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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Clermont Université

https://core.ac.uk/display/49289063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00881043




  
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 

 
 
  
 

 

 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  
Eprints ID: 8875 

To link to this article: DOI:10.1007/s11340-008-9204-7 
http://dx.doi.org/10.1007/s11340-008-9204-7 
 
 

To cite this version:  
 
Bornert, Michel and Brémand, Fabrice and Doumalin, Pascal and Dupré, 
Jean-Christophe and Fazzini, Marina and Grédiac, Michel and Hild, 
François and Mistou, Sebastien and Molimard, Jérôme and Orteu, Jean-
José and Robert, Laurent and Surrel, Yves and Vacher, Pierre and 
Wattrisse, Bertrand Assessment of digital image correlation measurement 
errors: methodology and results. (2009) Experimental Mechanics, vol. 49 
(n° 3). pp. 353-370. ISSN 0014-4851 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

 

Any correspondence concerning this service should be sent to the repository 
administrator: staff-oatao@listes-diff.inp-toulouse.fr 
 

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1007/s11340-008-9204-7
mailto:staff-oatao@listes-diff.inp-toulouse.fr


Assessment of Digital Image Correlation measurement errors:

methodology and results
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Abstract: Optical full-field measurement methods such as Digital Image Correlation (DIC) are

increasingly used in the field of experimental mechanics, but they still suffer from a lack of infor-

mation about their metrological performances. To assess the performance of DIC techniques and

give some practical rules for users, a collaborative work has been carried out by the Workgroup

“Metrology” of the French CNRS research network 2519 “MCIMS”1. A methodology is proposed to

assess the metrological performances of the image processing algorithms that constitute their main

component, the knowledge of which being required for a global assessment of the whole measurement

system. The study is based on displacement error assessment from synthetic speckle images. Series

of synthetic reference and deformed images with random patterns have been generated, assuming a

sinusoidal displacement field with various frequencies and amplitudes. Displacements are evaluated

by several DIC packages based on various formulations and used in the French community. Evalu-

ated displacements are compared with the exact imposed values and errors are statistically analyzed.

Results show general trends rather independent of the implementations but strongly correlated with

the assumptions of the underlying algorithms. Various error regimes are identified, for which the

dependence of the uncertainty with the parameters of the algorithms, such as subset size, gray level

interpolation or shape functions, is discussed.

Keywords: Digital image correlation – Error assessment – Spatial resolution – Displacement reso-

lution – Uncertainty assessment – Benchmark – Speckle pattern – Texture

1MCIMS: Mesures de Champs et Identification en Mécanique des Solides / Full-field measurement and identification

in solid mechanics, http://www.ifma.fr/lami/gdr2519



 

 

 

 

 

 

 

 

 

1 Introduction

Optical full-field measurement techniques are very promising tools for the experimental analysis of the

mechanical properties of materials and structures. The main techniques are photoelasticity, moiré,

holographic and speckle interferometry, grid method and digital image correlation (DIC) [1–6].

Even though they are more and more used, they still suffer from the lack of a complete metrological

characterization. Some papers have been recently published on this subject. They deal with the

evaluation of optical systems for full-field strain measurement based on standard experimental test on

standard specimens [7,8]. Such techniques rely on complex measurement chains, so the error sources

of each of its elements require proper evaluations before a global assessment of the measurement.

Thus a clear-cut separation should be made between kinematic fields measured by these techniques

and the mechanical modeling and testing.

Digital image correlation (DIC) has shown over twenty years to be a very valuable tool for full-

field displacement measurements [9–28]. It consists in recording with a camera some digital images

of a specimen undergoing a mechanical transformation and applying an image correlation algorithm

with an appropriate software. An important, but not unique, element of the measurement procedure

is the image analysis software package which is supposed to provide an apparent 2-D displacement

field that maps a so-called “reference image” to a “deformed image” at a discrete set of positions,

according to some principle of optical flow conservation.

This technique is among the most popular optical methods, because of the availability of com-

mercial packages, the constantly shrinking cost of digital cameras and computers, and the general

(apparent) simplicity of sample preparation and optical setup. The surface preparation is usually

very simple, namely, either no preparation is needed (if the material texture of the surface has

enough contrast), or a random speckle pattern has to be applied, which is handily performed by

spray painting the specimen.

However, the user is often confused by the number of parameters that have to be set in a DIC

measurement, namely, speckle size and “density” correlation criteria and algorithm of optimization,

subset (or correlation window) size, pitch or subset overlap, gray level interpolation, etc. It is usually

not clear for the user how the choices he/she makes influences the quality of the results obtained.

This is the reason why a number of research groups have joined forces to investigate in a systematic

way how the different DIC parameters influence the measured displacement fields. This common



action takes place in the “Metrology” workgroup of GDR 2519 MCIMS [29] created in January 2003

by the CNRS, the French national center for scientific research.

The main point of the paper is to discuss a general procedure to assess the measurement errors

of the DIC method and to apply this procedure, by using several DIC codes, in order to get general

trends enabling a person to choose the DIC parameters for a given application.

The proposed methodology is based on synthetic images undergoing sinusoidal displacements

with various amplitudes and spatial frequencies. Displacements are evaluated by six DIC packages

for various DIC parameters. The measured displacements are compared to prescribed ones. Results

are analyzed and commented. The outline of the paper is the following. In Section 2, the proposed

methodology for the DIC error assessment is described. In Section 3, the results are presented. Sec-

tion 4 discusses five aspects related to ultimate error, subset size, speckle size, gray level interpolation

and shape functions.

2 DIC Error Assessment

Quantitative evaluations of the errors of DIC measurements are usually limited to situations dealing

with homogeneous mechanical transformations, namely, rigid body translations, planar rotations, or

out-of-plane rigid body motions. They result in apparent essentially affine transformations of the

2-D image [14, 17, 19, 26, 30, 31]. Some authors use synthetic images that mimic real patterns to

compute displacements in the Fourier [30] or space [17,19,32,33] domains. Results present generally

the well-known “sinusoidal” dependence of the displacement error with the sub-pixel value of the

prescribed displacement [14]. Some other authors record a speckle image of an actual experiment

and apply artificially imposed displacements [26,31]. For instance, in Ref. [31] it is observed that the

mean of the standard displacement uncertainties decreases as the subset size increases with a power

law variation, showing that the displacement uncertainty and the spatial resolution are always the

result of a compromise.

Very few studies [19,34–37] address situations with spatially fluctuating displacement fields. Such

fields are needed to investigate a quantitative assessment of the spatial resolution of DIC techniques.

Since it is very difficult, and in practice almost impossible, to experimentally generate non-uniform

deformation fields with precisely prescribed strains —some authors have recently investigated this

way e.g. [7, 8]— , it is generally necessary to perform the analysis with simulated images obtained



with some algorithms that mimic as closely as possible the generation of images with a real camera.

Quadratic displacement fields are considered on synthetic images in Ref. [34]. The authors show that

no systematic displacement error is observed if a second order shape function is used. They claim

that the correlation function is minimized when the difference between the shape function and the

actual displacement field encoded in the images is minimized.

The present approach aims at extending the analysis by using synthetic speckle images that

display well-controlled planar sinusoidal displacements with different spatial frequencies. The reason

for this particular choice is that the displacement field and all its spatial derivatives vary with the

spatial coordinates. As a consequence, the transformation cannot be described exactly by standard

polynomial shape functions, so that the proposed analysis more closely reflects real situations. For

simplicity, it was chosen to apply a displacement only along one direction. This choice allows one to

study the local performances in terms of statistical properties. In the following, only performances

in terms of displacements are reported. On the one hand, this is the actually measured quantity as

opposed to strains that are post-processed in various ways depending on any particular correlation

code. On the other hand, a sinusoidal displacement has already complex spatial variations that are

representative of what a user would like to measure, namely local kinematic fluctuations. In the

sequel, the chosen methodology is detailed. First, the main features of the prescribed displacement

is presented. Second, the generation of artificial pictures is discussed. Third, the procedure for

analyzing the correlation results is introduced. Last, the correlation parameters that were tested are

defined.

2.1 Prescribed displacement field

The main idea is to use the usual tools for systems analysis for this “black box” characterization.

By spatial Fourier transform, an arbitrary displacement field is decomposed over a set of single

spatial frequency components, each of them exhibiting a given direction, amplitude, frequency and

phase. The usual method to describe linear systems is to give their frequency response function, that

indicates how each single frequency component of the input signal is changed in terms of amplitude

and phase by going through the system.

Even if DIC is not a linear system, this procedure allows to give a good description of the

behavior of the DIC system. Furthermore, it estimates the link between measurement errors and

spatial frequencies of the input signal. This is necessary for a quantitative assessment of the spatial



 

 

 

 

 

 

 

 

 

resolution of DIC.

The proposed methodology is similar to that leading to the Modulation Transfer Function (MTF)

classically used to characterize optical devices, namely, the errors of the displacements obtained with

various DIC algorithms are evaluated as functions of the spatial frequencies and the amplitude of a

sinusoidal displacement field.

Deformed images are obtained assuming only a unidirectional in-plane sinusoidal displacement

(elongation/contraction displacements along the X-direction with a zero Y -displacement). The dis-

placement is given by

u(X) = αp sin

(

2πX

p

)

eX (1)

where p is the period in pixels and 2πα the amplitude of the variation of the XX component of

the displacement gradient. The components of the first and second displacement gradients along the

X-direction are expressed as follows

u,X(X) =
∂u

∂X
= 2πα cos

(

2πX

p

)

= uMax
,X cos

(

2πX

p

)

(2)

u,XX(X) =
∂2u

∂X2
=
−4π2α

p
sin

(

2πX

p

)

= −uMax
,XX sin

(

2πX

p

)

(3)

with uMax
,X = 2πα and uMax

,XX = 4π2α/p. Values chosen for the amplitude α and for the period p are

respectively α ∈ {0.02, 0.01, 0.005, 0.001} and p ∈ {10, 20, 30, 60, 130, 260, 510} pixels, for 512 × 512

pixel images. Note that corresponding values of the maximum displacement gradient are 12.6%,

6.3%, 3.1%, 0.63%, respectively.

2.2 Image generation

It is chosen to separate the displacements calculation from all other experimental features to inves-

tigate the 2-D correlation algorithms by themselves, and thus synthetic 512 × 512 pixel images are

used as input to know exactly the information encoded. The idea is to input a set of well chosen

images and to evaluate the deviations between the correlation software output and the displacement

field that was used during image generation.

2.2.1 Speckle-pattern images generation

The set of synthetic speckle-pattern images is obtained using the TexGen software [38]. This soft-

ware has been developed to produce synthetic speckle-pattern images which mimic as realistically



 

 

 

 

 

 

 

 

 

as possible real DIC speckle patterns, obtained for instance with spray painting, or toner powder

deposits. Deformed speckle-pattern images are also generated with a deformation field of arbitrary

type. The software has been designed to limit the introduction of any bias due to interpolation.

Details of the speckle-pattern generator algorithm are not provided herein (see Ref. [38]). Perlin’s

coherent noise function [39] is used to generate a continuous noise function t = noise(x, y), x ∈

R, y ∈ R. Some transformations are applied to this basic noise function in order to generate a

texture function that mimic one desired speckle pattern appearance with control of the speckle size.

The speckle-pattern image is generated by a photometric mapping and an 8-bit digitization of the

texture function computed for each integer pixel of the image. The integration of the texture function

over the domain corresponding to the sensitive photometric material of one pixel is performed by

a super-sampling technique (for anti-aliasing). A reference speckle-pattern image represented by

a gray level function Ir(X) is first generated. A deformed speckle-pattern image is then generated.

It is represented by a gray level function Id(x) by applying any given material transformation ΦM

using the optical flow conservation

Id(x) = Ir(Φ
−1

M
(x)), (4)

with ΦM(X) = X + u(X). It should be noted that transformation ΦM is applied to the continuous

texture function, and not to the discrete pixel gray level values of the reference image. This leads

to a continuous deformed texture that is mapped to the deformed image. Regarding procedures

emanating from classical approaches, based for instance on Fourier transform [30] or any other

interpolation scheme, this procedure limits the introduction of any bias due to interpolation. The

“texture to image” mapping function is the same for the reference and deformed images. Fig. 1 shows

some examples of sub-images (512 × 100 pixel images) of both the reference and deformed images.

They are obtained for p = 130 pixels and α = 0.1, 0.05 and 0.02, respectively.

[Figure 1 about here.]

2.2.2 Speckle characterization

First, gray level histogram is adjusted to obtain a broad distribution covering all the 256 gray levels.

Then, attention is paid to the speckle size, i.e. the grain size of the speckle pattern. One way to

estimate the mean size of a speckle pattern is to perform image morphology analysis [36]. Another

way is to compute the autocorrelation radius, based on the autocorrelation function of the speckle



 

 

 

 

 

 

 

 

 

image [40,41]. In this work, the autocorrelation radius r is the radius at half height of the normalized

autocorrelation function of the reference image (see Fig. 2).

The speckle pattern mean size has been adjusted in order to study the influence of the speckle

pattern size on the DIC measurement accuracy. Fine (r = rs/2), medium (r = rs) or coarse (r = 2rs)

patterns are produced, as presented in Fig. 2. The medium pattern is characterized by the standard

size rs = 2.2 pixels.

[Figure 2 about here.]

2.3 Procedure for analyzing the results

Displacements are evaluated with various DIC formulations on a regular N ×N square grid defined

in the initial 512×512 pixels image, with pitches (dx, dy = d) such that subsets at adjacent positions

do not overlap, thus ensuring the statistical independence of the corresponding errors. In practice

dx is even and equal to d or d + 1, where d is the subset size.

Square subsets of different sizes d are used, namely, 9 or 10, 15 or 16, 21 or 22 and 31 or 32 pixels

(some softwares accept only even or odd pixel subset sizes). Computed displacements are compared

to prescribed ones at all grid positions and discrepancies are analyzed statistically in terms of root

mean square, standard deviation and bias. This analysis is performed globally for all points in the

image but also locally, columns by columns for each set of points exhibiting the same X coordinate,

displacement and displacement gradients. It could be shown that the results are calculated from a

sufficiently large number of points to ensure their statistical reliability, both in the global and local

analyzes, even for the largest subset sizes associated with the smallest data sets.

Displacement errors at the center of a subset of coordinates (i, j) are defined by

∆u(i, j) = uimposed(i, j) − umeasured(i, j)

with















i = dx
2

, ..., (N − 1)dx + dx
2

j = dy
2

, ..., (N − 1)dy + dy
2

(5)

For the global approach, the square root of the mean square error (RMS error) is defined by

RMSG =

√

√

√

√

1

n

∑

i,j

[∆u(i, j)]2 =

√

n− 1

n
σG

2 + ∆uG
2

(6)

where n is the number of calculated values (n ≤ N2, because of possible non computed values), σG



and ∆uG the global standard deviation and arithmetic mean, respectively

σG =

√

√

√

√

√

n
∑

i,j [∆u(i, j)]2 −
[

∑

i,j ∆u(i, j)
]

2

n(n− 1)
and ∆uG =

1

n

∑

i,j

∆u(i, j). (7)

For the local investigation, the standard deviation along a given column i is expressed as

σL(i) =

√

√

√

√

√

ni

∑

j [∆u(i, j)]2 −
[

∑

j ∆u(i, j)
]

2

ni(ni − 1)
(8)

where ni is the number of calculated values in the ith column, and the local arithmetic mean is given

by

∆uL(i) =
1

ni

∑

j

∆u(i, j). (9)

The local root mean square thus reads

RMSL(i) =

√

√

√

√

1

ni

∑

j

[∆u(i, j)]2 =

√

ni − 1

ni

σL(i)2 + ∆uL(i)
2
. (10)

Since the imposed displacements and gradients are constant along the columns of each image, it is

possible to analyze the above quantities versus the displacement and displacement gradients.

These results are given and discussed in section 3, as a function of various DIC parameters

summarized in the following section.

2.4 DIC formulations and parameters

The general purpose of DIC algorithms is to determine the mechanical transformation ΦM from the

knowledge of the gray level distributions Ir and Id in the reference and deformed configurations,

discretized into image pixels with a given bit depth, assuming that relation (4) is satisfied. As such,

this so-called “optical flow determination” problem, is an ill-posed inverse problem [42] which is only

solved approximately with additional assumptions. In classical DIC algorithms, the reference image

is decomposed into usually square small domains D (the correlation window or subset) on which

ΦM is approximated by a local map Φ, also called shape function, which belongs to a family ED of

continuous displacement functions, described by a limited number of scalar parameters. The general

algorithm consists in determining these parameters by minimizing a correlation coefficient C(Φ), for

which various definitions can be adopted [45] and which measures the disparity between the gray

level distribution in the domain D in the reference image and the distribution in the deformed image



back-convected to reference image according to Φ, as

Φ ≈ Arg min
Φ∈ED

C(Φ). (11)

In addition to the size d of the subset characterizing the optical signature of a material domain and

the resolution of the image (associated with the speckle size r), the various DIC algorithms for the

evaluation of displacement field depend on specific choices of correlation coefficient, shape function,

optimization algorithm and interpolation function required to evaluate sub-pixel displacement from

images described with a pixel resolution. These parameters are briefly recalled in the following with

an emphasis on those whose influence has been investigated with the proposed methodology. Other

parameters, in particular the definition of the correlation coefficient, were observed to have a very

limited influence on the results as the simulated images satisfy the optical flow conservation (Eq. (4))

and are noiseless.

2.4.1 Subset shape function Φ

The material transformation of the subset is usually approximated by a polynomial expression. Even

though higher order formulations can be found in the literature [43], the most general expression

used in this study is a second order polynomial [44], given by:



















































u(X,Y ) = a1 + a3∆X + a5∆Y + a7∆X ∆Y + a9∆X2 + a11∆Y 2 + a13∆X2∆Y · · ·

· · · + a15∆X∆Y 2 + a17∆X2∆Y 2

v(X,Y ) = a2 + a4∆X + a6∆Y + a8∆X ∆Y + a10X
2 + a12∆Y 2 + a14∆X2∆Y · · ·

· · · + a16∆X∆Y 2 + a18∆X2∆Y 2

(12)

where ∆X = X − X0, ∆Y = Y − Y0, (X0, Y0) being the center of subset D. The simplest shape

function corresponds to a zero order polynomial [10] associated with pure translation (ai = 0, ∀i > 2).

First order or strictly affine shape function [11] are obtained with ai = 0, ∀i > 6, while bilinear

transformation uses the first 8 coefficients [16]. Finally, full bi-quadratic approximation makes use of

all 18 coefficients while quadratic are restricted to the first 12 coefficients. For the sake of simplicity,

both strictly affine and bilinear transformations on the one hand, and quadratic and bi-quadratic

transformations on the other hand, will not be distinguished here since their results were similar

in the context of the present study where only uniaxial transformations are considered. Note that

recent extensions of DIC procedures make use of globally continuous maps defined on the whole



region of interest of the reference image, and not only on small independent subsets. Such maps are,

for instance, based on Finite Element shape functions [31]. Such algorithms have not been considered

here.

2.4.2 Gray levels interpolation

Correlation computations often require the estimation of the image gray levels for non integer pixel

locations. Interpolation methods used in this paper are: polynomial interpolation (bilinear or bi-

cubic), B-spline interpolation (bi-cubic or bi-quintic). Other interpolations based for instance on

Fourier or wavelet transforms could be used but have not been investigated in the present work.

2.4.3 Optimization algorithms

In the present work, three optimization strategies are used:

- full optimization: a simultaneous global optimization of all parameters ai describing the shape

function is performed using various nonlinear iterative optimization algorithms, such as first

gradient descent, Newton-Raphson, or Levenberg-Marquard.

- partial optimization: the optimization is performed on a restricted set of parameters (typically

translation components a1 and a2), with fixed (but non-necessarily zero) values of the higher

order coefficients. Once this partial optimization is performed for a set of subsets, higher order

coefficients relative to a given subset are reevaluated with explicit expressions from the relative

displacements of the centers of neighboring subsets, allowing a new estimation of the lower

order coefficients. This procedure is iteratively repeated until global convergence of the lower

order coefficients.

- Bi-parabolic interpolation of correlation coefficient: when only translation components are to

be identified (the other components being set to zero or to a fixed value as for the algorithm

described above), a faster alternative to determine their value can be used. It is based on the

computation of the correlation coefficient for integer values of the translation components and

its interpolation with a bi-parabolic function in the neighborhood of its maximum and its eight

nearest neighbors, which can be analytically optimized.



3 Results

3.1 Tested DIC parameter combinations

In order to test the widest range of above described parameter combinations, and since no DIC

package implements all of them, the proposed methodology was applied to various academic or

commercial softwares used in the French photomechanics community. An additional advantage of this

approach is that it allows one to check that the results are linked to the underlying DIC formulation

and not the specific software implementation, as very similar results are obtained using two or more

independent implementations of a same formulation.

Six DIC softwares were used to obtain the results presented in the following, including two

commercial codes, Aramis 2D [46] and Vic-2D [47], and four academic ones : 7D (Université de

Savoie), [16], Correla (Université de Poitiers) [48], CorrelManuV (École Polytechnique) [32, 49] and

KelKins (Université de Montpellier) [19].

As the purpose of this paper is not to compare the relative performances of these codes, the results

will be presented only with a reference to the main parameter combination used for the computation,

but no reference to the software.

The following notation2 will be used to specify the main parameter combinations : ΦφIiOoDd,

where φ ∈ {0, 1, 2} refers to the order of the shape function Φ, i ∈ {l, c, q} refers to the gray level

interpolation, o ∈ {f, p, b} refers to the optimization procedure (resp. full, partial or bi-parabolic),

and d is the width in pixels of the square subset D. Table 1 summarizes the various parameter

combinations used in this work with each package.

[Table 1 about here.]

Results, expressed in terms of standard deviation σ, bias ∆u and RMS errors will be analyzed

as functions of the set (p, α, r, φ, d, i, o, ...), keeping in mind that p and α describe the imposed

transformation and r characterizes the speckle size. Note that in principle, DIC errors depend also

on the signal-to-noise ratio of the images, but this parameter is held constant in our simulations:

all images have same bit depth (8 bits) and same gray level histograms, and no additional noise is

added.

2For instance, Φ1IlOfD16 corresponds to a DIC formulation with a first order shape function (φ = 1), a bi-linear

gray level interpolation (i = l), a full optimization (o = f) and a 16 pixels subset size (d = 16).



For the global analysis, it is observed that the global RMS error is equal to the global standard

deviation σG since the bias ∆uG is always very small with respect to σG. The reason is that the

displacement is periodic with a null average. Since the image size is a multiple of the period,

systematic errors are averaged out.

Thus in the next section the global error analysis is restricted to the characterization of the

function:

RMSG = function(p, α, r, φ, d, i, o, ...) (13)

The main features of the results are better explained if they are presented according to the different

shape functions Φ used by the DIC packages: translation, affine and quadratic shape function, as

illustrated below.

3.2 Global analysis

3.2.1 Translation (zero order shape function)

Fig. 3 illustrates the dependence of RMSG with respect to the period p of the displacement field

for three packages implementing a rigid transformation with various gray level interpolation schemes

(see Table 1). All results are relative to the standard pattern (speckle size r = 2.2 pixels). Fig. 3(a),

relative to a subset size of 31 or 32 pixels, clearly shows the consistency of the results obtained with

these packages and a strong dependence of the error with α, which measures the amplitude of the

first displacement gradient. Normalization of RMSG with uMax
,X = 2πα leads to a single master

curve for all packages, independent of α, as shown in Fig. 3(b). Similar observations are made with

all tested subset sizes, with an exception for small subset sizes and small strain amplitudes α, as

illustrated in Fig. 3(c), where a few curves diverge from the master curve. Fig. 3(d) provides a

schematic representation of all the results obtained with various p, α, d and r.

[Figure 3 about here.]

Four main regimes are observed:

• For periods smaller than the subset size d (area I on Fig. 3(d)), it is found that RMSG is

equal to the global RMS of the displacement itself, equal to αp/
√

2. This confirms that DIC

algorithms are, as expected, unable to evaluate any displacement fields with spatial fluctuations



 

 

 

 

 

 

 

 

 

at a scale smaller than d. The latter can thus be considered as the ultimate spatial resolution

of such DIC algorithms.

• In the second and third regime, the error is essentially controlled by α, i.e. the intensity of the

first displacement gradient. The existence of a master curve establishes the linear dependence of

RMSG with α. The asymptotic regime of RMSG/(2πα) is obtained for large periods, typically

p ≥ 15d (area III). In our simulations, it is attained for subset sizes up to d = 16 and almost

attained for d = 32. The independence with p establishes that the algorithm reacts as if the

strain was homogeneous in the subset. It is observed that the asymptotic value kr does not

depend on d but depends on the speckle size r as discussed below. In the transition regime

(area II, periods between d and about 15d), RMSG decreases with the period, but still remains

proportional to α.

• In the last regime, observed for small subset sizes (d ≤ 16 pixels) and small strains (α = 0.001),

the RMSG error is larger than (2πα)kr and almost independent of α. It slightly depends on p

and reaches an asymptote, denoted σt, for large p depending on the subset size and the gray

level interpolation scheme in use. For instance, for d = 10 pixels, one gets σt ≈ 0.01 pixel for

bilinear interpolation and σt ≈ 0.004 pixel for bi-quintic interpolation. Since this regime is only

marginally observed, the dependence of σt with d or r could not be investigated in detail.

Since the dominant regime corresponds to area III in Fig. 3(d), additional investigations have

been carried out for different speckle pattern sizes: rs/2, rs and 2rs. It is observed that kr strongly

depends on the speckle size r, namely, kr ≈ 0.35 pixel for the fine speckle pattern (rs/2), kr ≈ 0.6 pixel

for the standard speckle pattern (rs) and kr ≈ 0.8 to 1 pixel for the coarse pattern (2rs). In a first

approximation, a linear dependency can be adopted: kr ≈ 0.2r.

In conclusion, for a zero order shape function (translation), moderately heterogeneous fields and

sufficiently large subset, the error is controlled by

Φ = rigid, RMSG = Sup
{

kr(r) uMax
,X , σt(d, r, i)

}

. (14)

with kr ≈ 0.2r. It is a lower bound in the case of more heterogeneous situations. In most situations,

the error is governed by the first term of the supremum, the second being relevant for very small

strains.



3.2.2 Affine shape function

Guided by previous results where the error was essentially governed by the first order discrepancy

between shape function and actual displacement, results will be presented here using a normalization

factor proportional to the maximum of the second gradient, i.e. uMax
,XX = 4π2α/p. In addition, as it

will be demonstrated, in some regimes the error scales with the square of the subset size, so that an

appropriate normalization factor is 4d2π2α/p. Fig. 4 shows the so-normalized global RMSG error as

a function of period p. Results were obtained with five DIC packages implementing an affine shape

function (see Table 1), for the four strain amplitudes α and the standard pattern r = 2.2 pixels.

[Figure 4 about here.]

In this representation, a master curve can also be observed for almost all DIC packages, but only

for sufficiently large strain and subset. Various curves are observed for a subset size of 10 pixels

and for a small strain level (α = 0.001), except for large subsets. All these results are gathered in a

schematic view (Fig. 4(d)) where, again, four main regimes are observed:

• For small periods p ≤ d (area I), it is again found that RMSG is equal to the global RMS of

the displacement itself, confirming that DIC is not able to evaluate any displacement in this

situation.

• For periods larger than about 5d (area III), an asymptotic value ka is reached, almost inde-

pendent of α and d, approximatively equal to 0.03. Small fluctuations (values ranging from

0.026 to 0.033) around this average are observed from one package to another, as a probable

consequence of various numerical implementations: optimization algorithm, convergence toler-

ance, gray level interpolation, etc. To that respect, it is noted that in commercial packages

some parameters (such as convergence criteria) are not accessible to the user. As similar trends

are observed with academic codes, in which every parameter can be controlled by their au-

thor3, and commercial codes, it is believed that the presented results are representative of the

underlying DIC formulation. Small discrepancies between results may be attributed to imple-

mentation details but are of second order with respect to the general trends. The error is thus

essentially controlled by the second displacement gradient and scales with d2. The algorithm

The authors of the academic codes have participated to this research work and they have run themselves the tests

that have lead to the present results.



performs as if the reference image was transformed with a uniform second gradient displace-

ment field. Additional investigations have shown that the asymptotic value ka is independent

of the speckle size in the range r ∈ [rs/2 ; 2rs]. As RMSG/(d2 uMax
,XX ) is an increasing function

of p, the asymptotic value ka provides always an upper bound for the error. The error is thus

RMSG ≤ ka d2 uMax
,XX with ka ≈ 0.03.

• The transition regime (area II) observed for periods lying between d and about 5d is shorter

than for the zero order shape function considered previously. The asymptote is obtained in all

cases. One may consider again that the ultimate spatial resolution of the displacement is d

itself (beginning of area II).

• However, for small subsets and small strains, as previously observed for rigid shape functions,

the asymptotic regime differs. Under such conditions, it is checked that RMSG reaches an

asymptotic value independent on p and α, similar to the asymptotic value σt(d, r, i) observed

for a rigid shape function. A common interpretation of this regime for every shape function

order is detailed in Section 4.

To summarize, for an affine shape function, the error is described by

Φ = affine, RMSG ≤ Sup
{

ka d2 uMax
,XX , σt(d, r, i)

}

(15)

The first term is highest for larger strain gradients. It increases with d. The second term is highest

for smaller strain gradients. It is demonstrated in Section 4 that it decreases with d, showing that an

optimal value of d which depends on abs(u,XX) exists. This suggests that optimal DIC algorithms

based on affine shape functions, taking into account both the speckle pattern and the strain field to

be analyzed could be developed.

3.2.3 Quadratic shape function

RMSG error versus period p is plotted without any normalization in Fig. 5(a) and 5(b) for the

three DIC packages that allow such a choice of shape function (see Table 1). The results obtained

with the three packages are qualitatively similar: for p < d, as previously, no measurement is ever

possible while an asymptotic regime, with RMSG independent of p and α, is obtained for large p;

the transition between these two regimes is rather short, at least for small subset sizes.

[Figure 5 about here.]



 

 

 

 

 

 

 

 

 

For larger subset sizes and small periods, more marginal, intermediate regime governed by the

third order displacement gradient is revealed by the normalization of RMSG with d3 uMax
,XXX =

8π3αd3/p2 (see Figs. 5(c) and 5(d)). This regime is only significant for the packages that lead to

the smallest asymptotic values of RMSG. It induces an error which can be evaluated as RMSG ≈

kq d3 uMax
,XXX with kq ≈ 0.0005.

In the dominant regime, the asymptotic values are dependent on the subset size, as shown in

Figs. 5(a) and 5(b). They are also strongly dependent on gray level interpolation and optimization

algorithm, as different values are obtained with different packages. The variations of this asymptotic

value are similar to those of σt(d, r, i), but higher values are reached. These points will be discussed

more thoroughly in Section 4.

3.3 Local Gradient Analysis

The above global analysis has revealed the existence of situations where the error RMSG is governed

by the discrepancy between the real transformation and the adopted shape function. This dependency

of the error will be further investigated in the present section, by correlating local errors and local

displacement gradients. This analysis will, in addition, allow us to reveal possible systematic errors

linked to the local value of the gradients. For brevity, only results obtained for a subset size equal

to d = 16 pixels are shown. The same trends are observed for the other subset sizes. Result were

obtained with a package implementing a full optimization algorithm and a bilinear interpolation of

the gray levels. They are presented according to the different shape functions, as in Section 3.2.

3.3.1 Translation

Fig. 6 allows to retrieve the main result of the global analysis associated with the rigid shape function

by considering the whole set of the columns of the image: the mean value of ∆u corresponds to ∆uG

for the global analysis and is very small compared with its fluctuations, associated with σG.

[Figure 6 about here.]

The local interpretation consists in analyzing the data of each column separately. The fact that

the envelope of ∆u has the same variations as the displacement gradient u,X suggests that the local

standard deviation σL is principally related to the local first displacement gradient. Furthermore,

for this test, the local gradients and displacements are imposed simultaneously, so no link can clearly



 

 

 

 

 

 

 

 

 

be established between ∆u and the local displacement. To highlight the influence of the first and

second displacement gradients, all the results given by the different combinations of period and strain

magnitudes have been gathered. Only results relative to displacement fields with periods larger than

p = 60 pixels are considered (i.e. situations corresponding to area III and the right hand part of

area II in Fig. 3). The local standard deviation, arithmetic mean and RMS error in first displacement

gradient / second displacement gradient graphs are presented in Fig. 7.

[Figure 7 about here.]

Both systematic and random errors are functions of the first and second displacement gradients. In

order to show their relative influence, the equations fitting the data represented on Fig. 7 are given

in the following as functions of the normalized first and second displacement gradients.

As the change in the standard deviation is not dependent on the sign of the displacement gradient,

the absolute value of the gradients has been considered to compute the equation describing the data

presented in Fig. 7(a) and Fig. 7(c). One gets:

σL = [A + B abs(g1) + C abs(g2) + D abs(g1)abs(g2)]× 10−3 (pixels) (16)

∆uL = [A + B g1 + C g2 + D g1 g2]× 10−3 (pixels) (17)

RMSL = [A + B abs(g1) + C abs(g2) + D abs(g1)abs(g2)]× 10−3 (pixels) (18)

where g1 and g2 are the normalized first and second displacement gradients respectively, defined by:



















g1 =
u,X

uMax
,X

(αmax)
=

u,X

2παmax
=

u,X

0.04π
= 7.96u,X

g2 =
u,XX

uMax
,XX

(αmax,pmin)
=

u,XX

4π2αmax/pmin
=

u,XX

1.33×10−3π2 = 76.18u,XX

(19)

with: αmax = 0.02 and pmin = 60 pixels. The A,B,C,D coefficients are given in Table 2.

[Table 2 about here.]

The coefficient of the first gradient in Eq. (16) is the most important, showing that in the case

of zero order shape function, the standard deviation is mainly dependent on the local first gradient.

Furthermore the cross term shows that the effects of the first and second gradients are coupled.

Eq. (17) shows that the arithmetic mean value is either negative or positive, depending on the

value of the gradients. The second order gradient has here the preponderant influence and its

contribution to this error is about ten times larger than to the standard deviation (Eq. (16)). Note



that a positive (resp. negative) second order gradient, i.e. a convex (resp. concave) dependence

of displacement with position, leads to an overestimation (resp. underestimation) of the actual

displacement by DIC algorithms, as one could expect.

As the coefficient of the second gradient in Eq. (18) is close to its counterpart in Eq. (17), one

shows that a large part of the RMS errors linked with the second gradient is due to ∆uL. This term

describes the systematic errors, and may thus be corrected. The influence of the first gradient on

errors is found both in terms of σL (especially for large gradient, see Fig. 7(a)) and ∆uL, because

the zero order shape function cannot accurately describe the local displacement field.

3.3.2 Affine and quadratic shape function

When an affine shape function is considered, a similar analysis leads to the dependencies of the errors

with the local gradients given in Eqs. (16)-(18) and Table 2.

They confirm the independence of the errors with respect to the first order gradient and the strong

influence of the second order gradient. One can check the consistency between this local analysis and

the former global one: on the one hand, RMSG ≈ ka d2 uMax
,XX (see Section 3.2.2) with ka ≈ 0.03 and

d = 16 leads to RMSG ≈ KG uMax
,XX with KG ≈ 7.68, on the other hand, RMSL ≈ 130×10−3 abs(g2)

(see Table 2) and abs(g2) = 76.18u,XX (see Eq. (19)) leads to RMSL ≈ KL u,XX with KL ≈ 9.9.

By integrating the local error over all possible positions in a period, we get:

RMS2

G =

∫

2π

0

RMS2

L(u)du = K2

L

∫

2π

0

uMax
,XX

2

sin2(u)du =
K2

L

2
uMax

,XX

2

= K2

G uMax
,XX

2

(20)

KG ≈ 7.68 and KL ≈ 9.9 are consistent with the relation KL =
√

2 KG extracted from Eq. (20).

As for the zero order shape function, an important conclusion is that the main part of the error

is due to the systematic error (arithmetic means, Eq. (17)), but in this case it is only related to the

second displacement gradient.

Finally, thanks to the addition of a second gradient in the transformation, the quadratic shape

function allows one to minimize the influence of the second displacement gradient on the error. This

can be checked on plots similar to Fig. 7, no represented here for the sake of conciseness, on which

arithmetic means and standard deviations exhibit now similar values but without any correlation

with first and second gradients. One can in addition notice that the amplitude of the standard

deviation tends to be somewhat larger in the case of a quadratic shape function than for the affine

shape function, when the second gradient is not too high, which suggests that in such a case a lower



 

 

 

 

 

 

 

 

 

order shape function might be preferable. This question will be discussed again in Section 4.

4 Discussion

4.1 Error regimes

The observations reported in section 3 allowed us to establish the existence of various DIC error

regimes.

The first error regime, which is a known limiting situation for DIC, is for high frequency fields,

for which no measurement can be performed when the period of the signal is smaller than the subset

size.

In other situations, it has been shown that the asymptotic error can be described by the following

relation (see for instance Eqs. (14) and (15)):

RMSG ≤ Sup
{

σm, σt
}

(21)

Whatever the adopted shape function, it is observed that σm is proportionnal to the first order

term of the discrepancy between the adopted shape function and the actual displacement field in the

subset (area III in Figs. 3(d) and 4(d). This observation, confirmed by the local analysis described in

section 3.3, extends the results reported in Ref. [34]. σm can be linked to the mismatch error regime,

even if higher order terms might also have an effect (area II and local analysis in section 3.3.1).

For sufficiently small d and small α the asymptotic error is driven by σt. This ultimate error

regime is discussed hereafter.

4.2 Ultimate error independent of local transformation

The ultimate error regime, where RMSG becomes independent on p and α, and thus is no longer

linked to the shape function mismatch, is always observed when a second order shape function is used,

whatever d and α. The dependence of the RMSG error in this regime with the various DIC parameters

is now analyzed. Results are gathered in Fig. 8 where the whole set of available asymptotic values

of the global analysis for quadratic, affine or rigid shape function and bilinear, bi-cubic or bi-quintic

gray level interpolations, for full or partial DIC optimization, are plotted versus the subset size. Note

that this limiting regime is not obtained for all combinations of parameters when large subsets are

considered. While the influence of subset size d, interpolation i and optimization procedure o have



already been mentioned in section 3.2.3, this global plot establishes also the importance of the shape

function, especially for small subsets, so that the general expression for this error is σt(φ, d, i, o, r).

Its dependence with these parameters is now commented with more details, in connection with their

influence in the other error regimes.

[Figure 8 about here.]

4.3 Subset Size

A first observation is the strong decrease of σt(φ, d, i, o, r) with the subset size d, whatever the DIC

formulation. Such a dependence of DIC errors with d has already been observed in the case of pure

translation, for instance in Ref. [31] where real transformations have been analyzed. This suggests

that σt(φ, d, i, o, r) is governed by the same dependencies as in the case of pure translations, even if in

the present analysis the transformations are more general. The observed decrease can be explained

by the increasing quantity of information, in the form of local gray level gradients, which is used

when the subset size is enlarged, leading to a statistical decrease of the errors.

Focusing on results concerning the use of an affine shape function, it is worth noting that the

trends observed in Figs. 4 and 8 seem paradoxical. On the one hand, for large strains, there is

an increase of the global RMS error with the subset size. The reason for such a deterioration

as the subset size increases is due to the fact that the shape function cannot accurately describe

the local displacement field, as it is shown in Eq. (18) where the RMS error is only function of

the second gradient. On the other hand, for small strains or small subsets, the opposite trend is

observed. The local displacement lies inside the chosen space, and thus only the noise reduction

effect is felt, namely, the mean of the standard displacement uncertainties decreases as the subset

size increases. As a consequence, it is shown that an optimal value of d which depends on abs(u,XX)

exists, suggesting that optimal DIC algorithms based on affine shape functions, adapted to the strain

field to be analyzed could be developed.

The variations observed in Fig. 5 for which the convergence to the steady value is faster as the

subset size is smaller, yet the final value decreases with the subset size, is explained by the same

reasons. All these results show that the subset size and the type of shape functions have a strong

impact on the displacement uncertainties.

Let us however note that the tendencies observed herein may have a general feature. There exists



a first compromise between displacement uncertainty and spatial resolution (i.e. subset size), when

the measured displacement is reasonably well described by the local displacement basis. A second

limitation is given by the displacement “discretization” (i.e. the subset shape functions) to capture

complex displacements. The larger the subsets, the larger the “discretization” error, as observed in

finite element procedures. To determine the optimal subset size, known or assumed displacement

fields have to be applied to artificial or actual pictures.

4.4 Speckle Size

In the cases under study, the main influence of the speckle size is observed for the asymptotic value of

the RMS error, σm, when dealing with zero order shape functions. The smaller the correlation radius

r, the smaller kr, which shows that in this case, a reduced speckle size reduces the shape function

mismatch error. However, it might also affect the asymptotic error σt(φ, d, i, o, r) so that the global

effect is not easy to predict. Though the detailed dependencies of σt(φ, d, i, o, r) with r have not been

studied here, one may expect opposite trends. When r is smaller, the RMS of the gray level gradients

in each subset of a given size, i.e. the essential information used for pattern matching, increases,

allowing therefore an improved displacement resolution. However, a large pixel size with respect to

the pattern size might induce a poor pixel sampling of the actual gray level distribution leading to

interpolation errors in the sub-pixel evaluations of displacements. In addition, with current CCD

sensors, there are different sources of noise (e.g. dark current noise, readout noise, photon noise) that

may corrupt the pictures with a characteristic size equal to one pixel. When the correlation radius is

too small (i.e. of the order of one pixel), the signal might no longer be distinguished from this noise

so that the conservation of optical flow would significantly degrade.

This suggests again the existence of an optimal compromise between pattern size, pixel size,

interpolation scheme, and, in case of a rigid shape function, local strain field. In case of a higher

order shape function, it has been observed that speckle size does not significantly affect the shape

function mismatch error, σm, so that this compromise would not depend on the actual strain field to

be measured.

4.5 Gray Level Interpolation

The influence of the gray value intensity interpolation on systematic errors has been studied in

Ref. [30] in the case of B-spline interpolator. In this study, DIC algorithm uses the CNCC criteria



with affine shape function and a Levenberg-Marquardt iterative search algorithm [47]. Synthetic

images are translated and stretched in the Fourier domain with a uniform 0.5% strain. Based on the

well-known sinusoidal-shaped curves of the displacement error function of the sub-pixel prescribed

displacement [14] obtained both for translation and uniform strain, the authors conclude that high

order interpolation reduces the systematic error with a dramatic reduction in going from bilinear to

bi-cubic.

While our simulations show that the gray level interpolation scheme has almost no effect on the

shape function mismatch error, σm, as all packages lead to the same results, Fig. 8 confirms its strong

influence when the asymptotic regime σt(φ, d, i, o, r) is reached (small strains, small subsets and/or

higher order shape functions). The first observation is, as claimed in Ref. [30], a global reduction

of the errors by increasing the degree of the interpolation from bilinear to bi-quintic (see Fig. 8 for

instance for a first or a second order shape function), especially for small subset sizes.

However, one observes also that the discrepancy between bilinear and bi-cubic is less stringent

than in Ref. [30], and that a bi-cubic interpolation might lead to similar or even slightly worse results

than a bilinear one for subset sizes d larger than about 20 pixels. Though one cannot exclude that

such tendencies might be linked to implementation details, the fact that such a behavior is observed

in two independent situations, namely for package 3 with a quadratic shape function, and for package

1 and 2 implementing an affine shape function combined with, respectively, a linear and a bi-cubic

interpolation, suggests that this might be an intrinsic feature. A possible reason for it is that in our

simulations the limit σt(φ, d, i, o, r) is reached for non zero strains, so that the fractional part of the

displacement in pixels is not uniform in the subset. Systematic errors correlated with this fractional

part might then be smoothed out, especially for large subsets, reducing thus the artifacts induced by

a bilinear interpolation (for a subset size of 20 pixels and the smallest strain of 0.63%, the relative

motion of pixels within the subset is 0.13 pixels).

Bi-quintic B-spline interpolation leads in all situations to the best results, with an improvement

with respect to bilinear interpolation by a factor close to 3. A full analysis of the influence of gray

level interpolation would however also require the analysis of the effect of noise in the images in

combination with speckle size, as suggested in previous section.



4.6 Subset shape function

The strong influence of the shape function in combination with the subset size on the shape function

mismatch error has already been discussed. It appears that the shape function has in addition a

strong influence on the ultimate error σt(φ, d, i, o, r).

On the one hand a quadratic shape function gives worse results than an affine or a zero order

shape function, especially for small subsets. An explanation is that such a shape function requires a

large number of parameters to be identified and a small subset may not carry enough information to

determine them accurately: remember that DIC is fundamentally an ill-posed inverse problem. This

suggests that higher order shape functions should only be used when they are indeed required, i.e.

when the mismatch between a lower order shape function and the actual field would be too large.

On the other hand, it is also observed that a rigid shape function leads systematically to larger

errors than an affine one, which is in apparent contradiction with above argument. The reason for

that might be that in the case of a rigid subset, the limit σt(φ, d, i, o, r) is only reached for very small

strains and small subsets, i.e. when the displacement is almost uniform in the subset. In such a case,

the above mentioned systematic errors are not smoothed out and lead to higher levels of errors.

5 Conclusion

A general procedure to evaluate DIC displacement measurements errors has been proposed. It makes

use of synthetic speckle pattern images undergoing spatially fluctuating sinusoidal displacement fields

and extends more classical approaches, which address only uniform strain field, to more realistic

transformations. RMS errors of the displacements obtained with various DIC formulations could be

evaluated as functions of the spatial frequency and the amplitude of the displacement field, for various

subset sizes, speckle sizes and other DIC parameters, including shape function and interpolation

schemes. Various error regimes could be evidenced and the dependence of the corresponding RMS

errors with the DIC and transformation parameters clarified.

When the period p of the displacement fields is smaller than the subset size d, no measurement

is possible which confirms that d is the ultimate spatial resolution of DIC measurements. For larger

p, two main regimes could be observed. In the first one the error is essentially controlled by the

discrepancy between the shape function and the actual displacement field, while in the second one,

this discrepancy is sufficiently small so that the error sources are similar to those observed for pure



 

 

 

 

 

 

 

 

 

translation, and are independent of the actual transformation.

The first regime is dominant for large subsets, large strains and low order shape functions. For

sufficiently large periods, an asymptotic regime of the global RMS error is reached and its value is

essentially governed by the first order difference between the real transformation and the used shape

function Φ, all other DIC parameters having only a marginal influence. When Φ is a rigid (resp.

affine) shape function, the asymptotic error is proportional to the first (resp. second) derivative of

the displacement. Moreover, this asymptotic error is independent of d but increases with the speckle

size r in the case of a zero order shape function Φ, and scales as d2 in the case of an affine shape

function Φ. The asymptotic regime is obtained faster if d is smaller and if Φ is of higher degree. Note

that this regime is only marginally observed when Φ is quadratic; the error is then a proportional

to d3 and the the third derivative of the displacement. A more detailed analysis allows to separate

random errors from systematic ones linked with the local values of the displacements gradients at

various order, which might be corrected in some improved DIC formulation.

In the second regime, observed for small subsets and small strains and which dominates when Φ

is quadratic, the RMS error decreases with subset size d and depends strongly on the interpolation

scheme, as already observed for pure translation. It has in addition been shown to depend also on

the adopted shape function, the lowest errors being observed for an affine shape function.

The existence of various error regimes in which the dependence of the error with some of the DIC

parameters, such as subset size and shape function, are opposite suggest that the optimal choice of

these parameters might lead to improved DIC measurements.

Additional investigations, including the analysis of the transition to the asymptotic limit in the

first regime, the influence of image noise or the speckle characteristics on σt(φ, d, i, o, r), are however

required and are the subject of ongoing collaborative work. Studies focusing on the assessment of

DIC packages with images subjected to shear strain fields, and assessment of strain measurements

by DIC, are also underway.

It is finally worth remembering that the proposed methodology characterizes only a small part of

a real DIC measurement chain which involves the correlation algorithm evaluated here, but also the

texture to be analyzed, the optical system and its geometrical setup as well as the CCD sensor and its

overall properties. These other parts need to be considered as well to fully evaluate the performance

of the measurement system that uses surface pictures as input and output values of displacements

and displacement errors.
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Figure 1: Example of simulated synthetic images: reference (a) and deformed images (p = 130 pixels,
(b) α = 0.02 - uMax

,X = 12.6%, (c) α = 0.05 - uMax
,X = 31.4% and (d) α = 0.1 - uMax

,X = 62.8%).
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(b)

Figure 2: Illustration of synthetic speckle patterns. (a) fine, medium and coarse patterns and (b)

associated centered and normalized autocorrelation function radius at half height.



0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5
(a) Subset size 32 pixels

Period p (pix.)

R
M

S
G

(p
ix

.)

α = 0.02

α = 0.01

α = 0.005

α = 0.001

Pack. 4 : IqOf

Pack. 3 : IlOf

Pack. 1 : IlOp

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5
(a) Subset size 32 pixels

Period p (pix.)

R
M

S
G

(p
ix

.)

α = 0.02

α = 0.01

α = 0.005

α = 0.001

Pack. 4 : IqOf

Pack. 3 : IlOf

Pack. 1 : IlOp

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4
(b) Subset size 32 pixels

Period p (pix.)

R
M

S
G

/u
,XM

a
x

(p
ix

.)

α = 0.02

α = 0.01

α = 0.005

α = 0.001

Pack. 4 : IqOf

Pack. 3 : IlOf
Pack. 1 : IlOp

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4
(b) Subset size 32 pixels

Period p (pix.)

R
M

S
G

/u
,XM

a
x

(p
ix

.)

α = 0.02

α = 0.01

α = 0.005

α = 0.001

Pack. 4 : IqOf

Pack. 3 : IlOf
Pack. 1 : IlOp

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4
(c) Subset size 10 pixels

Period p (pix.)

R
M

S
G

/u
,XM

a
x

(p
ix

.)

α = 0.02

α = 0.01

α = 0.005

α = 0.001

Pack. 4 : IqOf

Pack. 3 : IlOf
Pack. 1 : IlOp

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4
(c) Subset size 10 pixels

Period p (pix.)

R
M

S
G

/u
,XM

a
x

(p
ix

.)

α = 0.02

α = 0.01

α = 0.005

α = 0.001

Pack. 4 : IqOf

Pack. 3 : IlOf
Pack. 1 : IlOp

 
✁ ✂ ✄☎✁ ✂ ✆✝✁ ✂ ✞
✟✠✡ ☛☞ ✌✍✎✏✑✒✓✔✕✔✖✗ ✘ ✙✚ ✚✛

✁ ✜✢✒✖✎✍✗✍☛✖ ✣✢✢☛✢ ✍✖✌✔✏✤ ☛☞  ✥☛✍✎✔ ✦✧★ ✁
✩✪✫✩✬ ✭✮✯✭ ✰✰ ✭✮✯✭ ✰✰✰✱✲✳✴✴ ✵✱✲✳✴✴ ✶ ✷✸

✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇❈❉❊❋
● ❍■❏❑

Figure 3: Evolutions of RMSG with parameters p, α and d, obtained with three packages imple-
menting a zero order shape function and various gray level interpolations. Speckle size r = 2.2 pixels.
(a) RMSG as a function of p, subset size d = 32 pixels, (b) RMSG/(2πα) as a function of p, subset
size d = 32 pixels, (c) RMSG/(2πα) as a function of p, subset size d = 10 pixels, (d) Schematic
representation of all observations.
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Figure 4: RMSG normalized by 4d2π2α/p as a function of period p, for various strain amplitudes α,
for an affine shape function and for five DIC packages (20 curves). Subset size d is equal to 10, 16 and
32 pixels in plots (a), (b) and (c), respectively. (d) is a schematic representation of all observations.
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Figure 5: RMSG as a function of period p for various strain amplitude α, for a quadratic shape
function and for three DIC packages. Subset size d is equal to 9 or 10 (a), 15 or 16 (b), 21 (c) and
31 pixels (d) respectively. The error is not normalized in (a) and (b), while it is divided by 8π3αd3/p2

in (c) and (d); only one DIC package is represented in (c) and (d).



 

 

 

 

 

 

 

 

 

Figure 6: Imposed displacement, displacement gradient and local error ∆u(i, j) as a function of
the column of the image (α = 0.005, p = 510 pixels, d = 16 pixels, zero order shape function Φ,

uMax = αp = 2.55 pixels, and

(

du

dx

)Max

= uMax
,X = 2πα = 3.1%).



(a) Local standard deviation σL

(b) Local Arithmetic mean ∆uL

(c) Local RMS error RMSL

Figure 7: Influence of the first and second displacement gradients (d = 16 pixels, zero order shape
function Φ).
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Figure 8: Comparison of the asymptotic RMS error σt(φ, d, i, o, r) for quadratic, affine or rigid shape
function and bilinear, bi-cubic or bi-quintic gray level interpolations as a function of the subset size.
Speckle size is r = 2.2 pixels.



Package # φ i o d

1 0, 1 l p any

2 1 c p odd

3 0, 1, 2 l, c f even

4 0, 1, 2 q f odd

5 2 l b odd

6 1 ? f odd

Table 1: DIC packages and associated parameter combinations used in the present study.



A B C D

σL 0.8 114 15.5 -41.3
Rigid shape function ∆uL -0.44 54 -146 -45.9

RMSL -1.48 123 137 -141

σL 2.5 1.63 18 -4.1
Affine shape function ∆uL -0.16 -0.0804 -135 -2.51

RMSL 1.48 0.302 130 -1.48

Table 2: Coefficients of the surface equations given in Eqs. (16)-(18) and derived from rigid shape
function results (Figure 7) and affine shape function results.




