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ABSTRACT

In this paper, we propose a specific method for the identifi-
cation of compound-leaved tree species, with the aim of inte-
grating it in an educational smartphone application. Our work
is based on dedicated shape models for compound leaves,
designed to estimate the number and shape of leaflets. A
deformable template approach is used to fit these models and
produce a high-level interpretation of the image content. The
resulting models are later used for the segmentation of leaves
in both plain and natural background images, by the use of
multiple region-based active contours. Combined with other
botany-inspired descriptors accounting for the morphological
properties of the leaves, we propose a classification method
that makes a semantic interpretation possible. Results are
presented over a set of more than 1000 images from 17 Eu-
ropean tree species, and an integration in the existing mobile
application Folia1 is considered.

Index Terms— plant recognition, compound leaf, de-
formable templates, image segmentation, active contours,
classification

1. INTRODUCTION

When considering a tree identification mobile application,
leaves are an obvious choice for recognition. They can
be found all year long, are plane enough to be easily pho-
tographed, and show properties that make the identification
possible. However, leaves are natural objects whose mor-
phological diversity makes modelling complicated, not to
say impossible, and distinguishing between leaf types is
necessary. This work concerns only compound leaves, for
which a single leaf is actually divided in many leaflets.

The proposed method aims at modelling explicitly the dis-
position, the global shape and the local specificities of the
leaflets in order to classify photographs of leaves in a natural
environment into a list of species. The use of high-level, in-
dependent descriptors offers the possibility of an explanatory
process, putting semantic concepts on what is recognized,
which may be of great interest for the user. Figure 1 gives
an insight of the proposed process.

This work has been supported by the French National Agency for

Fig. 1. Overview of the compound leaf recognition process

Section 2 presents other works addressing close topics.
The specific models used to represent and segment compound
leaves are introduced in Section 3. Section 4 expounds the
descriptors and classification we use, as well as some results,
and perspectives of future work are given in Section 5.

2. RELATED WORK

Plant recognition is a topic of interest in image processing,
mostly in the context of leaf image retrieval. Some authors
[1] even share our goal of conceiving a mobile application
with great success2, though being designed essentially for
white-background images. The problem of segmenting leaves
from a natural environment appears indeed to be much more
challenging and is addressed by few other authors, using very
complex methods [2, 3].

Segmentation of natural objects is a context where the
introduction of prior shape knowledge could be very bene-
ficial. Deformable models, which can be traced back to active
contours [4], are a popular way to achieve this. Deformable
templates modeling complex objects [5], strongly constrained

Research with the reference ANR-10-CORD-005 (REVES project).
1https://itunes.apple.com/app/folia/id547650203
2http://leafsnap.com : developed by researchers from Columbia

University, the University of Maryland, and the Smithsonian Institution



templates, such as active shape models [6] or level-set active
contours with shape priors [7] constitute ways of including
prior knowledge in the segmentation. However, their shapes
generally lack the necessary flexibility and expressiveness to
capture the diversity of leaf shapes.

Concerning leaf shape description, many works apply es-
tablished shape descriptors such as the Inner-Distance Shape
Context [1], moments [3], Centroid-Contour Distance curves
[2] or Curvature-Scale Space transform [8]. Such descriptors
were not designed to take into account the nature of the ob-
ject, even if they fit quite well with its specificities. On the
other hand, some explicit geometric descriptions of the leaf
morphology have been proposed [9, 10].

3. DEFORMABLE COMPOUND LEAF MODELS

Similarly to what we have done in the case of simple leaves
[11], the segmentation method we propose relies on the prior
evaluation of a flexible leaf model, designed to cover the vari-
ety of leaf shapes. Such a model constitutes a way of provid-
ing a first segmentation as well as a description of the leaf’s
global shape that can later be used for recognition.

3.1. Deformable Compound Leaf Model

A first model that tries to estimate the number and disposition
of the leaflets was introduced in [12] and was modified here
to achieve better robustness. It is crucial to point out that very
often, the number of leaflets is not the number of connected
components one would find in the segmented image, given
that the overlap between leaflets is a constant risk. Estimating
the actual number location of those leaflets beforehand would
therefore be a guarantee that the resulting shapes will be cor-
rectly described.

This model makes assumptions about the axial symme-
try of the leaves, and the regularity of the leaflets in size
and orientation, that are not strictly speaking always true, but
are satisfying for a first approximation. As shown in Figure
2, the model represents leaflets by a variable number nL of
pairs of circles (C2l, C2l+1)l=1..nL

symmetrically positioned
on either side of a curved axis defined by two points T (for
the top leaflet C1) and B (for the base of the petiole) and
a curvature parameter k. The additional parameters used to
build the model are the following :

• (pl)l=1..nL
, the position of pairs of circles on the axis

• d, the distance of all the circles to the axis

• r, the radius of all the circles
The estimation of the optimal model M? on the actual

image is performed through the minimization of an energy
function by successive variations of the parameters. This en-
ergy term is based on a color dissimilarity map estimated
beforehand (Figure 3(b)) that accounts for each pixel’s like-
lihood of being part of the leaf, given only its color. It is

Fig. 2. Construction of the compound leaf model

based on a simple leaf color model computed after a rough
coloring of the three top leaflets (Figure 3(a)) by the user. This
intuitive phase corresponds to what will be asked to an user
of the mobile application, and turns out to be very handy to
place the model accurately in its initialization.

In the context of compound leaves, we model the color by
a single Gaussian (µ,Σ) in the L*a*b* colorspace, which is
a perceptually more accurate representation than RGB. The
dissimilarity of a pixel p to this color model is then simply
given by the Mahalanobis distance d(p, µ,Σ) with respect to
the computed Gaussian parameters.

The energy function the model minimizes during its evo-
lution is simply the sum of the dissimilarity over the region
defined by the model, minus a maximal dissimilarity that acts
as a balloon force:

E(M) =
∑

p∈
⋃2nL+1

i=1 Ci

d(p, µ,Σ)− dmax (1)

The number of leaflets nL has to be optimized separately,
since the changes it produces in the shape of the model are too
important to consider it in a gradient-descent like approach.
To overcome this difficulty, the model is initialized with an
excessive number of leaflets. Following a process close to
simulated annealing, a temperature variable is slowly decreas-
ing through the evolution, and brutally raised in regular cy-
cles. At the end of each of those cycles, circles that have
grouped in actual leaflets are simply suppressed, a decision
made comparing the distance between the centers of two con-
secutive pairs of circles and the radius r. This way, unlike
what was done in [12] where the number of leaflets was ap-
proximated a posteriori, the convergence of the model ideally
shows one single circle per leaflet (Figure 3(c)).

3.2. Deformable Joint Polygonal Leaflet Models

To capture the global shape of the leaflets, we rely on the
polygonal leaf model introduced in [13], making the assump-
tion that all the leaflets share the same shape. This is generally
true (and species are described in the literature by the shape
of their leaflets anyway) even if little exceptions (appreciably
different shapes for the top leaflets) might cause some prob-
lems.

Consequently we propose a novel joint approach where
we place one model Πi for each of the 2nL + 1 leaflets
obtained after the evaluation of the leaf model, and constrain



them to have the same shape parameters. Only the points
defining the base and apex of each leaflet vary independently.
This new model {Πi}2nL+1

i=1 evolves the same way as the
previous one, minimizing the same energy function, but with
no suppression of overlapping leaflets. Constraints are added
throughout the evolution, on the shape parameters so that
leaflets keep leaf-like shapes, and on the points so that pairs
of leaflets remain locally symmetrical, under the form of an
internal energy term.

The process of fitting a model to a single leaflet, which
may overlap with its neighbours is risky, but the fact that all
the leaflet models are evaluated simultaneously ensures that
they self-constrain (Figure 3(d)) The parameters of the opti-
mal models {Π∗i }

2nL+1
i=1 we obtain are therefore more robust

than if they were computed independently on each leaflet.

(a) (b) (c) (d) (e)

Fig. 3. Example of model-fitting and segmentation of com-
pound leaves

3.3. Multiple Active Contour Segmentation

To obtain different interpretable contours corresponding to
each leaflet, the natural choice is to deform the polygonal
shapes resulting from the previous step towards the actual
contours. Once again, it is very interesting to perform this
step in a joint fashion, so that the contours we are evaluating
act as a constraint on each other.

The contour of each leaflet is represented by a region-
based active contour model, using an extension of the level-
set framework to the case of multiple regions [14] and an im-
plicit definition approximating the original level-set evolution
[15]. This model have the limitation that a pixel can only be
part of one region, so that the contours do not interpenetrate.

The 2nL + 1 regions {Ωi}2nL+1
i=1 evolve simultaneously,

minimizing the energy functional :

E({Ωi}2nL+1
i=1 ) =

2nL+1∑
i=1

ωLELeaf (Ωi) + ωΠEShape(Ωi,Π
∗
i )

+ ω∇EGradient(Ωi) + ωSESmooth(Ωi)− ωBalloon

(2)
The energy is composed of an external term based on the

same color dissimilarity as in 3.1 and 3.2 and on the gra-

dient, and an internal term containing a shape constraint to
remain close to the corresponding polygonal model Π∗i and a
smoothness term. After evolution, the result is a set of inde-
pendent contours (Figure 3(e)) that can be studied to extract
local properties.

4. SPECIES CLASSIFICATION & RESULTS

4.1. Shape Descriptors

The descriptors we use to learn and classify compound leaves
are directly inspired from botany and aim at capturing in a
decorrelated way the various morphological specificities of
the leaf. This decision falls within the choice of an explana-
tory recognition process, where the justifications leading to
the classification should be displayed to the user of the ap-
plication using high-level semantic concepts. The introduced
descriptors consist of:
• Parameters of the compound leaf model (3.1)
• Parameters of the polygonal leaflet model (3.2)
• Averaged parameters of base and apex models ([11])
• Averaged CSS-based contour parameters ([12])
The features describing the base, apex and margin shapes,

are extracted and averaged over a subset of the leaflet con-
tours. The idea is to discard the overlapping leaflets, for
which the contour is unlikely to be accurate. To perform
this selection, we compute an overlap score for every pair
of leaflets, and only those which have a low score with all
the others are kept. This step ensures that the extracted
parameters will represent actual leaflet shapes and not erratic
shapes resulting from an uncertain border between two
overlapping leaflets.

4.2. Learning and Classification

We tested our methods on a subset of the Pl@ntLeaves II
Dataset [16] considering only species with compound leaves.
The resulting set consists of 1040 images spread over 17
different species, the images being of three types : scans,
scan-like (photographs on a light plain background) and
photographs.

The database formed by all the parameters for all the ex-
amples is first normalized and centered. The classification
algorithm is rather naive, as it simply computes for a given
species S a class model ΦS per species, keeping only the
mean µS,p and standard deviation σS,p of each parameter
over all the examples for the species.

To classify a new example, we compute the distance of its
parameter vectors P to all the class models. Rather than using
the Euclidean distance that does not account at all for intra-
class variability, or the Mahalanobis distance that distorts the
parameter space and penalizes classes with low variability, we
estimate the distance to the surface of the ellipsoid defined
by the means and standard deviations in the parameter space.



This distance is given by:

D(P,ΦS) = ‖P − µS‖2 max

(
1− 1

‖P − µS‖M
, 0

)
(3)

In this equation ‖P − µS,nL
‖M is the Mahalanobis distance,

which is simply in our diagonal case a normalized Euclidean
distance.

These distances are computed separately for the 4 sets of
descriptors presented in 4.1, which are meant to represent
independent leaf features. Each of those distance terms is
then weighted accordingly to its significance, estimated by
observing the average distance to the correct class over the
training base. The sum of the weighted distances is used to
produce a ranked list of species, the top five of which are
presented to the user as a result.

4.3. Results & Evaluation
We measured our results in terms of correct classification rate,
not only for the first species of the resulting list, but also for
the top k answers, k ranging from 1 to 5. This is a way
to evaluate the performance relatively to the application of
our method in a pertinent way. The classification rates are
61% on scan images, 60% on scan-like images and 43% on
photographs. One interesting fact is that the presence of the
correct species in the list presented to user climbs up to 95%
in the case of plain background images, and 86% for natural
environment photographs. A more detailed view of these
results can be seen in Figure 4.

Fig. 4. Classification scores for scan (—), pseudoscan (—)
and photograph (—) images compared to our primary results
[12] (dotted lines)

In addition to this performance measure, we tried to eval-
uate the robustness of our approach by comparing the num-
ber of leaflets we estimate with the actual number on the
leaves. This estimation is performed along the evolution of
the compound leaf model and is of crucial importance for the

following of the process. It also has a visual interest for the
user witnessing its evolution, and it is beneficial from this
point of view that this phase sticks with the actual visible
content of the image.

The 1040 images were manually labelled with their num-
ber of leaflets, and the estimated number compared with this
ground truth. Our method deals with overlapping leaflets,
which is basically impossible to do without introducing a kind
of model. For the sake of comparison, we also performed a
concurrent, non model-based, estimation of this number, by
thresholding the color dissimilarity map using Otsu’s method,
cleaning the binary image with some mathematical morphol-
ogy operations, and counting the connected components.

We measured the performance of both approaches by
computing the mean squared error (MSE), in a global fashion
first, and also for each true number of leaflets. When
the thresholding based method has a MSE of 28,67, our
estimation reaches 13,11. The error by number of leaflets
presented in Figure 5 allows a finer analysis and shows that
our approach has a significant advantage when the number
of leaflets and the subsequent probability of overlap becomes
high.

Fig. 5. Mean Squared Error of the leaflet estimation for our
method (—) and the Otsu based method (—)

5. CONCLUSIONS & PERSPECTIVES

The approach presented in this paper introduces a model-
based method to solve a complex problem of image under-
standing, providing a high-level interpretation of the image
content. The description of compound leaves it produces
appears to be more accurate than what can be obtained with
less dedicated approaches, through the use on prior botanical
knowledge, and constitutes a great improvement compared to
our primary results.

The performance in terms of species identification is very
satisfying, and the fact that high-level representations are used
throughout the process makes an explanatory recognition pro-
cess using botanical semantics possible. The introduction of
this method in the existing mobile application Folia is en-
gaged, and will constitute a nice extension towards a more
general tree identification helping tool.
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