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Abstract: In this paper, we carry out a systematic study to discover the properties of a subclass of
meromorphic starlike functions defined using the Mittag–Leffler three-parameter function. Differ-
ential operators involving special functions have been very useful in extracting information about
the various properties of functions belonging to geometrically defined function classes. Here, we
choose the Prabhakar function (or a three parameter Mittag–Leffler function) for our study, since
it has several applications in science and engineering problems. To provide our study with more
versatility, we define our class by employing a certain pseudo-starlike type analytic characterization
quasi-subordinate to a more general function. We provide the conditions to obtain sufficient condi-
tions for meromorphic starlikeness involving quasi-subordination. Our other main results include
the solution to the Fekete–Szegő problem and inclusion relationships for functions belonging to the
defined function classes. Several consequences of our main results are pointed out.

Keywords: meromorphic functions; meromorphic starlike and meromorphic convex functions; quasi-
subordination; Fekete–Szegő problem; coefficient inequalities; generalized Mittag–Leffler function

1. Introduction

C, Z− and N will represent the sets of complex numbers, negative integers and natural
numbers, respectively. We let Ω∗ = {z : z ∈ C and 0 <| z |< 1} = Ω \ {0} to denote a
punctured open unit disk. Furthermore, we letMp denote the class of all analytic functions,
except for a pole of order p at the origin and p-valent in the unit disc of the form

f (z) = z−p +
∞

∑
k=0

akzk+1−p (p ∈ N = 1, 2, 3, . . . ; z ∈ Ω∗). (1)

Two well-known subclasses ofMp are the so-called meromorphic starlike functions of order
γ and meromorphic convex functions of order γ, which have the analytic characterization
of the form

Re
(

z f
′
(z)

f (z)

)
< −γ and Re

(
1 +

z f
′′
(z)

f ′(z)

)
< −γ, (z ∈ Ω∗; 0 ≤ γ < p),

respectively. We letMS∗p(γ) andMC p(γ) denote the class of meromorphic starlike func-
tions of order γ and meromorphic convex functions of order γ, respectively. Furthermore,
we let Pp denote the class of functions h(z) analytic in Ω with h(0) = p and Re[h(z)] > 0.
P1 = P will denote the well-known class functions with a positive real part, which has
the usual normalization h(0) = 1. For the development and study of various subclasses of
meromorphic functions, refer to [1,2].
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Hadamard product and subordination are the two primary tools that are employed
to study various geometrically defined subclasses of analytic and meromorphic functions.
Here, we let ∗ and ≺ denote the Hadamard product and subordination, respectively. For
two functions f (z) given by (1) and g(z) = z−p + ∑∞

k=0 bkzk+1−p, the Hadamard product
(or convolution) of f and g is defined by

( f ∗ g)(z) = z−p +
∞

∑
k=0

akbkzk+1−p =: (g ∗ f )(z). (2)

The Hadamard product acts as a bridge for studying geometric function theory in duality
with the theory of special functions. Pertaining to the class of meromorphic functions,
the study by Liu and Srivastava [3] is the most prominent study of this duality theory.
Using the Hadamard product, they defined a differential operator (popularly known as the
Liu–Srivastava operator) involving a generalized hypergeometric function. Here, we avoid
stating the Liu–Srivastava operator, as it requires much supplementary information to be
disseminated.

Several families of integral operators and differential operators were introduced using
the Hadamard product (or convolution). Motivated by the work of Aouf [4] (also see [5–7]),
in this paper we will introduce a family of differential and integral operators involving the
Mittag–Leffler three-parameter function.

First, we will begin with a brief introduction of the Mittag–Leffler function. The Mittag–
Leffler function arises naturally in the solutions of fractional integro-differential equations.
For a detailed study on the Mittag–Leffler function and its applications, refer to [8–11].
Prabhakar [12] Equation 1.3) studied a singular integral equation with a generalized Mittag–
Leffler three-parameter function in the kernel, which is defined by

Eρ
θ, ϑ(z) =

∞

∑
k=0

(ρ)kzk

Γ(θk + ϑ)k!
, z, θ, ϑ, ρ ∈ C, Re(θ) > 0, (3)

where (x)k will be used to denote the usual Pochhammer symbol defined by

(x)k =
Γ(x + k)

Γ(x)
=

{
1 if k = 0
x(x + 1)(x + 2) . . . (x + k− 1) if k ∈ N.

The function Eρ
θ, ϑ(z) is an entire function of order (Re θ)−1. For particular values of

the parameter, Eρ
θ, ϑ(z) coincides with well-known elementary functions, and some special

functions. For example,

E1
1, 2(z) =

ez − 1
z

E1
3, 1(z) =

1
2

[
ez1/3

+ 2e−
1
2 z1/3

cos

(√
3

2
z1/3

)]

E1
1
2 , 1

(z) = ez2
er f c(−z), E1

1
2 , 1

(±z1/2) = ez
[
1 + er f (±z1/2)

]
where error function er f (z) and the complementary error function er f c(z) are defined by
the formula

er f c(z) = 1− er f (z) = 1− 2√
π

∫ z

0
e−t2

dt.

The following relationship between the Prabhakar function and generalized hypergeometric
function is known to hold:

Eρ
m, ϑ(z) =

1
Γ(ϑ) 1Fm

(
ρ;

ϑ

m
,

ϑ + 1
m

, . . . ,
ϑ + m− 1

m
;

z
mm

)
, m ∈ N,
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where rFs (the generalized hypergeometric function) is defined by the formula

rFs(α1, α2, . . . , αr; β1, β2, . . . , βs; z) =
∞

∑
k=0

(α1)k . . . (αr)k
(β1)k . . . (βs)k

zk

k!
.

(α1, . . . , αr ∈ C and β j ∈ C \Z−0 ; Z−0 = 0,−1, −2, . . . ; j = 1, . . . , s).

Corresponding to Eρ
θ, ϑ(z), we define the function

Kρ
θ, ϑ(z) = z−pΓ(ϑ)Eρ

θ, ϑ(z) = z−p +
∞

∑
k=0

Γ(ϑ)(ρ)k+1
Γ[ϑ + θ(k + 1)](k + 1)!

zk+1−p. (4)

We now define the following operatorRm,p
λ (θ, ϑ, ρ) f : Ω∗ −→ Ω∗ by

R0,p
λ (θ, ϑ, ρ) f (z) = ( f ∗ Kρ

θ, ϑ)(z)

R1,p
λ (θ, ϑ, ρ) f (z) = (1− λ)( f ∗ Kρ

θ, ϑ)(z) +
λ

p
z[( f ∗ Kρ

θ, ϑ)(z)]
′
+

2λ

zp (5)

Rm,p
λ (θ, ϑ, ρ) f (z) = R1,p

λ [Rm−1,p
λ (θ, ϑ, ρ) f (z)], (6)

where m ∈ N0 and 0 ≤ λ ≤ 1. If f ∈ Mp, then from (5) and (6) we may easily deduce that

Rm,p
λ (θ, ϑ, ρ) f (z) = z−p +

∞

∑
k=0

[
p + λ(k + 1− 2p)

p

]m Γ(ϑ)(ρ)k+1
Γ[ϑ + θ(k + 1)](k + 1)!

akzk+1−p. (7)

Remark 1. A new symmetric differential operator ∆m,ρ
q f (z) introduced by Aldawish and Ibrahim

in [13] is closely related to our operatorRm,p
λ (θ, ϑ, ρ) f (z).

LetMSm
λ (ρ, θ, ϑ; γ) denote the class of functions if Rm,p

λ (θ, ϑ, ρ) f ∈ MS∗p(γ) and
letMCm

λ (ρ, θ, ϑ; γ) denote the class of functions ifRm,p
λ (θ, ϑ, ρ) f ∈ MC p(γ). Using the

well-known Miller–Mocanu lemma and following the steps as in [14] (Theorem 2.1), we can
obtain the following inclusion relationships if ρ ∈ R is greater than zero

MSm
λ (ρ + 1, θ, ϑ; γ) ⊂MSm

λ (ρ, θ, ϑ; γ) ⊂MSm+1
λ (ρ, θ, ϑ; γ)

and
MCm

λ (ρ + 1, θ, ϑ; γ) ⊂MCm
λ (ρ, θ, ϑ; γ) ⊂MCm+1

λ (ρ, θ, ϑ; γ).

Haji Mohd and Darus in [15] brought the concept of quasi-subordination into spotlight,
though introduced by Robertson [16] in 1970. The versatility of the quasi-subordination
is that it unifies two popular tools of Univalent Function Theory, namely majorization and
subordination. Recently, several authors have introduced and studied various classes
of analytic functions using quasi-subordination; see [17–21] and the references provided
therein. We let ≺q represent quasi-subordination. For detailed discussion and formal
definition of the quasi-subordination, refer to [15].

The paper is structured as follows. In the present section, we define some presumably
new subclasses of meromorphic functions using the operator Rm,p

λ (θ, ϑ, ρ) f and quasi-
subordination. In Section 2, we provide and discuss some results which will be used to
prove our main results. Our main results are provided in Sections 3 and 4, which include
the subordination condition and initial coefficient bounds of the Laurent’s series expansion.

Meromorphic multivalent functions have been studied by various authors, such
as Mogra [22,23], Uralegaddi and Ganigi [24], Aouf [4,25,26], and Srivastava et al. [27].
For studies related to meromorphic functions involving linear operators, see [3,28,29].
Motivated by Aouf [4], Arif et al. [30] and [31] (Definition 2), we now define the following.
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Definition 1. Let δ ≥ 1, 0 ≤ β, λ ≤ 1, b ∈ C \ {0}, θ, ϑ, ρ ∈ C and Re(θ) > 0. We denote the
class KCm

λ (β, ρ, θ, ϑ; b; Φ) consisting of functions inMp satisfying the subordination condition

− 1
b

 zp(δ−1)+δ[Rm,p
λ (θ, ϑ, ρ) f ′(z)]δ[

(1− β)Rm,p
λ (θ, ϑ, ρ) f (z) + βz−p

] − (−p)δ

 ≺q Φ(z)− p, (8)

where Φ(z) = p + ∑∞
n=1 Lnzn ∈ Pp.

Definition 2. Let 0 ≤ λ < 1, b ∈ C \ {0}, θ, ϑ, ρ ∈ C and Re(θ) > 0. We denote the class
MBm

λ (ρ, θ, ϑ; b; Φ) consisting of functions inMp satisfying the subordination condition

− 1
b

{
z[Rm,p

λ (θ, ϑ, ρ) f (z)]
′

Rm+1,p
λ (θ, ϑ, ρ) f (z)

+ p

}
≺q Φ(z)− p, (9)

where Φ(z) = p + ∑∞
n=1 Lnzn ∈ Pp.

Remark 2. The classKCm
λ (β, ρ, θ, ϑ; b; Φ)was mainly motivated by the recent study of Karthikeyan

et al. [32]. The classes KCm
λ (β, ρ, θ, ϑ; b; Φ) andMBm

λ (ρ, θ, ϑ; b; Φ) reduces to several well-
known class by varying the parameters involved, for example refer to [33] (Remark 1.1).

2. Preliminaries

In this section, we will present some results that would help us to obtain our main
results.

To obtain some conditions of starlikeness, we need the following well-known Miller–
Mocanu lemma.

Lemma 1 ([34], Theorem 3.6.1). Let the function q be univalent in the open unit disc Ω. Let
θ and φ be analytic in a domain D containing q(Ω) with φ(w) 6= 0 when w ∈ q(Ω). Set
Q(z) = zq′(z)φ(q(z)), k(z) = θ(q(z)) + Q(z). Suppose that

1. Q is starlike univalent in Ω, and

2. Re
zk′(z)
Q(z)

> 0, for z ∈ Ω.

If
θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)),

then p(z) ≺ q(z) and q is the best dominant.

Now, we state the following results, which will be used in proving the coefficient
inequalities.

Lemma 2 ([35], p. 41). If p(z) = 1 +
∞
∑

k=1
pkzk ∈ P1, then |pk| ≤ 2 for all k ≥ 1, and the

inequality is sharp for pλ(z) =
1 + λz
1− λz

, |λ| ≤ 1.

Lemma 3 ([36]). If p(z) = 1 +
∞
∑

k=1
pkzk ∈ P1, and v is complex number, then

∣∣∣p2 − vp2
1

∣∣∣ ≤ 2 max{1; |2v− 1|},

and the result is sharp for the functions

p1(z) =
1 + z
1− z

and p2(z) =
1 + z2

1− z2 .
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To highlight the applications of all our main results, we will use the following class
introduced and studied by Aouf [37] (Equation 1.4) (also see [38]).

A function h(z) ∈ R(F, G, p, α) if and only if

h(z) =
p + [pG + (F− G)(p− α)]w(z)

[1 + Gw(z)]
, (−1 ≤ G < F ≤ 1, 0 ≤ α < 1) (10)

where w(z) is the Schwartz function. The classR(F, G, p, α) is a generalization of Janowski
functions [39].

3. Starlikeness of MBm
λ (ρ, θ, ϑ; b; Φ) and KCm

λ (β, ρ, θ, ϑ; b; Φ) Using
Quasi-Subordination

Henceforth, we let Θ(z) denote

Θ(z) = d0 + d1z + d2z2 + · · · (d0 6= 0) and |d0| ≤ 1.

In this section, we will obtain conditions for starlikeness using quasi-subordination. Recall
that f ≺q g if there exists a function Θ(z) such that f /Θ ≺ g.

Theorem 1. Let the function Φ be convex univalent in Ω with Re[Φ(z)− p] > 0. If the function
Rm,p

λ (θ, ϑ, ρ) f (z) ∈ Mp satisfies the conditions

Rm,p
λ (θ, ϑ, ρ) f ′(z) 6= 0, z ∈ Ω, (11)

Rm+1,p
λ (θ, ϑ, ρ) f (z)

z
6= 0 z ∈ Ω, (12)

then

1
bΘ(z)

{
z[Rm,p

λ (θ, ϑ, ρ) f (z)]
′

Rm+1,p
λ (θ, ϑ, ρ) f (z)

+ p

}[
p

bΘ(z)
+

zRm+1,p
λ (θ, ϑ, ρ) f ′(z)

Rm+1,p
λ (θ, ϑ, ρ) f (z)

−
z2Rm,p

λ (θ, ϑ, ρ) f ′′(z) + zRm,p
λ (θ, ϑ, ρ) f ′(z) + pzRm+1,p

λ (θ, ϑ, ρ) f ′(z)

z[Rm,p
λ (θ, ϑ, ρ) f (z)]′ + pRm+1,p

λ (θ, ϑ, ρ) f (z)
(13)

+
z[Rm,p

λ (θ, ϑ, ρ) f (z)]
′

bΘ(z)Rm+1,p
λ (θ, ϑ, ρ) f (z)

+
zΘ

′
(z)

Θ(z)

]
≺ κ2(z) + zκ′(z),

where κ(z) := Φ(z)− p, implies f ∈ MBm
λ (ρ, θ, ϑ; b; Φ). Moreover, the function Φ(z)− p is

the best dominant of the left-hand side of (9).

Proof. If we define the function p by

p(z) := −1
b

{
z[Rm,p

λ (θ, ϑ, ρ) f (z)]
′

Rm+1,p
λ (θ, ϑ, ρ) f (z)

+ p

}
.

Although the functionRm,p
λ (θ, ϑ, ρ) f (z) has a pole of order p at z = 0, it can be seen that p

is analytic in Ω using the assumption (11) and (12). To prove the assertion of the theorem,
we need to establish p(z)/Θ(z) ≺ Φ(z) − p. Let h(z) = p(z)/Θ(z); using logarithmic
differentiation we have

zh′(z) = h(z)

[
z2Rm,p

λ (θ, ϑ, ρ) f ′′(z) + zRm,p
λ (θ, ϑ, ρ) f ′(z) + pzRm+1,p

λ (θ, ϑ, ρ) f ′(z)

z[Rm,p
λ (θ, ϑ, ρ) f (z)]′ + pRm+1,p

λ (θ, ϑ, ρ) f (z)

−
zRm+1,p

λ (θ, ϑ, ρ) f ′(z)

Rm+1,p
λ (θ, ϑ, ρ) f (z)

− zΘ′(z)
Θ(z)

]
.
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Then the subordination (1) is equivalent to

h2(z) + zh′(z) ≺ κ2(z) + zκ′(z). (14)

Setting
Υ(w) := w2 and Λ(w) := 1,

then Υ and Λ are analytic functions in C, with Λ(0) 6= 0. Therefore

Q(z) = zκ′(z)Λ(κ(z)) = zκ′(z)

and
K(z) = Υ(κ(z)) + Q(z) = κ2(z) + zκ′(z).

The function κ(z) = Φ(z) − p is convex univalent in Ω, since Φ is a convex univalent
function in Ω. Now, using this fact, it follows that

Re
zQ′(z)
Q(z)

= Re
(

1 +
zκ′′(z)
κ′(z)

)
> 0, z ∈ Ω,

Q′(0) = κ′(0) 6= 0,

hence Q is a starlike univalent function in Ω. Furthermore, the convexity of κ together with
the assumption that κ(z) ∈ P implies

Re
zK′(z)
Q(z)

= Re
(

2κ(z) + 1 +
zκ′′(z)
κ′(z)

)
> 0, z ∈ Ω.

Since both of the conditions of Lemma 1 are satisfied, it follows that (14) implies
p(z)/Θ(z) ≺ κ(z), and κ = Φ− p is the best dominant of p/Θ, which proves the assertion
of the theorem.

Theorem 2. If the functionRm
λ (θ, ϑ, ρ) f (z) ∈ M1 satisfies the conditions

Rm
λ (θ, ϑ, ρ) f ′(z) 6= 0, z ∈ Ω,

Rm+1
λ (θ, ϑ, ρ) f (z)

z
6= 0 z ∈ Ω,

then {
z[Rm

λ (θ, ϑ, ρ) f (z)]
′

Rm+1
λ (θ, ϑ, ρ) f (z)

+ 1

}[
1 +

zRm+1
λ (θ, ϑ, ρ) f ′(z)

Rm+1
λ (θ, ϑ, ρ) f (z)

−
z2Rm

λ (θ, ϑ, ρ) f ′′(z) + zRm
λ (θ, ϑ, ρ) f ′(z) + zRm+1

λ (θ, ϑ, ρ) f ′(z)

z[Rm
λ (θ, ϑ, ρ) f (z)]′ +Rm+1

λ (θ, ϑ, ρ) f (z)

+
z[Rm

λ (θ, ϑ, ρ) f (z)]
′

Rm+1
λ (θ, ϑ, ρ) f (z)

]
≺ (F− G)z

(1 + Gz)2 [1 + (F− G)z],

where −1 ≤ G < F ≤ 1, implies

−
z[Rm

λ (θ, ϑ, ρ) f (z)]
′

Rm+1
λ (θ, ϑ, ρ) f (z)

≺ 1 + Fz
1 + Gz

and this result is sharp.
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Proof. If we define the functions

Φ(z) =
1 + Fz
1 + Gz

, Θ(z) = 1 and p(z) = −
z[Rm

λ (θ, ϑ, ρ) f (z)]
′

Rm+1
λ (θ, ϑ, ρ) f (z)

,

then p has no singularity in Ω, and g(z) = Φ(z)− 1 is a convex univalent function in Ω
with Re g(z) > 0, z ∈ Ω. Proceeding as in the proof of Theorem 1, we obtain

−
{

z[Rm
λ (θ, ϑ, ρ) f (z)]

′

Rm+1
λ (θ, ϑ, ρ) f (z)

+ 1

}
≺ 1 + Fz

1 + Gz
− 1.

Since the principle of subordination is invariant under translation, we have

−
z[Rm

λ (θ, ϑ, ρ) f (z)]
′

Rm+1
λ (θ, ϑ, ρ) f (z)

≺ 1 + Fz
1 + Gz

which is an assertion of Theorem 2.

If we let m = θ = 0, ρ = 1 in Theorem 2, we obtain

Corollary 1. If the function f (z) ∈ M1 satisfies the condition

R1,1
λ (0, ϑ, 1) f (z)

z
6= 0, (z ∈ Ω)

then  z f ′(z)[
(1− λ) f (z) + λz f ′(z) + 2λ

z

] + 1


1 +

z
[
(1− λ) f (z) + λz f ′(z) + 2λ

z

]′[
(1− λ) f (z) + λz f ′(z) + 2λ

z

]
−

(λ + 1)z2 f ′′(z) + z f ′(z)− 2λ
z[

(1− λ) f (z) + (λ + 1)z f ′(z) + 2λ
z

] + z f ′(z)[
(1− λ) f (z) + λz f ′(z) + 2λ

z

]


≺ (F− G)z
(1 + Gz)2 [1 + (F− G)z],

where −1 ≤ G < F ≤ 1, implies

− z f ′(z)[
(1− λ) f (z) + λz f ′(z) + 2λ

z

] ≺ 1 + Fz
1 + Gz

,

and this result is sharp.

If we let λ = 0 in Corollary 1, we obtain

Corollary 2. If the function f (z) ∈ M1 satisfies the condition f (z)
z 6= 0, (z ∈ Ω), then{

z f ′(z)
f (z)

+ 1
}[

1 +
2z f ′(z)

f (z)
− z2 f ′′(z) + z f ′(z)

f (z) + z f ′(z)

]
≺ (F− G)z

(1 + Gz)2 [1 + (F− G)z],

where −1 ≤ G < F ≤ 1, implies

− z f ′(z)
f (z)

≺ 1 + Fz
1 + Gz

,

and this result is sharp.
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For completeness, we just state the conditions for starlikeness of the class
KCm

λ (β, ρ, θ, ϑ; b; Φ).

Theorem 3. Let the function Φ be convex univalent in Ω with Re[Φ(z)− p] > 0. If the function
Rm,p

λ (θ, ϑ, ρ) f (z) ∈ Mp satisfies the conditions

Rm,p
λ (θ, ϑ, ρ) f ′(z) 6= 0, z ∈ Ω,

Rm,p
λ (θ, ϑ, ρ) f (z)

z
6= − β

1− β
z ∈ Ω,

then

1
bΘ(z)

 zp(δ−1)+δ[Rm,p
λ (θ, ϑ, ρ) f ′(z)]δ[

(1− β)Rm,p
λ (θ, ϑ, ρ) f (z) + βz−p

] − (−p)δ



[
(1− β)zRm,p

λ (θ, ϑ, ρ) f ′(z)− pβz−p
]

[
(1− β)Rm,p

λ (θ, ϑ, ρ) f (z) + βz−p
]

−
z
{

zp(δ−1)+δ[Rm,p
λ (θ, ϑ, ρ) f ′(z)]δ − (−p)δ

[
(1− β)Rm,p

λ (θ, ϑ, ρ) f (z) + βz−p
]}′

zp(δ−1)+δ[Rm,p
λ (θ, ϑ, ρ) f ′(z)]δ − (−p)δ

[
(1− β)Rm,p

λ (θ, ϑ, ρ) f (z) + βz−p
]

+
zp(δ−1)+δ[Rm,p

λ (θ, ϑ, ρ) f ′(z)]δ

Θ(z)
[
(1− β)Rm,p

λ (θ, ϑ, ρ) f (z) + βz−p
] − (−p)δ

bΘ(z)
+

zΘ
′
(z)

Θ(z)

 ≺ κ2(z) + zκ′(z),

where κ(z) := Φ(z)− p, implies f ∈ KCm
λ (β, ρ, θ, ϑ; b; Φ). Moreover, the function Φ(z)− p is

the best dominant of the left-hand side of (8).

Remark 3. Several well-known subordination results involving the class of meromorphic functions
can be obtained as an application of our result by varying the parameters involved in Theorem 3.

4. Solution to Fekete–Szegő Problem for the Functions of MBm
λ (ρ, θ, ϑ; b; Φ) and

KCm
λ (β, ρ, θ, ϑ; b; Φ)

In this section, we obtain some interesting coefficient inequalities for functions belong-
ing to the classesMBm

λ (ρ, θ, ϑ; b; Φ) and KCm
λ (β, ρ, θ, ϑ; b; Φ).

Theorem 4. If f (z) = z−p + ∑∞
k=0 akzk+1−p ∈ MBm

λ (ρ, θ, ϑ; b; Φ) with Φ(z) = 1 + L1z +
L2z2 + L3z3 + · · ·, (L1 > 0; z ∈ Ω), then for all µ ∈ C we have∣∣∣a1 − µa2

0

∣∣∣ ≤ 2L1 pm|bΓ[ϑ + 2θ]|
|[1 + λ(1− p)][p + 2λ(1− p)]mΓ(ϑ)(ρ)2|

[∣∣∣∣d1

d0

∣∣∣∣+ max
{

1;
∣∣∣∣ L2

L1

∣∣∣∣+
|L1b|

∣∣∣∣ µpm[p + 2λ(1− p)]m[1 + λ(1− p)](ρ)2(Γ[ϑ + θ])2

[1 + λ(1− 2p)]2[p + λ(1− 2p)]2mΓ(ϑ)[(ρ)1]2Γ[ϑ + 2θ]
− [p + λ(1− 2p)]

p[1 + λ(1− 2p)]

∣∣∣∣}].

The inequality is sharp for each µ ∈ C.

Proof. If f ∈ MBm
λ (ρ, θ, ϑ; b; Φ), there exist the analytic functions Θ(z) and w(z), with

|w(z)| < 1, w(0) = 0, such that

−1
b

{
z[Rm,p

λ (θ, ϑ, ρ) f (z)]
′

Rm+1,p
λ (θ, ϑ, ρ) f (z)

+ p

}
= Θ(z)[Φ{w(z)} − p].

Define the function k(z) by

k(z) = 1 + `1z + `2z2 + · · · = 1 + w(z)
1− w(z)

≺ 1 + z
1− z

, (z ∈ Ω). (15)
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We can note that k(0) = 1 and k ∈ P (see Lemma 2). Using (15), it is easy to see that

w(z) =
k(z)− 1
k(z) + 1

=
1
2

[
`1z +

(
`2 −

`2
1

2

)
z2 +

(
`3 − `1`2 +

`3
1

4

)
z3 + · · ·

]
,

From [19] (Equation 3.7) (also see [40]), we have

z[Rm,p
λ (θ, ϑ, ρ) f (z)]

′

Rm+1,p
λ (θ, ϑ, ρ) f (z)

+ p =

−b

{
1
2

L1d0`1z +

[
d0

(
1
2

L1

(
`2 −

`2
1

2

)
+

1
4

L2`
2
1

)
+

d1L1`1

2

]
z2 + · · ·

}
. (16)

The left-hand side of (16) will be

z[Rm,p
λ (θ, ϑ, ρ) f (z)]

′

Rm+1,p
λ (θ, ϑ, ρ) f (z)

+ p =
Γ(ϑ)(ρ)1[1 + λ(1− 2p)]

Γ[ϑ + θ]

[p + λ(1− 2p)]m

pm a0z+[
Γ(ϑ)(ρ)2

Γ[ϑ + 2θ]

(
2[p + 2λ(1− p)]

p

)m
[1 + λ(1− p)]a1

−
(

Γ(ϑ)(ρ)1

Γ[ϑ + θ]

)2( [p + λ(1− 2p)]
p

)2m+1

[1 + λ(1− 2p)]a2
0

]
z2 + · · · . (17)

From (16) and (17), we have

a0 = − pmΓ[ϑ + θ]bL1d0`1

2[1 + λ(1− 2p)][p + λ(1− 2p)]mΓ(ϑ)(ρ)1
(18)

and

a1 = − L1d0 pmbΓ[ϑ + 2θ]

2[1 + λ(1− p)][p + 2λ(1− p)]mΓ(ϑ)(ρ)2

[
`2 −

1
2

(
1− L2

L1

+
L1bd0[p + λ(1− 2p)]

p[1 + λ(1− 2p)]

)
`2

1 +
d1`1

d0

]
. (19)

In view of (18) and (19), for µ ∈ C, we have

∣∣∣a1 − µa2
0

∣∣∣ = ∣∣∣∣∣− L1d0 pmbΓ[ϑ + 2θ]

2[1 + λ(1− p)][p + 2λ(1− p)]mΓ(ϑ)(ρ)2

[
`2 −

1
2

(
1− L2

L1

+
L1bd0[p + λ(1− 2p)]

p[1 + λ(1− 2p)]

)
`2

1 +
d1`1

d0

]
−

µp2m(Γ[ϑ + θ])2b2L2
1d2

0`
2
1

4[1 + λ(1− 2p)]2[p + λ(1− 2p)]2m(Γ(ϑ))2((ρ)1)2

∣∣∣∣∣. (20)

Using the well-known condition |d0| ≤ 1 (see [19], p. 7115) along with Lemma 3 in (20), we
obtain the assertion of Theorem 4.

Corollary 3. If f (z) = z−p + ∑∞
k=0 akzk+1−p ∈ Mp satisfies the condition

−1
b

{
z[Rm,p

λ (θ, ϑ, ρ) f (z)]
′

Rm+1,p
λ (θ, ϑ, ρ) f (z)

+ p

}
≺q

p + [pG + (F− G)(p− α)]z
[1 + Gz]

− p,
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then for all µ ∈ C we have∣∣∣a1 − µa2
0

∣∣∣ ≤ (F− G)(p− α)pm|bΓ[ϑ + 2θ]|
|[1 + λ(1− p)][p + 2λ(1− p)]mΓ(ϑ)(ρ)2|

[∣∣∣∣d1

d0

∣∣∣∣+ max{1; G+

(F− G)(p− α)|b|
∣∣∣∣ µpm[p + 2λ(1− p)]m[1 + λ(1− p)](ρ)2(Γ[ϑ + θ])2

[1 + λ(1− 2p)]2[p + λ(1− 2p)]2mΓ(ϑ)[(ρ)1]2Γ[ϑ + 2θ]

− [p + λ(1− 2p)]
p[1 + λ(1− 2p)]

∣∣∣∣}].

The inequality is sharp for each µ ∈ C.

Proof. The function Ψ(z) = p+[pG+(F−G)(p−α)]z
[1+Gz] has the Maclaurin series expansion of

the form

Ψ(z) = Ψ(0) + Ψ′(0)z + Ψ′′(0)z2 + . . .

= p + (F− G)(p− α)z− G(F− G)(p− α)z2 + . . . , z ∈ Ω.

Replacing L1 and L2 with (F−G)(p− α) and−G(F−G)(p− α), respectively, in Theorem 4,
we obtain the assertion of the Theorem.

Letting p = b = 1 and α = 0 in Corollary 3, we obtain the following result.

Corollary 4. If f (z) ∈ M1 satisfies the condition

−
z[Rm,p

λ (θ, ϑ, ρ) f (z)]
′

Rm+1,p
λ (θ, ϑ, ρ) f (z)

− 1 ≺q
1 + Fz
[1 + Gz]

− 1,

then for all µ ∈ C we have∣∣∣a1 − µa2
0

∣∣∣ ≤ (F− G)|Γ[ϑ + 2θ]|
|Γ(ϑ)(ρ)2|

[∣∣∣∣d1

d0

∣∣∣∣+ max{1; G+

(F− G)

∣∣∣∣ µ(ρ)2(Γ[ϑ + θ])2

(1− λ)2m+2Γ(ϑ)[(ρ)1]2Γ[ϑ + 2θ]
− 1
∣∣∣∣}].

The inequality is sharp for each µ ∈ C.

Letting Θ(z) = 1, ρ = p = m = 1 and θ = α = 0 in Corollary 3, we obtain the
following result.

Corollary 5. If f (z) ∈ M1 satisfies the condition

− z f ′(z)
(1− λ) f (z) + λz f ′(z) + 2λ

z
≺ 1 + Fz

[1 + Gz]
, (λ 6= 1),

then for all µ ∈ C we have∣∣∣a1 − µa2
0

∣∣∣ ≤ (F− G)

2
max

{
1; G + (F− G)

∣∣∣∣ 2µ

(1− λ)4 − 1
∣∣∣∣}.

The inequality is sharp for each µ ∈ C.

Remark 4. For the choice of λ = 0, F = 1− 2γ and G = −1 in Corollary 5, we obtain the
Fekete–Szegő inequality for the classMS∗1(γ).

Now, we will obtain the Fekete–Szegő inequality for functions inKCm
λ (β, ρ, θ, ϑ; b; Φ).
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Theorem 5. If f (z) = z−p + ∑∞
k=0 akzk+1−p ∈ KCm

λ (β, ρ, θ, ϑ; b; Φ) with Φ(z) = 1 + L1z +
L2z2 + L3z3 + · · · , (L1 > 0; z ∈ Ω), then for all µ ∈ C we have∣∣∣a1 − µa2

0

∣∣∣ ≤ L1 pm+δ+1|bΓ[ϑ + 2θ]|
|[p + 2λ(1− p)]m[δ(2− p) + p(1− β)]Γ(ϑ)(ρ)2|

[∣∣∣∣d1

d0

∣∣∣∣+ max{1; |2κ − 1|}
]

where κ is given by

κ :=
1
2

(
1− L2

L1
− L1bd0[2δp(1− p)(1− β) + δ(δ− 1)(1− p)2 + 2p2(1− β)2]

2pδ+2(−1)δ[δ(1− p) + p(1− β)]2

+
µpm−3δ+1bL1[p + 2λ(1− p)]m[δ(2− p) + p(1− β)](ρ)2(Γ[ϑ + θ])2

2(−1)δ[p + λ(1− 2p)]2m[δ(1− p) + p(1− β)]2Γ(ϑ)[(ρ)1]2Γ[ϑ + 2θ]

)
.

The inequality is sharp for each µ ∈ C.

Proof. Using (7) in the left hand side (8), we obtain by expanding

zp(δ−1)+δ[Rm,p
λ (θ, ϑ, ρ) f ′(z)]δ[

(1− β)Rm,p
λ (θ, ϑ, ρ) f (z) + βz−p

] − (−p)δ = −
(
[δ(1− p) + (1− β)p]

p

)
Γ(ϑ)(ρ)1

Γ[ϑ + θ]

(−p)δ

(
p + λ(1− 2p)

p

)m
a0z−

[
Γ(ϑ)(ρ)2

Γ[ϑ + 2θ]2!

(
p + 2λ(1− p)

p

)m

(
[δ(2− p) + p(1− β)]

p

)
(−p)δa1 −

{
δ(1− p)(1− β)

p
+

δ(δ− 1)(1− p)2

2p2 + (1− β)2
}

(
Γ(ϑ)(ρ)1

Γ[ϑ + θ]

)2( p + λ(1− 2p)
p

)m
(−p)δa2

0

]
z2 + · · · .

Retracing the steps as in Theorem 4, we obtain

∣∣∣a1 − µa2
0

∣∣∣ = ∣∣∣∣∣− L1(−1)δd0 pm+δ+1bΓ[ϑ + 2θ]

[p + 2λ(1− p)]m[δ(2− p) + p(1− β)]Γ(ϑ)(ρ)2

[
d1`1

d0
+ `2 −

`2
1

2

(
1− L2

L1

− L1bd0[2δp(1− p)(1− β) + δ(δ− 1)(1− p)2 + 2p2(1− β)2]

2pδ+2(−1)δ[δ(1− p) + p(1− β)]2

)]
(21)

−
µ(Γ[ϑ + θ])2b2L2

1 p2m+2d2
0`

2
1

4p2δ(Γ(ϑ))2[δ(1− p) + p(1− β)]2[p + λ(1− 2p)]2m[(ρ)1]2

∣∣∣∣∣.
Using Lemma 3 in (4), we obtain the assertion of the Theorem.

Letting p = b = 1 and Ψ(z) = 1+Fz
1+Gz in Theorem 5, we obtain the following result:

Corollary 6. If f (z) ∈ M1 satisfies the condition

−
z[Rm,p

λ (θ, ϑ, ρ) f ′(z)]δ[
(1− β)Rm,p

λ (θ, ϑ, ρ) f (z) + βz−p
] − 1 ≺q

1 + Fz
[1 + Gz]

− 1,

then for all µ ∈ C we have∣∣∣a1 − µa2
0

∣∣∣ ≤ 2(F− G)|Γ[ϑ + 2θ]|
[δ + 1− β]|Γ(ϑ)(ρ)2|

[∣∣∣∣d1

d0

∣∣∣∣+ max
{

1; |G|+

(F− G)

∣∣∣∣ µ[δ− β + 1](ρ)2(Γ[ϑ + θ])2

2(1− β)2Γ(ϑ)[(ρ)1]2Γ[ϑ + 2θ](1− λ)2m − 1
∣∣∣∣}].

The inequality is sharp for each µ ∈ C.
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If we let m = λ = θ = β = 0 and ρ = 1 in Corollary 6, we obtain

Corollary 7. If f (z) ∈ M1 satisfies the condition

− z[ f ′(z)]δ

f (z)
− 1 ≺q

1 + Fz
[1 + Gz]

− 1,

then for all µ ∈ C we have∣∣∣a1 − µa2
0

∣∣∣ ≤ (F− G)

(δ + 1)

[∣∣∣∣d1

d0

∣∣∣∣+ max{1; |G|+ (F− G)|µ(δ + 1)− 1|}
]

.

The inequality is sharp for each µ ∈ C.

Applications in the Bernoulli Lemniscate and Nephroid Domains

Mendiratta et al. in [41] defined a class of functions subordinate to

Φ(z) =
√

2− (
√

2− 1)

√√√√ 1− z

1 + 2
(√

2− 1
)

z

.

The function Φ(z) =
√

2−
(√

2− 1
)√

1−z
1+2(

√
2−1)z

maps the unit disc onto interior of the

left half of the shifted lemniscate of Bernoulli
[
(u−

√
2)2 + v2

]2
−
[
(u−

√
2)2 + v2

]
= 0

(see Figure 1a). The function Φ(z) has a Maclaurin series of the form

Φ(z) = 1 +
(

5
2
− 3√

2

)
z +

(
71
8
− 51

4
√

2

)
z2 +

(
589
16
− 415

8
√

2

)
z3 + O[z]4.

In [42], Wani and Swaminathan introduced and studied a class of functions subordinate
to Φ(z) = 1 + z − z3/3. The function Φ(z) = 1 + z − z3/3 maps the unit disc onto a

region bounded by the nephroid
[
(u− 1)2 + v2 − 4

9

]2
− 4v2

3 = 0 (see Figure 1b), which is
symmetric about the real axis.

If we let m = λ = θ = β = 0, b = δ = ρ = 1, Θ(z) = 1 and Φ(z) =
√

2 −(√
2− 1

)√
1−z

1+2(
√

2−1)z
in Theorem 5, we obtain

Corollary 8. If f (z) ∈ M1 satisfies the condition

− z f ′(z)
f (z)

≺
√

2−
(√

2− 1
)
∗
√√√√ 1− z

1 + 2
(√

2− 1
)

z
,

then for all µ ∈ C we have

∣∣∣a1 − µa2
0

∣∣∣ ≤ (5− 3
√

2)
4

max

{
1;

6
√

2− 7
4

+
5− 3

√
2

2
|2µ− 1|

}
.

The inequality is sharp for each µ ∈ C.

If we let m = λ = θ = β = 0, b = δ = ρ = 1, Θ(z) = 1 and Φ(z) = 1 + z− z3/3 in
Theorem 5, we obtain
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Corollary 9. If f (z) ∈ M1 satisfies the condition

− z f ′(z)
f (z)

≺ 1 + z− z3/3,

then for all µ ∈ C we have ∣∣∣a1 − µa2
0

∣∣∣ ≤ 1
2

max
{

1;
1
3
+ |2µ− 1|

}
.

The inequality is sharp for each µ ∈ C.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4
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0.2

0.4
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0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

(b)

Figure 1. (a) Mapping of Ω under Φ(z) =
√

2−
(√

2− 1
)√

1−z
1+2(

√
2−1)z

. (b) Mapping of Ω under

the transformation Φ(z) = 1 + z− z3/3.

5. Discussion

As a preclude to the Conclusions section, in this section we will highlight the sig-
nificance of our main results and their applications in detail. With a primary motive to
consolidate the study of the famous α-convex function with starlike and convex functions,
Al-Oboudi in [43] defined an operator containing a convex combination of analytic func-
tions. However, the same meromorophic analogue of the Al-Oboudi operator could not
be defined to unify the meromorphic α-convex function with other geometrically defined
subclasses ofMp. Aouf in [4] intelligently defined an Al-Oboudi-type operator for func-
tions inMp in such a way that normalization could be retained. In this paper, we extend
the operator defined by Aouf in [4] by replacing f with f ∗ Kρ

θ, ϑ(z), where ∗ denotes the
Hadamard product andKρ

θ, ϑ(z) is the normalized meromorphic function with the Prahakar
function in the kernel.

The family of functions KCm
λ (β, ρ, θ, ϑ; b; Φ) (see Definition 1) is defined to include or

unify the study of δ-pseudo starlike functions. Furthermore, to add more versatility to our
study, we defined the class KCm

λ (β, ρ, θ, ϑ; b; Φ) by subjecting a certain analytic characteri-
zation quasi-subordinate to a more general function. The other classMBm

λ (ρ, θ, ϑ; b; Φ)
(see Definition 2) was defined to extend the study of Ghoos et al. [31].

The other significant deviation from previous studies is that we obtain conditions
so that δ-pseudo starlike functions are quasi-subordinate to a general function. Hence,
if we let Θ(z) = 1, then our results in Section 3 will reduce to a subordination condi-
tion for starlikeness. The method to obtain the solution to the Fekete–Szegő problem of
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MBm
λ (ρ, θ, ϑ; b; Φ) and KCm

λ (β, ρ, θ, ϑ; b; Φ) is the same as that employed by various
authors. However, several new and classical results can be obtained as a special case of our
main results.

6. Conclusions

The extension and unification of various well-known classes of functions were the
main objective of this paper. We defined a new family of multivalent meromorphic func-
tions of complex order using a differential operator, to unify the study of various classes
of meromorphic functions. Inclusion relations, Fekete–Szegő inequalities and sufficient
conditions for starlikeness for the defined function class were established.
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