21

Continued Fractions Associated with Ellipsoidal Wave-Functions.

By
S. L. Malurgar, Poona.
(Received for publication, October 23, 1934.)
In a previous memoir ${ }^{1}$ the fundamental equation for an ellipsoidal wave-function in the Jacobean elliptic form has been derived as
$d^{2} \mathrm{U} / d \xi^{2}+\left(a_{0}-a_{1} k^{2} s n^{2} \xi-n^{2} k^{4} \delta n^{4} \xi\right) \mathrm{U}=0 \quad . . \quad$... ... $(1 ;$
where $\mathrm{U}(\xi)$ is of form

$$
(s n \xi)^{\sigma_{2}}(c n \xi)^{\sigma_{2}}(d n \xi)^{\sigma_{3}} \psi\left(s n^{2} \xi\right)
$$

ψ being an integral function of $s n \xi$ and a_{1} and a_{0} are characteristic constants.

By the transformation $s n \xi=0$ the above equation reduces to

$$
\left(1-v^{8}\right)\left(1-k^{9} v^{2}\right) d^{8} \mathrm{U} / d v^{8}-v\left(1+k^{2}-2 k^{2} v^{2}\right) d \mathrm{U} / d v
$$

$$
\begin{equation*}
+\left(a_{0}-a_{1} k^{2} v^{8}-n^{2} k^{4} r^{4}\right) U=0 \tag{2}
\end{equation*}
$$

We may use either of these equations for the purposes of this paper. The values of σ throughout this paper are 0 or 1 .

1 See 'Ind. Jouronl of Physica,' Vol. IX, p. 48 et seq., 199.
34
I. Let us assume that

$$
U(\xi)=\Sigma A_{\nu}(8 n \xi) 2 v+\sigma ;
$$

then

$$
\begin{align*}
& (2 \nu+2+\sigma)(2 \nu+1+\sigma) \mathrm{A}_{\nu+1}-\left\{\left(1+k^{2}\right)(2 v+\sigma)^{8}-a_{0}\right\} \mathrm{A}_{\nu} \\
& \quad+\left\{(2 v-2+\sigma)(2 v-1+\sigma)-a_{1}\right\} k^{2} \mathrm{~A}_{\nu-1}-n^{2} k^{4} \mathrm{~A}_{\nu-2}=0 \tag{3}\\
& (4+\sigma)(3+\sigma) \mathrm{A}_{2}-\left\{\left(1+k^{2}\right)(2+\sigma)^{2}-a_{0}\right\} \mathrm{A}_{1}+\left\{\sigma(1+\sigma)-a_{1}\right\} k^{2} \mathrm{~A}_{0}=0 \\
& (2+\sigma)(1+\sigma) \mathrm{A}_{1}-\left\{\left(1+k^{2}\right) \sigma^{8}+a_{0}\right\} \mathrm{A}_{0}=0 \quad \ldots \quad \ldots \tag{4}
\end{align*}
$$

If we put

$$
\mathrm{B}_{\nu}=\mathrm{A}_{\nu+1} / \mathrm{A} \nu
$$

then

$$
\begin{align*}
(2 v & +2+\sigma)(2 v+1+\sigma) \mathrm{B}_{\nu}-\left\{\left(1+k^{2}\right)(2 v+\sigma)^{2}-a_{0}\right\} \\
& +\left\{(2 v-2+\sigma)(2 v-1+\sigma)-a_{1}\right\} k^{2} / \mathrm{B}_{\nu-1}-n^{8} k^{4} / \mathrm{B}_{\nu-1} \mathrm{~B}_{\nu-2}=0 \tag{6}
\end{align*}
$$

It is seen that the value of B_{ν} tends for large values of ν either to unity or zero. As $U(\xi)$ is an integral function of $s n \xi$ the value of B_{v} must necessarily be zero ultimately.

The value of B_{v} can be put in the form of a continued fraction of Fürstenau's type.

$$
\begin{align*}
\mathrm{B}_{\nu} & =n^{2} k^{4} /\left[\left\{(2 v+2+\sigma)(2 v+3+\sigma)-a_{1}\right\} k^{2}\right. \\
& \left.-\left\{\left(1+k^{2}\right)(2 v+4+\sigma)^{2} a_{0}\right\} \mathrm{B}_{\nu}+(2 v+5+\sigma)(2 v+6+v) \mathrm{B}_{\nu+1^{2}} \mathrm{~B}_{\nu+2}\right] \ldots \tag{7}
\end{align*}
$$

The values of B_{0} and B_{1} obtained in the form of continued fractions have to be equal to their values given by the equations

$$
\begin{gathered}
(\sigma+4)(\sigma+3) \mathrm{B}_{1}-\left\{\left(1+k^{2}\right)(2+\sigma)^{2}-a_{0}\right\}+\left\{\sigma(\sigma+1)-a_{1}\right\} k^{2} / \mathrm{B}_{0}=0 \\
(\sigma+2)(\sigma+1) \mathrm{B}_{0}=\left(1+k^{2}\right) \sigma^{2}-a_{0}
\end{gathered}
$$

Just as in the problems dealt by Kelvin, Darwin and Goldstein, it is necessary to point out that the coefficients A can be determined with the relations 3,4 and 5 only if we know the value of a_{0} and a_{1} exactly and we make no approximation at any
stage. ${ }^{2}$ Otherwise the value of B_{ν} will ineritably tend to unity instead of zero. Similar remarks will apply to functions of other species also.

II. Let

$$
\mathrm{U}(\xi)=\Sigma \mathrm{A}_{\nu}(8 n \xi)^{2 \nu+\sigma . c n \xi ;}
$$

then

$$
\begin{align*}
& (2 v+2+\sigma)(2 v+1+\sigma) \mathrm{A}_{\nu+1}-\left\{(2 v+1+\sigma)^{2}+(2 v+\sigma)^{2} k^{2}-a_{0}\right\} \cdot \mathrm{A}_{\nu} \\
& +\left\{(2 \nu-1+\sigma)(2 \nu+\sigma)-a_{1}\right\} k^{2} \cdot \mathrm{~A}_{\nu-1}-n^{2} k^{4} \mathrm{~A}_{\nu-2}=0 \tag{8}\\
& (4+\sigma)(3+\sigma) \mathrm{A}_{2}-\left\{(3+\sigma)^{2}+(2+\sigma)^{2} k^{2}-a_{0}\right\} \mathrm{A}_{1} \\
& +\left\{(1+\sigma)(2+\sigma)-a_{1}\right\} k^{2} \cdot \mathrm{~A}_{0}=0 \tag{9}\\
& (4+\sigma)(3+\sigma) \mathrm{A}_{2}-\left\{(3+\sigma)^{2}+(2+\sigma)^{2} k^{2}-a_{0}\right\} \mathrm{A}_{1} \\
& \text { and }(1+\sigma)(2+\sigma) \mathrm{A}_{1}\left\{(1+\sigma)^{2}+\sigma^{2} k^{2}-a_{0}\right\} \mathrm{A}_{0}=0 \tag{10}
\end{align*}
$$

putting $B_{\nu}=A_{\nu+1} / A_{\nu}$ we get
$\mathrm{B}_{\nu}=n^{2} k^{4} /\left[\left\{(2 v+\sigma+3)(2 v+4+\sigma)-a_{1}\right\} k^{2}-\left\{(2 v+5+\sigma)^{2}+(2 v+4+\sigma)^{2} k^{2}\right.\right.$
$\left.\left.-a_{0}\right\} \mathrm{B}_{\nu+1}+(2 \nu+6+\sigma)(2 \nu+5+\sigma) \mathrm{B}_{\nu+1} \mathrm{~B}_{\nu+2}\right]$
III. If

$$
\mathrm{U}(\xi)=\Sigma \mathrm{A}_{\nu}(s n \xi)^{2 \nu+\sigma . d n \xi ; ~}
$$

then

$$
\begin{gather*}
(2 v+2+\sigma)(2 v+1+\sigma) \mathrm{A}_{\nu+1}-\left\{(2 v+1+\sigma)^{2} k^{2}+(2 v+\sigma)^{2}-a_{0}\right\} \cdot \mathrm{A}_{\nu} \\
+\left\{(2 v+\sigma)(2 v-1+\sigma)-a_{1}\right\} k^{2} \cdot \mathrm{~A}_{\nu-1}-n^{2} k^{4} \mathrm{~A}_{v-2}=0 \\
(4+\sigma)(3+\sigma) \mathrm{A}_{2}-\left\{(3+\sigma)^{2} k^{2}+(2 v+\sigma)^{2}-a_{0}\right\} \mathrm{A}_{1} \\
+\left\{(2+\sigma)(1+\sigma)-a_{1}\right\} k^{2} \mathrm{~A}_{0}=0 \tag{13}\\
\text { and }(2+\sigma)(1+\sigma) \mathrm{A}_{1}-\left\{(1+\sigma)^{2} k^{2}+\sigma^{2}-a_{0}\right\} \mathrm{A}_{0}=0 \tag{14}
\end{gather*}
$$

If

$$
B_{\nu}=A_{\nu+1} / A_{\nu} ;
$$

2 See the references in Lambl's Hyidrodynamies, pp. $\$ 35$, sith editinn, $1 \times 2 \mathrm{~s}$. ive also Goldstein on Mathieu Functions. Trans. of the Cambridge Pbil. Sa:. Vol. xxxin. No. XI, pp. 303-88, 1987.
then

$$
\begin{align*}
\mathrm{B}_{\nu}=n k^{4} & /\left[\left\{(2 v+4+\sigma)(2 v+3+\sigma)-a_{1}\right\} k^{2}-\left\{(2 v+5+\sigma)^{2} k^{2}+(2 v+4+\sigma)^{2}\right.\right. \\
& \left.\left.-a_{0}\right\} \mathrm{~B}_{\nu+1}+(2 v+6+\sigma)(2 v+5+\sigma) \mathrm{B}_{\nu+1} \mathrm{~B}_{\nu+2}\right] . \tag{15}
\end{align*}
$$

IV. If

$$
\mathrm{U}(\xi)=\Sigma \mathrm{A}_{\nu}(8 n \xi)^{2 \nu+\sigma} \cdot c n \xi \cdot d n \xi ;
$$

then

$$
\begin{align*}
& (2 v+2+\sigma)(2 v+1+\sigma) \mathrm{A}_{\nu+1}-\left\{(2 v+1+\sigma)^{2}\left(1+k^{2}\right)-a_{0}\right\} \mathrm{A}_{\nu} \\
& +\left\{(2 v+\sigma)(2 v+1+\sigma)-a_{1}\right\} k^{2} \mathrm{~A}_{\nu-1}-n^{2} k^{4} \mathrm{~A}_{v-2}=0 \tag{16}\\
& (4+\sigma)(2+\sigma) \mathrm{A}_{2}-\left\{(3+\sigma)^{2}\left(1+k^{8}\right)-a_{0}\right\} \mathrm{A}_{1} \\
& +\left\{(2+\sigma)(1+\sigma)-a_{1}\right\} k^{2} \mathrm{~A}_{0}=0 \tag{17}\\
& \text { and } \tag{18}\\
& (2+\sigma)(1+\sigma) \mathrm{A}_{1}-\left\{(1+\sigma)^{2}\left(1+k^{2}\right)-a_{0}\right\} \mathrm{A}_{0}=0 \\
& \text { if } B_{\nu}=A_{\nu+1} / A_{\nu} \text { then it is equal to }
\end{align*}
$$

$$
\begin{gather*}
n^{2} k^{4} /\left[\left\{(2 v+5+\sigma)(2 v+4+\sigma)-a_{1}\right\} k^{8}-\left\{(2 v+6+\sigma)^{8}\left(1+k^{8}\right)-a_{0}\right\} \mathrm{B} v+1\right. \\
\left.+(2 v+6+\sigma)(2 v+5+\sigma) \mathrm{B}_{v+1} \mathrm{~B}_{\nu+2}\right] \tag{19}
\end{gather*}
$$

All the possible species and types of characteristic functions are included in the above as in each instance σ could be either one or zero.

