THE SPECTRUM OF DOUBLY-IONISED ANTIMONY.

By S. G. KRISHNAMURTY,

Research Scholar, Andhra University, Waltair.

Plate VII.

(Received for publication, 13th Dec., 1935.)

ABSTRACT.—While investigating the structure of the spectra of Te III and I IV, a comparison of these spectra with those due to Sn I and Sb II was made by the author, as these form an iso-electronic sequence. This comparison led to a modification and extension of the analysis of Sb II due to Lang and Vestine. A large number of the levels were assigned to the proper configurations and a few new terms discovered.

§ 1. INTRODUCTION.

While working on the spectra of doubly-ionised tellurium ¹ and trebly-ionised iodine, ² the author found it necessary to make a close comparative study of the row of iso-electronic spectra, Sn I, Sb II, Te III, and I IV. Such a study revealed the necessity of certain modifications in the analysis of Sb II reported by Lang and Vestine, ³ and it is the purpose of the present paper to record those changes with special reference to the 6p terms, the previous assignments of some of which appear improbable.

This improbability was first suggested by the abnormality in the intervals of the $6p^3D$ term identified by Lang. An examination of table I shows that these intervals are very regular in all the spectra homologous with Sb II.

TABLE I.

mp³D Intervals in similar Spectra.

Spectrum.	Ge I.	As II.	Se III.	Sn I.	ЅЬ П.	Te III.	I IV.
6p3D1-3D2	-	200'4	309.2	63	1071 +	212	931
3D2-3D3	-	2083.2	3172'0	3565	-135 + (5400)	7620	10271

⁺ Values due to Lang and Vestine. Those due to the present work of the author are given in parenthesis,

Further, the intensities of the lines in the $6s^3P-6p^3D$ multiplet of Sb II, as identified by the above authors also seem to be unsatisfactory. They are as shown below.

6р	$^{3}D_{1}$	3D2	3D3
6s 3P4 3P1	(30)		
3P1	(30)	(12)	()
3P2	(6)	(30)	(50)

The combination $6s^3P_1-6p^3D_2$ is relatively faint, and in fact fainter than $6s^3P_2-6p^3D_2$. The other important triplet term $6p^3P$ in Sb II was not identified by Lang. The corresponding term was, however, observed to give strong combination lines in the spectra of Te III,⁴ and As II,⁵ although the intervals are found to be abnormal. The latter fact probably would account for the failure to identify the term in Sb II.

The above considerations led the writer to undertake a careful reinvestigation of the spectrum of Sb II, in the light of the results he has obtained in Te III and I IV.

§ 2. EXPERIMENTAL.

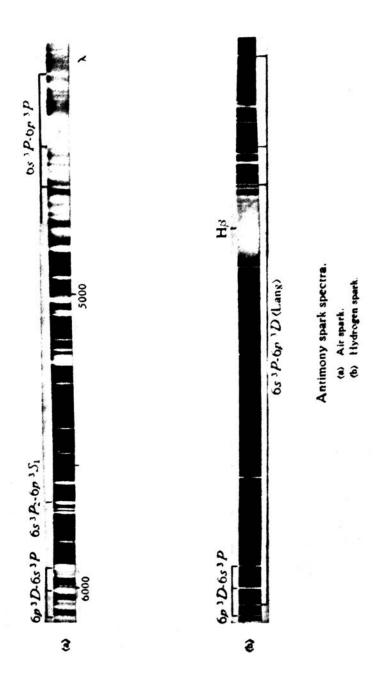
The sources used in these experiments were sparks in air, and in hydrogen, between electrodes of pure antimony. The lines of Sb II are very easily excited, and appear even in the ordinary sparks in air. A large quartz Littrow spectrograph was mainly used, and the photographic plates were of the Ilford special rapid type. Lines of the iron arc served to reduce the plates and lines due to impurities were eliminated by comparison with other spectra (mainly of copper and arsenic), produced under similar conditions.

\$ 3. OBSERVATIONAL

The 6p terms due to Lang, as well as those identified by the author in the present work, are shown in table II. If the new assignments be adopted, the intervals of the $6p^3D$ term are found to be in harmony with those in other spectra, as is evident from table I.

TABLE II.

Multiplets. Sb 11.


			мишр	icis. 50 11.		
	erm nation.	Term	6s³P0	\mathfrak{s}_{P_1}	3P.	1P ₁
Lang.	Author.	Value	80863°o	80465*8	74727`2	74102'4
	6p3D ₁ =	63904'4 86'2	16958'6(15)	_	_	_
	3D3 -	63818-2		16647'6 (100)	_	_
$6p^{3}D_{3}$	$^{3}D_{3} =$	58418'6			16308'6 (50)	
\mathfrak{z}_{D_1}	3P ₁ =	59354'3 1070'4	21511'8 (30)	31111.2 (12)	15372.7 (16)	14759'5 (2)
$^{3}D_{2}$	3P2 =	58283'9	22581. (3)	22181'9 (12)	16443'4 (30)	15819'0 (5)
3.5 ₁	3.S ₁ =	57000'8		23464.6 (8)	17726'4 (30)	17102'0 (6)
Lang.	Author	Term.	5p3P0	$^{3}P_{1}$	3Pg	1Dg
			150000	146945	144341	137209
()	$5p^{3} ^{3}P_{1} =$	72863 - 447	77136'1 (3)	74083'2 (2)		64348'9 (3)
(35)	$^3P_2 =$	73310		73635.6 (6)	71031'5 (6)	
(39)	$5d^{1}D_{2} =$	71604		75335 2 (8)	72730'5 (2)	65600°4 (2)
(77)	6d³D1 ∞	35950	114045'8 (4)		108389'3 (0)	
()	$7s^3P_0 =$	44775		102170 (5)		
75^3P_1	3P ₁ =	44084		102857'4 (4)	100258.6 (4)	93126'3 (6)
3P2	3P ₃ -	38183		109300'4 (2)	106704'3 (3)	
(53)	$^{t}P_{1}$		107463 (1)	104408.1 (3)		94672'8 (8)
(37)	$sp^3 ^3P_1 =$	72861°4 —449			15861'6 (2)	
(35)	3P2 =	73310.3	139.558 (2)			17261.3 (2)
(77)	$6d ^3D_1 =$	35507.2	23404.3 (10)			
(75)	3P1 =	36799.8	22557'5 (5)	21484'1 (8)	20203.2 (3)	19350 (12)
(71)	3P2 =	37597'8	21757'0 (6)	30 08 9,1 (50)	19403'4 (5)	
(73)	¹ P ₁ =	37271'7		31013.3 (30)	19730.1 (3)	
753P1	75 ³ P ₁ -	44084'0	15270'3 (1)			
3P2	3P ₁ -	37644.8	21710'5 (15)	acu59'51(10)	19350 e (a)	
(79)	853P	21485'1		36798'2 (7)	9 0 0	34663.1 (2)

A much more striking evidence of the correctness of the above identification is seen in table III, which shows the very regular progress of the corresponding lines in Sn I-like and Ge I-like spectra so far as they are known at present.

TABLE III.
Corresponding lines in similar spectra.

Spectrum.	6s3Pg-6p3D1.	8,	6s3P1-6p3D2.	8.
As II Se III	18184 26935	8751	17986	8754
	1		26740	10503
Sn I Sb II	8726 16958	8232	8515	8133
Te III	4655	7697	16648 24611	7963
Spectrum.	6s3P1-6p3P1.	8,	6s3Pg-6p3P1.	8,
As II	20053	9526	17672	8297
Se III	29579	9520	25969	64 9 /
Sn I	11689		7975	
Sb II	21112	9423 12973	15373 26388	7398
Te III	34085	y/3	26388	11015
Spectrum.	6s3Pg-6p3D3.	8,	65 ³ P ₆ -6p ³ P ₁ .	١,
As II	17689	04	19110	
Se II	26302	8613	28002	8892
Sn I	8376	2002	11963	
Sb II	16309	7933 8225	21512	9549 12828
Te III	24534	0225	34340	12020
Spectrum.	6s³P ₁ -6p³P ₃ .	8,	658PT5p3P2	à,
As II	21131		18751	
Se III	31093	9962	27483	8732
Sn I	12321		8605	ngme.
Se II	22182	9861	16443	7836
Te III	31956	9764	24248	7805

The fine structures of some of the intense lines of the Sb II spectrum in the visible region, were recently studied by Tolansky, who slightly modified the previous work of Badami. The latter's work confirms the present assignment of 6p 3P and 3S terms. The work of Tolansky supports the assignments of 6p 3D_1 and 3D_3 , the line v 16958'6 yielding six fine structure components, three of which are due to one isotope (121) and the remaining, to the second isotope (123), of antimony. The interval factors of the 6p terms are found to be in consonance with those observed in As II, of the same chemical group.

In addition to the 6p terms newly suggested by the writer, the above table of multiplets gives other terms assigned to the various electron configurations. These terms were designated by Lang and Vestine by arbitrary numbers, mentioned in the first column of the table II. As has already been pointed out, the new assignments have been suggested by a comparative study of the row of Sn-I-like spectra. The most important of these are the terms due to sp^3 inner electron configuration. It was observed previously by Rao, that the values of the sp^3 terms relative to the sp^2s terms show a marked increase with increasing ionisation. The curves plotted in figures 1 to 4, illustrate this peculiar regularity. In Sn I-like spectra, the crossing over of the sp^3 and sp^2s terms occurs at the third stage of ionisation, i.e., in Te III. The writer believes that this evidence afforded by these smooth curves supports strongly the assignments he has made.

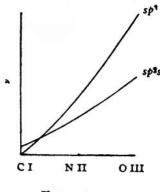


FIGURE 1.

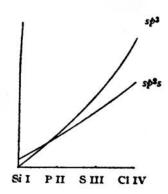


FIGURE 2.

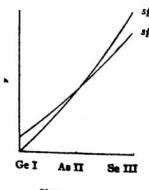


FIGURE 3.

FIGURE 4.

§ 4. TERM VALUES.

The term values given in tables II and IV, are calculated from the value $150000~{\rm cm^{-1}}$ of the deepest term $5p^3P_0$ due to Lang. The value of this term could also be calculated from the lines,

$$6s^3P_2 - 5p^3P_2 = -69614.$$

 $^3P_2 - 6p^3P_2 = 16443.$

It is found then equal to 151723 cms⁻¹. As no greater accuracy can be claimed for this than for the value suggested by Lang, both being obtained from the simple formula applied to two Rydberg members only, the value given by Lang and Vestine is retained in the table of terms below. The table is self-explanatory.

TABLE IV.

Terms in Sb II.

Term		Value	Term		Value
Lang	Author		Lang	Author	
6s ³ P ₀	Same	80863°o	(37)	sp3 3P1	72861'4
$^{3}P_{1}$,,	80465.8	(35)	3Pg	73310'3
3P2	,,	74727`2	(77)	6d 3D1	35507
$^{1}P_{1}$,,	74102.4	(75)	3P1	36799'8
	6p 3D1	63904 4	(71)	3P2	37597
	3D2	63818.3	(73)	1P ₁	37271
6p 3D3	Same	58418.6	75 3P1	Same	4408410
3D_1	6d 3P1	59354'3	3Pg	"	37644
$^{3}D_{3}$	3P2	58283'9	¹ P ₁		38375
351	Same	57000'8	3P1	8s 3P1	21485'1

Finally, in table V is given a catalogue of the lines of Sb II classified in the present work. The classifications due to Lang and Vestine are also included for comparison.

TABLE V.

Classified lines in Sb II.

	000400000	Classification.		
λ. Ι. Λ.	v (vac)	Lang.	Author.	
876.84 (4)	114045	5p 3P0-77	5p 3P0-6d 3D1	
914'91 (2)	109300	3P1 -75 3P2	Same	
922'6 (0)	108389	3P2-77	5p 3P2-6d 3D1	
930'55 (1)	107463	$^{3}P_{0}-53$	$^{3}P_{9} - 7^{5} ^{1}P_{1}$	
937'17 (3)	106704	$^{3}P_{2} - 75 ^{3}P_{2}$	Same	
957 78 (2)	104408	3P1 - 53	$5p^{3}P_{1} - 7s^{1}P_{1}$	
972'22 (4)	102857	3P1-75 3P1	Same	
997'47 (4)	100258	$3P_2 - 3P_1$	Same	
1056'27 (8)	94672'8	$^{1}D_{2} - 53$	5p 1/2-75 1P1 Same	
1073.81 (6)	93126'3	1D2-75 3P1	5p 1.So - 7s 1P1	
1196.74 (0)	83560'3	$1.S_0 - 53$	3P0-5p3 3P1	
1296'41 (3)	77136'1	$\frac{3P_0-35}{3P_0-35}$	3P1-5d 1D2	
1327'40 (8)	75335 2	$^{3}P_{1} - ^{3}9$	3P, - sp3 3P	
1349'8 (2) 1358'0 (6)	74083.2	$3P_1 - 37$ $3P_1 - 35$	3P - sp8 3P	
1374'9 (2)	73635'6	3P2-39	$^{3}P_{2} - 5d ^{1}D_{2}$	
1407.8 (6)	73730'5	3P2-35	3P2-5p3 3P1	
1524'4 (2)	71031'5 65600'4	102-39	$^{1}D_{2} - 5d ^{1}D_{2}$	
1554'0 (3)	64348'9	1D2-37	$^{1}D_{2}-sp^{3} ^{3}P_{1}$	
1874.2 (5)	53232'9	1.50 - 37	$^{1}S_{0} - sp^{3} ^{3}P_{1}$	
2716'72 (7)	36798'2	$\frac{1S_0 - 37}{6p ^3D_2 - 79}$	6p 3P1-80 3P1	
2884 07 (3)	34663'1	48-79	1D2- "	
3001'70 (3)	33304.8	6p 1S0-79	150-	
3520'47 (12)	28397*2		$^3D_1-6d$ 3D_1	
3893 75 (8)	25674'9	68 3P1-6p 1S0	Same 3P2-78 1P1	
3929 23 (4)	25443.0	15-48	Same	
4111'2 (4)	24316'7	$6s^3P_1 - 6p^1D_2$,, $-3S_1$	Same	
4260.55 (8)	23464.6	$\begin{array}{c} -31 \\ 6p ^3D_1 - 77 \\ 6s ^3P_0 - 6p ^3D_3 \end{array} (?)$	$^{3}P_{1} - 6d^{3}D_{1}$	
4271'54 (10) 4427'25 (3)	23404°2 22581°1	$68 ^{3}P_{0} - 67^{3}P_{0}$ (2)	68 3P0-6p 3P2	
4431.87 (2)	22557.5	1 00-171-75	6p3P1-6d3P1	
4506'92 (12)	22181.0	$Os^{\alpha}P_1 - Op^{\alpha}D_{\bullet}$	68 3P1 - 6p 3P2	
4594'93 (6)	21757'0	6p 3D1-71	6p 3P1-6d 3P2	
4604'77 (15)	21710'5	78 3Pg	-7# 3Pg	
4647 32 (30)	21511'8	$68\ ^{3}P_{0}-6p^{3}D_{1}$	60 3P0 - 6p 3P1	
4653'32 (8)	21484.1	$\begin{array}{c} 6p\ ^3D_9 - 75 \\ 6s\ ^3P_0 - 6p\ ^1P_1 \end{array}$	$6p^3P_7 - 6d^3P_1$	
4711 26 (40)	21210.8	68 3P0-6p1P1	Same 61 3P1 - 6p 3P1	
4735'44 (12)	21111.2	$6a^{3}P_{1}-6p^{3}D_{1}$	6p 1P1 - 6d VP1	
4757'81 (20)	21012,3	6p 3D3 - 73 6p 3D1 - 63	6p 3P1-78 1P1	
4765'36 (20) 4802'01 (20)	20078'9	68 3P1 - 6p 1P1	Same	
4832'82 (20)	20818'9	6p 3D2-71	$6p^{3}P_{4}-6d^{3}P_{4}$	
4843'74 (10)	20630.5	6p 3D2 - 78 3P9	$6p^3P_4 - 78^3P_9$	
4948 52 (3)	20202'5	6p 3S1-75	$6p^3S_1 - 3d^3P_1$	
5021'68 (4)	1,8008	6p 3D2-63	6p 3P2 - 78 1P1	
5066'99 (2)	19730*1	351-73	3S1-64 1P1	
5152'30 (5)	19403'4	351-71	$3S_1 - 3P_2$	
5164'72 (6)	19356.8	${}^{3}S_{1} - 7\pi {}^{3}P_{9}$	Same	
5166'32 (12)	19350'8	$ \begin{array}{c} ^{1}D_{9} - 75 \\ 6e^{1}P_{1} - 6p^{1}S_{0} \end{array} $	Same	
5176'55 (15) 5381'40 (10)	10313.5	3P2-1D2	Same	
5464'08 (15)	18578'1	3P1-16	8p3 3D -6p 3D	

TABLE V-(continued).

	⊮(vac).	Classification.		
λ. Ι. Α.		Lang.	Author.	
5531.73(3)	18072'5	$37 - 6p^1S_0$	$sp^{33}P_1 - 6p^3D_1$	
5555'99(1)	17993.6	$6p^{1}S_{0}-75$	6p1S0-6d3P	
5568.13(12)	17954'4	$6s^{1}P_{1}-6p^{1}D_{2}$	Same	
5639'75(30)	17726'4	$6s^3P_2 - 6p^3S_1$	Same	
5705.20(8)	17522'1	661Sa-73	$6p^{1}S_{0}-6d^{1}P_{1}$	
5825.20(2)	17161.3	$ \begin{array}{c} 35 - 6p^1 D_2 \\ 6s^1 P_1 - 3S_1 \end{array} $	sp33P2-6p1D	
5845.65(6)	17120'0	$6s^{1}P_{1}-^{3}S_{1}$	Same	
5895'09(15)	16958.6		$6s^3P_0 - 6p^3D_1$	
5981.42(1)	16713'8	37-6p1D2	$sp^{33}P_1 - {}^1D_2$	
6005.21(100)	16647.6	33-40	$6s^3P_1 - ^3D_2$	
6079'79(30)	16443'3	$6s^3P_2 - 6p^3D_2$	3P2-3P2	
6130'04(50)	16308.6	$3P_2 - 3D_3$	Same	
6302'76(12)	15861.7	37-3.51	$sp^{33}P_1 - {}^3S_1$	
6319.76(2)	15819'0	$6s^{1}P_{1}-^{3}D_{2}$	$6s^{1}P_{1}-3P_{2}$	
6503'26(6)	15372'7	$^{3}P_{2}-^{3}D_{1}$	3P2-3P1	
6546.86(1)	15270'3	$6p^3D_1 - 7s^3P_1$	$6p^3P_1 - 7s^3P_1$	
6629'48(1)	15080'0	$6s^3P_2 - 6p^1P_1$	Same	
6713.60(3)	14891.0	35-3D3	sp33P6p3D	
6778.75(2)	14749.5	$6s^{1}P_{1}-^{3}D_{1}$	$6s^{1}P_{1}-3P_{1}$	
6915.58(4)	14456.1	$^{1}P_{1}^{-1}P_{1}^{1}$	sp33P2-3P1	
7163.20(5)	13955'8	35-3D1	$3P_2 - 3P_1$	
7343'4	13613.0	6p1D2-53	6p1D2-7s1P1	

ACKNOWLEDGMENT.

The author takes this opportunity to express his great indebtedness to Dr. K. R. Rao for suggesting the problem and for his helpful guidance throughout the progress of this work.

REFERENCES.

- ¹ S. G. Krishnamurty, Proc. Roy. Soc., A, 181, 178 (193_).
- 2 Rao, Proc. Lond. Phy. Soc., (in the course of publication).
- 3 R. J. Lang and E. H. Vestine, Phy. Rev., 42, 233 (1932).
- 4 Cf. I above.
- ⁵ A. S. Rao, Ind. Jour. Phys., 7, 561 (1933).
- 6 Tolansky, Proc.. Roy. Soc., A, 146, No. 856, 182 (1934).
- 7 Badami, Z. Physik., 79, 206 (1932).
- 8 Badami and K. R. Rao, Proc. Roy. Soc., A, 160, 387 (1933).