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ABSTRACT: Fight against road unsafety is a French government priority. The policy conducted since2002
allowed to obtain undeniable success. Despite this improvement, road accidents have very serious consequences
on human level for road users. The proposed methods to reducethese accidents involve independence between
criteria of accident risk. The objective of this study is to estimate the multidimensional risk of failure trajectory.
It consists to investigate a new method of risk assessment inorder to better characterize the dependence struc-
ture between the vehicle criteria for safety acceptance. This requires the use of simulation techniques such as
copulas methods. This function connects the joint probability distribution to the marginal distribution. Thus, it
contains all information on the dependence structure of models.
However, the difficulty of multidimensional risk is to choose the copula which capture the better dependence
between criteria. To select an adequate copula must be basedon a statistical test. Theχ2 test used in the frame-
work of the adjustment of a parametric distribution to an empirical distribution is in this regard an interesting
tool for the choice of copula. The experiments have shown therelevance and effectiveness of this method. The
results will help to better assess the risk of failure trajectory for vehicles.

1 INTRODUCTION

Despite the improvement of road safety, vehicle
accidents have very serious consequences on human
level for road users, (ONISR 2011). We note that
road accidents depend on several factors, including
driver and vehicle environment, acting on trajectory
(e.g. effects of random external actions like wind,
or unexpected reactions of drivers), (IRTAD 2010).
Therefore, taking into account random phenomena in
the civil engineering problems has become increas-
ingly common and necessary in order to ensure the
safety of structures and systems. It must be taken
into account in modeling of systems as well as in the
formulation of reliability problems.

In the past, many strategies have been proposed
to investigate this complex problem. We remember
that our laboratory (IFSTTAR) worked in the road
safety problems since several years. In this context, a
reliability analysis has been applied on experimental
site (Nantes/France). It consists to predict failure
trajectories, starting from a given bend configuration

and representative observations of real trajectories.
One calls failure trajectory, any trajectory not respect-
ing the safety conditions defined by the legislator.
The risk levels of failure trajectory were evaluated
according to several criteria. This methodology has
been a contribution to the development of warning
procedures designed to significantly reduce the
number of accidents in bend, (Koita 2011).

However, the failure criteria of vehicle trajectory
were considered independently in risk assessment.
The reproach to this result is to not include the
dependence structure between criteria. One of the
most important questions in accident analysis is what
role correlation between failure criteria plays in risk
assessment. Specifically does correlated or dependent
activity convey more information than criteria used
independently. Then, how are one-dimensional
correlated risks? Note that the correlations between
variables of risk are often difficult or impossible to
quantify. In particular, in the case of two variables
will require n2 measures where2n are sufficient to
estimate two marginal densities.



In a previous study (Koita, Daucher, & Fogli
2012a), we have measured the impact of the varia-
tion of criteria as function of the failure probability
Pf . It represents the probability to exceed a safety
threshold. To deepen up this approach, we propose in
this study to investigate a new method of risk assess-
ment in order to better characterize the dependence
structure between the relevant failure criteria. This re-
quires the use of simulation techniques such as cop-
ulas methods. This function connects the joint prob-
ability distribution to the marginal distribution. Thus,
it contains all information on the dependence struc-
ture of model. In practice, at the time of the copula
model implementation, it is advisable to be able to
estimate the dependence by using available data. The
failure criteria will be assimilated to components of
a R

n-valued stochastic vectorial process defined on
(Ω,ℑ,P). Copula involving modelling two or more
random variables, (Frees & Valdez 1998). This tech-
nique will allow to estimate the multidimensional risk
of failure trajectory.

2 METHODOLOGY

After this introduction, we first provide some defini-
tions about relevant criteria of failure trajectory. The
vehicle’s trajectory is defined as realizations of aR

6-
valued stochastic processU = (U(t), t ∈ R) defined
on (Ω,ℑ,P). We obtain a trajectoryu(t) = U(t, ω),
∀t ∈ T whereω ∈ Ω.

Then, we introduce copulas method in order to
estimate multidimensional risk of failure trajectory.
That will be the key focus in this study. The difficulty
of multidimensional aspects of risk is to choose the
copula which capture the better dependence struc-
tures between failure criteria. To select an adequate
copula must be based on a statistical test. Theχ2

test used in the framework of the adjustment of a
parametric distribution to an empirical distribution
is in this regard an interesting tool for the choice of
copula, (Fermanian & Scaillet 2003).

Finally, we propose to estimate the risk level of
failure trajectory by taking into account of the depen-
dence between criteria. We will also show the effect
of the dependence structure in the vehicle risk assess-
ment.

3 CHOICE OF FAILURE CRITERIA

In this section, we describe criteria used to estimate
the risk of failure trajectory. In research work(Koita,
Daucher, & Fogli 2012b), we considered three failure
criteria:

• The relative distance between the center of traffic
lane and the vehicle’s trajectoryu. This geomet-

rical distance must be limited because one can-
not deviate indefinitely from the center of traf-
fic lane while remaining on road space rationing.
This criterion notedK1 is defined by:

supt∈T |D(t)| > δ∗ (1)

whereδ∗ is a safety threshold value. This crite-
rion relates on theR+-valued process of control
D = (D(t), t ∈ R) defined on(Ω,ℑ,P).

• Lateral acceleration and its variation (jerk) are
criteria often used in the literature to determine
the vehicle trajectory dangerosity. It is used
as failure criterion because the going beyond a
thresholdδ∗ can generate loss of control, see
(Revue 2003). This criterion notedK2 is defined:

supt∈T |ΓN(t)| > δ∗ (2)

It relates on theR-valued process of control
ΓN = (ΓN(t), t ∈ R) defined on (Ω,ℑ,P).
This process is easy to determine because it
is a coordinate of trajectoryu in the Galilean
coordinate systemRA

0 .

• The vehicle’s orientation compared to the axis of
traffic lane plays a significant role in the search
for strategy to control vehicle in corning driving.
This criterion notedK3 is defined by:

supt∈T |ψ(t)| > ψ̄ (3)

whereψ̄ = δ∗ is a safety threshold of vehicle ori-
entation to be chosen in an interval[ψmin, ψmax].
This criterion relates on theR-valued process
of controlψ = (ψ(t), t∈R) defined on(Ω,ℑ,P).

Note that, these3 criteria of failure seem to be rel-
evant. They relate on the processes of control:D(t),
ΓN(t) and ψ(t). The max of these processes will
be limited by thresholdsδ∗ to guarantee the vehicle
stability on road. The processesD(t), ΓN(t) andψ(t)
are obtained by transformation of the processU via
a functionalF . WhereF is a functional ofR6 with
value inR, relative to criteria chosen to define failure
trajectory, (Koita 2011).

Starting from these criteria, we calculated the fail-
ure probabilityPf by using reliability of components
in series (integration of Sup criterion). That means
as soon as criterion is not respected the system be-
comes failing. For that, the probability of a union
notedPf−sys has been calculated:



Pf−sys = Prob(∪Ei), i = 1,2,3 (4)

The reproach made with this result is to not
calculate probability of interaction between failure
criteria. The object of this study is to estimate
multidimensional risk of failure trajectory. It consists
to calculate the failure probabilityPf by taking into
account of the risk related to the structure dependence
between criteria.

For that, we propose to choose the relevant criteria
of failure. In research work (Koita, Daucher, & Fogli
2012a), a sensitivity analysis was carried out to
show the effect of criteria on the failure probability
estimation. Let us recall that a classical analysis of
sensitivity seeks to calculate the statistical parame-
ters of output variables according to the statistical
parameters of input data. For this study, we sought to
characterize the sensitivity∂Pf

∂Ki
of the probabilityPf

by report to failure criteriaKi. To compare criteria
on the same scale, the min-max normalization is
used. The standardized safety thresholdδ∗ for each
criterion varies in[0; 1]. The results showed that the
functions π(δ∗) are different according to criteria
(K1,K2 and K3). These functions represent the
variation ofPf as function ofδ∗.

The criteria do not have same variability. The most
important variation is betweenK2 andK3. This re-
sult corresponds to a driving situation where drivers
generate a strong lateral accelerationΓN by mini-
mizing the vehicle’s orientationψ compared to the
axis of traffic lane. It is also noted that failure crite-
ria are treated on a hierarchical basis with respect to
Pf . From this result, we obtain the following order
relation:

K3 ≺ K1 ≺ K2 (5)

We conclude that the criterion of orientationK3 has
less effect on the failure probabilityPf than two other
criteria. What implies the relevance ofK1 andK2.
Also, let us note that lateral acceleration criterionK2

is most relevant to evaluate failure trajectory. Thus,
we have just carried out a study of sensiblity ofPf

compared to the effect of criteria.

To estimate the multidimensional risk, we propose
to simulate the processes of controlD andΓN be-
cause being most relevant to characterize the failure
trajectory. That requires the simultaneous simulation
of R2-valued vectorial stochastic process(D,ΓN) de-
fined on(Ω,ℑ,P). For this purpose, the copula model
is proposed in order to include the dependence struc-
ture between criteria.

4 DEPENDENCE MODELLING VIA COPULA

Copula is a multivariate distribution functionC de-
fined on the unit cube[0; 1]n, with uniformly dis-
tributed marginals[0; 1]. Let F be ann-dimensional
cumulative distribution function with marginals
F1, ..., Fn, there existsn-copulaC such as for each
x of Rn, F(x1, ..., xn) = C(F1(x1), ...,Fn(xn)). The
densityc of a copulaC, if it exists, is defined as fol-
lows:

c(u1, . . . , un) =
∂nC

∂u1 . . . ∂un
(u1, . . . , un) (6)

The copulas constitute a statistical tool making it pos-
sible to model the dependence between random vari-
ables.

4.1 Dependence structure

The research of dependence relates at the same time
to the various strategies. There are many ways of mea-
suring the dependence (concordance) between ran-
dom variables. In statistic, the Kendall’s Tauτ and the
Spearman’sρS are two classical measurements of cor-
relation. They provide the perhaps best alternatives to
the linear correlation coefficient as a measure of de-
pendence for nonelliptical distributions, for which the
linear correlation coefficient is inappropriate and of-
ten misleading. In addition, they offer the advantage
of being expressed simply according to the copula
associated with the couple of random variables. For
more details about Kendall’s tau and Spearman’s rho
and their estimators, we refer to (Kendall & Stuart.
1979), (Kruskal 1958), (Lehmann 1975) and (Caperaa
& Genest. 1993). For other interesting scalar mea-
sures of dependence see Schweizer and Wolff (1981).

4.1.1 Kendall’s rank coefficient of correlation
Kendall’s tauτ is a measure of rank dependence com-
monly computed nonparametrically, but does have an
analytical relationship with respect to most paramet-
ric copulas. Let(X,Y )T be a vector of continuous
random variables with copulaC. Then Kendall’s tau
for (X,Y )T is given by:

τ(X,Y )
∆
= 4

∫ ∫

[0,1]2
C(u, v)dC(u, v)− 1 (7)

For instance, Kendall’s tau equals the difference
between the probabilities of concordance and discor-
dance, for a randomly selected pair of observations.

Written in another form by:

τ(X,Y ) =















Pr
{

(X−X
′

)(Y−Y
′

)≥0
}

−Pr
{

(X −X
′

)(Y − Y
′

) < 0
}















(8)



Where(X
′

, Y
′

) a vector of same law as(X,Y ) and
independent.

4.1.2 Spearman coefficient of correlation
The Spearman’sρ is defined by:

ρS(X,Y ) = 12

∫ ∫

[0,1]2
C(u, v)dudv− 3 (9)

Different copula functions exhibit different depen-
dence patterns. Therefore, if a researcher wants to ex-
plore the structure of dependence, he may estimate
several copulas and choose one on the basis of best
fit to the data. The choice of copula represents the
first difficulty in the practical application of the de-
pendence modeling.

4.2 Copula choice

It is necessary to find the copula family that describes
best the correlation between variables. Once a
researcher has specified the marginal distributions,
an appropriate copula is selected. Because copulas
separate marginal distributions from dependence
structures, the appropriate copula for a particular
application is the one which best captures dependence
features of data. A large number of copulas have been
proposed in the literature, and each of these imposes
a different dependence structure on the data.

Regarding classes of copulas, the AMH, Clayton
and Frank copulas are Archimedean, however the
Gaussian is not. The Gaussian copula is a multivariate
density that captures the elliptical dependence shape,
but as is the case with all copulas, is capable of
binding arbitrary marginal distributions. It has pa-
rameters that would need to be estimated in the same
fashion as any parametric copula, typically through
maximum likelihood estimation. The standard mul-
tivariate Gaussian density of course assumes that
the marginals are Gaussian. The Gaussian copula is
mathematically less tractable than the Archimedean
family of copulas. Although the AMH copula is
somewhat more tractable to work with analytically, it
is not as flexible as the Clayton copula in terms of the
possible range of dependence. Both of these copulas
are asymmetric, with the strongest dependence in
the lower tails. The Frank copula (Genest 1987),
also an Archimedean copula, is radially symmet-
ric, a characteristic it shares with the Gaussian copula.

We developed procedures to simulate each cop-
ula and estimate the parameter underlying each cop-
ula (dependence structure) for a given data set us-
ing an approach similar to that of (Genest, Ghoudi,
& Rivest 1995) and Dias et.al (2004), and apply sev-
eral goodness-of-fit tests to test the appropriateness of
these copulas, see figure 1.

Normal copula, ρ = 0.5

−2 −1 0 1 2
−2

0

2
Student’s t copula, ρ = 0.5, ν = 3

−2 −1 0 1 2
−2

0

2

Clayton copula, κ = 1

−2 −1 0 1 2
−2

0

2
Gumbel copula, κ = 1.5

−2 −1 0 1 2
−2

0

2

SJC copula, τU = 0.45, τL = 0.2

−2 −1 0 1 2
−2

0

2

Mixed normal copula, ρ
1
 = 0.95, ρ

2
 = 0.05

−2 −1 0 1 2
−2

0

2

Figure 1: Copulas.

Gaussian copulas are the most used in practice
partly because their parameters can be estimated very
easily by empirical means. Moreover, they extend the
simple multidimensional gaussian framework natu-
rally. The Student’s copula is similar to the Gaussian
copula, but it has an extra parameter to control the
tail dependence. Student copulas are of interest be-
cause they include the gaussian copulas family as a
limit case. But contrary to the latter, they exhibit de-
pendence in the tails. As noticed in (Ling 2003), the
three other families represent three degree of depen-
dence. Gumbel (resp. Clayton) copulas allow to mod-
elize dependence in the right (resp. left) tails. After
this description, the main question is: which is the
best structure of dependence being able to be adapted
to the studied phenomenon?

4.2.1 Fit test description
The choice of the best copula making it possible to
model the dependence between random variables is
of major importance. However, the tests of adequacy
for the copulas are relatively recent. It is to be
announced that one finds few articles on the subject,
but the research field is under development constant.
To our knowledge, this is the first multivariate
goodness-of-fit test for Archimedean copulas that is
actually implementable and, indeed, implemented.

Even though the test statistic is based on the clas-
sical χ-statistic, its asymptotic distribution is non-
standard. The null hypothesisH0 states that the de-
pendence structure of data at hand can be captured by
a particular parametric family of Archimedean copu-
las. Theχ2 test relies upon an arbitrary binning of data
to calculate the test statistic. In this paper, we have
used equal probability binning in all procedures to
minimise error. Furthermore, all data is transformed
prior to binning into uniform variates that are uncor-
related underH0. The classical Pearson’sχ-statistic is
then calculated according to the following equation:

χ2 =
n

∑

i=1

(N obs
i −N exp

i )n

(N exp
i )

(10)



whereN obs
i , N exp

i are the number of observed and
expected observations in theith bin respectively. To
calculate thep-value, we note that the degrees of
freedom are simply the number of bins that are not
empty, and thus obtain thep-value from statistical
tables.

It’s possible to get optimal copula in terms of log-
likelihood by using one with lowest likelihood. While
theχ2 test is the most commonly-used statistical test
for goodness-of-fit, it should be noted that the bin-
ning is entirely arbitrary and can produce different
p-values depending upon which binning procedure is
used. With this in mind, we make use of five different
binning procedures forχ2 testing in this paper. Then,
the optimal copula will permit to better simulate the
studied phenomenon. From these simulations, we de-
scribe : how to estimate the risk by using the failure
criteria(D,ΓN)?

5 BIVARIATE RISK ANALYSIS

This study considers only the bivariate (2-
dimensional) case. Let be considered2 random
variables(X,Y ) representing respectively the vehi-
cle’s criteria of failure(D,ΓN). A law of marginal
distribution could be adjusted by using experimental
data. LetF1 andF2 be the distributions ofX andY .
The values in risk at the safety thresholdδ∗ are:

V aR(X; δ∗) = F
−1
1 (δ∗) (11)

V aR(Y ; δ∗) = F
−1
2 (δ∗) (12)

We seek to aggregate these two values at risk. Let
F1+2 be the distributions ofX andY :

F1+2(z) =

∫ ∫

x+y≤z

dC(F1(x),F2(y)) (13)

We consider continuous distributions whereF
is the joint cumulative distribution function (Cdf)
of the random vector(X,Y ) and FX and FY are
the marginal Cdf’s ofX and Y respectively. Note
particularly thatX andY do not necessarily have the
same distribution, and that the joint distribution may
differ again; for example, it is quite possible to link
a normally-distributed variable and an exponentially
distributed variable together through a bivariate
gamma function. Bivariate copulas further satisfy
three necessary and sufficent properties (Joe 1997).

By fixing δ∗ ∈ R
∗
+, we can estimate the vehicle

multidimensional risk assessment in this form:

V aR(X + Y ; δ∗) = F
−1
1+2(δ

∗) (14)

The risk value depends on the marginal distributions,
but also of the copulaC. The experiment results will
show the relevance and effectiveness of this method
for vehicle risk assessment.

6 METHODOLOGY APPLICATION

The aim of this section is to apply the proposed
method. It consists to estimate the bivariate risk of
failure trajectory by using copula method. Copulas
are useful for examining the dependence of multivari-
ate random vectors (criteria). Let us remember that
the relative distance(D) and lateral acceleration(ΓN)
are criteria used to estimate the2-dimensional risk.
From real trajectories, we determine the dependence
between criteria. Then, we choose a optimal copula
and estimate the risk of failure trajectory. finally, we
make a comparison between risks in order to show the
effect of the criteria dependence in risk assessment.

6.1 Criteria dependence analysis

The figure 2 makes it possible to apprehend the form
of dependence existing between the criteria(D,ΓN).
One gives below a graphic illustrating the dependence
between empirical uniforms. In the event of perfect
independence, we should find in each square of graph
232/20, that is to say approximately12 points. The
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Figure 2: Structure of dependence between criteria(D,ΓN ).

Figure 2 shows that the cloud points is very close to
the second bisector. It corresponding to a negative de-
pendence betweenD andΓN . Then, the cloud points
is very concentrated on the two tally of the first bi-
sector. That, means strong dependence between cri-
teria. In addition to the direction and the intensity of
the dependences, this graph gives first information on
the dependence of tail. We notice central values more
”‘pricked”’ and thicker tails of distribution. In fact,
the empirical distibution presents rare observations
with a slower decrease adjusted in power whereas the
normal law has an exponential decay. We are going to
fit copulas in order to choose the optimal copula.

6.2 Choice of copula

We suggest aχ2 test of fit for parametric families of
bivariate copulas. Theχ2 relies upon an arbitrary of
data to calculate the statistic test. Most of usual copu-
las are rejected by the test at thep-value equal to1%



in every case. Nonetheless, Frank’s copula seems to
be the best one, espacially for the couple(D,ΓN). At
the opposite, the Clayton, Student and Gumbel copu-
las are strongly rejected. When Frank’s and Plackett’s
copulas performances are closed, Gumbel’s copulas
provide a worse fit. The Frank copula was retained
to apprehend the nature of dependence between crite-
ria. Note that the parameter of dependence increased
for the Frank’s copula. However, more this parameter
is high, larger is the dependence. Now, we simulate
Frank’s copula to estimate the2-dimensional risk.

6.3 Simulation result

The figure 3 represents10000 observations resulting
from the simulation of Frank’s copula for(D,ΓN).
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Figure 3: Simulated Dependent for the couple(D,ΓN ).

AsD increases,ΓN decreases and vice versa (neg-
ative correlation). It makes it possible to apprehend
the form of the generated dependences and to appre-
ciate their adequacy with the profile of copula. The
simulation will permit to estimate the bivariate risk.

6.4 Risk analysis

The use of copulas enables to plot contours lines of
the 2-dimensional riskV aR and to examine for a
givenδ∗, the marginal rate of substitution between the
V aR of 2-univariate risks. The figure 4 showsPf as
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Figure 4:Pf as function ofδ∗ with/without dependence between
D andΓN .

function of δ∗ according to criteria and dependence

structure of criteria. The riskV aR(ΓN ; δ
∗) is much

more important for lateral accelerationΓN when we
consider the dependence. At the opposite, it is less
more important for the relative distanceD.
The figure 5 shows the evolution ofPf as function of
δ∗. We calculatedPf by using reliability of compo-
nents in series. That means as soon as criterion is not
respected the system becomes failing. The function
with discontinuous line represents the risk without the
dependence between criteria. Afterwards, the func-
tion with a continuous line represents the risk with
the dependence between failure criteria. The two val-
ues at riskV aR(D; δ∗) andV aR(ΓN ; δ

∗) were aggre-
gated to giveV aR(D+ΓN ; δ

∗).
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Figure 5:Pf as function ofδ∗ with/without dependence.

The risk level is similar for the2 functions in the in-
tervalδ∗ = [0.5; 0.55]. We note that the risk may also
lead to severe underestimation when the dependence
between the risks does not take into account.

7 CONCLUSION

The aim of this study was to estimate the multidi-
mensional risk of failure trajectory by using vehicle’s
real observations data. For that, we proposed to use
the copulas method in order to take into account
the dependences between failure criteria of vehicle
trajectory. The choice of the most adapted copula
was made by using the test ofχ2. The Frank’s copula
is adapted to our real observations data. From the
simulations of this copula, the2-dimensional risk
is estimated by aggregating the two values at risk.
Then, we have discussed how various estimation
procedures impact the vehicle risk assessment. The
results showed that risk is much more important with
the dependence between failure criteria. In particular
we have demonstrated how copulas can contribute to
the computation of multivariate information.

To conclude, experiments have shown the relevance
and effectiveness of this method. The method anal-
ysed above might help to better understand the risk of
accident. So the present results of this new approach
are promising for road safety. This method is rela-
tively robust and applicable to all kinds of mobile ob-
jects (motorcycles, pedestrians,...) with different data
acquisition systems and different characteristics.
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