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Introduction.
The wave equation
1 9% _
A¢-F B 0

occurs widely and normal functions suitable for different boun-
dary conditions have been studied for a long time. In this
paper an attempt has been made to obtain and study the
properties of normal functions suitable for boundary conditions
over ellipsoids or other central quadrics. The normal func-
tions bear a relation to Lamé functions similar to that existing
between Mathieu functions and the circular functions.
During the course of this work, which was undertaken at
widely separated intervals and completed by 1929, a memoir
by F. Moeglich, dealing partially with the problem of obtaining
functions which could be used for ellipsoidal boundaries, was
published in 1927. The normal functions obtained by him
are functions of two variables. Ilis method simplifies much
of the preliminary work and does not raise the question
regarding the existenco of solutions for nonlinear integral
equations, which looms prominently in the present work.
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Also neither the methods employed nor the results obtained
bring out the analogy with the Mathieu and Tamé functions
as, e.g., the various specics of normal functions corresponding
to the species of Lamé functions.

The first section deals with the derivation of the differ-
ential equation in algebraical form and its uniformisation. The
boundary conditions arc also specified. In the form involving
Jacobean elliptic functions the fundamental differential equa-
tion is

—3%2— +(ag—a,k%en2f —n2k4santf)U=0
where n is a constant and a¢, and a, have to be characteristic
constants.

The next section is devoted to properties common to all
the characteristic functions. It is seen that the solutions can

be written in the form

(sng)"' (mg)“rSI (dué)q Y (sn2§)

where ¢ is an integral function of sn€ and oy, o,, and o, have
values equal to 0 or 1. The functions are therefore continu-
ously differentiable for finite values of snf. From the usual
form of the second solution of a second order differential equa-
tion in the normal form the symmetry character of the sscond
solution is found.

The second half of the section is concerned with ortho-
gonal relations. By the usual methods itis shown that the
characteristic constants are real so long as we deal with real
Cartesian space. The wave functions can be normalised. The
linear independence of the characteristic functions follows
easily. A third orthogonal relation that will prove of use is
also given.

Section III deals with integrals connocted with the equa-
tions. From an analogue to Whittaker’s integral for a wave
equation, the integral equations of the characteristic functions
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are deduced. The integral equations are non-linear. The
convention is therefore made that the solutions are always
dealt with in their normal form.

Then the actual form of the nuclei for the four species
and eight types are given. By ordinary methods the integral
equation can be solved for small values of n.

The method of stationary phase gives us the asymptotic
expressions for large values of snf. It follows simply from
the asymptotic expressions for large and positive values of
sné that the second solution behaves differently from the
characteristic functions,

The work involved is rather heavy for the calculation of
the functions. The method of Horn used by Jeffreys was
applied to the present problem for large values of n. It is
possible that this is the first application of the method for a
differential equation with two characteristic constants. The
method adopted in the section requires a slight explanation.
The condition for determining the various constants that
occur is first given and at the end a review is made by
comparing the asymptotic solution obtained in this section
with the one got by using the method of stationary phase.
This is possible ag the asymptotic expressions have a common
region of validity. Considering formally, the Horn and
Jeffreys method is a re-arrangement of the Hamburger
approximation about the irregular point. Probably this
formal relation may be extended so as to facilitate the identi-
fication of solutions in their variant forms. For large values
of n* no approximations of the third and fourth species have
been derived.

I. The fundamental system of confocal quadrics which
define the elliptic co-ordinates are taken here to be

1333“‘\"’3)‘1“31‘/(‘\'“"9}*“'39/\‘\—?1)
where

ty, Cg, C4 ATO reul, e >Cy>0y and eytegt 53—_-1].
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This choice saves symbols. The quadric is an ellipsoid,
a hyperboloid of one sheet or a hyperboloid of two sheets
according as A>e,, ¢,>A>¢,, or e, >N>c¢;. The co-ordinates
corresponding to the three quadrics are denoted by X\, p, v.
The ranges of values given above for them are useful. As is
well-known, the following relation holds:

#2=(A—¢y)(n—ez)(v—rcs)/(e3—cy)(cz—ey)

y2=(A—cg)(p—eg)(v—eg)/(cg—cy)(ca—ey)

22=(\—c))(u—cy)(v—e,)/(ey—ez)(c1 —ey).
Denoting for shortness

A: =(A—e;)A—eg)(A—cj3)

and similar symbols for other variables (g, ») and %.’ for the
sum of cyclically permuted terms, the wave equation

Ad—1/c2.9%¢/Dt2=0

reduces to
—4/a=) =N, [ 2,8, w-vd(a, 8¢/0 /a;\]
—1/c2.924/9t2=0. . (1.0)

Without loss of generality it is assumed that ¢ is propor-
tional to exp(ipt) and so we replace — 1/c*.0%¢/0¢* by p¢p*/c’.

The equation (1'0) becomes
=A, (k=v)0(A, 8¢/0N)/ AP A=) (n—V)(v=N$/4c2=0. ... (L.1)
The equation is separable and we may assume as usual that
the solution is of form A(A) M(p) N(v). The three functions

A (\), M(u) and N(v) satisfy the same differential equation
as for A; the equation is

A, d(A, dAJdN) [dA=(ay +a A —p2A3 /4c2) A . (1.2



ELLIPSOIDAL WAVE-FUNCTIONS 49

where g, and g, are arbitrary constants. A priori their values
are not known. They have to be restricted by a choice as
in the case of Mathieu or Lamé functions. In the problems
that we come across ¢ is of the nature of a varying potential or
like quantity. The simplest assumption would be that it is
gsingle valued in space. The derivatives of ¢ are of the nature
of velocity or force or the like. As we deal with finite magni-
tudes of these quantities, and much less frequently with
infinite values, we make the following restrictions. ¢ is a one
valued function of «, y, z with bounded derivatives everywhere
in the finite region. This would mean that A has to be one-
valued in (A\—e,)}, (A—e,)} and (A—¢;)? with one or more
factors of the type (A—e)t, (A—e;)t and (A—e¢g)t . It will
be seen later that apart from these factors the main function
is an integral function of any of the three quantities

A—c)t, A—ex)t;and (—ey)?

The equation (1.2) written in full is
A—e))(A=ex)A—cy)[d2 A JdA2+1/2,{1/(A\—e1) +1/(A—eg) +1/(A—es)}
dA [dX]

—(ap+a A—p2A2/4c2) A =0.

This equation has singularities at e, e, and ¢, with expo-
nents 0 and 1/2, and an irregular singularity at infinity. The
equation is therefore a confluent form of differential equation

with six regular singularities.*
The form of the equation suggests that

A=A=c) V2 A=)V A=) ALY

where o, o,, o3 could be 0 or 1, and A,(\) is some function of
A which is one valued and bounded and which in a variant
form will be shown to be integral in (\—¢)}, (A\—¢,)t and
(A—e,)t and the like.

* (f. Ta. Tnce., Ordinary Differential Fquations, p, 502,
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As every finite point except A=e¢,, ¢, or ¢; is an ordinary
point of the differential equation no such point could be a
multiple zero of A, unless the function is identically zero,
which case we bar out. The finite zeros of A, have to be
different from ¢,, ¢, or c; as otherwise the exponents at these
points could not be 0 or 1/2.

The presence of the radicals in the algebraic form of
the differential equation prevents an easy handling of it,
The limiting or boundary conditions are combrous for use.
This difficulty can be overcome by uniformising the variables,
The two possible forms of the equations corresponding to
the Woeirstrassian and the Jacobean elliptic functions are
both easily derivable and could be solved in a more elegant
way.

The invariants of an elliptic function (Weirstrassian)
are 80 determined that the semi-periods ,, w, ,;
(o,+ wy+w,=0) satisfy g(w,)=e,; (r=1, 2 or 8). The variables
a, B, y are found so that A\=¢(a); p=¢(B); and v=g(y).
The equation (1.1) becomes

3 [6(B)—%(y)] 0%p/0a?
aBy

—p*{8(B)—e()}{e() —8(a)}{e(e) —€(B)}¢/c2=0. o (1.8)

This equation gives rise to a one-variable equation in the
form

d? Alde?+4{p?[c?.[8(a)]%2—a,€(a)—a,}A=0. - (1.4)

where a;, q, are arbitrary constants which vary according to
the form of the equation employed.

The Jacobean form is obtained by taking
A=8(a)=e, = (cy—e3) k? 8n¥{
p=8(B)=c,;—(c,—eg) k® sn?y o (1.5)

v=8(y)=e,—(c, —c3) k? an?
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where k2= (¢, —¢,)/(c; —¢3);
and k'2=(cy~—e;)/(c;—¢3)
which is possible if a=(£+iK/)/ ¥ (¢5—¢;)

with similar relations for 8 and y. K'is the quarter period
in the usual notation.*

As the explicit relations between the Cartesian and the
Jacobean elliptic co-ordinates may be useful they are collected

below :
z=q/K dn€ dny dn{

y=—igk? [k’ cn€ cny cnf oo (1:6)

z=—iqk? snf snn sni
Whel‘e q= +(8]—33)-

The equation (1.1) reduces to
Ei_(sn%—m%) 0%/£0?
&n
+n2k4(sn2f—sn2y) (sn2n—sn2) (sn2{—sn2f)p=0 ... (L.7)

where n=pq/c. The corresponding single variable equa-
tion is
d2U /A2 + (ag—a,k® sn2 ~n2k* sntf)U=0 .. (L8)

This is the generalised Lamé equation as denoted by L. Ince.
‘When n=0 it passes to the usual Lamé form and with proper
conditions leads to Lumé functions,

The limiting conditions for the arbitrary constants are
that they should be so chosen that

(i) U or A is a doubly periodic function of £ or a as the
Jacobean or the Weirstrassian form is used.

(if) U or A has bounded derivatives at all points except
possibly at £=iK’ or 2K+iK’ and congruent points in the
Jacobean form or a=0 in the Woirstrassian form.

* Hee, 6.g., Whiltaker and Watson, Modern Apalysis, p. 501.
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We may confine ourselves to the Jacobean form as being
simpler to deal with in spite of the fact that the formulae are
unsymmetrical. When n=0 the above conditions would lead
to the Lamé functions, with a, =I(I+1) where / is an integer
and a, has one of 2]+ 1 discrcte characteristic values. In the
memoir by Moeglich* already referred to he has proved the
existence of the characteristic constants with the help of
linear integral equations for the above equation. And they
correspond to the characteristic constants of Lamé functions.

II. 1Itis necessary to have and to utilize the general
properties of the functions which can be derived without
evaluating their particular values.

A comparison with the algebraic form or a simple exami-
nation of the Jacobean form of the equation shows that the
form of the solution should be

U(g)=(nd)”* (cn)72 (dnd)”® y(sn20),

where o, o, or o; may be O or 1, and the nature of yis to be
determined. By the limitations imposed already its deriva-
tives exist at all points with the possible exception of points
congruent to £{=iK’ or {=2K+iK'.

As the differential equation is unchanged by changing
Eto —§& U(—¢) is also a solution of the same differential
equation. Hence it is enough if we consider solutions of type

(8n)7 1 (cn§)” 2(dng)” 3y (sn2¢). e (2.2)

If the characteristio constants a,, a, be real and n? is real y
may be taken to be a real function of the argument, i.e.,
sn’€.

Let us consider the solution valid about the point £=0.
Here ¢ (sn’€) can be expanded as a power series in terms of

* F. Moeglich, Aonalen der Physik, Band 83, p. 609; Beugungserscheinungen an
Korpern von ellipsoidischer Uestalt, 1027.
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sn’é. Ordinarily this power series ceases to converge as the
singular points are approached.

As Y(sn’é) is unchanged when £ is replaced by (2K -—¢§),
K=¢is a point of symmetry for the function and as the deri-
vatives of U(£) and hence y exist unless | sn§ | is infinite ;

80 dy/d{=0; at £¢=K.
Similarly dy/d¢=0at ¢=K+iK-.

Any solution of the differential equation (1.8) about the
point £=K may be written as

AF(1—62)+ By (1—62.)Fg(1—62)

where ¢ denotes sné and I, F, are power series of their
arguments.

— 0]

Hence w(62)=6 " (1-62 "% (1-1262)""'* x [AF,(1-062)

+ By (1-62)F,(1-62)].
As apldE=w (1—62)(1—k262).dy/d6
and dy/dé=0 at =K or §=1,
it follows that A=0 ifoy=1
B=0 o9 =0,

i.e., y considered as a function of ¢ or sné has no singularity
at ¢ =lor £=K. Similarly ¢ has no singularity at £=K
+iK'or ¢ =1/k. But  can have no other singular points for
finite values of | sn€é | . Hence  (sn*é) is an integral func-
tion of sné. ¢ can similarly be considered as integral func-
tions of cn€ or dngé. This property is useful.

A second solution of the differential equation could be

taken to be as
U(g)sfdt / {U[t) }"’.
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It follows easily that this would have the form

8™ ()7 (@) T gy (9. . (22

where V¥ is not necessarily an integral function of sn’¢. But
from the form of the solution, it follows that when £ is real,
the origin (§=0) is a point of symmetry for one solution,
while it is the point of anti-symmetry for the other solution of
the differential equation. Also when £=XK+io, i.e., when £
lies along a line parallel to the imaginary axis through ¢=K,
the point £=K is a point of symmetry for one solution and
the point of anti-symmetry for the other.

Orthogonal relations. Corresponding to the two charac-
teristic constants of the differential equation two important
orthogonal relations are obtainable.

For clearness U(¢ | a; a,) will be written to show that g, g,
are the two characteristic constants.

Let us consider the case, when the constant g, is the same
for two characteristic functions and the other constants are
a, and a’y.

The respective functions are U(¢ | q, a,) and U(£ | q, a'y).

From their differential equations it follows

S{U(E | 210%) 3 2U(£ | a4a0)/ 92~ U(£ | 04a°) 32U | ﬂlﬂ'o)fa&’}

SU(E | aya0) U | aya’g)dE=0 - {2.3)

where the integrals are taken over the same range. The first
integral vanishes when the initial and final limits of integra-
tion differ by a whole number of periods which do not contain
points congruent to iK' or 2K + iK', Tence if a,%d’,

SU“: I “1"‘1]U{£ | ﬂla'u)‘iE=OJ
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the range of integration being from ¢=§ to §=§ +4mK+
4m'iK’ where m and m’ ave integers. Preferably we may
take the whole range of integration to be from —2K to

+2K.

Now let us consider the case when the characteristic
constants are all different, and let a, ¢, and «',a’, be the con-
stants. Now the product function U(¢| aya,)U( | aya,)
satisfies the differential equation

{92/0£2-92/072}U(E | a;0o)UQy | aya,)
—{a k2 +n2kA(sn2& +sn2y) }(sn2€ —sn2n) U() U(y) =0.
Hence it follows that

Ul | a,a0)U(y | a'10'0)[U(€ | @'10'0) B 2U(E | a1a0)/ B €2
=U( | a,00)0%U(£ | 0'ya'y)/ BE2]
=U(£ | ay00)U(¢ | a'10'0)[U(y | a'10'0)D2U(n | aya,)/ 07?
~U(y | a;00)02U(y | a'10'y/ 01?)]
—k2(ay—a'))(en2E—sn2)U(£ | ayag)U(y | a,a0)U(E | a'100)U(y | a'ya'p)=0.
Integrating with respect to £ and n so that the limits of
integration of each of these integrals differ by a whole number
of periods, the first two terms integrate to zero. Of course,

these ranges exclude points congruent to iK' or 2K 4 iK'. The
ranges for the two integrals need not be the same.

Hence
(ay—a')f§(sn2E—sn2)U(€ | ayao) Ul | a1ao)U( | a'ya’p) x
Uy | a'ya')dédn=0.
The anti-symmetry of the integrand with respect to & and
m prevents us from taking congruent ranges for the two
integrals. The integration ranges may be mutually perpendi-

cular to each other, not passing through /K’ or 2K + /K. The
convenient choice is for & from —2K to 42K, and for n {rom
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K—2/K' to K4+2/K'. If a,%d’, the integral is zero over these
ranges. If a,=a’, but a,Fa’, from (2.3) it follows that the
integral is still zero. Hence

§(sn28—sn2p)U(E | ¢ya0)U(n | ayay) U | @'y0%)U(n | o'ya’y)dédn=0...(2.4)
if aygka’y; orif a;=d'| but ayzkd',,.
From the above equation it can easily be deduced that

in the infinitesimally narrow strip where »’and sn’¢ are real,
the characteristic constants are real.

If possible, let a, and a, be complex characteristic values
and let @ and @, be their imaginary conjugates. From the
differential equation it follows that if y, and ¢, are real func-
tions of their arguments such that

U(€ | ayao)=(sn§)™ (cn§)™ (dnf)* {¢, (sn§) +iy(sn28)},

the differential equation with constants @, and a, has a
solution

U | @yd0)=(snf)™ (cnf)” (dnf)™ {y, (sn2§) —iyg(8n2§)},

and as this function satisfies the conditions of a characteristic
function, the constants @, and @, are also characteristic cons-
tants, From (2.4) it follows that

(@y—=a,)f§(en2E—sn2n)U(€ | a1a0)Uly | ¢a0)U(€ | @,80)U(y | @y80)dEdn=0.

-2K<{<2K; and 7 is from K—2iK' to K+2iK';

but U(¢ | aya,)U(¢ | (’L,&d:{&n&)ga‘ (cng)%‘ (dns)gcrs +
{[¥1(8n28)] 2+ [Yo(sn28) ]2},

this quantity has a constant sign (positive) in the range
—2K<¢<2K. Similarly, U(y | @,a,)U(y | @,a,) preserves the
same sign throughout its range, positive, if o,=0 and negative,
if o,=1, and (sn*é—sn’p) is negative throughout the ranges of
£ and 7. ITence the value of tho integrand is real and has the
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same sign throughout the ranges of integrations. The factor i
is introduced owing to the fact that the range of integration for
7 is parallel to the imaginary axis. It follows that unless the
value of the integrand is everywhere zero (2,—a,)=0 or a, is
real. Wae definitely bar out the null solution. Similarly from
the other orthogonal relation it can be proved that g, is
also real.

Let us consider the integral
§§(sn2E—an2y){U(€ | a1ao)Uln | aya)}2dédy

taken over the ranges—2K<¢<2K and n from K-—-2:K' to
K+ 2iK',
As before
{U(¢ | a100)}2=(6n)}" ()™ (dnf)®™ [y(a28))?

¥ being a real function of sn’¢ has a positive sign in the range
of £ And {U(n | a,a,)}? is also real in the integration range for
7 and preserves the same sign positive, if o,=0 and negative,
if o,=1, and (sn?(—sn’p) is negative and hence as before the
integral cannot be zero unless the characteristic functions
identically vanish. This last possibility we ignore. Asthe value
of the integral is not zero its value could be fixed arbitrarily.
Owing to the presence of an imaginary factor it would not
be possible to normalise the integral to unity and yet pre-
gerve the real nature of y(sn’¢) in the required range. The
normalisation which commends itself most is the one when
the value of the integral is 4i. 'I'he ambiguity in signs is
necessary as cny is purely imaginary on the line K+io,
This causes no confusion.

The ranges of integration being the narrow strip sn*¢ and
n? real, it is not possible to study the characteristic constants
when sn*¢ is complex. The work would be prohibitive. All
the quadrics which are real in the Cartesian co-ordinates are
fully accounted for by the real values of sn’¢. Of course

8
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this would be no reason to treat the complex values of sn?¢
with indifference, In fact, it is only by considering the
asymptotic nature of the characteristic functions when sn?¢
is large and real, i.c., when the quadric has all its axes
imaginary, that we can deduce the difference between the two
golutions of the differential equation.

The corresponding orthogonal relations are well known
for Lamé functions and form the basis of Liouville and Klein
expansion of an arbitrary function in terms of Lamé pro-
ducts.

Finally, we need a third orthogonal relation. Considering
the differential equations for

U(£ | a,0; Uln | a1a0); UR | a1a0)
the a, a,; a, a’, being two pairs of characteristic constants with
one common member q,; and writing for simplicity

F&, 7 O=U¢ | a,a’0)U(n | a,a0) UK | aa0)

we have

2 2 2
onz =120 Q75+ en2—am29) G5 + onag—anzp) JiT

+n2k*(8n2f —sn2y)(sn2n—sn2{) (sn2{ —sn2f)F
+(a'o—ao)(sn2n—sn2)F=0. ... (2.5)

Let f(én{) be a symmetrical, doubly periodic bounded and
continuously differentiable but not necessarily separable
solution of (1.7), i.e.,

82f

=
&nt (8n%n—8n2) 8&'5

+n2kt(8n2f ~an?y)(sn2n—sn2{)(sn2f —an2L)f=0. ... (17b is)
By the usual process it is seen that

(7' —ag) S SEEqD[(Enl)(en®n — en20)dEdndl =0 ... (2.08)
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ranges

=K< E<2K; —2K<<?K and ¢ from K-2iK to K+ 2iK".
Hence if a's=a, the integral is zero.

The first two orthogonal relations provide us with proofs
of linear independence of the various combinations of the
characteristic functions.

For a given a, and different values of g, all being
characteristic constants, the functions U(£ | a,a,) are all linearly
independent. It may be recalled that for a given finite value
of a, the number of possible a';s are finite. If the linear
independence did not exist we would have

U¢ | ‘11“0)‘;&?' A(@,0'0)U(£ | a,a'g)
[+]
3’ denotes that in the summation with respect to a,, a,’=a,
is excluded. Multiplying by U(£ ]| a,a,”) and integrating for
£ over a whole number of periods as, ¢.g., ~2K to +2K it is

found that A(ag, a’,)=0 for all values of a’,, whence the
theorem follows,

Let
U(£ | a;a0)U(n | aya,)
=3 A(a'1a'o)U(£ | a'40'0)U(n | a'ya'0)
a'ya'y
3 ' denoting that in the summation, a,=a’, and q,=a’, are
excluded, and that only a finite number of g, and q,s are
taken.

Multiplying by
(en®L—sn¥)U(£ | a"10"5)U(n | a’ya"y)

and integrating between the limits — 2K <£<2K’

and 7 between K~—~2iK' to K+ 2K’

we obtain A(a’, a’y) =0 for all values of a’, and a’, included in
the summation.



60 8. L. MALURKAR

Let f(én{) be defined as before and let
if§1&n)(an2n—en2)U(y | a1a0)UQ | ayaoddndi= + B(¢ | a,a,)
—2K<n<2K and { is from K=2iK' to K + 2iK’

it follows that over the same range

§5{fEnD) =B(€ | a1a0)U(y | a,a0) U | aya,)}(sn2y —sn2y)
x Uy | a180) U | ayap)dndi=0.

The symmetry of f({7{) and a repeated application of (2.6)
shows that B(¢ | a,a,) =A(a,a)) U(€ | a,a,). The 4 are used as
before to keep the functions real; —ve if there be a factor of
type cné in U(€ | a,a,) and +ve otherwise.

It is possible to break up f(é9{) as a sum of terms like
A(a,a)) U (€| a,0,)U(n | a,a,) U(L | a,a,) and a remainder which is
orthogonal to any finite number of characteristic functions
U | a;a0)U | a,a,) as we like.

If f(&¢) be representable as

(8n€) *(cn)*¥(dng)™ x a function of an2¢;

o, 0, OF o being O or 1, all the A(a,a,)’s which do not corres-
pond to the particular characteristic functions with the same
factor

(ené) " (cn) (dn§)™

are easily seen to be zero. As it is possible to arrange any
f(én0) as a sum of functions of the above form, the ambi-
guity due to 4 signs need not trouble us.

III. (a) Integral Equations.* The integral equations for
the characteristic functions, which are naturally more
complicated than usual, may now be deduced.

* Communicated first at the Bangslore Bession of the Conference of the Indian
Mathematical Bociety, April, 1926.
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The method adopted here is analogous to the one used
by E. T. Whittaker in the case of Mathieu functions.* We
start from a modified expression of his general solution for
the wave equation

2
Ad-1/c8. 2.2 =0

when the solution is bounded at the origin. Whittaker’s
solution is

§§F(z cos u ccs v+ cos u 8in v+ 2 sin u+ct; u; v)dudv.

As we are using the Jacobean elliptic functions, the modified
expression can be put as

§§F (k_fl x&nudnv+%§ ycnucnv + kzsnusnv +ct; u; v) dudv ... (3.0)

ranges
—2K<u<2K; v from K—2/K’ to K+ 2/K'.

The moduli k¥ and k&’ are at our disposal. It may be supposed
that they are equal to the values used in the previous sections.

If the solution of the wave equation in Jacobean elliptic
functional form of the last section be a particular case of this
integral, i.e., if

U(€ja,a0)Ulnla,a0) Ula,ao)ezp(ipt)

a particular value of this integral, it may be supposed without
much sophistication that in the above integral the form of
F(X, u, v) may be exp(iX/c) 8(u, v), where S(u, r) is some
function of u and v» only.

* E. T. Whittaker, Proc. of the Vth International Congress of Msthematics, 1913,
Cambridge, also Modern Analysis. Whittaker and Watson, pp. 407 et seq.
t E. T. Whittaker, Math. Annalen, 1902, Vol. 57, pp. 353 et seqg.
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Replacing the values of =z, y, z by their equivalents in
terms of &;{ we obtain.

U(fiaya0) U 2,00)U{a,a,)

=§S'c.rp [fn {-}-{}5.] dnu dnv dn dny dng
.3
+ B cnuene ené cny eni

2

—ik3snu snv sné snn sni }:'S(u, v)dudv .. (3.1)

The integration limits for « and v are the same as before. As
&y are independent of each other, any two of them may
assume arbitrary values., Omitting all constant factors
we get:

for
1=K; {=0
U()={fexp(in/K dnf dnu dnv)S(u, v)dudv;
for
p==K+i1K'; {=0
U(¢)=§fexp(nk? /K cnf cnu cnv)S(u, v)dudu;
for

n=K+iK'; {=K.
U(f)={fexp(nk2sn snu snv)S(u, v)dudv.

These three integrals suggest to us the types met with.
We may replace the various exponential functions by cos, sin,
cosh, and sinh functions, according to the requirements of
symmetry about the points 0 and K. Though it is possible to
deal individually with the three integrals, a slightly gene-
ralised form simplifies much of the work. It is evident that
every one of the exponential or cos, sin, cosh, and sinh
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functions is a symmetrical in {uv, doubly periodic, bounded
and continuously differentiable (except at points congruent to
iK' and 2K +iK') solution of

?uv (sn2u—snv) %-?;

+n2k4(sn2f —8n2u)(sn2u ~an2v)(snv — su®f)f=0.

The exponential and circular functional solutions of the
integrals satisfy exactly the same conditions postulated for f
on page 58. The additional condition of symmetry about
the point 0 and K may be introduced as it is useful.

‘We may also write

(sn®u—sn2v)S(u, v)
instead of S(u, v).

Hence the integral can be written as*
V) = §f(Euv)(sn2u—sn2v)S(u, v)dudv
the limits of integration are as before
—2K<u<2K and for v, K—2iK' to K+2iK'.
e d2U(Elayao)/dE2 — (n2kAanA¢ +a, k2n2E —ag)U(Ea,a0) =0

and supposing that the conditions of differentiation under the
integral sign are satisfied we get

[ §(en2u—sn2v)S(u, v){D2f/ D2 —(n2h*antf +a,k%8n2f —a,)f}dudv=0.

Utilising the differential equation satisfied by f(éuv) this
may be written as :

§§S(u,v)[(sn2v—8n28){D 2/ B u2—(n2k*snu+a,k2sn2u—a,)f}

+(an2€ —an2u){ B 2f| Bv® — (n2k*sntv +a,k2en2r —a)f}]

X tf!ldt}_:f).

* 0f. L. Ince., loc. e, p. 197.
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And by partial integration we have

§ifléuv)[(sn2v —sn2¢) (82D u2—n2kentu—a k?sn2u+tay)S(u, v)

+(n2€—snu) (92 Bve—n2kisntv—a,k%snv+ay) S(u,v)] x dudv.

+ de (sn"’v—-sn%) (S of/u~—f _gT[S) ]' .

o (i) (585 -132)),

= 0.

This equation can be satisfied if in particular S(u, v) is doubly
periodic, bounded function of type U,(u) U,(v) where

d2U, (u)/du? — (n2k4tsntu+a,k2sn?u—a,) U, (u)=0
and
d?U, (v)[dv® — (n2k*sntv +a,k3sn2v—ay) Ug(v) = 0.

As g, and q, are characteristic constants, if it be assumed that
two characteristic solutions cannot exist for the same pair of
characteristic constants, U, («) and U, (v) may be identified
with U(u | a,0,) and U(v | aya,). Otherwise we can also
proceed as follows:

The symmetry character of f(éuv) is the same as that of
U(€| aia,) for the variable £ (It is assamed that we use f(£uv)
in the cos, sin, etc., form). Hence if we assume that U,(u)
is equal to AU(una,) + BV (ula,a,) where V (ulaq,) is the
second solution of the differential equation, and as the ranges
are symmetrical about () and K, and the symmetry characters
are different for the two solutions at each of these points, it is
seen easily that the second solution need not appear in the
integrals. Bo we obtain an integral equation in the form

U(§la,ay) =const ffU(ula,a,) U(v | ayay) (sn%u —sn%v) f(uv)dudv ... (8.8)
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the ranges of integration which have to be different for the
two variables are as before

-2K<u<<2K ; v from K-2/K' to K+2iK'.

The integral equation is not necessarily the most general one
possible, but it is sufficient for our purpose. The constant in
the integral equation is indefinite as the latter is nonlinear,
The value of the constant may be made definite by assuming
that if U (£) is a possible solution, then the followiug relation
should be satisfied :

i $§{U(u) U(v)}? (sn2u—sn?v) dudv= £1.

In other words it may be said that the solution should always
beused in its normal form. The ambiguity of signs is
retained as before to keep the functions real and need not
trouble us. Corresponding to this identity the integral
equation may be written as

U€)= +ic §§ f (buv) (sn2u—3sn2v) U(u) U(v) dudv,
where ¢ is a constant of the integral equation, It is found
that the integral equation has solutions which satisfy all our

previous conditions only for certain discrete values of c.
The integral equation in the Weirstrassian form is easily

obtainable as
U(a) =const §fUB)U(y) {8 (B) -8} ¢ (aBy) dBdy ... (3.4)
B from (w) —wy) to (v +wg)
y from (vg—w,) to (wy +wg)
where ¢ satisfies the following differential equation and
where ¢ is symmetrical, doubly periodic and bounded and has
bounded derivatives,
5y [8(8)-2(0)] 8%/ 802
- [e(B) -] [8() —8(a)] [8(=)—R(B)] p¢/c?=0,
9
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i.e., the same wave equation in the Woeirstrassian form
with which we started.

In both these integral equations the nucleus satisfies,
except for a trivial factor, the partial differential equation from
which we started. This is analogous to the integral equations
for Mathieu and Lamé functions.*

ITI. (b) Till now the integral equation has been treated in
a general form. It is easy to specify the nuclei. We have
eight and only eight distinct forms corresponding to the four
species of Lamé functions or in other words to the various
possible modes of symmetry character about the two points 0
and K. As the characteristic function consists of two portions
one being

(071 (cnf)”? (dng)”3

and the other an integral function of sn’¢ a tabular arrange-
ment of the first factor may be useful.

an £, sn fen €,
1, en €, en £ dn €, sné cnf dné
dn &, dn £ en £,

The corresponding integral equations are :

factor 1.
U(é)=ic §§ cosh (nk2anf snny sn {) (en2y—sn2() U(y) UQR) dpdt ... (8.51)
factor anf.

U(£)={c §§ sinh (nk3an¢ snn nl) (sn2y—en2Q) U(y) UQ) dgdl ... (8.52)
factor en €.
U(¢)=—ic §f sinh (nk?[K.cn cny cnl) (sn2y—en2l) Uy) U dndl
(8.58)

* R.T.Whittaker, loc. eit. and Proc. Lond. Math. Boe. (2), Vol. XIV, pp. 200 e, aeq.
Bee alsu Modern Annliysis, p. 664,
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factor dn §.
U() =icf fsinn/K'.dng dny dnl)(en®y—en%) Uly) UQ) dndi ... (8.54)
factor sn £ onf.
U(§)=—icf foné ony cn, sinh (nk%sng sny snf)(sny—sn%) U(y) U dydg
(8.65)
factor cn £ dn ¢.

U (§) =—ic §§ dn & dny dnl sinh (nk?2/k'. cn ¢ cnn enl)(sn2y—en2()

xU(y) UE) dndf ... (8.56)
tactor dngent.
U(€)=ic ffsn§ sny snl sin(m /K .dng dnn dnl)(sn2n—an2)Un)U(Q)
dndl ... (3.67)
factor snfenfdnf.
U(f)= —ic [fsnf snn enl cné cny cn{ sin (n/k.dng dnn dnl)
(8n2n—2n2y) U(y) U() dndl ...(3.58)

In addition every characteristic function satisfies the
normalising condition that

{ [[(en®n—an2)[U(UQ)]? dnd{= *1 e (3.6)

according as the characteristic function has not or has a
factor of type cn(.

The limits of integration are same for all the integrals.
-2K<5<2K; and { is from K -2iK’ to K+2iK.

‘We might of course make the ranges smaller owing to
symmetry considerations.

The integral equations can be solved in the usual fashion
for small values of n and sn’¢., An example is given for the
function which reduces to a constant when »n is zero.
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We assume the following expansions in powers of n:
U ()= {Bﬂ'/ka)u}{l+?L2U2(E}+TI‘U4(£)+... Hil+n2bg+ntb, +... )
(Brc/k2)"1= (Srr/k?]—% (T+n2ag+nta +nlag+... ); v (3.7

afte r substituting these values in the two integrals we obtain
the following equations : —

{Ug()+ag+b,)
=ik? [8r SS;an!wns;){L"“_.’g”M +Uyln)+Uy) }J'Jdi

2by=ik2[8x [f(an2n—8n2{) {Uy(n)+ Ug(y)}dndl.

U (f)+(ag+bg)Up(é) +a,+agb,+a,

k8sn4f snty ant
i

=ik?[8x[f(sn2n—sn2{) [ Y

kt an2{ an®n an?2{
21

+{Us() + U0}

+ Uy} + Ugln) UsQ)+UL(0) :ldndi-

nes (11} (11}

These equations lead to the following values provided
we assume that U,(€), U,(€), etc., bave no constant term :

Uy(€)=k28n2¢/6; ag=(1+k2)/18=b2.
U () =K*an4E /514 (L +E2)k2.54.8n3¢.

Much of the work is reduced by using Legendre’s
equality ;
EK'+EK-KK'=r/2
in the usual notation, or in the integral form as used here

i [f(an2n—en2)dnd{=8x k3.
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III. (c): Asymptotic Expansions for large values sné).

It is possible to obtain the asymptotic expansions for
characteristic functions with the help of the integral equations
for large values of |sn§j. At present we shall confine our-
selves to real values of sn’¢, In the integral equations the
nucleus is a rapidly oscillating function if sn’¢ is large and
negative. The method of stationary phase introduced by
Kelvin would be necessary to evaluate the integral. When
sn*¢ is large and positive we deal with exponentials of real
quantities and simpler calculations lead to the asymptotic
expression.

For the purpose of this subsection it may be assumed
that the values of the characteristic function for small values
of sn*¢and the values of the characteristic constant are known.
The integral limits may conveniently be takenas 0<5<K and {
from K to K+4iK' and suitable factors of 2 are introduced.

Let us consider the first integral equation

U(§)=16ic ffeosh (nk%sn§ snn anl)(sn2n—sn3)U(n) U(Hdnds.

The points sny=1 and "sn{=1, or sn{=1/k are station-
ary points. Of these it can be seen that owing to the factor
(sn'p-—sn’() the dominant term of the integral would be
contributed from the neighbourhood of the point smp=l;

sn{=1/k. The line of integration for { may be divided into

1+2 | so that the contributions about

the two stationary points may be considered separately. The
integral is therefore

two sections at sn’({=

K +iE'
lﬁiorj cosh (nk®sné snn sn)(sn3n—en®) U(y) U({)dnd{
0 JE+iG

K +4G
+ lﬂicSKS cosh(nk3en¢ sny sn)(sn?y—sn2)U(n) U Qdnd{
0JE

=1, +I;,  Where sn%(K +iG)=(1+k%);2k2.
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Let us consider the first integral I, In the integrand,
(sn®n— sn’{)U(n)U({) is bounded and has limited total fluc-
tuation in the interval of integration 0<7<\K; { from K+iG
to K+4:K', the singularity of the term being at 5 or {=iK'.
Let us introduce new variables so that

snn=1-k2p/2; sni=1[k. (1-k'2(2/2)
Then the integrand becomes
cosh [nk sng(1—Kk'2p2/2)(1~k'272/2)]¢(p, 7)
% [(1=K'2p2/4) (1+k2p2—k2Kk'2p* [4) (1—-K'2r2/4) xi
(1=724+K274/4)] ¥ dpdr.

where ¢(p, 7) is the funcfion obtained by the above trans-
formation on (sn*n—sn*() U(n)U({). The new ranges of inte-
gration are

0<p< V2. [K; 0<7 <1 [g{1+ v (1+k2)/2}.

It can easily be seen that in the ranges of integration
[(1—k2p2[4)(1+k2p% —k2k'2p% [4)(1 = K'2r2 [4) (1 =72 + K 2r4[4)] ~}

is bounded and has limited total fluctuation. Hence the inte-
grand satisfies the condition necessary for the application of
the method of stationary phase.*

If further we introduce the variables so that

p'2+r’3 =P2 +18 _k'ﬂpzrﬂ;g

O(p, 1) =1
a(P'r r')

the integrand can be put in the form
cosh [nk anf{1- Eﬁ: (p'9++'3)}] F(p', r')dp'dr

* G. N. Watson, Bessel Funcutions p. 197,
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where F(p'r’) is a bounded function with limited total fluc-
tuation. The actual value of the integral is deducible with
the help of Fresnel’s integrals

con rx2 doe = —-!_— .
o SiD 2,2
The second integral may also be discussed in a similar

fashion.
The leading terms may be written as

' ; nk sin v [k
I . 16ck */kﬂU(K)U(KwK*)[ e

+{ 14+K2[k?/2 +U’(K)/U(K]]} —‘*-fﬁ’% (@k/ok2)"2

cos { v/k.(l— k’ZK"’ )+:r‘/4 }
+{1-(K*—G)2 (§+U”(K+iK’)/U(K+iK') )}ﬁ“_m(m/vw)v 2
Cos {v/k.( I—Iﬂ%’—:——g)g)+ 314}}

I, . 16 c{UK)}3 v /2. (/oK) |2

[K sin {u(l—"'if"’ )+sr/4}
-G sin {v( —"'ZGQ_)-!-R/:; }]

where iv=nk’snf; and v is supposed to be positive.

Both the integrals are taken up to v~ %, The dominant
term, of order v™*,

= 8rc U (K) U (K+/K)) &”;"HE ;
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We can also find the asymptotic value of the characteristic
function when sné is real and large. As far as physical
applications are concerned it is unnecessary as it corresponds
to a quadric with all its axes imaginary. But it proves
useful for the demonstration that the differential equations
have only one characteristic solution. It is sufficient to
derive only the dominant terms.

Let sné be positive. In the integral
18icf§ cosh (nk? sn¢ snn snl) (sn2y—8en2) U (y) U () dndt.
nk® sn€ snn sn{ has a maximum value equal to nk sn§. We
can write the cosh expression as a sum of two exponentials,

The term with the factor exp(—nk® snésny sn{) is seen to be of
a far smaller order than the term with the factor

exp(nk? sné snn snl).
In

U (§)=16ic exp (nksnf) §fexp(—nksné) x-
cosh (nk? gng snysnl) (sn2y—sn2{) U (n) U () dydg

the important contribution is from the neighbourhood of
7=K; {=K+iK and very simple calculation gives the
leading term as

82C
k2

. exp(nksnf)
U(K)U(K +iK") e

When snf is real and negative we use the other exponential
term which we neglected in the above case, and we obtain a
similar dominant term.

It is sufficient to give only the dominant terms for the
other fuctions when sn*¢ is large and negative.

factor sn€ v =nk’sné.

16 ck'3 k3. U(K)U(K +iK)" 80 v/k
2uvk'?
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Factor cn 82 (ke  omitting all constants
ncn

Factor dn  8in (ndnf/k)/ndné
Factor cn  cnf sin v K, /4 sin (v—vK2/4—x/4)/v3
where v=nkenf.

The other functions are not given here as they are quite
similar. 'When sn’¢ is large and positive, i.c., £ is on the
line iK' it would be convenient to express all elliptic functions

in terms of sné as | sn€ | — | cné | = | dné|. For simpli-
city, we may suppose that sn is positive, without losing the
generality.

The characteristic functions of the first species have the
asymptotic form leaving off all constant factors :

exp (nk anf)/sné.

Second species :
ezp (nk snf)/en.

Third species :
exp (nk sng)/ v enk .

Fourth species :
exp (nk snf).

Let us consider the value of the function on the line
iK'4e. Let € >0, and be small. All the functions have the
dominant term given by an expression of type exp(nksn¢).
(sné)~™® where s is some constant depending on the species.
The corresponding asymptotic expression for the second
solution of the differential equation would be given by

¢
Vi§)=U d ®
(®): (5}5,-1”0 U}
10
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where 40 is put to show distinctly that snf is large and posi-
tive. The behaviour when sné is large and negative could be
obtained from considerations of symmetry. The order of the
above integral can be obtained as

V(&) . const. exp (—nk sn¢) . (enf)2-°.

This asymptotic expression for the second solution is bounded
as sng tends to +oo while all the characteristic functions
become infinite for the same values of sné. Hence the second
solution of the differential equation must be falling in a
separate category, quite apart from the characteristic
functions.

IV. Asymptotic expansion when n is large.

The methods developed by Horn and Jeffreys* for the
determination of the asymtotic solutions of differential equa-
tions have been so fruitful in many instances that it appeared
worth while to apply similar methods in the present investi-
gation, and obtain asymptotic expressions for large values of
n®. It may be remarked incidentally that the calculation
involved in this method is considerably less than for the other
methods.

In d2U/d¢?—m2k*snté4a,k2en2¢—~as)U=0
wWe assume
U=ecxp (nX). Y {14f,/n4fa/n24...cceeee } —. (4.10)

where X; Y; f,; f,;......are functions of ¢ only. We also

assume that
¢y =a_gn?+a_n+tagtajntag/n. .
2o =R_gn?+B_1n+By+B,[n+Bo/n?.........
(4.11 £ 4.12)

* Horn, Math. Apnalen, Vol. 52, p. 342, 1899, Jeffreys, Proc. Lond. Math. Sec.,
Vol. XXIII (Ber. 2), p. 428; see alsa Goldstein, Trans, Rhil Soc. of Cambridge, 1937,
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Substituting in the differential equation and comparing
the coefficients of the powers of n, we have the following
equations :

X2 =EktsntE—a_ok2en2é4L_,=0; (4.21)
2Xry!+Yx*'_(Q_lil.f.‘sn'.!f...ﬂ_l}l'=0; (4.22)
Yu+2er!r‘ - (an.[{'.’sug‘f_.ﬁ'u)yz(); {4.23)

where the primes denote derivatives with respect to ¢ The
first equation is solved by choosing a_, and 8., so that X is
doubly periodic. The other equations are then treated
similarly.

From (4.11)

X' = t5~/ (Ttsnté+a_ok2sn2é—B,)d¢E.

It is seen that X has three and only three forms when it
could be doubly periodic. Each of the three forms leads to
an asymptotic expression and to corresponding constants

For X= 1k sné;

X2 —Ltanté+ k2(1+ E2)sn2¢—-k2=0
. } (4.31)
Bo a_pg= —(1+Ek2); B_o= —k2
For X= tikené,
} (4.32)
a_g= — 1; ﬁ—- |
For X= 41{dn¢
} (4.33
G.p= —kB; fB_g=
From (4.22)
log {YX"%} —4§(a- k28n26—B_,)d¢ /X! =const. ... (4.41)

We may choose the most appropriate constant by its
simplicity. Its value multiplies the whole function by a
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constant, and hence would not be very important for the
form of the asymptotic expression.

If X= 4ksné
Then
log [Y(cntdnt)H

= 5k [a-1K? = B-y) Tog{(1+8ng) ene}

= (a—y =B-1)k log {{1+ksn§)/dn¢}]

Hence
+(+3) Fm+d)
-3 1+ané 1+ksné
T=(ent ant) H( L12E L
provided

a_ k2= B, =2kK'2(1+})
} (4.43)

a_y=B-1=2k'2(m+4)

It is easily seen that Y is doubly periodic and symmetri-
cal or anti-symmetrical about the various points only if [ and
m are integers. Let Y, and Y, be the values of Y with 4-ve
and —ve signs. We have for large values of n compared with

fi
U(£)nA exp (nk sng). Y, + B exp(—nksn§)Yq
Y, ()=Y,(-¢)
If U(§)= +U(~¢); then B= +A.
U¢)—~A[Y, exp(nksn¢) + Yq exp(—nksné)]

giving the even and odd functions. The solutions fail

completely at émK or K+iK’ and Stoke's phenomena occur
at these points.
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‘We may obtain the next approximation as follows:

From (4.23) we have

2f!, + Y| YX' — (aok28n3¢—3,) [X/=0
Or 2f, + Y/|YX/+ §{Y//Y. (Yf/y+xer)—u°1;=sn2$+ﬂa}%f- =0... (4.51)
We leave off the constant of integration as before. The
above partial integration simplifies the calculation.

In particular for X = 4-ksn¢

we have:
2fy +1/k.[(+3)/en2é— (m + 3)k/dn3¢]

+ sné(dn2€+ k2cn2f) |2k cn2édn

+ 8né /2. [(12 +1) [cn2€) + (m2 +m) [ dn2¢]

+1/kk2 {B, =2k +4)(m +3) — (a0 + })k2 + 3K/ 2(12 +1+3)}

ix log{(1+8né)/cné}

+1/K%.{Bo =2k +3)(m +§) = (ao + 3) = 3R 2(m% + m +3)}
(% log{(1 + kent) [dné}

‘We determine a, and B, as follows: Let f,, and f,. be
the values corresponding to nksn¢ and —nksné =X respective-
ly. Then to a second approximation the asymptotic
expansion is (neglecting terms of order 1/n?)

U(¢)—A exp(nksné)(1+fy,/n)/Y+B exp (~nksnl)(1+f,~-/n)/Y.

Consider the solution for points on the line K +io where
oisreal and K'> | o | . On the half line below the real axis
the constants may be taken as A" and B'. We tind the rela-
tion between the two sets of constants by the symmetry
about K. But it will be found that it is not possible to have
non-zero values of A, B, A" and B’ with the symmetrical
property unless the logarithmic term log| (1 +sm¢), cné! bas its
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co-efficient zero. Hence we equate the co-efficient to zero.
Again considering the symmetry about K+/K' for points
lying parallel to the real axis the co-cfficient of the other
logarithmic term is found to be zero. The required -criteria
are that the co-efficients of the logarithmic terms must be
equated to zero. Similarly in the higher stages of approxi-
mations also we successively put the co-efficients of logari-
thmic terms to zero and also determine the successive
approximations of the characteristic constants.

Hence

d,+1/2= —3(®+l+m2+m)
Bo= +(ao+1/2)+2k(1+1/2)(m+1/2)+1/2K'2(m24m+1/2).

The case of X = 4ksné has been given in more detail
than the other two cases as it appears to be the more
important one. The other two functions can be written down

without much explanation

For X= 4ikené

+(1+1/2) i F(m+1'2)
1+4+cené k'+ikené
) . ‘i( (
Y= (snédné) S i v e (4.49)

B_y= =2ik(I+1/2); a_y =2k (m+1/2)—=2ik([1+1/2) o (4.43)
Bo=2(1+1/2)(m+1/2)ikk'—1/2(2 +1+ k2 41/2)

ag= —(3+1)/2=(m24m)/2

fr=1/2k[(14+1/2)/snP¢—=(m +1/2)ikk' | dn®¢]

+ené(dn2E—Kk2en2¢) [Aiksn2Edn2¢

Fong (194D /sn2é—(m 2+ m)k® /dn¢] [2ik

for X= +idnf.

i tim+1)
Y= ng) Y (1+dné K 4dng
(8néen) (—__ksrlf Tt

Bay= =2k +1/2); a_y= =2k (m+1/D=2(01+1,9)

+(+1 Q)

Li=i{(+1/2)/sn®—(m+1/2)k', cn?¢}, 2kY
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+dné(en2f—sn2¢)/4ik2snPéen2¢
Fdng{(1241)/sn2¢ = (m24m)[cn2¢} [4ik2
Bo=2K/(141/2)(m+1/2)—1/202 +1+3/2)
aok?= —(I24+1+k?)/2—(m24m)/2.

There is an important point yet to be noticed. In the
choice for X it has been said that it should be doubly periodic,
and we obtained three possible values for it. Given the
value of X the rest of the steps follow simply from considera-
tions of symmetry or doubly periodic property of the result-
ing functions. Consider U(¢) for a given value of n. Its
asymptotic expression for large values of sn*¢ has been found
by the application of the method of stationary plhase. In
every case we found that we had the asymptotic expression
in terms of nksné, nkené or ndné, Hence the method of station-
ary phase would be quite applicable even when | sné | is large.
The Horn-Jeffreys approximation gives the asymptotic
expressions in terms of the same values for large values of n.
Hence the asymptotic expression derived fromlarge values of n
becomes better applicable for large values of | sné|. Hence for
sufficiently large values of |sné| and = the asymptotic ex-
pression derived from the method of stationary phase must
approximate to that obtained in this section for large values
of n. And at least the dominant terms must be identical.

Leaving off all constant factors the dominant term
obtained by the method of stationary phase is

:i(:: (ink sng) [nksn¢

when sn’ is large and negative, and
exp (nksng)/nsné; oxp (—nkan)/nsng

when sng is large and positive, and negative respectively,
To the same order of approximation, the expression derived
in this section is

exp ( -nkan{)/sng.
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The other functions like those having a factor cn¢ and
dné give dominant terms with expressions of form

exp (+ink cné)/eng

exp (+indnf)/dné.
As
[sng=[cené[— | dnf | [k
when sn’¢ is large these expressions are not different from
those already obtained. We may start with any of the three
possible values for the expression X, namely,

= +ksn§, +iken¢ or +idné.

All the three possible values for X are doubly periodic
functions of {, These three expressions exhaust the possible
values for X. The relations between these three possible
asymptotic expressions to the other functions obtained in this
essay can be obtained by comparing the asymptotic expressions
obtained for large values of #n and sn’% in this and previous
section.

From the three possible asymptotic forms it can easily
be seen that the characteristic constants of the differential
equation and asymptotic expressions are real only when
(1) when n is purely real X= +Fksn¢, (ii)) when n is purely
imaginary X = +idn¢. The third case when X = 4 ikcné the
characteristic constants are always complex.

But we know that in the infinitesimally narrow strip when
n’and sn’% are real the characteristic constants are real.
Hence we need consider only X = +4ksn¢g when n’ is positive
and X= +idn¢ when n’is negative. In such cases the
asymptotic expressions are also real.
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