.

We conducted empirical analyses to compare the predictive power of individual frequency

bands (theta, alpha, beta) and composite representation in classifying cognitive load. Our

results show that the Beta band(12.5 Hz - 30 Hz) has more predictive power than Theta

(3 - 7.5 Hz) and Alpha (7.5 - 12.5 Hz) in classifying cognitive load with accuracy > 91%.

The classification accuracy is > 92% for combinations of 3-frequency bands. Our results

also suggest that generative models such as GAN show potential success in solving the

small sample problem in EEG analysis.

Our results, however, still rely on the average of trials (ERP) for cognitive load

classification. ERP calculation can eliminate useful information from a single trial signal

due to averaging. In order to achieve a high classification performance, future work should

consider other denoising and data techniques that work on single trials.
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Overall, our results show that the combination of data transformation, data augmentation,

and use of CNN models are highly accurate (> 92%) in predicting CL and robust against

typical noise present in the EEG recordings.
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APPENDIX A. Accuracy and Loss Curves

(a) Theta band (b) Theta band

(c) Theta band (d) Theta band

Figure A.1 Training and validation loss curves for CNN models trained on
Theta, Alpha, Beta, Stack spatial-spectral representations of EEG for
datasets obtained through Eigenspace-based bootstrap Sampling. The
models was trained over 100 epochs.
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(a) Theta band (b) Alpha

(c) Beta (d) Stack

Figure A.2 Training and validation accuracy curves for CNN models trained on
Theta, Alpha, Beta, Stack spatial-spectral representations for datasets
obtained through Eigenspace-based bootstrap Sampling. The models
was trained over 100 epochs
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(a) Theta band (b) Alpha

(c) Beta (d) Stack

Figure A.3 Training and validation loss curves for CNN models trained on Theta,
Alpha, Beta, Stack spatial-spectral representations for datasets ob-
tained through bootstrap Sampling and GAN The models was trained
over 100 epochs
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(a) Theta band (b) Alpha

(c) Beta (d) Stack

Figure A.4 Training and validation accuracy curves for CNN models trained on
Theta, Alpha, Beta, Stack spatial-spectral representations for datasets
obtained through bootstrap Sampling and GAN The models was
trained over 100 epochs
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