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Kurumu, Grant/Award Number: 110E263;
TUBITAK, Grant/Award Number:
110E263; Akdeniz Üniversitesi, Grant/
Award Number: 2009.02.0122.003

Abstract

The continuous-wave back reflection diffuse optical tomography (rCWDOT)

system is one of the new medical imaging modalities. This study examines the

success of reconstruction and three-dimensional (3D) image processing algo-

rithms on data obtained from a heterogonous breast phantom by rCWDOT.

Breast phantoms were prepared by putting a bit of spleen inside the tail. The

spleen mimics a breast tumor since it has more blood than tail fat. rCWDOT

was used to acquire data from the breast phantoms. The breast phantoms were

reconstructed using the transpose-free quasi-minimal residual (TFQMR)

reconstruction algorithm. Then, image processing algorithms were performed

to improve the image quality. In image processing, 3D Gaussian filtering and

bi-cubic interpolation were used to enhance the appearance and remove noise

from the images. After the image processing, the images were evaluated

numerically using the peak signal-to-noise ratio (PSNR) method. It has been

shown that the used reconstruction technique and image processing algo-

rithms for a heterogeneous breast phantom provided 3D images that resemble

actual ones. This study will help researchers use the most convenient recon-

struction algorithm and image processing algorithms and perform preclinical

experiments in this field.
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1 | INTRODUCTION

Some of the imaging techniques in breast tumor diagnosis
are mammography, digital breast tomosynthesis (DBT),
positron emission tomography (PET), magnetic resonance
imaging (MRI), and ultrasonography (US). Those tech-
niques, including MRI, DBT, mammography, and US,
have been used together for breast cancer screening.1

Recently, diffuse optical tomography (DOT) has
emerged as vital research to image the inside human
body and some organs such as the breast and brain.2–5

DOT aims at producing spatially resolved images based
on the blood distribution in tissues and provides6,7 func-
tional images complementary structural information for
MRI scans and X-rays. DOT is a low-cost, portable, and
noninvasive imaging technique using a non-ionized

Received: 19 April 2021 Revised: 20 July 2021 Accepted: 3 August 2021

DOI: 10.1002/ima.22648

Int J Imaging Syst Technol. 2021;1–11. wileyonlinelibrary.com/journal/ima © 2021 Wiley Periodicals LLC. 1

https://orcid.org/0000-0001-7398-9540
https://orcid.org/0000-0002-2157-3209
https://orcid.org/0000-0003-3298-9725
mailto:yuncu@akdeniz.edu.tr
http://wileyonlinelibrary.com/journal/ima
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fima.22648&domain=pdf&date_stamp=2021-08-21


beam.8,9 DOT also provides information about tissue oxy-
gen saturation using more than one laser wavelength.10–12

A wavelength ranging between 600 and 1000 nm (near-
infrared region) is typically used7 in DOT. This region is
also known as the optical window, and a light having a
wavelength in this region has its maximum depth of pene-
tration in the tissue.7,13

DOT has been used in several tissue imaging applica-
tions for diagnostic purposes.14,15 DOT system illumi-
nates a tissue through source fibers and detects back- or
forward-scattered light from the tissue. The measured
data have been used in the solution of the diffusion equa-
tion approximated from the radiative light transfer
equation (Farrel et al.16–20). Fundamentally, the radiative
energy transfer (RTE) equation characterizes photons'
propagation in the tissue.10 Therefore, the diffusion
approximation of the RTE equation is linearized by either
Born or Rytov approximations.17,21 Several reconstruction
algorithms have been used to solve the linearized equa-
tion systems in the reconstruction part of DOT in the lit-
erature. Also, in our previous studies, several
reconstruction algorithms were used in back reflection
continuous-wave DOT (rCWDOT) and obtained tomo-
graphic images were compared with each other to define
which one is the best.21,22 Studies in the literature show
that conjugate gradient (CG)-based reconstruction algo-
rithms become the most effective and quick to solve
large, sparse, Hermitian systems.22–25 However, in our
recent study, data acquired from breast phantoms by
rCWDOT were reconstructed by transpose-free quasi-
minimal residual (TFQMR) and bi-conjugate gradient
(BiCG) reconstruction algorithms and it was found that
TFQMR has superiority over BiCG in terms of defining
correct depth and better spatial resolution.21

In general, three-dimensional (3D) filtering methods
are recommended to reduce noise in reconstructed
images. Filtering is an image processing procedure that
performs image smoothing, sharpening, edge detection,
enhancement, etc. Generally, smoothing is the
corresponding pixel value and neighboring pixels of
the input image to determine the image's new pixel
(or voxel) value. The most commonly used smoothing fil-
tering method is Gaussian filtering (3D) in the
literature,26 which is used in this study.

In medical imaging, the images should be needed to
be enlarged and/or resized without distortion. In 3D
images, the possible changes in appearance depending on
the acquisition and analysis of images in different angles
and directions (x–y, x–z, x–y–z) should not appear.
Among the interpolation techniques, bi-cubic interpola-
tion is widely used in 2D and 3D images to resize the
image without geometric distortion.27,28 The proposed
algorithms were 3D Gaussian filtering and bi-cubic

interpolation algorithms, which increased the image
quality in our study.

The effects of image processing algorithms on image
quality can be evaluated in two ways: subjective (visual)
and objective (numerical). The subjective evaluation is a
visual assessment of the image by comparing the images
before and after image processing, which is individual-
dependent. In numerical evaluation, measurement
methods based on specific mathematical models are used.
Since the results in mathematical methods mean the
same thing for everyone, it is more suitable for measuring
image quality and evaluating the algorithm's success. The
peak signal-to-noise ratio (PSNR) method, which has
been widely used in the literature for the numerical eval-
uation of image processing algorithms, has the best per-
formance in assessing the quality of noisy images.29–32

The reported rCWDOT phantom studies with homog-
enous structures do not represent the actual breast tissue.
We have used tail fat to mimic the breast tissue and
spleen to characterize the tumor in obtaining a more
realistic heterogeneous breast tissue phantom. In the
presented study, rCWDOT data were acquired from
the heterogeneous breast phantom, and the TFQMR algo-
rithm reconstructed the breast phantom. Then, 3D
Gaussian filtering and bi-cubic interpolation algorithms
were applied to increase the image quality.

2 | MATERIALS AND METHODS

2.1 | Heterogeneous breast tissue
phantoms' preparation and rCWDOT data
acquisition

We bought the tail fat and spleen from a local butcher
and kept the tail fat at room temperature for 20 min to
soften it. Spleen's depth was measured from the top sur-
face of the fat to the middle of the spleen using a caliper.
After data acquisition from the breast phantoms using
the rCWDOT, the phantoms were cut to measure the
inclusion (spleen) of the depth inside the tail fat. An
image of the breast phantom made of tail fat and spleen
is shown in Figure 1(A).

The rCWDOT was used to acquire data from the
breast phantom. The rCWDOT delivers laser light with a
wavelength of 808 nm to the breast phantom using
49 optical fibers, detects diffuse back-reflected light by
49 optical fibers, and sends to photodiodes as described
for a schematic presentation in Figure 1(B). The surface
area of the optical probe was 28 � 28 mm2, and the dis-
tance between the closest source and detector was 3 mm.
There were 49 source fibers and 49 detector fibers with a
diameter of 1 mm on the probe. These fibers' ends were
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located on the probe surface in 10 � 10 matrices. There
were 22 different source–detector distances and a total of
2401 (49 � 49) matches in the structure of the probe. The
distance between the farthest neighbors on the probe was
36.12 mm.33–35 The rCWDOT measurements were per-
formed by placing the optical probe on the breast tissue
phantom. The first measurement was acquired for cali-
bration purposes from the tail fat without the spleen
inside it. A bit of the spleen was then placed in different
depths of the tail fat.

2.2 | Reconstruction and image
processing algorithms

The distribution of light within the tissue characterized
by RTE is approximated to the diffusion equation.20

Then, some approximations such as Rytov were used to
create a linear equation system and solve it.18,21 This lin-
ear form is defined as a forward problem (Equation 1)
and must be solved as an inverse problem (Equation 2) to
create a tomographic image in rCWDOT.

y¼Ax, ð1Þ

x¼A�1y, ð2Þ

y is a measurement perturbation data defined as
y¼ logMh – logMp, where Mh and Mp were rCWDOT
data acquired from homogenous tail fat and the tail fat
with a spleen inside it, respectively. A is the coefficients'
matrix,34 and x is the matrix of unknowns and represents
the distribution of absorption inside the breast phantom. Sev-
eral reconstruction algorithms solve the inverse problem
(Equation 1); however, the TFQMR algorithm was used in
this study. Our previous study showed that the TFQMR algo-
rithm provides better tomographic images than BiCG does.21

In the quasi-minimal residual method, the non-
symmetric Lanczos-based method produces two
sequences of vectors as shown in Equations (4) and (5).
Sequences in Equation (5) require matrix–vector multi-
plication.36,37 Standard QMR uses S, a nonsingular
matrix used to simplify the Lanczos process (Equation 3).
This simplification provides the elimination of transpose
in TFQMR by determining starting vector w1 (Equationa
6 and, 7).

The TFQMR also uses vn and wn Krylov subspace
vectors in the solution.21,36,37 However, the TFQMR
method can solve the problem using other matrices
instead of A and S in Equation (3), and it converges by
changing vector sequences of the conjugate gradient
squared (CGS).36,37 Therefore, this convergence provides
low computational cost and smooth convergence.21,36,37

ATS¼ SA, S� ∁N�N, v1,w1 � ∁N, ð3Þ

span v1,v2,…,vnf g¼Kn v1,Að Þ n¼ 1,2,…, ð4Þ

span w1,w2,…,wnf g¼Kn w1,AT
� �

n¼ 1,2,…, ð5Þ

v1 and w1 are initial the vectors for the solution,

w1 ≔
1
Sv1k k Sv1, ð6Þ

wn ¼ γn
Sv1k k Svn ¼ 1

Svnk k Svn: ð7Þ

In image processing, the first step is to reconstruct the
image via the TFQMR method, and the second step is 3D
Gaussian filtering to smooth the images. The last step is a
3D interpolation, which performs bi-cubic spline interpo-
lation. The flowchart of the proposed algorithms is
shown in Figure 2.

FIGURE 1 (A) The phantom was prepared by placing a bit of spleens as tumor-relevant similar structure into the tail fat to obtain a

more realistic breast phantom. (B) Schematic presentation of the rCWDOT system
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Figure 3 shows an example of raw reconstructed
phantom tissue images before and after image processing.
The dashed line circles the actual location shape of the
spleen in the tail (Figure 3). The spleen's correct center
coordinates are x = 1.5 cm, y = 1.25 cm, and z = 1 cm,
approximately, as shown in Figure 3(A,B). A 3D Gauss-
ian filter with the weighted average over a mask with a
5 � 5 � 5 (windowing) dimension was used to smooth
an image. The central pixel has more contribution than
others, resulting in noise reduction and edge stabiliza-
tion. In Equation 8, the Gaussian curve was designed in
3D with the center of (0,0) point and the standard devia-
tion value (σ¼ 1). G (x, y, z) is x, y, z coordinates of
Gaussian function and computed values for the mask.

G x,y,zð Þ¼ 1ffiffiffiffiffi
2π

p
σ3

exp � x2þy2þz2

2σ2

� �� �
: ð8Þ

The 3D Gaussian filter produces a weighted average for
each pixel for smoothing on the rCWDOT image
(Figure 3(C)). The quality of a processed image also
depends on the adapted interpolation method for
rCWDOT imaging. In the last step of image processing,
interpolation was used in rCWDOT imaging with the bi-
cubic interpolation (Figure 3(D)). The interpolated value
at a query point was estimated based on a cubic interpo-
lation of the values at neighboring grid points in each
respective dimension.

Quantitative criteria are available to measure the per-
formance of image processing algorithms. The most
widely used image assessing criterion is PSNR.29,32 Mean
squared error (MSE) is defined as

MSE¼ 1
MN

XM�1

X¼0

XN�1

y¼0

g x,yð Þ�h x,yð Þk k2, ð9Þ

where M and N are the image g x,yð Þ sizes, while h x,yð Þ
is the reconstructed image in Equation 9. The MSE
represents the cumulative error of the processed g x,yð Þ
and reconstructed h x,yð Þ images. PSNR refers to the
ratio of the value representing the quality of the dis-
torted signal with the maximum value that the signal
can receive. It can be said that the higher the PSNR, the
better the image quality. PSNR is often expressed loga-
rithmically since signals in the image have a wide
dynamic range.

PSNR is a suitable criterion for noisy images and is
defined as

PSNR¼ 20log10
Maxfffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

, ð10Þ

where Maxf represents the maximum pixel intensity of
the image in Equation 10. The reconstruction and the
image processing algorithms were implemented using
MATLAB.

3 | RESULTS

Three-dimensional Gaussian filtering and then the bi-cubic
interpolation methods were applied to the image
reconstructed by the TFQMR algorithm. The sample dimen-
sions are 39 � 39 � 24 mm3, the pixel dimensions are
0.26 � 0.26 � 0.24 mm3, and the number of voxels is
15 � 15 � 10. The values of the azimuth and elevation
angles are 0� and 90� for 2D images and for 3D images 37.5�

and 30�, respectively. The tissue phantoms were
reconstructed using the perturbation data obtained as a dif-
ference between the rCWDOT's measurements acquired
from the tail fat with and without spleen inside it. The shape
of the spleen was spherical approximately. The spleen
dimensions were approximately 0.5 cm in x, y, and
z directions. Spleen tissues were first placed in the depth
of 0.5 cm and then 1 cm inside the tail fat. The phantom
images with a spleen at approximately 0.5 and 1 cm
depths are shown in Figures 4 and 5, respectively. PSNR
values before and after image processing are 6.9255 and
17.7082, respectively.

Figure 5 shows that the reconstructed image through
the x–y, x–z, and x–y–z planes for the spleen was placed
at x = 1.75 cm, y = 1.25 cm, and z = 1 cm. Figure 5(A)
displays the raw image through the x–y plane.
Figure 5(B) shows the processed image in the x–y
plane. Figure 5(C,D) displays the raw and processed
images in the x–z plane, respectively. Figure 5(E)
shows the processed 3D image of the spleen. The loca-
tion of the spleen in the 3D image is compatible with
the spleen's actual location in the tail fat breastFIGURE 2 Flowchart of the proposed algorithms
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phantom. PSNR values before and after image
processing are 7.6029 and 16.6358, respectively.

Figure 6 shows that the raw and processed images
through the x–y, x–z, and x–y–z planes for the spleen tis-
sue were placed diagonally in the x–y plane at a depth of
approximately 0.75 cm. The length and diameter of the
spleen were approximately 2 and 0.5 cm, respectively.
Figure 6(A) shows the raw image through the x–y
plane, and Figure 6(B) shows the reconstructed

image in the x–z plane. Figure 6(C,D) displays the raw
and processed images in the x–z plane, respectively.
Figure 6(E) shows the spleen tissue. PSNR values
before and after image processing are 7.9318 and
16.9432, respectively.

The images obtained before and after the image
processing of inclusion are shown in Figures 4–6. As a
result, PSNR (in dB) values for all experimental images
are calculated and listed below in Table 1.

FIGURE 3 The test experiment, spatial coordinates of the spleen in tail fat at x = 1.5 cm, y = 1.25 cm, and z = 1 cm. The dashed line

indicates the actual size and location of the spleen. (A) The reconstructed image through the x–z plane 2D image. (B) The x–y–z plane 3D
image. (C) 3D image after Gaussian filtering. (D) 3D image after Gaussian filtering and bi-cubic interpolation. The color bars represent the

intensity of absorption and x–y–z coordinate units in centimeters for all figures
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4 | DISCUSSION AND
CONCLUSION

CG-typed reconstruction algorithms are the most effec-
tive iterative method to find a solution of a large,
sparse, Hermitian, positive definite linear system; there-
fore, they are the most used reconstruction algorithms
in rCWDOT (Guadette et al. 2000).22,24,25,38 In our pre-
vious studies, we have investigated the most suitable

reconstruction technique for the rCWDOT system by
reconstructing homogenous tissue phantoms composed
of a mixture of intralipid, pure-water, and indocyanine
green.21,22,39 Our previous study showed that the
TFQMR reconstruction algorithm is better than the
BiCG.21,39 In the presented study, the rCWDOT data
were acquired from the breast phantom with a hetero-
geneous structure that resembles the actual breast
based on its fat content (Figure 1). In a tumor-like

FIGURE 4 The spleen in tail fat at x = 1.5 cm, y = 1.25 cm, and z = 0.5 cm. (A) The reconstructed image through the x–y plane 2D
image. (B) The x–y plane 2D image after image processing. (C) The reconstructed 2D image through the x–z plane. (D) The x–z plane 2D
image after image processing. (E) 3D image after image processing. The color bars represent the intensity of absorption and x–y–z coordinate
units are centimeters for all figures. Image quality assessment PSNR = 6.9255 for (A) and (C); and PSNR = 17.7082 for (B), (D), and (E)
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sample, a bit of spleen was inserted in tail fat to
mimic the tumoral structure. The rCWDOT system
was used to acquire data from tail fat without and
with the spleen. After reconstructing the breast phan-
tom by TFQMR and then image processing methods
such as 3D Gaussian filtering and bi-cubic interpola-
tion (Figure 2), the effectiveness of the image
processing algorithms in removing noise from the

images of heterogeneous breast phantoms has been
shown (Figures 4–6(E)).

Proper improvements with image processing algo-
rithms can minimize the noise in the images. In noisy
data, the tumor-like structures are only barely visible in
all 3D images. The 3D Gaussian filtering scheme reduces
the noise in 3D reconstructed images.26 Interpolation
techniques determine the values of a function between

FIGURE 5 The spleen in tail fat at x = 1.5 cm, y = 1.25 cm, and z = 1 cm. (A) The reconstructed image through the x–y plane 2D
image. (B) The x–y plane 2D image after image processing. (C) The reconstructed 2D image through the x–z plane. (D) The x–z plane 2D
image after image processing. (E) 3D image after image processing. The color bars represent the intensity of absorption, and x–y–z
coordinate units are centimeters for all figures. Image quality assessment PSNR = 7.6029 for (A) and (C); and PSNR = 16.6358 for (B), (D),

and (E)
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its samples to increase the images' resolution. The quality
of a processed image depends on the adapted interpola-
tion technique. After the image processing, the calculated
PSNR values provide to determine an improvement on
the image.27,28 We observed that the quality of the image
improved according to the PSNR value presented in
Table 1. A spleen tissue was used as a tumor-relevant
similar structure located at three different depths of

approximately 0.5, 0.75, and 1 cm (Figures 4–6). TFQMR
correctly reconstructed the tumor-relevant similar struc-
ture at depths of approximately 0.5, 0.75, and 1 cm.
Therefore, we conclude that TFQMR can accurately
define the breast tumor's location up to 1 cm (Figure 6).
Our results show that the implemented image processing
algorithm reduces noise and allows the detection of
lesions at different depths (Figures 4–6(B,D)) and shapes

FIGURE 6 Images of the spleen length of 2 cm and diameter of 0.4 cm located diagonally in the x–y plane at a depth of 0.75 cm.

(A) The reconstructed image through the x–y plane 2D image. (B) The x–y plane 2D image after image processing. (C) The reconstructed 2D

image through the x-z plane. (D) The x–z plane 2D image after image processing. (E) 3D image after image processing. The color bars

represent the intensity of absorption and x–y–z coordinate units are centimeters for all figures. Image quality assessment PSNR = 7.9318 for

(A) and (C); and PSNR = 16.9432 for (B), (D), and (E)
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can be detected by the rCWDOT system (Figures 4–6(A,C)).
The results have shown that the used image processing
methods reduce noise while preserving the utility details of
the image.

The proposed algorithms can be applied automati-
cally, and the noise is suppressed well and the algorithms
performed better in all images. Also, we have shown that
better quality images can be obtained from optical imag-
ing systems with fewer experimental errors by using
image processing algorithms such as 3D Gaussian filter-
ing and bi-cubic interpolation for the first time used in
heterogeneous breast phantom images of the rCWDOT
system. Thus, we have proved that the algorithm can be
applied to the rCWDOT system and works properly. We
can reveal the resolution between reconstructed and
image processing by calculating PSNR. The results of
PSNR are higher after image processing as shown in
Table 1.

It is the advantage of TFQMR compared with other
reconstruction techniques that need additional depth cor-
rection to find the lesion's correct location.40–43 Since
rCWDOT provides only absorption of the tissue along the
optical path between the source and detector, the distri-
bution of absorption was reconstructed. Therefore, only
location and shape of the lesions were obtained rather
than absorption's coefficient distribution, which is one of
the limitations of the present study. One of the main
results is to apply image processing algorithms such as
Gaussian filtering and bi-cubic interpolation to improve
quantization and noise suppression. It successfully
described the border, location, and different shapes of the
tumor-relevant similar structure within a heterogeneous
medium similar to the breast tissue.

Our results show that the reconstruction and the
image processing algorithms work not only for a spheri-
cal but also for tumor-relevant similar structure. There-
fore, we conclude that TFQMR can be used in the
rCWDOT system, as a reconstruction algorithm and
Gaussian filtering, and bi-cubic interpolation as an image
processing algorithm in in vivo studies to determine the
shape and depth of the tumor. This study has shown that

image processing algorithms have provided a better solu-
tion in rCWDOT images.

5 | FUTURE WORK

This study has shown that the image processing algo-
rithms have provided a better solution in rCWDOT
images. The future way for rCWDOT will contribute to
researchers using our proposed image processing algo-
rithms with reconstruction algorithms that will perform
clinical experiments in this field.
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