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STRONGLY n-SUPERCYCLIC OPERATORS

ERNST ROMUALD

Abstract. In this paper, we are interested in the properties of a new class of operators, recently
introduced by Shkarin, called strongly n-supercyclic operators. This notion is stronger than n-
supercyclicity. We prove that such operators have interesting spectral properties and we give
examples and counter-examples answering some questions asked by Shkarin.

1. Introduction

In what follows X will denote completely separable Baire vector spaces over the field K = R,C
and T will be a bounded linear operator on X. Since the last 1980’s, density properties of orbits
of operators have been of great interest for many mathematicians, particularly hypercyclic and
cyclic operators for their link with the invariant subspace problem. Another reason explaining
this interest is that they appear in many well-known classes of operators: weighted shifts,
composition operators, translation operators,...

Definition 1.1. A vector x ∈ X is said to be hypercyclic (resp. supercyclic) for T if its orbit
O(x, T ) := {Tnx, n ∈ Z+} (resp. projective orbit {λTnx, n ∈ Z+, λ ∈ K}) is dense in X. The
operator T is said to be hypercyclic (resp. supercyclic) if it admits at least one hypercyclic
(resp. supercyclic) vector.

One may remove linearity in this definition, then under the same assumptions, T is said to be
universal. The definition of supercyclicity was introduced in 1974 by Hilden and Wallen [11]. As
one can see, this notion does not deal with orbits of vectors any more but with orbits of lines. As
we said before, these properties have been intensively studied and the reader may refer to [3] and
[10] for a deep and complete survey. One of the main ingredient providing such operators is the
so called Supercyclicity Criterion given by H.N. Salas [13], which is only a sufficient condition
for supercyclicity.

Theorem Supercyclicity Criterion. Let X be a separable Banach space and T ∈ L(X). T
satisfies the Supercyclicity Criterion if there exist a strictly increasing sequence (nk)k∈Z+ , two
dense sets D1,D2 ⊂ X in X and a sequence of maps Snk

: D2 → X such that:

(a) ‖Tnkx‖‖Snk
y‖ → 0 for any x ∈ D1 and y ∈ D2;

(b) TnkSnk
y → y for any y ∈ D2.

If T satisfies the Supercyclicity Criterion, then T is supercyclic.

This result is at the very heart of the theory. Indeed, only very few operators have been
proved to be supercyclic without using this criterion. Recently, some authors tried to generalise
supercyclicity in a natural way. The first one is N. Feldman [9] at the beginning of the 2000’s.

Definition 1.2. An operator T is said to be n-supercyclic, n ≥ 1, if there is a subspace of
dimension n in X with dense orbit.

These operators have been studied in [2],[4] and [6] and [8] and many other articles. Feldman
gave various classes of n-supercyclic operators and in particular the following:

Example 1.3. [9] Let n ∈ N. If {∆k, 1 ≤ k ≤ n} is a collection of open disks, Sk = Mz on
L2
a(∆k) for any 1 ≤ k ≤ n and S = ⊕nk=1Sk, then S∗ is n-supercyclic.
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2 ERNST ROMUALD

Then, in 2004, Bourdon, Feldman and Shapiro [6] proved in the complex setting that n-
supercyclicity is a purely infinite dimensional phenomenon.

Theorem 1.4. Let n ≥ 2. There is no (n− 1)-supercyclic operator on Cn. In particular, there
is no k-supercyclic operator on Cn for any 1 ≤ k ≤ n− 1.

Recently, the present author [8] proved that things were different in the real setting. These
theorems recall the behaviour of supercyclic operators in finite dimensional vector spaces. Nev-
ertheless, even though most of the supercyclic theorems have a n-supercyclic counterpart, some
questions remain open. In particular, one may ask whether there exist a Birkhoff Theorem, a
n-supercyclicity Criterion or even if the Ansari Theorem remains true for n-supercyclic opera-
tors. These questions are “more difficult ” than the previous ones mainly because X being a
vector space, we are not considering a “natural space“ for working on orbits of n-dimensional
subspaces. In this spirit, in 2008, Shkarin [14] proposed the concept of strong n-supercyclicity
requiring a stronger condition as its name suggests. Let us first recall some well-known facts be-
fore coming to the definition of strong n-supercyclicity. If X has dimension greater than n ∈ N,
then one may define a topology on the n-th Grassmannian, denoted by Pn(X), which is the set
of all n-dimensional subspaces of X. To do so, set Xn the open set of all linearly independent
n-tuples x = (x1, . . . , xn) ∈ Xn and endow Xn with the topology induced by Xn. Then set
πn : Xn → Pn(X), πn(x) = Span(x1, . . . , xn) and define the topology on Pn(X) as being the
coarsest for which πn is continuous and open. Now, let us move to the awaited definition:

Definition 1.5. Let n ∈ N. An n-dimensional subspace of X is said to be strongly n-supercyclic
for T if for every k ∈ Z+, T k(L) has dimension n and if its orbit

O(L, T ) := {Tn(L), n ∈ Z+}
is dense in Pn(X). The set of all strongly n-supercyclic subspaces for T is denoted ESn(T ). The
bounded linear operator T is called strongly n-supercyclic if ESn(T ) 6= ∅.

Remark 1.6. In this definition and all along this paper, we make no difference between L as a
subspace of X and L as an element of Pn(X).

The main interest of this definition, compared to Feldman’s one, is that it reduces to the
universality of T on the space Pn(X). From this point of view, the definition of strongly n-
supercyclic operators seems quite natural. Moreover, with this observation Shkarin [14] proved
that strongly n-supercyclic operators do satisfy the Ansari property:

Theorem Ansari-Shkarin. Let k, n ∈ N. Then ESn(T ) = ESn(T k). In particular, T is
strongly n-supercyclic if and only if T k is strongly n-supercyclic.

When he introduced the previous definition, Shkarin asked the question whether n-supercyclicity
is equivalent to strong n-supercyclicity. Indeed, a positive answer to this question solve the
Ansari property problem for n-supercyclic operators. In fact, the present author gave a negative
answer to this question in [8] and we will construct some more counterexamples in the present
paper. Since, [14] is very concise on strong n-supercyclicity, giving only the definition and the
Ansari property and [8] is only concerned with the finite dimensional setting, the aim of this
paper is to present a deeper study of strong n-supercyclicity.

2. Preliminaries and equivalent conditions to strong n-supercyclicity

A useful Theorem in linear dynamics is Birkhoff’s Transitivity Theorem because it permits to
consider the ”orbit of an open set” instead of the orbit of a point and is the key point to prove
the Hypercyclicity and Supercyclicity Criteria. This property is called topological transitivity.
Such a result would be a stable anchor for studying strongly n-supercyclic operators and this is
the purpose of this section. But first, we are going to expose general properties that we need in
the sequel and which allow one to express strong n-supercyclicity in a more concrete and handy



STRONGLY n-SUPERCYCLIC OPERATORS 3

way. The following property is easy to check and allows one to work on the space Xn instead of
the space Xn which is less structured.

Proposition 2.1. Xn is dense in Xn.

Remark 2.2. The following trivial fact is important in the sequel : let U be a non-empty open
set in Xn and L be an n-dimensional subspace of X, then (L× · · · × L) ∩ U 6= ∅ ⇔ L ∈ πn(U).

Thanks to the link betweenXn andXn, we are now able to characterise strong n-supercyclicity
by density properties in Xn rather than in Pn(X).

Proposition 2.3. The following are equivalent:

(i) T is strongly n-supercyclic;
(ii) There exists a subspace L of X with dimension n such that for every i ∈ Z+, T i(L) is

n-dimensional and:
B := ∪∞i=1π

−1
n (T i(L)) is dense in Xn;

(iii) There exists a subspace L of X with dimension n such that for every i ∈ Z+, T i(L) is
n-dimensional and:
E := ∪∞i=1(T i(L)× · · · × T i(L)) is dense in Xn.

Proof. We first prove that (i)⇔ (ii) and then (ii)⇔ (iii)
(i)⇒ (ii) :
Let x = (x1, . . . , xn) ∈ Xn, M := πn(x) ∈ Pn(X) and V be a non-empty open neighbourhood

of x in Xn. Since πn is open, then W := πn(V ) is an open neighbourhood of M in Pn(X).
Moreover, strong n-supercyclicity of T implies that there exists an n-dimensional subspace L of
X such that: {Tn(L)}n∈N is dense in Pn(X), thus there exists k ∈ N such that: T k(L) ∈ W .
Hence, there exists y ∈ V such that πn(y) = T k(L) and then y ∈ π−1

n (T k(L)) ⊂ B. This proves
the density of B in Xn and thus in Xn.

(i)⇐ (ii) :
Assume that B is dense in Xn, the fact that B ⊂ Xn yields that B is dense in Xn. Since πn

is continuous and onto, πn(B) is dense in Pn(X). Moreover:

πn(B) = πn(∪∞i=1π
−1
n (T i(L))) = ∪∞i=1πn(π−1

n (T i(L))) = ∪∞i=1T
i(L)

Thus, we proved that ∪∞i=1T
i(L) is dense in Pn(X) and T is strongly n-supercyclic.

(ii)⇒ (iii) :
By definition of πn, for any k ∈ N, π−1

n (T k(L)) ⊂ T k(L)× · · · × T k(L) ⊂ Xn, thus B ⊂ E and
then E is dense in Xn.

(ii)⇐ (iii) :
Let U be a non-empty open set of Xn. Since Xn is an open and dense subset of Xn, then

the set Xn ∩ U is also non-empty and open in Xn and since E is dense in Xn, there exists
x ∈ E ∩ Xn ∩ U = Xn ∩ (∪∞i=1T

i(L) × · · · × T i(L)) ∩ U . Hence there is k ∈ N such that
x ∈ Xn ∩ (T k(L)× · · · × T k(L)) ∩ U , so πn(x) = T k(L) and then x ∈ B ∩ U . �

Remark 2.4. In particular, (iii) above allows us to notice that if T = T1 ⊕ · · · ⊕ Tn on X =
E1 ⊕ · · · ⊕En is strongly k-supercyclic, then for any i ∈ {1, . . . , n}, Ti is strongly ki-supercyclic
where ki = min(dim(Ei), k).

The last proposition makes possible to characterise the strongly n-supercyclic subspaces for
an operator and shows that ESn(T ) is either empty or a Gδ subset of Pn(X). Let us denote by
(Vj)j∈Z+ an open basis of X.

Proposition 2.5. ESn(T ) = ∩(j1,...,jn)∈Nn ∪i∈N πn((T ⊕ · · · ⊕ T )−i(Vj1 × · · · × Vjn) ∩Xn)

Proof. Let L ∈ ESn(T ), according to Proposition 2.3, this means that ∪∞i=1T
i(L)× · · · × T i(L)

is dense in Xn. Then using the open basis this is equivalent to saying that:

∀(j1, · · · , jn) ∈ Nn, ∃i ∈ N : (T i(L)× · · · × T i(L)) ∩ (Vj1 × · · · × Vjn) 6= ∅.
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Thus, Xn being a dense open set of Xn, this can be re-written:

∀(j1, · · · , jn) ∈ Nn,∃i ∈ N : Xn ∩ (L× · · · × L) ∩ (⊕nk=1T )−i(Vj1 × · · · × Vjn) 6= ∅.
Finally, applying πn to the previous line gives the relation we expect:

L ∈ ∩(j1,...,jn)∈Nn ∪i∈N πn((T ⊕ · · · ⊕ T )−i(Vj1 × · · · × Vjn) ∩Xn).

�

At that point, it is possible to give a similar result as Birkhoff’s Transitivity Theorem for the
strong n-supercyclicity setting:

Proposition 2.6. The following are equivalent:

(i) T is strongly n-supercyclic;
(ii) ∀U ⊂ Pn(X), ∀V ⊂ Xn open and non-empty, ∃i ∈ N : (⊕nk=1T )i(π−1

n (U)) ∩ V 6= ∅.
In particular, if T is strongly n-supercyclic, then ESn(T ) is a Gδ dense subset of Pn(X).

Proof. Let L ∈ ESn(T ). Since X does not have any isolated point, Pn(X) does not have any
either and then O(L, T ) ⊂ ESn(T ). Thus, ESn(T ) is either empty or dense and is also a Gδ

with Proposition 2.5. In particular, T is strongly n-supercyclic if and only if ESn(T ) is dense in
Pn(X), and using the characterisation of ESn(T ) from Proposition 2.5, this means that for all
non-empty open set U ∈ Pn(X) and any (j1, . . . , jn) ∈ Nn, there exists i ∈ N such that

πn((T ⊕ · · · ⊕ T )−i(Vj1 × · · · × Vjn) ∩Xn) ∩ U 6= ∅
where (Vj)j∈Z+ is an open basis of X.

Thanks to the relation π−1
n (U) ∩Xn = π−1

n (U), this can be re-written: for all non-empty open
set U ∈ Pn(X), for any (j1, . . . , jn) ∈ Nn, there exists i ∈ N such that

(T ⊕ · · · ⊕ T )−i(Vj1 × · · · × Vjn) ∩ π−1
n (U) 6= ∅

and the proposition is proved. �

Thanks to these results, we are now able to prove the existence of strongly n-supercyclic
operators. This is a first class of examples:

Corollary 2.7. Suppose that T satisfies the Supercyclicity Criterion, then T is strongly n-
supercyclic for every n ∈ N.

Proof. We are going to check the equivalent condition given by Proposition 2.6. Bès and Peris
have shown in [5] that T satisfies the Supercyclicity Criterion if and only if (⊕nk=1T ) is supercyclic
on Xn for any n ∈ N. Let n ∈ N, by the supercyclic version of Birkhoff Theorem, for any non-
empty open sets V,W in Xn, there exists i ∈ Z+ and λ ∈ K∗ so that (⊕ni=1T

i)(λW ) ∩ V 6= ∅.
Let U be a non-empty open set in Pn(X) and V be a non-empty open set in Xn. Then, π−1

n (U)
is non-empty and open in Xn by definition of πn and for any λ ∈ K∗, λπ−1

n (U) = π−1
n (U). Set

W := π−1
n (U) and use the supercyclic Birkhoff Theorem with sets V and W , then there exists

i ∈ Z+ such that (⊕ni=1T
i)(π−1

n (U)) ∩ V 6= ∅. This proves that T is strongly n-supercyclic. �

Actually, one may deduce the following corollary. It is straightforward with the above corollary
but we state it to justify the following remark.

Corollary 2.8. Let 1 ≤ n < ∞ and X1, . . . , Xn be Banach spaces and for any i ∈ {1, . . . , n},
Ti ∈ L(Xi). Assume that the Ti satisfy the Hypercyclicity Criterion with respect to the same
sequence {nk}k∈N. Then (⊕ni=1Ti) is strongly n-supercyclic on X = ⊕ni=1Xi.

Remark 2.9. One could be interested in trying to replace the Hypercyclicity Criterion above
with the Supercyclicity Criterion. Feldman already proved that such operators are n-supercyclic
[9]. We will see later in Theorem 3.3 that Feldman’s Theorem does not always provide strongly
n-supercyclic operators because their spectral properties are different. In particular, this con-
tradicts the affirmation in [14] that the operators constructed by Feldman in Example 1.3 are
strongly n-supercyclic.
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Remark 2.10. As people did it for hypercyclicity, we can deduce from Proposition 2.6 a strong
n-supercyclicity Criterion. Unfortunately, this criterion is equivalent to the Hypercyclicity Cri-
terion.

3. Some spectral properties

It is a well-known fact for hypercyclic and supercyclic operators that the point spectrum of
their adjoint is very small, in fact it counts at most one element for supercyclic operators and
none for hypercyclic ones. Bourdon, Feldman and Shapiro proved that this was also the case for
n-supercyclic operators, and therefore for strongly n-supercyclic operators, giving the following
theorem:

Theorem Bourdon, Feldman, Shapiro. [6] Suppose that T : X → X is a continuous linear
operator and n is a positive integer. If T ∗ has n + 1 linearly independent eigenvectors, then T
is not n-supercyclic.

One can ask whether this result can be improved for strongly n-supercyclic operators. The
following theorem shows that it is not the case. Moreover, it points out that we can choose the
eigenvalues of their adjoint.

Theorem 3.1. Let X be a complex Banach space. Let λ1, . . . , λp ∈ C∗, m1, . . . ,mp ∈ N and T
be a bounded linear operator on X and define n =

∑p
i=1mi. Then the following assertions are

equivalent:

(i) S := ⊕m1
i=1λ1Id⊕ · · · ⊕

mp

i=1 λpId⊕ T is strongly n-supercyclic on Cn ⊕X;

(ii) ⊕m1
i=1

T
λ1
⊕ · · · ⊕mp

i=1
T
λp

is hypercyclic.

Moreover, in that case, σp(S
∗) = {λ1, . . . , λp} and for any i ∈ {1, . . . , p}, λi has multiplicity mi.

Proof. For the sake of convenience we denote by λ1, . . . , λn the complex values we want to
realise as eigenvalues of S∗ counted with multiplicity and let R = T

λ1
⊕ · · · ⊕ T

λn
be hypercyclic

by hypothesis. Assume that the equivalence is already proved, then the definition of S implies
that σp(S

∗) = {λ1, . . . , λn} because σp(T
∗) = ∅.

According to the Theorem of Bourdon, Feldman and Shapiro stated above, S is not strongly
k-supercyclic for every k < n.
BWe begin with (ii)⇒(i):

Assume thatR is hypercyclic and that (y1, . . . , yn) ∈ Xn is hypercyclic forR, let {(ei,1, . . . , ei,n)}1≤i≤n
be the canonical basis of Cn and set M = Span{(ei,1, . . . , ei,n, yi)}1≤i≤n. We are going to show

that M is strongly n-supercyclic for S i.e. ∪k∈Z+ S
k(M)× · · · × Sk(M)︸ ︷︷ ︸

n times

is dense in (Cn ⊕X)n.

This reduces to prove:⋃
k∈Z+

µi,j∈C

{
n∑
i=1

µ1,i(⊕nj=1λ
k
j ei,j ⊕ T kyi)⊕ · · · ⊕

n∑
i=1

µn,i(⊕nj=1λ
k
j ei,j ⊕ T kyi)

}

is dense in (Cn ⊕X)n .
For this purpose, let z = (zi,j)1≤i≤n,1≤j≤n+1 ∈ (Cn ⊕ X)n and ε > 0. We have to find k and
(µi,j)i,j in order to approach z from a distance at most ε.
Remark that if one defines µi,j =

zi,j
λkj

we have:

n∑
i=1

µ1,i(⊕nj=1λ
k
j ei,j)⊕ · · · ⊕

n∑
i=1

µn,i(⊕nj=1λ
k
j ei,j) = (z1,1, . . . , z1,n, . . . , zn,1, . . . , zn,n).

This leads to two cases. Either det((zi,j)1≤i,j≤n) 6= 0 and we set xi,j = zi,j for every 1 ≤ i, j ≤ n.
Or det((zi,j)1≤i,j≤n) = 0 and since GLn(C) is dense in Mn(C) and {(ei,1, . . . , ei,n)}1≤i≤n is a
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basis of Cn, there exists A := (xi,j)1≤i,j≤n ∈ GLn(C) such that:∥∥∥∥∥ n∑
i=1

xi,j

λkj
(⊕nj=1λ

k
j ei,j)⊕ · · · ⊕

n∑
i=1

xi,j

λkj
(⊕nj=1λ

k
j ei,j)− (z1,1, . . . , z1,n, . . . , zn,1, . . . , zn,n)

∥∥∥∥∥ < ε

2
.

In both cases, we set µi,j =
xi,j
λkj

, we apply A−1 and we need to find k ∈ Z+ so that:∥∥∥∥∥∥∥∥∥

á Ä
T
λ1

äk
y1

...Ä
T
λn

äk
yn

ë
−A−1

Ö
z1,n+1

...
zn,n+1

è∥∥∥∥∥∥∥∥∥ < ε

2‖A‖
.

But such a k ∈ Z+ exists because (y1, . . . , yn) is hypercyclic for R. Since we found k ∈ Z+ and
(µi,j)i,j such that:∥∥∥∥∥ n∑

i=1

µ1,i(⊕nj=1λ
k
j ei,j ⊕ T kyi)⊕ · · · ⊕

n∑
i=1

µn,i(⊕nj=1λ
k
j ei,j ⊕ T kyi)− (zi,j)1≤i,j≤n

∥∥∥∥∥ < ε

2
+
ε

2
= ε,

then S is strongly n-supercyclic.
B(i)⇒(ii):

Assume that S is strongly n-supercyclic and let M be a strongly n-supercyclic subspace for S
and denote by M0 its projection on Cn. Then, M0 is strongly dim(M0)-supercyclic for S|Cn and
Cn being of dimension n, the main result of Bourdon, Feldman and Shapiro ([6]) implies that
dim(M0) = n, i.e. M0 = Cn. Thus, it is possible to choose a basis of M like the following:

M = Span




1
0
...
0
x1

 ,


0
1
...
0
x2

 , · · · ,


0
0
...
1
xn



 .
Let us prove that R is hypercyclic.
Let (z1, · · · , zn) ∈ Xn. Since S is strongly n-supercyclic, there exists a strictly increasing

sequence (nk)k∈Z+ and complex numbers (µ
(nk)
i,j )1≤i,j≤n such that for every i ∈ {1, . . . , n}:

µ
(nk)
i,i λnk

i −→
k→+∞

1,

µ
(nk)
i,j λnk

j −→
k→+∞

0 for any j 6= i,

z
(nk)
i :=

∑n
j=1 µ

(nk)
i,j Tnkxj −→

k→+∞
zi.

Take also,

A(nk) =

Ü
µ

(nk)
1,1 λnk

1 · · · µ
(nk)
n,1 λ

nk
n

...
. . .

...

µ
(nk)
1,n λ

nk
1 · · · µ

(nk)
n,n λnk

n

ê
.

Obviously, with the preceding convergences, A(nk) −→
k→+∞

Id, so we may suppose that A(nk) is

invertible and thus
Ä
A(nk)

ä−1 −→
k→+∞

Id too.

Then, remark that the previous system is equivalent to the following:á
Tnkx1
λ
nk
1
...

Tnkxn
λ
nk
n

ë
=
Ä
A(nk)

ä−1

Ü
z

(nk)
1
...

z
(nk)
n

ê
−→
k→+∞

Ö
z1
...
zn

è
.

This proves the hypercyclicity of R. �
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Feldman showed in [9] that there exists operators that are n-supercyclic but not (n − 1)-
supercyclic. The last result allows us to give an example of a strongly n-supercyclic operator
which is not strongly k-supercyclic, for every k < n.

Example 3.2. LetB be the classical backward shift on `2(Z+) being defined byB(a0, a1, a2, . . .) =
(a1, a2, . . .) and let also λ1, . . . , λn ∈ D. Then, the operator defined on Cn ⊕ `2(Z+) by T =
λ1Id⊕ · · · ⊕ λnId⊕B is strongly n-supercyclic but not strongly k-supercyclic for every k < n.
Indeed, a classical result says that B

λ satisfies the Hypercyclicity Criterion for the whole se-

quence of integers if and only if |λ| < 1. Thus, B
λ1
⊕ · · · ⊕ B

λn
satisfies also the Hypercyclicity

Criterion and T is strongly n-supercyclic by Theorem 3.1. Nevertheless, the fact that T is not
k-supercyclic for k < n is clear because if it was, then the restriction of T to Cn would also be
k-supercyclic but this contradicts Theorem 1.4 [6].

Since strongly n-supercyclic operators are in particular n-supercyclic, they inherit their spec-
tral properties, hence the Circle Theorem applies to these ones. Therefore, for every strongly
n-supercyclic operator, there exists a set of at most n circles intersecting every component of the
spectrum of T . This was obtained by Feldman [9] for n-supercyclic operators and he provided
also examples for which n circles were necessary. In the case of strongly n-supercyclic operators,
we are able to improve the Circle Theorem:

Theorem 3.3. Assume that X is a complex Banach space and T is a strongly n-supercyclic
operator on X.
Then we can decompose X = F ⊕ X0, where F and X0 are T -invariant, F has dimension at
most n and there exists R ≥ 0 such that the circle {z ∈ C : |z| = R} intersects every component
from the spectrum of T0 := T|X0

.
Moreover, in the particular case n = 2, T|F is a diagonal operator.

Proof. The theorem is trivial if there already exists a circle intersecting all the components from
the spectrum of T .

If such a circle does not exist, then there exist R ≥ 0 and two components C1, C2 from σ(T )

such that C1 ⊂ B(0, R) and C2 ⊂ C \ B(0, R). Upon considering a scalar multiple of T , one
may suppose that R = 1. Thus σ(T ) = σ1 ∪ σ2 ∪ σ3 where σ1 ⊂ D, σ2 ⊂ C \D and σ1, σ2, σ3 are
closed and pairwise disjoint. Then, thanks to Riesz Theorem [3] one can write T = T1⊕T2⊕T3

on X = X1 ⊕X2 ⊕X3 where σ(Ti) = σi for i = 1, 2, 3.
We are first going to prove that dim(X1) ≤ n− 1. Assume to the contrary that dim(X1) ≥ n.
Then, one can choose (u1, . . . , un) ∈ Xn

1 such that for every i ∈ {1, . . . , n}, ‖z − ui‖ > 1 for any
z ∈ Span(u1, . . . , ui−1, ui+1, . . . , un).

Let L = Span

ÑÑ
x1
y1
z1

é
, · · · ,

Ñ
xn
yn
zn

éé
be a strongly n-supercyclic subspace for T , (nk)k∈Z+

be a strictly increasing sequence and Ak ∈Mn(C) such that:

Ak

Ö
Tnk

1 x1
...

Tnk
1 xn

è
−→
k→+∞

Ö
u1
...
un

è
and Ak

Ö
Tnk

2 y1
...

Tnk
2 yn

è
−→
k→+∞

Ö
0
...
0

è
.

In addition, by density of GLn(C) in Mn(C), one can assume that Ak is invertible for every
k ∈ Z+. This yields:Ö

Tnk
1 x1

...
Tnk

1 xn

è
= A−1

k

Ö
u1,k

...
un,k

è
:= A−1

k

Ö
u1 + ε1,k

...
un + εn,k

è
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where for every i ∈ {1, . . . , n}, ‖εi,k‖ −→
k→+∞

0.

Set A−1
k =

Ü
ak1,1 · · · ak1,n

...
. . .

...
akn,1 · · · akn,n

ê
. Since Ak

Ö
Tnk

2 y1
...

Tnk
2 yn

è
−→
k→+∞

Ö
0
...
0

è
and σ(T2) ⊂ C \

D, it follows that ‖A−1
k ‖ −→

k→+∞
+∞ hence max(|aki,j |)1≤i,j≤n −→

k→+∞
+∞ and thus for any

m ∈ {1, . . . , n}, T
nk
1 xm

max(|aki,j |)1≤i,j≤n
−→
k→+∞

0. Let k ∈ Z+ be such that for any m ∈ {1, . . . , n},
‖Tnk

1 xm‖
max(|aki,j |)1≤i,j≤n

< 1
2 and ‖εm,k‖ < 1

2 and set |akp,q| := max(|aki,j |)1≤i,j≤n. Then, we have

Tnk
1 xp =

∑n
i=1 a

k
p,iui,k, yielding∥∥∥∥∥∥uq,k +

n∑
i=1, i 6=q

akp,i
akp,q

uki

∥∥∥∥∥∥ =

∥∥∥∥∥Tnk
1 xp
akp,q

∥∥∥∥∥ < 1

2
.

This result contradicts our first assumption that for every i ∈ {1, . . . , n}, ‖z − ui‖ > 1 for any
z ∈ Span(u1, . . . , ui−1, ui+1, . . . , un). Hence dim(X1) ≤ n− 1 and if n = 2, we get dim(X1) = 1.
We can do the same process with T2⊕T3 which is strongly n-supercyclic thus either there exists
a circle intersecting every component of the spectrum of T2 ⊕ T3 and the proof is finished, or
we can decompose T2 ⊕ T3 as a direct sum of two operators where the first one is defined on a
space of dimension lower than n − 1. Then, as there is an at most n-dimensional subspace in
this decomposition because there is no strongly n-supercyclic operators on a space of dimension
strictly greater than n according to Theorem 1.4. Thus, we can iterate this process only a finite
number of times. This proves the first part of the theorem. The particular case n = 2 part, is
clear from the proof.

�

In particular, considering n = 2 in the preceding theorem gives an alternative generalising
the case of supercyclic operators. Indeed, for a supercyclic operator it is well-known that the
point spectrum is either empty or a singleton {λ} and in the last case, λ−1T is hypercyclic on
an hyperplane of X. The following corollary gives a similar result for strongly 2-supercyclic
operators.

Corollary 3.4. Assume that X is a complex Banach space and T is a strongly 2-supercyclic
operator on X. Then, one of the following properties applies:
• There exists R ≥ 0 such that the circle {z ∈ C : |z| = R} intersects every component from

the spectrum of T ,

• T =

Ç
a 0
0 S

å
with S being a supercyclic operator, a ∈ C∗

• T =

Ñ
a 0 0
0 b 0
0 0 S

é
with S

a ⊕
S
b hypercyclic, a, b ∈ C∗.

Proof. According to Theorem 3.3 we have the following alternative: either there exists a circle
intersecting every component of the spectrum of T or we can decompose X = F ⊕X0 with F
and X0, F being of dimension at most 2 and S := T|F being diagonal and there exists a circle
intersecting every component of the spectrum of T0 := T|X0

.

• If dim(F ) = 1 then T =

Ç
a 0
0 S

å
for some a ∈ C∗.

We can suppose that L is a strongly 2-supercyclic subspace and that L = Span

ÇÇ
1
x

å
,

Ç
0
y

åå
.

Let z ∈ X0. Since T is strongly 2-supercyclic, there exists an increasing sequence (nk)k∈Z+ and
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Ak :=

Ç
λnk

1 λnk
2

µnk
1 µnk

2

å
∈ GL2(C) such that

Ak

Ç
Snkx
Snky

å
=

Ç
0 + εnk

1

z + εnk
2

å
where εnk

1 −→
k→+∞

0 and εnk
2 −→

k→+∞
0

and

Ak

Ç
ak

0

å
=

Ç
1 + δnk

1

0 + δnk
2

å
where δnk

1 −→
k→+∞

0 and δnk
2 −→

k→+∞
0.

Thus, considering the inverse of Ak we get: Snky =
−µnk

1 ε
nk
1 +λ

nk
1 (z+ε

nk
2 )

λ
nk
1 µ

nk
2 −λ

nk
2 µ

nk
1

. Multiply the last

equality by ak to obtain:

ak(λnk
1 µnk

2 − λ
nk
2 µnk

1 )Snky = −akµnk
1 εnk

1 + akλnk
1 (z + εnk

2 )

= −δnk
2 εnk

1 + (1 + δnk
1 )(z + εnk

2 ) −→
k→+∞

z.

Hence S is supercyclic on X0.

• If dim(F ) = 2 then T =

Ñ
a 0 0
0 b 0
0 0 S

é
, for some a, b ∈ C∗.

It suffices to apply Theorem 3.1 to conclude that S
a ⊕

S
b is hypercyclic. �

Remark 3.5. Actually, these three conditions are necessary, and we give an example for each
one.

The first point is easy, simply consider an operator satisfying the Supercyclicity Criterion:
the circle exists because the operator is supercyclic and it is strongly 2-supercyclic thanks to
Corollary 2.7.

The second one is trickier: let φ ∈ H∞(D) be defined by φ(z) = 1+ ı+z, and let us denote by
Mφ the multiplication operator associated to φ on H2(D). Set also Rn :=

∑n−1
i=1 (M∗φ)i. Then,

one may prove following Exercise 1.9 in [3] that there exists a universal vector for Rn: u ∈ H2(D)

and u /∈ Im(M∗φ − I) and that

Ç
1 0
u M∗φ

å
is supercyclic and is not similar to an operator of

the form I ⊕ S. Noticing also that {Rn ⊕ (M∗φ)n}n≥2 satisfies the Universality Criterion, then

one can prove that T :=

Ñ
a 0 0
0 1 0
0 u M∗φ

é
is strongly 2-supercyclic on C2 ⊕ H2(D) and is not

similar to any operator of the shape bI ⊕ cI ⊕ T0 and does not even admit a circle intersecting
every component of its spectrum for a well-chosen complex number a.

Finally, the third case is simple: T =

Ö
−1 0 0
0 −1

2 0
0 0 M∗φ

è
is strongly 2-supercyclic on C2 ⊕

H2(D) with φ(z) = 1 + z by Theorem 3.1 but its spectrum is σ(T ) =
¶
−1,−1

2

©
∪D(1, 1).

4. Other classes of interesting examples

Until now, we proved several properties of strongly n-supercyclic operators and we came across
different classes of examples but links between strong (n−1), n, (n+1)-supercyclic operators are
not well understood yet. This part provides some answers but also some interesting questions
on the subject.

4.1. A class of strongly k-supercyclic operators with k ≥ n. The following example
generalises Corollary 2.7. It has been proved in [6] and [8] that strong n-supercyclicity is purely
infinite dimensional. We are going to make use of this fact to construct an operator being
strongly k-supercyclic if and only if k ≥ n.



10 ERNST ROMUALD

Example 4.1. Assume that S satisfies the Hypercyclicity Criterion on a Banach space Y and
define T = Id⊕ S on X = Kn ⊕ Y . Then T is strongly k-supercyclic if and only if k ≥ n.

Proof.

• We first prove that if T is strongly k-supercyclic, then k ≥ n. Assume to the contrary that
k < n, then restricting T to Kn, one obtains that Id is strongly k-supercyclic on Kn with k < n.
This is impossible by [6] for the complex case and [8] for the real case.
• Let us prove now that for every p ≥ n, T is strongly p-supercyclic.
The following lemma is the key of the proof.

Lemma 4.2. Let p ≥ 1. Then, there exists (y1, . . . , yp) ∈ Y p such that for any A = (λi,j)1≤i,j≤p ∈
GLp(K), the set:{

Sk
( p∑
i=1

λ1,iyi

)
⊕ · · · ⊕ Sk

( p∑
i=1

λp,iyi

)}
k∈Z+

is dense in Y p.

Proof. Since S satisfies the Hypercyclicity Criterion, then L := S ⊕ · · · ⊕ S︸ ︷︷ ︸
p times

is hypercyclic too

[5]. Let (y1, . . . , yp) ∈ Y p is a hypercyclic vector for L. Since (y1, . . . , yp) ∈ Y p is hypercyclic for

L. Then (Sk(y1), . . . , Sk(yp))k≥0 is dense in Y p. Since A is invertible, some simple computations
imply the result of the lemma. �

We come back to the proof of the example.
Let p ≥ n and {e1, . . . , ep} be a generating family of Kn with p elements and (y1, . . . , yp) given
by the previous lemma and denote xi = (ei, yi) ∈ X, for every i ∈ {1, . . . , p}.
It is easy to show that M := Span(x1, . . . , xp) is strongly p-supercyclic for T . Actually, it suffices

to prove that ∪k∈Z+ T
k(M)× · · · × T k(M)︸ ︷︷ ︸

p times

is dense in Xp thanks to Proposition 2.3.

The use of the definition of M reduces the proof to the following assertion:

∪k∈Z+,(λi,j)1≤i,j≤p∈Mp(K)

p∑
i=1

λ1,i(ei ⊕ Skyi)⊕ · · · ⊕
p∑
i=1

λp,i(ei ⊕ Skyi) is dense in Xp.

For this purpose, let ε > 0, (t1, . . . , tp) ∈ (Kn)p and (z1, . . . , zp) ∈ Y p. Since GLp(K) is dense in
Mp(K), there exists A = (λi,j)1≤i,j≤p ∈ GLp(K) so that:∥∥∥∥∥∥∥A

Ö
e1
...
ep

è
−

Ö
t1
...
tp

è∥∥∥∥∥∥∥ < ε

2
.

On the other hand, Lemma 4.2 implies that there is k ∈ Z+ satisfying:∥∥∥∥∥Sk
( p∑
i=1

λ1,iyi

)
⊕ · · · ⊕ Sk

( p∑
i=1

λp,iyi

)
− (z1, . . . , zp)

∥∥∥∥∥ ≤ ε

2
.

Hence, ∥∥∥∥∥
p∑
i=1

λ1,i

Ä
ei ⊕ Skyi

ä
⊕ · · · ⊕

p∑
i=1

λp,i
Ä
ei ⊕ Skyi

ä
−⊕pi=1 (ti ⊕ zi)

∥∥∥∥∥ < ε

This is the relation we were looking for. Thus, T is strongly p-supercyclic. �

Remark 4.3. In the same spirit, one may easily prove that strongly n-supercyclic operators
given by Theorem 3.1 are not strongly k-supercyclic for k < n.
Building on the same ideas as in the previous example but using properties of rotations, one
may easily construct an operator being n-supercyclic from a particular rank and being strongly
n-supercyclic from a strictly greater rank.
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4.2. A supercyclic operator which is not strongly n-supercyclic for a fixed n ≥ 2. We
already noticed in the previous part that strong n-supercyclicity does not imply strong (n− 1)-
supercyclicity. It is a natural question to ask whether the contrary is true or not: does strong
n-supercyclicity imply strong (n + 1)-supercyclicity? In the following, we prove that it is not
the case for n = 1. To do so, we will construct a supercyclic operator which is not strongly
p-supercyclic for p ≥ 2. Operators satisfying the Supercyclicity Criterion are useless in this
context because we noticed in Corollary 2.7 that these operators are strongly n-supercyclic for
any n ≥ 1. Thus, we are forced to consider operators that are less handy. Actually, we are
modifying the construction of a hypercyclic operator which is not weakly mixing from Bayart
and Matheron [3] to achieve it.

Theorem 4.4. Assume that X is a Banach space with an unconditional normalised basis
(ei)i∈Z+ for which the associated forward shift (ei)i∈Z+ is continuous and let p ≥ 2. Then, there
exists a supercyclic operator which is not strongly h-supercyclic for any 2 ≤ h ≤ p.

The proof of this theorem is long and is based on the work of Bayart and Matheron [3, section
4.2]. The proof is a succession of intermediate results leading to the final proof. The main idea
is to construct an operator and to create a criterion to check that this operator is not strongly
h-supercyclic. We may refer the reader to the book [3] for certain proofs.
Let us define some material we need in the sequel.

Assume that T is a linear bounded operator on a topological vector space X and let e0 ∈ X,
then we set:

K[T ](e0) = {P (T )(e0), P ∈ K[X]}
= Span{T i(e0), i ∈ Z+}.

Since two polynomials with variable T always commute, we can also define a product on K[T ](e0)
by:

P (T )e0 ·Q(T )e0 = PQ(T )e0.

We first give a technical lemma proving the convergence of a sequence of unit spheres if there is
a sequence of basis converging to another basis.

Lemma 4.5. Assume that X is a normed vector space, h ≥ 2, and that E = Span(u1, . . . , uh) is
a subspace of dimension h. For every 1 ≤ i ≤ h, let (vni )n∈Z+ be a sequence of elements of X such

that ‖vni − ui‖ ≤ 1
n and set Fn = Span(vn1 , . . . , v

n
h). Then, sup

z∈Fn,‖z‖=1
inf

x∈E,‖x‖=1
‖x− z‖ −→

n→+∞
0.

Proof. Let n ≥ N , and Tn : X → X be defined by Tn(x) =
∑h
i=1 u

∗
i (x)(ui − vni ) for every

1 ≤ i ≤ h. Remark that:

‖Tn‖ = sup
‖x‖=1

∥∥∥∥∥∥
h∑
i=1

u∗i (x)(ui − vni )

∥∥∥∥∥∥ ≤
h∑
i=1

‖u∗i ‖‖ui − vni ‖ ≤
Mh

n
≤ 1

2
.

Thus, it follows that the operator Sn := I − Tn : X → X satisfies Sn(ui) = vni for any 1 ≤ i ≤ h
and is invertible with S−1

n =
∑+∞
i=0 T

i
n. Moreover, we deduce the following upper bound for S−1

n :

‖S−1
n ‖ =

∥∥∥∥∥+∞∑
i=0

T in

∥∥∥∥∥ ≤ +∞∑
i=0

‖Tn‖i ≤
+∞∑
i=0

1

2i
= 2.

Set zn = an1v
n
1 + . . .+anhv

n
h ∈ Fn with ‖zn‖ = 1. Then, we notice that ‖S−1

n (zn)‖ = ‖an1u1 + . . .+
anhuh‖ ≤ 2. Thus, u1, . . . , uh being a linearly independent family, we deduce that the sequences
of coefficients (ani )n∈N are bounded and upon passing to a subsequence, we can suppose that zn
converges to some vector on the unit sphere of E. This proves the lemma. �

To provide an operator as claimed in Theorem 4.4, we need to be able to check the non-strong
h-supercyclicity for the operator T we are going to construct. The following lemma gives such
a criterion.
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Lemma 4.6. Assume that X is a topological vector space and T ∈ L(X) is cyclic with cyclic
vector e0 and set h ≥ 2. Assume that there exist 2h linear forms Φδ : K[T ](e0) → K for
0 ≤ δ ≤ 2h − 1, such that the maps (P (T )e0, Q(T )e0) 7→ Φδ((PQ)(T )e0) are continuous on
K[T ](e0)×K[T ](e0) and satisfying for every 0 ≤ δ ≤ 2h− 1

Φδ(T
δe0) = 1 and Φδ(T

ie0) = 0 for 0 ≤ i 6= δ ≤ 2h− 1.

Then, T is not strongly h-supercyclic.

Remark 4.7. In particular, T does not satisfy the Supercyclicity Criterion.

Proof. Assume that T is strongly h-supercyclic on X and n ∈ N. Set also

(1) E = Span(e0, . . . , T
h−1e0), and En ∈ πh

Å
B

Å
(e0, . . . , T

h−1e0);
1

n

ãã
∩ ESh(T ).

Thus, there exists mn ∈ N, xn, yn ∈ En linearly independent such that: Tmnxn ∈ B
Ä
e0; 1

2n

ä
and

Tmnyn ∈ B
Ä
T he0; 1

2n

ä
. Moreover, fix εn = min

(
1
n ,

1
2n‖Tmn‖ ,

‖xn‖
2n+1 ,

‖yn‖
2n+1

)
, then e0 being cyclic

for T , there exists Pn, Qn ∈ K[X] such that:

Pn(T )e0 ∈ B(xn; εn) and Qn(T )e0 ∈ B(yn; εn).

Thus,

Tmn(Pn(T )e0) ∈ B
Å
e0;

1

n

ã
and Tmn(Qn(T )e0) ∈ B

Å
T he0;

1

n

ã
.

Pick also an0e0 + . . .+ anh−1T
h−1e0 ∈ E such that:

‖an0e0 + . . .+ anh−1T
h−1e0‖ = 1

and∥∥∥an0e0 + . . .+ anh−1T
h−1e0 − Pn(T )e0

‖Pn(T )e0‖

∥∥∥ = inf
x∈E,‖x‖=1

∥∥∥x− Pn(T )e0
‖Pn(T )e0‖

∥∥∥ .
Then,

inf
x∈E,‖x‖=1

∥∥∥∥∥x− Pn(T )e0

‖Pn(T )e0‖

∥∥∥∥∥ −→n→+∞
0.

Let us prove this last point. First, we split the norm:

inf
x∈E,‖x‖=1

∥∥∥∥∥x− Pn(T )e0

‖Pn(T )e0‖

∥∥∥∥∥ ≤ inf
x∈E,‖x‖=1

∥∥∥∥∥x− xn
‖xn‖

∥∥∥∥∥+

∥∥∥∥∥ xn
‖xn‖

− Pn(T )e0

‖Pn(T )e0‖

∥∥∥∥∥
and it suffices to prove that each part tends to 0 when n grows. In fact, the first convergence to
0 is given by Lemma 4.5 (with ui = T i−1(e0) and (vn1 , . . . , v

n
h) =basis of En given by (1)) and

let us deal with the second part:∥∥∥∥∥ xn
‖xn‖

− Pn(T )e0

‖Pn(T )e0‖

∥∥∥∥∥ =

∥∥∥∥∥ xn
‖xn‖

− xn
‖Pn(T )e0‖

+
xn

‖Pn(T )e0‖
− Pn(T )e0

‖Pn(T )e0‖

∥∥∥∥∥
≤ ‖xn‖

∣∣∣∣∣ 1

‖xn‖
− 1

‖Pn(T )e0‖

∣∣∣∣∣+ ‖xn − Pn(T )e0‖
‖Pn(T )e0‖

≤ εn
‖xn‖ − εn

+
εn

‖xn‖ − εn
≤ 1

n
by definition of εn.

Thus we have the expected convergence.
Doing the same thing, we also pick bn0e0 + . . .+ bnh−1T

h−1e0 ∈ E such that:

‖bn0e0 + . . .+ bnh−1T
h−1e0‖ = 1

and ∥∥∥∥∥bn0e0 + . . .+ bnh−1T
h−1e0 −

Qn(T )e0

‖Qn(T )e0‖

∥∥∥∥∥ = inf
x∈E,‖x‖=1

∥∥∥∥∥x− Qn(T )e0

‖Qn(T )e0‖

∥∥∥∥∥ −→n→+∞
0.
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Moreover, extracting an appropriate strictly increasing subsequence (sk)k∈N from the sequence
of natural numbers, we get:

ask0 e0 + . . .+ askh−1T
h−1e0 −→

k→+∞
a0e0 + . . .+ ah−1T

h−1e0

and also

bsk0 e0 + . . .+ bskh−1T
h−1e0 −→

k→+∞
b0e0 + . . .+ bh−1T

h−1e0

where (a0, . . . , ah−1), (b0, . . . , bh−1) ∈ Kh \ {0}.
It follows that: ∥∥∥∥∥ Psk(T )e0

‖Psk(T )e0‖
− (a0e0 + . . .+ ah−1T

h−1e0)

∥∥∥∥∥ −→k→+∞
0

and ∥∥∥∥∥ Qsk(T )e0

‖Qsk(T )e0‖
− (b0e0 + . . .+ bh−1T

h−1e0)

∥∥∥∥∥ −→k→+∞
0.

Since the vectors a0e0 + . . . + ah−1T
h−1e0 and b0e0 + . . . + bh−1T

h−1e0 have norm one, we can
choose two integers 0 ≤ i, j ≤ h − 1 such that aj 6= 0 and bi 6= 0. Then, we define two linear
forms which are continuous for the product on K[T ]e0:

Ψi,j = Φi + Φh+j and ‹Ψi,j = Φi + 2Φh+j .

Thus, thanks to the continuity for the product, we have

lim
k→∞

Ψi,j

Ç
Tmsk e0.Psk(T )e0.

Qsk(T )e0

‖Qsk(T )e0‖

å
= lim

k→∞
Ψi,j

Ç
TmskPsk(T )e0.

Qsk(T )e0

‖Qsk(T )e0‖

å
(2)

= Ψi,j

Ä
e0.(b0e0 + . . .+ bh−1T

h−1e0)
ä

= bi by definition of Ψi,j

and also

lim
k→∞

Ψi,j

Ç
Tmsk e0.

Psk(T )e0

‖Psk(T )e0‖
.Qsk(T )e0

å
= lim

k→∞
Ψi,j

Ç
TmskQsk(T )e0.

Psk(T )e0

‖Psk(T )e0‖

å
(3)

= Ψi,j

Ä
T he0.(a0e0 + . . .+ ah−1T

h−1e0)
ä

= Ψi,j

Ä
a0T

he0 + . . .+ ah−1T
2h−1e0

ä
= aj .

Doing the same thing with the second linear form ‹Ψi,j , we obtain similar results

(4) lim
k→∞

‹Ψi,j

Ç
Tmsk e0.Psk(T )e0.

Qsk(T )e0

‖Qsk(T )e0‖

å
= bi

and

(5) lim
k→∞

‹Ψi,j

Ç
Tmsk e0.

Psk(T )e0

‖Psk(T )e0‖
.Qsk(T )e0

å
= 2aj .
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We now consider the quotient of equations (2) and (3) and of equations (4) and (5). This gives

‖Qsk
(T )e0‖

‖Psk
(T )e0‖

Ψi,j

Ä
Tmsk e0.

Psk
(T )e0

‖Psk
(T )e0‖

.Qsk
(T )e0

ä
Ψi,j

Ä
Tmsk e0.Psk

(T )e0.
Qsk

(T )e0
‖Qsk

(T )e0‖

ä
k→+∞

��

Ψ̃i,j

Ä
Tmsk e0.

Psk
(T )e0

‖Psk
(T )e0‖

.Qsk
(T )e0

ä
Ψ̃i,j

Ä
Tmsk e0.Psk

(T )e0.
Qsk

(T )e0
‖Qsk

(T )e0‖

ä
k→+∞

��
aj
bi

2aj
bi

This equality contradicts the fact that aj 6= 0 and bi 6= 0. This contradiction proves the
lemma! �

Assume now and for the following that X is a Banach space having a normalised unconditional
basis (ei)i∈Z+ for which the associated forward shift is continuous.
We set:

c00 = Span{ei, i ∈ Z+}.

Since Lemma 4.6 gives a criterion for checking non-strong h-supercyclicity, the proof of Theorem
4.4 reduces to the proof of the following points:

Span{T ie0, i ∈ Z+} = Span{ei, i ∈ Z+}.(6a)

K[T ]e0 ⊆ {λT ie0, i ∈ Z+, λ ∈ K}.(6b)

T is continuous.(6c)

There exist 2h linear forms Φδ : K[T ](e0)→ K such that for every δ = 0, . . . , 2h− 1,(6d)

(P (T )e0, Q(T )e0)→ Φδ ((PQ)(T )e0) are continuous on K[T ](e0)×K[T ](e0),

For every 2 ≤ h ≤ p, every δ ∈ {0, . . . , 2h− 1} and every 0 ≤ i 6= δ ≤ 2h− 1,(6e)

Φδ

Ä
T δe0

ä
= 1 and Φδ

Ä
T ie0

ä
= 0.

4.2.1. Construction of T . Our construction of T is a modification of the construction of Bayart
and Matheron [3, section 4.2]. We will give the definition of the operator and theorems leading
to the continuity of T but we will omit some proofs because they are the same as in [3] up to
some details.

Let us begin with a few terminology.
Set a countable dense subset Q of K. A sequence of polynomials P = (Pn)n∈Z+ is said to be
admissible if P0 = 0 and P contains all polynomials whose coefficients are in Q. Let also deg(P )
denote the degree of P , |P |1 the sum of the moduli of its coefficients and cd(P ) its leading
coefficient. We are going to construct T as an almost weighted forward shift in order to satisfy
(6a). Actually, we need two sequences to construct T : the first one is the sequence of weights
(wn)n∈Z+ and the second one is a strictly increasing sequence (bn)n∈Z+ indexing the iterates of
e0 for which the shift will be perturbed.
We define T such that the iterates of e0 corresponding to the perturbation satisfy (6b):

(7) for every n ∈ N, T bne0 = Pn(T )e0 + ebn

and we also define:

(8) for every i ∈ [bn−1, bn − 1[ and n ∈ N, T (ei) = wi+1ei+1
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Thus we can express the vectors Tebn−1:

T bne0 = T bn−bn−1T bn−1e0

= T bn−bn−1(Pn−1(T )e0 + ebn−1)

= T bn−bn−1Pn−1(T )e0 + wbn−1+1 . . . wbn−1Tebn−1

And replacing T bne0 with Pn(T )e0 + ebn yields to:

Tebn−1 = εnebn + fn

where

(9) εn =
1

wbn−1+1 · · ·wbn−1
and fn =

1

wbn−1+1 · · ·wbn−1
(Pn(T )e0 − T bn−bn−1Pn−1(T )e0).

Obviously, this definition is non-ambiguous if deg(Pn) < bn−1. We assume now that deg(Pn) <
bn − 1 for any n ∈ N.

We also make the following choices for the values of (bn)n∈Z+ and (wn)n∈Z+ :

b0 = 1, bn = (2p+ 1)n for every n ∈ N, wn = 4

Ç
1− 1

2
√
n

å
for every n ∈ N.

The choice of bn is motivated by the fact that we will need b1 > 2p to check (6e). We denote
also dn = deg(Pn).
Defined in this way, one can quickly check that T : c00 → c00 satisfies (6a) and (6b) by definition.

4.2.2. Continuity of T . We are now checking (6c). We introduce the following terminology:
one will say that P is controlled by a sequence of natural numbers (cn)n∈Z+ if for all n ∈ Z+,
deg(Pn) < cn and |Pn|1 ≤ cn. This is an easy fact that if lim sup

n→∞
cn = +∞ then there exists an

admissible sequence which is controlled by (cn)n∈Z+ . We also denote ‖∑i∈Z+
xiei‖1 =

∑
i∈Z+

|xi|
the `1 norm on c00.

To check (6c), we need the following lemma which is almost the same as Lemma 4.20 from
[3, p. 87]. The reader should refer to it for a proof:

Lemma 4.8. The following properties are satisfied:

εn ≤ 1 for all n ∈ N(10a)

If n ∈ N and if ‖fk‖1 ≤ 1 for every k < n then :(10b)

‖fn‖1 ≤ 4max(dn,dn−1)+1

Ç
|Pn|1
2bn−1

+ |Pn−1|1 exp
(
−c
»
bn−1

)å
where c > 0 is a numerical constant.

The following lemma proves that (6c) is satisfied for an appropriate choice of P. For the same
reasons as before, see [3, p. 88] for a proof.

Lemma 4.9. There exists a control sequence (un)n∈Z+ tending to infinity such that the following
holds: if the sequence P is controlled by (un)n∈Z+ then T is continuous on c00 with respect to
the topology of X.

4.2.3. Construction of Φδ. Since we have completed the construction of T and proved that it is
continuous, we need to focus on the functionals Φδ satisfying (6d) and (6e). We have to define
2p maps Φδ, δ ∈ {0, . . . , 2p − 1} continuous for the product on K[T ]e0. The following lemma
from [3, p. 89] permits to check the continuity of such functionals more easily:

Lemma 4.10. Let φ be a linear functional on c00. Suppose that
∑
r,q |φ(er · eq)| <∞.Then, the

map (x, y) 7→ φ(x · y) is continuous on c00 × c00.
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Let us construct the functionals Φδ. In the following, a vector x ∈ c00 is said to be supported
on some set I ⊂ Z+ if x ∈ Span{T ie0, i ∈ I}. We want to construct Φδ satisfying Lemma 4.10.
Thus, we have to be able to give an upper bound of |φ(er · eq)|.
Take r ≤ q, and write r = bk + u and q = bl + v with u ∈ {0, . . . , bk+1 − bk − 1} and v ∈
{0, . . . , bl+1 − bl − 1}. By definition of T , we can re-express:

er =
1

wbk+1 · · ·wbk+u

Ä
T bk − Pk(T )

ä
T u(e0)

eq =
1

wbl+1 · · ·wbl+u

Ä
T bl − Pl(T )

ä
T v(e0).

Hence, for any linear functional φ : c00 → K, we have:

|φ(er · eq)| ≤
1

2u+v
|φ(y(k,u),(l,v))|,

where y(k,u),(l,v) = (T bk − Pk(T ))(T bl − Pl(T ))T u+ve0 because wi ≥ 2 for every i ∈ Z+.
To ensure the convergence of the summation from Lemma 4.10, we set:

Φδ(T
ie0) =


1 if i = δ

0 if i ∈ {0, b1 − 1} \ {δ}
Φδ(Pn(T )T i−bne0) if i ∈ [bn,

3
2bn[∪[2bn,

5
2bn[

0 otherwise.

Moreover, Φδ is well defined on c00 because deg(Pn)+i−bn < i, hence Pn(T )T i−bne0 is supported
in {0, · · · , i− 1}.

To ensure the continuity of Φδ, we need the following lemma which can be essentially found
in [3, p. 90].

Lemma 4.11. Assume that deg(Pn) < bn
3 for all n ∈ Z+. Then, the following properties hold

whenever 0 ≤ k ≤ l.

Φδ(y(k,u),(l,v)) = 0 if u+ v <
bl
6

(11a)

|Φδ(y(k,u),(l,v))| ≤Ml(P) := max
0≤j≤l

(1 + |Pj |1)2
l+1∏
j=1

max(1, |Pj |1)2.(11b)

The next proposition [3, p. 91] makes use of the two previous lemmas to ensure the continuity
of (x, y) 7→ Φδ(x · y) if P is suitably chosen:

Proposition 4.12. There exists a control sequence (vn)n∈Z+ such that the following holds: if
the enumeration P is controlled by (vn)n∈Z+, then the map (x, y) 7→ Φδ(x · y) is continuous on
c00 × c00.

Thus, by Lemmas 4.9 and 4.11, with a well-chosen control sequence, T is continuous and Φδ,
δ ∈ {0, . . . , 2p−1} are continuous for the product defined on K[T ]e0 and therefore (6d) is satisfied.

Then, a simple computation proves that Ψ satisfies (6e) because Φδ(T
ie0) =

{
1 if i = δ

0 if not
for

every 0 ≤ i ≤ b1 − 1 = 2p.
The combination of Lemma 4.6, Lemma 4.9 and Proposition 4.12 completes the proof of

Theorem 4.4.

4.3. A supercyclic operator which is not strongly p-supercyclic for any p ≥ 2. The
previous example of a supercyclic operator which is not strongly h-supercyclic for a fixed h is
answering the question of the existence of strongly h-supercyclic operators which are not strongly
(h+ 1)-supercyclic in the particular case h = 1. In fact, we can improve this result:
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Theorem 4.13. There exists a supercyclic operator which is not strongly h-supercyclic for any
h ≥ 2.

To achieve this construction, we take a direct sum of some previously constructed operators to
ensure the non-strong h-supercyclicity of this operator. The first part of this section is devoted
to the construction of infinitely many operators Tp which are supercyclic but not strongly h-
supercyclic for 2 ≤ h ≤ p. Moreover, we want that these operators satisfy some more properties
to be able to “match“ them later. For that purpose we have to modify the parameter (bn)n∈Z+

and the admissible sequence of polynomials P that we used in the previous section. From now
on, we take bn = 5n for every n ∈ N and b0 = 0.

4.3.1. Construction of many operators with different parameters. Given infinitely many increas-
ing control sequences (uin)n∈Z+ satisfying limn→+∞ uin = +∞ for every i ≥ 2, then it is possible

to consider an enumeration (Sin)n∈Z+ not necessarily bijective of (Q[X])i+1 × {0}Z+ for every

i ∈ Z+ with the following properties: for every i, k, n ∈ Z+, and 0 ≤ j ≤ bi+1, Sij(k) = 0,

deg(Sin(k)) ≤ uk+2
n and |Sin(k)|1 ≤ uk+2

n . These enumerations will be useful to construct in-
finitely many admissible sequences (Pk)k∈Z+ , providing a construction of the desired operator,
with the procedure explained below.

For every j ∈ Z+ and every n ∈
[
j(j+1)

2 , (j+1)(j+2)
2

[
, we define:

Qn = S
n− j(j+1)

2
j(j+3)

2
−n

and Q0 = S0
0 .

We set also for every k ≥ 2 and every n ∈ Z+, Pk
n := Qn(k − 2).

The construction of (Qn)n∈Z+ is made with two purposes in mind: on the one hand every element
from Q[X] must appear once as the k-th component of some Qn where the other components
are all zero and this has to be satisfied for any k. This property allows T to be cyclic. On the
other hand, to turn cyclicity into supercyclicity, for every element P from Q[X], we need to be
able to find infinitely many Qn containing repetitions of λP on their firsts components and zeros
elsewhere where λ and the number of repetitions grow with n.
Coming back to the previously defined sequences Pk, we state that such sequences are admissible
and controlled by (ukn)n∈Z+ for every k ≥ 2. Indeed, for every n ∈ Z+ and k ≥ 2, Pk

n = Qn(k−2)

hence there exists q, r ≤ n such that Pk
n = Sqr (k − 2). Then, deg(Sqr (k − 2)) ≤ ukr by definition
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and therefore deg(Sqr (k − 2)) ≤ ukn because (ukn)n∈Z+ is increasing. The same argument shows

that |Pk
n|1 ≤ ukn.

For the admissibility, we first notice that S0
0(i) = 0 for all i ∈ Z+. Moreover for every k ≥ 2, Pk

is an enumeration of Q[X] because Q[X] = {Sk−2
n (k − 2), n ∈ Z+} ⊆ {Pk

n, n ∈ Z+}.

Claim: These sequences have the additional property that Pk
j = 0 for every k ≥ 2 and

0 ≤ j ≤ 2k.

Proof. Let k ≥ 2 and 0 ≤ j ≤ 2k, Pk
j = Qj(k− 2) = Sqr (k− 2) for some q, r ∈ Z+ with q+ r ≤ j

by definition of Q. By definition, if 0 ≤ r ≤ bq+1, Sqr (k − 2) = 0.

Then, if bq+1 < r, we have bq+1 + q < r + q ≤ j ≤ 2k, giving 5q+1+q−4
2 ≤ k − 2. In addition, if

q ≥ 1, an easy computation yields to q + 1 < 5q+1+q−4
2 . Hence, we get q + 1 < k − 2 and thus

Sqr (k − 2) = 0 because Sqr ∈ (Q[X])q+1 × {0}Z+ .
It remains to study the case with q = 0 and 5 = b1 < r but Sqr (k − 2) = 0 if k − 2 > 1⇔ k 6= 2.
Furthermore, if k = 2, then q 6= 0 because otherwise we would have the inequality 5 = b1 < r ≤
j ≤ 2k = 4.
This finishes the proof of the claim. �

Assume that X is a Banach space with an unconditional normalised basis (ei)i∈Z+ for which
the associated forward shift is continuous. For every p ≥ 2, set Xp := X, (epi )i∈Z+ := (ei)i∈Z+

the unconditional basis of Xp and define an operator Tp on Xp in the same way we did it in
the last section but with parameters p, (bn)n∈Z+ and with admissible sequence Pp constructed
above. The changes on some parameters do not interfere with conditions (6a), (6b) and (6c)
which are still satisfied, thus Tp is well-defined and continuous on Xp. In addition, it appears
from the proof of Lemma 4.9 that ‖Tp‖ ≤ sup(4Cpu‖Fp‖, 2Cpu) where Cpu is the unconditional
constant of (epi )i∈Z+ and Fp is the forward shift on Xp.
The delicate part is the construction of the linear forms because we use the condition b1 > 2p
to construct the functionals Φδ and check (6e). Here we have chosen to take bn = 5n for every
n ∈ N, then we have changed the admissible sequence Pp to be able to construct the functionals
Φδ. Indeed, the first components of Pp contains only zeros to compensate for the fact that
b1 < 2p. We define for every δ ∈ {0, . . . , 2p− 1}:

Φδ(T
ie0) =


1 if i = δ

0 if i ∈ {0, bm − 1} \ {δ}
Φδ(Pn(T )T i−bne0) if i ∈ [bn,

3
2bn[∪[2bn,

5
2bn[ for n ≥ m

0 otherwise.

where m ∈ N is such that bm−1 < 2p < bm.
Then, Φδ is well-defined thanks to the claim and (6e) and (6d) are also satisfied. As a conse-
quence, despite some changes on the parameters Tp is supercyclic and not strongly h-supercyclic
for 2 ≤ h ≤ p on Xp for a suitable choice of increasing control sequences.

4.3.2. Construction of the supercyclic operator being not strongly h-supercyclic, h ≥ 2. The next
step is to consider the direct sum of previously constructed operators to get rid of the strong h-
supercyclicity. Hence, define T = ⊕`2Tp an operator on B = ⊕`2Xp for p ≥ 2. Then, considering
on the first part the weighted forward shift part R of T and then the perturbation part K, we
get:

‖T‖ ≤ ‖R‖+ ‖K‖ ≤ 4 sup
p≥2

(Cpu‖Fp‖) + 2 sup
p≥2

(Cpu) < +∞

because for every p ≥ 2, Xp = X. So, T is continuous on B and is not strongly p-supercyclic for

p ≥ 2. Thus, it suffices to prove that T is supercyclic with supercyclic vector ⊕`2
ep0
p . For this
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purpose we are going to prove that T satisfies the two following conditions:

{(0, · · · , 0, epi , 0, · · · ), i ∈ Z+, p ≥ 2} ⊂ Span

®
T i
Ç
⊕`2

ep0
p

å
, i ∈ Z+

´
.(12a)

Span

®
T i
Ç
⊕`2

ep0
p

å
, i ∈ Z+

´
⊆
®
λT i
Ç
⊕`2

ep0
p

å
, i ∈ Z+, λ ∈ K

´
.(12b)

The condition (12b) is satisfied with our construction of admissible sequences. Indeed, it suffices

to prove (12b) for SpanQ

{
T i
(
⊕ ep0

p

)
, i ∈ Z+

}
. Let then P ∈ Q[X], there exists by definition of

Qk three strictly increasing sequences of integers (nk)k∈Z+ ,(mk)k∈Z+ and (λk)k∈Z+ such that for

every k, Qnk
=

Ö
λkP, . . . , λkP︸ ︷︷ ︸

mk times

, 0, · · ·

è
.

Hence, T bnk

(
⊕`2

ep0
p

)
=

(
λkP (T )

(
e20
2

)
+

e2bnk
2 , . . . , λkP (T )

Å
e
mk+1

0
mk+1

ã
+

e
mk+1

bnk
mk+1 ,

e
mk+2

bnk
mk+2 , · · ·

)
.

Thus, ∥∥∥∥∥ 1

λk
T bnk

Ç
⊕`2

ep0
p

å
− P (T )

Ç
⊕`2

ep0
p

å∥∥∥∥∥
`2

=

∥∥∥∥∥∥
Ñ
e2
bnk

2λk
, . . . ,

emk+1
bnk

(mk + 1)λk
,

emk+2
bnk

(mk + 2)λk
− P (T )

(
emk+2

0

mk + 2

)
, . . .

é∥∥∥∥∥∥
`2

−→
k→+∞

0.

This proves (12b).
We now focus on (12a). Let i ∈ Z+ and q ≥ 2. The definition of Qk and the supercyclicity

of Tp implies that there exists a strictly increasing sequence of integers (nk)k∈Z+ such that
Qnk

= (0, . . . , 0, Pk, 0, . . .) for all k ∈ Z+ where Pk is a polynomial such that: Pk(T )eq0 = λke
q
i+εk

where (λk)k∈Z+ is a strictly increasing sequence of positive real numbers tending to +∞ and
‖εk‖ −→

k→+∞
0. Thus,∥∥∥∥∥ qλkT bnk

Ç
⊕`2

ep0
p

å
− (0, . . . , 0, eqi , 0, . . .)

∥∥∥∥∥
`2

=

∥∥∥∥∥∥
Ñ
qe2
bnk

2λk
, . . . ,

qeq−1
bnk

(q − 1)λk
,
eqbnk

λk
+

1

λk
Pk(T ) (eq0)− eqi ,

qeq+1
bnk

(q + 1)λk
, . . .

é∥∥∥∥∥∥
`2

=

∥∥∥∥∥∥
Ñ
qe2
bnk

2λk
, . . . ,

qeq−1
bnk

(q − 1)λk
,
eqbnk

λk
+ εk,

qeq+1
bnk

(q + 1)λk
, . . .

é∥∥∥∥∥∥
`2

−→
k→+∞

0.

This proves (12a). So T is supercyclic on X without being strongly h-supercyclic for any
h ≥ 2 proving Theorem 4.13.

Question. Are strongly n-supercyclic operators also strongly (n+ 1)-supercyclic for n ≥ 2?

Question. Does T automatically satisfies the supercyclicity criterion if it is strongly n-supercyclic
for any n ≥ 1?
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