
Anticipation in the Dial-a-Ride Problem: an

introduction to the robustness

Samuel Deleplanque, Jean-Pierre Derutin, Alain Quilliot

To cite this version:

Samuel Deleplanque, Jean-Pierre Derutin, Alain Quilliot. Anticipation in the Dial-a-Ride Prob-
lem: an introduction to the robustness. FEDERATED CONFERENCE ON COMPUTER SCI-
ENCE AND INFORMATION SYSTEMS - WCO, Sep 2013, Kraków, Poland. 2013, pp.299 -
305, 2013. <hal-00918302>

HAL Id: hal-00918302

https://hal.archives-ouvertes.fr/hal-00918302

Submitted on 13 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Clermont Université

https://core.ac.uk/display/49288498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00918302

Anticipation in the Dial-a-Ride Problem: an

introduction to the robustness

Samuel Deleplanque

Blaise Pascal University

LIMOS CNRS Laboratory

LABEX IMOBS3

Clermont-Ferrand 63000, France

Email: deleplan@isima.fr

Jean-Pierre Derutin

Blaise Pascal University

Institut Pascal CNRS Laboratory

LABEX IMOBS3

Clermont-Ferrand 63000, France

Email: derutin@univ-bpclermont.fr

Alain Quilliot

Blaise Pascal University

LIMOS CNRS Laboratory

LABEX IMOBS3

Clermont-Ferrand 63000, France

Email: quilliot@isima.fr

Abstract—The Dial-a-Ride Problems (DARP) models an op-
eration research problem related to the on demand transport.
This paper introduces one of the fundamental features of this
type of transport: the robustness. This paper solves the Dial-a-
Ride Problem by integrating an Inserability measurement. The
technique used is a greedy insertion algorithm based on time
constraint propagation (time windows, maximum ride time and
maximum route time). In the present work, we integrate a new
way to measure the impact of each insertion on the other not
inserted demands. We propose its calculation, study its behavior,
discuss the transition to dynamic context and present a way to
make the system more robust.

I. INTRODUCTION

Today, the Dial-a-Ride Problems are used in transportation

services for elderly or disabled people. Also, the recent evolu-

tion in the transport field such as connected cars, autonomous

transportation, and the emergence of the shared service might

need to use this type of problem at much larger scales. But

this type of transport is expensive and the management of the

vehicles requires as much efficiency as possible, however the

number of requests included in the vehicles planning can vary

depending on the resolution used.

In [1] we solve the DARP by using constraint propagation

in a greedy insertion heuristic. This technique obtains good

results, especially in a reactive context, and is easily adaptable

to a dynamic context. But, each demand is inserted one after

another and the process doesn’t take into account the impact

of each insertion on the other not inserted demands, and so,

in a dynamic context, the future demands. In this work, we

present a measure of an insertion capacity named Inserability.

We introduce its calculation by integrating the impact of an

insertion on the time constraints (time windows, maximum

route time and maximum ride time).

This measurement may be used in different ways: selection

of the demand to insert, selection of the insertion parameters,

and exclusion of a demand. These three uses may be related

to static as well as dynamic contexts by anticipating the future

demands. The goal is to insert the current demand in order to

build flexible routes for the future ones.

This paper is organized in the following manner: after

a literature review, the next section will propose a model

of the classic DARP. Then, we will review how to handle

Fig. 1. Times windows’ contraction

the temporal constraints with a heuristic solution based on

insertion techniques using propagation constraints. We will

continue by explaining the way to measure the Inserability, a

calculation based on the evolution of the time windows after an

insertion. Then, we will give some uses of this measurement

including making an appointment which minimize the time

windows (cf. Figure 1). In the last part of the paper, the com-

putational results will show the efficiency of our Inserability’s

measurement and we will report the evolution of the number

of demands inserted in a resolution of some instances’ sets.

II. LITERATURE REVIEW

The first works of the transportation optimization problem

are related to the Traveling Salesman Problem ([2]). Since that

time, other transporation problems have emerged as the vehicle

routing and scheduling problems, and the Pick-up and Delivery

Problem (PDP). The PDP is the ancestor of the problem of

the Dial-a-ride problem which has been studded since the

1970’s. DARP can be modeled in different ways. There are

a number of integer linear programmings [3], but the problem

complexity is too high to use, most of which are NP-Hard

because it also generalizes the Traveling Salesman Problem

with Time Windows (TSPTW). Therefore, the problem must

be handled through heuristic techniques. [4] is an important

work on the subject and uses the Tabu search to solve it. Other

techniques work well like dynamic programming (e.g. [5] and

[6]) or variable neighborhood searches (VNS) (e.g. [7] and

[8]). Moreover, a basic feature of DARP is that it usually

derives from a dynamic context. So, algorithms for static

DARP should be designed in order to take into account the

fact that they will have to be adapted to dynamic and reactive

contexts, which means synchronization mechanisms, interac-

tions between the users and the vehicles, and uncertainty about

forcoming demands. [9], and [10] later, developed the most

used technique in dynamic context or in a real exploitation is

heuristics based on insertion techniques. These techniques are

a good solution when the people’s requests have to be taken

into account in a short period of time.

III. THE DIAL-A-RIDE PROBLEM: MODEL AND INSERTION

GREEDY ALGORITHM

A. The general notations

This section lets to set notations used throughout this

document. For any sequence (or list) Γk we set:

• for any z in Γk :

– Succ(Γk, z) = Successor of z in Γk ;

– Pred(Γk, z) = Predecessor of z in Γk ;

• for any z, z’ in Γk :

– z ≪k z′ if z is located before z’ in Γk ;

– z ≪=
k z′ if z ≪k z′ or z = z’.

B. The model

A Dial a Ride Problem instance is defined by a Demand

set D = (Di, i ∈ I) , a fleet of K vehicles with a common

capacity CAP , and a transit network G = (V,E) .

V contains some specific node Depot and demands’ nodes

(DepotD for the departure and DepotA for the arrival). Each

arc e ∈ E is endowed with riding times give by a distance

function DIST (e) . Each demand includes oi an origin node,

di a destination node, F (oi) and F (di) two time windows,

∆i a maximum ride timeand Qi a description of the load

such that Qi = qi = −qi with q the load related a node.

Finally, the total time of the K vehicles planning are limited

by ∆k, k ∈ K .

Solving a DARP with such an instance means creating a

scheduling for each vehicle handling demands of D. The routes

are constructed while optimizing a performance, which could

be a mix of costs (e.g. total distance) and QoS criteria (e.g.

ride time).

C. A greedy insertion algorithm: the insertion mechanism

In [1], we present an insertion greedy algorithm based

on constraint propagation in order tocontract time windows

according to the time constraints. An insertion which does not

imply constraint violation is said valid if Γ∪k∈KΓk, the resul-

tant collection of routes, if load-valid and time-valid.A route is

load-valid if the capacity is not exceed, so, the load-validity is

obtained if ChT k(x) ≤ CAP with ChT k(x) =
∑

y≪=

k
x Qy ,

x and y nodes in the route k. The time-validity is obtained if

there is no violation of the time constraints modeling by, for

each demand i, i ∈ D, ∆i the maximum ride time, ∆k, k ∈ K

the maximum route time and the constraints modeled by

each time window F (oi) = [F .min(oi),F .max (oi)] and

F (di) = [F .min(di),F .max (di)] . Checking the load-validity

on Γ = ∪k∈KΓk is easy, and we show the efficiency of

the constraint propagation in order to prove to time-validity

after each planned insertion once the load-validity is proved.

According to a current time window set FP = {FP(x) =

[FP.min(x), FP.max(x)], x ∈ Γk, k = 1..K } the time-validity

may be performed through propagation of the five following

inference rules Ri, i = 1..5 in a given route Γk:

for each (x,y) pair of nodes such that y is the successor of

x:

• R1 : FP .min(x) +DIST (x, y) > FP .min(y)
| =

(FP .min(y)← FP .min(x) +DIST (x, y)),
• R2 : FP .max (y)−DIST (x, y) < FP .max (x)

| =
(FP .max (x)← FP .max (y)−DIST (x, y)) ;

for each (x,y) pair of nodes such that both are related to the

same demand, one is the origin so the other the destination :

• R3 : mathitFP.min(x) < FP .min(y)−∆(x)
| =

(FP .min(x)← FP .min(y)−∆(x)),
• R4 : FP .max (y) > FP .max (x) + ∆(x)

| =
(FP .max (y)← FP .max (x) + ∆(x)) ;

and for each x, x ∈ Γk, k = 1..K :

• R5 : FP .min(x) > FP .max (x)| = REJET ← true.

These 5 rules are propagated in a loop while there no time

windows exists FP modified at the last iteration. The tour

Γk, k = 1..K is time-valid according to the input time window

set FP if and only if the REJET Boolean value is equal to false

as initialized at the beginning of the process. In such a case,

any valid time value set t related to Γk [F020?]and FP is such

that: for any x in Γk, t(x) is the appointment’s date in FP(x).

The greedy insertion algorithm includes this propagation

constraint technique in order to evaluate each possible in-

sertion. Each iteration of the algorithm selects one demand

according to the number of vehicle able to integrate it. Once

a demand is selected, the process chooses the insertion’s

parameters that are the vehicle and the location of the origin

and destination nodes.

IV. Inserability OPTIMIZATION

A. State of the system

In the above algorithm, each iteration selects a demand,

and then, it finds the way to insert while optimizing the

performance. This greedy algorithm doesn’t take in account

the impact of this actual insertion on the future demands

integration, but only the effect on the demands already in-

serted. In this section, we introduce a Inserability calculation

by integrating this impact of an insertion related to the time

constraints (time windows, maximum ride time and maximum

route time).

During the insertion process, the state of the system is given

by:

• A set of demands D−D1 already integrated in the routes,

and D1 is the set of demands not inserted,

• a collection Γ = ∪k∈KΓk of routes including a list of

nodes related the Depot, origin and destination nodes,

• a exhaustive list of insertion’s parameters sets. Each set

gathers 5 elements : k the vehicle, i the demand, (x, y) the

pair of insertion nodes (locating respectively oi between

x and the successor of x, and di between y and the

successor of y), and v the evolution of the collection

Γ = ∪k∈KΓk ’s cost.

B. Insertion’s parameters

Given that the difficulty of the instances’ problem is linked

to the time constraints, we introduce an Inserability calculation

related to the times windows contractions. During an inser-

tion’s assessment, these reductions appear once the inference

rules are propagated. Here, we try to find a good 3-uple

(k, x, y), the vehicle and the location of the origin/destination

nodes, in order to give enough space to the future demands

(which have to be integrated in Γ = ∪k∈KΓk).

We set INSER(i, Γ) the Inserability measurement of the

demand I. The quantity Uk
n(z) denotes the vehicle k time

windows’ amplitude of the node n once it has been inserted

to the right of node z. INSER is calculated as follows:

• INSER(i,Γ) =
∑

k∈K INSER1 (i,Γk) ;

• INSER1 (i, γ) = Max (x,y)INSER2 (i, γ, x, y), γ a tour

of Γ ;

• INSER2 (i, γ, x, y) = Uγ
od
(x).Uγ

dd
(y).

We set Inserted(Γ, i0, k, x, y) the updated collection of tours

Γ with the insertion of the selected demand i0 at the locations

x and y in the vehicle k. The INSER(i, Γ) measurement

allows us to write the Optimization Inserability Problem which

consists to find the best insertion parameters in order to keep

the vehicles’ scheduling more flexible:

Optimization Inserability Problem. Find the optimal pa-

rameters (k,x,y) inserting i0 and maximizing the value

Mini∈D1−i0INSER(i, Inserted(Γ, i0, k, x, y)) .

For instance, the value

Mini∈D1−i0INSER(i, Inserted(Γ, i0, k, x, y)) may be

used if all the demands have to be inserted. Another

optimization may be process as the maximization of the sum∑
i∈D1−i0

INSER(i, Inserted(Γ, i0, k, x, y)). The choice is

made according to the homogeneity of the demands and if

the problem requires to insert all the set D.

This problem only optimizes the variation of the In-

serability values and doesn’t include other performance

criteria like the minimization of the ride times, waiting

times or distances. The Inserability criterion can be in-

tegrate in a mix of economical cost (point of view of

the fleet manager) and of QoS criteria (point of view

of the users). Then, the process maximizes the function

Perf = µ.
∑

i∈D1−i0
INSER(i, Inserted(Γ, i0,k, x, y)) −

v(Inserted(Γ, i0,k, x, y)) with µ a criterion coefficient and v

the performance value function mixing the costs related to the

both points of view.

C. Other uses of the Inserability measurement

So far, we select the demand i0 according to the number

of vehicles available (taking in account all the time and load

constraints). The Inserability measurement INSER(i0 , Γ)

may be also used in order to select the next request i1 to insert.

This application could be used in a context where all the de-

mands of D have to be integrated. The selection is based on the

smallest Inserability measurement. Once a demand is selected,

the problem may solve the Optimization Inserability Problem.

Here, the two steps may be written in a non-deterministic

way. The demand may be selected randomly through a set

of N1 elements with the smallest INSER value. The same

scheme may be applied on a set of a insertion parameters

of N2 elements with a best (k, x, y) elements maximizing the

quantity Mini∈D1−i0INSER(i, Inserted(Γ, i0, k, x, y)).

Also, INSER(i0, Γ) may be useful for a larger set D. If the

instance doesn’t have any solution integrating all the set D, it

is preferable to identify requests to exclude as soon as possible.

The exclusion of a demand i0 may be set up if its insertion

results in Γ not enough flexible to include the other elements

of D1 . In other words, the demands excluded will be those that

will have the most impact of future insertions. The difference∑
i∈D1−i0

(INSER(i,Γ)−INSER(i, Inserted(Γ, i0, k, x, y)))
of the inequality (4) takes in account the Inserabilty measure-

ment of D1 − i0 before and after the insertion of i0 in the

routes of Γ. If this difference is larger than the threshold ξ,

the demand is excluded. In the experimentation’ section, we

will discuss the fact this threshold should be dynamic and

decreases over the execution.

∑

i∈D1−i0

(INSER(i,Γ)

−INSER(i, Inserted(Γ, i0, k, x, y))) > ξ (1)

D. The Inserability optimization suited to the greedy insertion

algorithm

The calculation of INSER(i, Γ), i ∈ D, begins to be

time consuming starting from a medium size of D once

the INSER2 value is based on the time windows’ amplitude

obtained after the propagation of the time constraints. So,

this is important to spot each step of the process where

the Inserability measurement doesn’t have to be updated.

When i0 is selected, INSER2 (i,Γk, x, y), INSER1 (i,Γk)
and INSER(i,Γ) are known for all demand in D1 − i0 and

all k = 1..K. Once i0 is about to be inserted, the process

computed the value H(i), i ∈ D1 − i0 (cf. formulation (2)).

Then, the algorithm tries the insertion of each i from D1 − i0
in Inserted(Γ, i0, k, x, y) and deduce the value K(i) given in

formula (3) for all i ∈ D1 − i0 and ultimately the quantity

Val(k, x, y) = Mini∈D1−i0(K(i) +H(i)).

H(i) = INSER(i,Γ)− INSER1 (i,Γk) (2)

K(i) = INSER(i, Inserted(Γ, i0, k, x, y))

= H(i) + INSER1 (i, Inserted(Γ, i0,k, x, y)k) (3)

Other calculation may be avoided. We set W1 such that

W1 = Mini∈D1 i0INSER(i,Γ). If the quantity INSER(i,Γ)−
INSER1 (i,Γk) is larger than W1, there is no need to test the

impact of the insertion of i0 on i.

Finally, we’re able to use INSER(i, Γ) once we integrate

the future demands presented in the next section. In a dynamic

context, the Inserability measurement helps the routes to be

enough flexible for the next insertion process. Moreover, the

making an appointment have to be set with the same purpose

and INSER(i, Γ) is able to help to do it.

V. INTRODUCTION TO THE ROBUSTNESS IN THE DARP:

ANTICIPATION OF THE FUTURE DEMANDS AND Inserability

MEASUREMENT INTEGRATION

The problem may have to be handled according to a

dynamic context and the greedy insertion algorithm is easily

adaptable to this context. Once the Inserability measurement is

included in the performance criteria, the system may increase

its robustness. In order to accomplish this, we need to exploit

knowledge about future demands. In our case, this knowledge

is related to the type of on demand transportation service. In

this paper, we will use a simple extrapolation of this probable

demands based on the demand already broadcasted.

We won’t take into account the way the system supervises

its various communication components with the users. In

reality, there are eventual divergences between the data which

were used during the planning phases and the situation the

system.

We set D−V the virtual demands, D−R the real demands,

and D−Rejet the set of the ones excluded from the insertion

algorithm such that D−Rejet = DV −Rejet ∪DR−Rejet .

The D−V formulation is given in (4). pi gives us the number

of times the demand i ∈ D will appear for each period of each

discrete planning horizon.

D − V =
∑

i∈D

i.pi (4)

Then, we’re able to update the formula (5) the performance

function Perf.

Perf =

α.
∑

i

piINSER(i, Inserted(Γ, i0,k, x, y))

+µ.
∑

i∈D1−i0

INSER(i, Inserted(Γ, i0, k, x, y))

−v(Inserted(Γ, i0, k, x, y)) (5)

As in the previous sections, the process may exclude some

demands taking in account the future requests. We updated

the inequality (1) by the (6). α is a coefficient based on the

importance of the future demands.

α.
∑

i

pi.(INSER(i, Inserted(Γ, i0,k, x, y))

−INSER(i,Γ))

+
∑

i∈D1−i0

(INSER(i,Γ)

−INSER(i, Inserted(Γ, i0, k, x, y)))

> ξ (6)

VI. DISCUSSION ABOUT THE MAKING AN APPOINTMENT

AND THE DYNAMIC CONTEXT

Most work on vehicle scheduling problems including time

window studies how to integrate a set of demands in the

vehicle planning. Making an appointment anticipating the

future is especially rare. Previous sections explained how to

select and integrate user’s request while keeping enough space

for the next set of demands.

Once routes are built and integrated a first set D, the users

expect the date when the vehicle selected will pick them up. In

the lists forming the K routes, each node has a time window.

After the appointment’s date is set, each time window becomes

tight with zero amplitude or equals a very small delay. How

the appointments’ dates are made is very important for the

next insertion’s process. For instance, we consider a fleet of

2 vehicles with two plannings including 5 demands while the

distances are minimized (cf. Figure VI). The time windows are

relatively wide so, while the distance traveled is minimized,

the difference of each appointment’s time between two nodes

is the exact time to join them. The vehicle k=2 from the Figure

VI may integrated the node o7 between its depot node and o5
even if its time windows have a zero amplitude (the vehicle

will only have to leave the depot earlier). On the other hand,

if the difference on the appointment’ times given to the users

related to the nodes d5 and o3 equals to DIST (d5,o3), the

insertion of d7 will be forbidden. In the same way, there will

be a violation of some constraint once nodes o6 and d6 will

be inserted in the vehicle k = 1.

Fig. 2. New insertions after the making an appointment

One more time, the INSER(i, Γ) values may be used in

order to set the appointment dates without to have the problem

above. The appointment’s dates may be calculated once the

process have inserted the virtual demands D−V and the real

demands D −R.

The previous section shows the way to anticipate the future

demands D−V . These demands are related to a dynamic con-

text. Note again that our greedy algorithm is easily adaptable

to this context. More specifically, the technique doesn’t change

unlike the state of each route. The first node isn’t a depot node

anymore but a dynamic node related to the vehicle’s location.

The entire constraint propagation process is applied on these

new routes. A simulation will be necessary to evaluate the

anticipation of the future demands including in the dynamic

context.

VII. COMPUTATIONAL EXPERIMENTS

In this section, we study the behavior of our Inserability

measurement used in the resolution of Dial-a-Ride instances.

The algorithms were implemented in C++ and compiled

with GCC 4.2. In [1], we solve the [4]’s instances by our

greedy insertion algorithm based on constraint propagation.

We obtained good results in the majority of instances, but,

only 1% of the replications gave us a of feasible solution on

the R10a instance. The CPU time was smallest or equal to the

best times in the literature; we don’t work on this feature for

this experiment.

A. First experimentation: the optimization of the selection of

the demand to insert

1) INSER’s measurement used in the selection of a demand:

We note by TDARP the rate of 100 replications which give us

a feasible solution obtained by using the solution of [1]. Here,

the selection of the demand is based on the lowest number of

cars which are able to accept it. TDARP

Rob
is the rate obtained

with the same process except that each demand is selected at

each iteration by the lowest Inserability value INSER.

The Inserability measurement is already efficient once it’s

used in the selection of the demands to insert. The rate

Fig. 3. INSER values on the not inserted demands

obtained for the pr08, pr09, pr10 and pr19 are clearly more

interesting (for the instance pr08, the rate increases by 56%

to 91% of success).

Inst. TauxDARP

Succes
TauxDARPRob

Succes

pr01 99 100
pr02 100 100
pr03 97 100
pr04 100 100
pr05 100 100
pr06 100 100
pr07 90 96
pr08 56 91

pr09 18 21
pr10 1 7

pr11 100 100
pr12 100 100
pr13 99 100
pr14 100 100
pr15 100 100
pr16 100 100
pr17 98 100
pr18 99 100
pr19 64 99

pr20 43 56
Av. 83,2 88.5

TABLE I
TauxDARP

Succes
VS TauxDARPRob

Succes

2) The INSER’s measurement behaviour: Each time a repli-

cation can’t integrate all the request, the INSER value of

the demands not inserted has to be null. In Figure VII-A2,

throughout resolution process applied to the R10a instance, we

note the evolution of more than 4500 INSER’s demands not

inserted. The technique used is the second approach selecting

the demand by the smallest Inserability. The values noted are

from a failed replication.

One can observe big gaps between some INSER’s until the

4000 first values. After that, for the remaining requests, the

Inserability values decrease strongly because the routes begin

to be not flexible. Between the 2500th and the 3500th , for

some demands, the INSER are very low at the beginning just

before to increase strongly. This is explained by the fact the

process inserts the demand with the lowest INSER but their

insertion don’t make a big impact on the other demands not

inserted. This impact is related to the Optimization Inserability

Problem studied below.

B. Second experimentation: the optimization of the insertion

parameters

In a second experimentation, we compare the [1]’s

approach and another algorithm based on the optimiza-

tion of the parameters (x,y,k). The selection of the re-

quest to insert is the same for both solutions. For the

second one, once a demand i0 is selected, we maxi-

mize the sum
∑

i∈D1−i0
INSER(i, Inserted(Γ, i0, k, x, y))

in order the find the best parameter (x,y,k) which

will integrate i0 in the route k. We don’t optimize

Mini∈D1−i0INSER(i, Inserted(Γ, i0, k, x, y)) because we

create instances especially with a set D too large for inserting

all the requests. So, the demand with the smallest value INSER

for a given parameters (x,y,k) could never be integrated into

the routes.

The two algorithms were applied to five sets of 5 randomly

generated instances. All the instances have their time con-

straints related to the interval [0;400] and all the load was

unit. We set by eF (o) and eF (d) the amplitude of the time

windows at the origin and the destination given by the users,

respectively. The other parameters are given in table II.

K eF (o) eF (d) ∆ CAP

10 35 10 ∞ 10

TABLE II
PARAMETERS’ INSTANCES

We generate 5 different sets of 5 instances with a variation

of the number of demands |D|. We set by TInsert and by

TInsert the demand inserted’s rate the first resolution and the

second technique, respectively. Finally GapInsert in the gap

in percentage between each rate. Its calculation is given by

GapInsert = 100.(TInsertRob
−TInsert)/TInsert . We launched

100 replications of each technique on the 5 sets. The results

are provided by the table III.

|D| 50 75 100 150 200

TInsert 100 93.2 78.9 64.2 52.6

TInsertRob
100 96.8 85.3 66.4 54.1

GapInsert 0 3.86 8.11 3.43 2.81

TABLE III
GAP BETWEEN THE INSERT RATES

In future experiments, we need to optimize the value

Perf = µ.
∑

i∈D1−i0
INSER(i, Inserted(Γ, i0,k, x, y)) −

Fig. 4. Variation of the Inserability values between each insertion

v(Inserted(Γ, i0,k, x, y)) to calculate each best insertion pa-

rameters. Here, we’re just taken in account the INSER values

in order to integrate the most requests possible. The results

show us that the larger of |D| defines if the system needs to

optimize the Inserability measurement. For |D| = 50, all the

requests are able to be inserted easily, so, the INSER values

doesn’t have any interest. When the set is composed of 100

demands, we obtained a GapInsert of 8,11% meaning there are

more than 8% more requests inserted by the second approach.

For this set of instance, we also tried to integrated a new

feature in our algorithm: we’ve added the ability to exclude a

request if the impact of one insertion involving a significant

drop of the general Inserability’s demands from D1 − i0.

Before that, we study the threshold which limits the variation

of Inserability.

We exclude a demand selected

i0 if
∑

i∈D1−i0
(INSER(i,Γ) −

INSER(i, Inserted(Γ, i0, k, x, y))) > ξ is true

with ξ a threshold. The calculation of the

threshold is a difficult problem. In the figure

VII-B, we report the
∑

i∈D1−i0
(INSER(i,Γ) −

INSER(i, Inserted(Γ, i0, k, x, y))) Variation with INSERav

and INSERap the values
∑

i∈D1−i0
INSER(i,Γ) and∑

i∈D1−i0
INSER(i, Inserted(Γ, i0, k, x, y)), respectively.

This figure shows us that the threshold ξ have to be dynamic

and calculate according to the average of INSER.

We used this type of dynamic threshold for the third set

of instances with 100 demands. We exclude an request if the

current ξ is exceeded, and only this feature is added in the

second approach. We obtained a gain of 1,3% in average (from

85,3% to 86,6%) meaning approximately one more demand is

able to be inserted.

VIII. CONCLUSION

The Dial-a-Ride Problem is one of the transport problems

with the highest number of hard constraints like time windows.

The insertion techniques are able to obtain a good solution in

a reasonable time. Its adaptability to a dynamic context is

easy but a lack of robustness could appear once the goal is to

integrate requests as much as possible.

We have introduced a way to measure the impact of each

insertion on the other demands not inserted. This Inserability

measurement could be used in order to exclude a demand, to

select a demand to insert and also to calculate the best insertion

parameters. This value, named INSER, leads to a large amount

of work opportunities. We have introduced a simple way to

make the model of the future demands, and how to adapt our

greedy insertion algorithm based on the constraint propagation

to the dynamic context. In future work, we will develop a

simulation which is necessary to show the efficiency of the

demands anticipation. The final goal will be to develop the

most robust algorithm possible in order to adapt it to a real

context.

ACKNOWLEDGMENT

This work was founded by the French National Research

Agency, the European Commission (Feder funds) and the

Region Auvergne in the Framework of the LabEx IMobS3.

REFERENCES

[1] S. Deleplanque, A. Quilliot, Insertion techniques and constraint propa-
gation for the DARP, 2012, Computer Science and Information Systems
(FedCSIS). IEEE Conference Publications, 393-400,

[2] K. Menger, Das botenproblem, 1932, Ergebnisse eines mathematis-
chenkolloquiums 2, 1112.

[3] J.F. Cordeau, G. Laporte, The dial-a-ride problem: models and algorithms,
2007, Annals of Operations Research,153(1):2946.

[4] J.-F. Cordeau, G. Laporte, A tabu search heuristic algorithm for the static
multi-vehicle dial-a-ride problem, 2003, Transportation Research B 37,
579594.

[5] H. Psaraftis, An exact algorithm for the single vehicle many-to-many
dial-a-ride problem with time windows, 1983, Transportation Science 17,
351357.

[6] R. Chevrier, P. Canalda, P. Chatonnay, D. Josselin, Comparison of three
algorithms for solving the convergent demand responsive transportation
problem, 2006,ITSC2006, 9th Int. IEEE Conf. on IntelligentTransporta-
tion Systems, Toronto, Canada, 10961101.

[7] S.N. Parragh, K.F. Doerner, R.F. Hartl, Variable neighborhood search
for the dial-a-ride problem, 2010, Computers & Operations Research,
37 p11291138.

[8] P. Healy, R. Moll, A new extension of local search applied to the dial-a-
ride problem, 1995, European Journal of Operational Research 83, 83104.

[9] H. Psaraftis, N. Wilson, J. Jaw, A. Odoni, A heuristic algorithm for the
multi-vehicle many-to-many advance request dial-a-ride problem, 1986,
Transportation Research B 20B, 243-257.

[10] O. Madsen, H. Ravn, J. Rygaard, A heuristic algorithm for the a dial-
a-ride problem with time windows, multiple capacities, and multiple
objectives, 1995,Annals of Operations Research 60, 193208.

