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ABSTRACT.

Assuming that in a diatomic molecule with two clectrons, the inner
one sercens the charge on each nucleus by 3¢, the term values and the
heat of dissociation of the molecules occurring in the following table are

calculated by Hylleraus's method.

BeH. Lis.

LiH.
Heat of Dissoc™. (Cale.) (in electron volts.) ... 2:30 2:30 108
Heat of Dissoc®. (Obs,) (in electron volts.) ... 2'56 221 1'14
182p13. | 182833. i H{1s2p('r +3n)}. | 151813,
Term value of Hy(Cale.) (in Rydberg unit) ... | —1'490 | —1'416 ’ ~1442 -3
Term valoe of H3(Obs.) (in Rydberg unit) .. | —1'409 | —1469 ’ =1'439 -2:33
|
The Ritz method of finding the characteristic energy

values of atoms very often yiclds a useful collateral result,
viz., the value of the screening constant of the atomic nucleus.
By a combination of the Ritz method and the method of
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separation of variables Hylleraas' has almost exactly calculated
the term values of the H,-molecule in the lowest few states.
The advantage he has had over his predecessors appears to lie
in the fact that as a first approximation he regards the outer
electron as moving in a field due to half the actual charge of
each nucleus. It will be shown in the present paper that if
the idea of nuclear screening to the extent of }e is applied to
slightly more complex molecules, that leads to a fair agree-
ment between the observed and calculated values of the
electronic terms and the heat of dissociation, the calculation
being extremely simplified by the fact that certain tables
prepared by Hylleraas can be directly made use of.

Let the two nuclei in the molecule be denoted by a and
b, and the electrons by the numbers 1 and 2 ; then 7,, stands
for the distance between the nucleus ¢ and the electron 1 ;
similar meanings attach to 7y, r,, etc. The potential energy
of the electrons in Hylleraas’s units is

=‘_4(1_|_1+1+1_1)’

Tia T1s T2a Tas T2

and the energy operator of the system is H=A,+ A,;+4», where
A,, A, are Laplacian operators with a constant factor. Then

the total energy is

Iy Hydr /[y ydr,
where
¥Yy=vy1¥a
and
df_= dflld?’,

Y1 being the wave function of the electron 1, ys; being that of 2.

Now if we write

Er=.‘.$( Ay r: -.;%) Ydr [ [P ydr, .. (@)

! Hylleraas, Zs. f. Phys. 71, 789, (1981).
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E=S»T (Ae——;-—i ~ -ﬁ) wdr§¥ ydr, . @
Tga Tgy
and
= | 1 1 <
. =4k U — e A i ! [ - o
L‘ SV ( 2?'2“ 27‘2& * Tlg )‘Hdr/fv le b2

the total energy is E'+ E+E,.

It is evident from (1) and (2) that E’ is the total energy
of an electron in a field of two nuclei each of charge unity,
while E (without prime) is the energy in a field of half the
charge; E, isa perturbation term involving exchange integrals
of the Sugiura types which Hylleraas evaluates numerically.
The notion of screening is thus implicit in a treatment where
E, is regarded as mere perturbation energy.

The energy values E, E' of the individual electrons are
found by Hylleraas by the use of elliptic coordinates. If 2R be
the internuclear distance and Z,, Z, be the respective nuclear
charges, the potential of an electron in terms of the elliptic
coordinates

§=(ra+75)/2R
and
L n=(7a—73)/2R
is easily seen to be

V=—_2 §(Za+2Z,)+0(2,—2Z,)
R 2,2 :

‘When the variables have been separated in the resulting
wave equation, the equation involving the variable ¢ is
found to be

%—{(53—1) gf }— ’é‘:fl«r[—ceuBg-A] X=0 .. (4

where

Lod

B=R(Z,+2,), C=—_ ER? ... (&)

'y
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and A is another eigen value parameter determined by the
corresponding equation in . K is the energy parameter.

Before proceeding further we explain that in Hylleraas’s
notation E,;,, stands for the energy of an electron with
quantum numbers n, I, m. For instance, an electron in the
2p state with quantum numbers 2,1, 0 has energy E'y,,
under full nuclear charge.

In the case of hydrogen Z,=Z,=1, and Hylleraas solves
the equation (4) for the ls-state of the electron and tabulates
the value of Er, for different R values which is reproduced

here :—

TaBLE I.

|
i -—-3'1.98|| —2'811| —2°205 —‘3'08'3! —I'DSSI —1'899 | —1'822
|

——

l \

| 1 o8 | an

i 1'5 175 2 225 i 25 275 3
|

By | —3'470 | —2°005 1‘ —2'683
l 1-25

R 05 1

Table No 2 of his paper gives the values of E,,, the energy
of a 2s-electron in a nuclear field Z,=Z,=%. This is our

table I1.

TasLe II.
Ese —0250 | —0°233 | —0°227 —0'222'-0'216 —0211 | —0°207 —o-zozf-o-m
R 0 1 125 | 16 I 176 2 2:25 25 l 3

‘We shall presently describe a method whereby the energy
value E for any value Z,, Z, can be readily calculated by the
use of the foregoing tables,

The equation corresponding to (4) for an electron on
nuclei of charges Z’,, Z’, and at a distance 2R’ apart is

a ax mng b | o ! |
3¢ {f&*—t)ﬁ—}-—éﬁ:—ﬁ —C/E% + BIE A]X-—O ... (6)
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where
B/'=RI(Z,+2!,), O'= —F E/R'? NG

Then (4) and (6) would constitute the same eigen value
problem, if A’'=A, which means that Z,—-Z,=Z,/-Z7Z),
and B'=B, C'=C, which give from (5) and (7)

0 — _z"+z’r g”( Za+ZJ,
E(R)= z',,+zn,) E R.m) . @®

Hence if a table of values of E (R) be given we can construct
a table for E' (R) and vice versa, graphically by means of the
formula (8).

We first take up the LiH molecule. We assume, as
Hutchisson and Muskat? have done, that the Li-nucleus along
with its K-electrons constitutes a simple nucleus of charge
unity. The problem is to find the energy of a 1s-electron and
a 2s-electron in the field of two nuclei, each of unit charge.
The energy E’,,, of the 1s-electron is already given in table I.
This electron screens the nuclei to the extent of half the
charge, so that the energy E,, of the 2s-electron is to be read
from table II. Table III below gives the values of E g=
E'o+Ex +2/R which represents the total energy of the
molecule LiH.

Table ITI
! f
ELH -1137 —1-386 ~1'414 I ~1'417 | —-1°407 | —1°3%0
i 1
R 1 15 ' 175 ‘ 2 | 225 25

From a graph of E against R we find the minimum value
of E.n to be —1'42 Rydberg units roughly. When this hypo-
thetical molecule dissociates, the products are a hydrogen-like

? Hutchisson snd Muskat, Phys. Rev., 40, 340 (1333).
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atom in the 1s-state and another in the 2s-state, the total
energy of which is —1°25 units. Hence the heat of dissocia-
tion of the LiH molecule is —0°17 units=2'3 electron-volts,
which is the same as Hutchisson and Muskat’s calculated
value. The experimental value? is 256 volts.

In finding the heat of dissociation of the more complex
BeH molecule Ireland * assumes that the Be nucleus along
with its two K-electrons constitutes a simple nucleus of charge
2, so that the problem of the BeH molecule is that of two
electrons, of which either both are in the 2s-state or one is in
the 2s-state and the other in the 2p-state, and a third electron in
the ls-state in a field of two nuclei of charges 1 and 2 units.
He shows that there is a ° state and a ?m state in which E as
a function of R has a minimum and the heats of dissociation
calculated by him are 35 and 1°5 volts respectively while the
experimental values are 222 and 2'21 volts. Admittedly the
agreement is poor; but if we take a simplified model of the
BeH molecule, in which the Be nucleus with its K-electrons
and the third electron in the 2s-state is regarded as a simple
nucleus of charge 1, then BeH and LiH present identical
problems ; then the heat of dissociation of BeH also is 2'3
volts which is in better accord with the observed value than
Ireland’s.

‘We next consider the Li, molecule. Effectively it has two
electrons each in the 2s-state in a field of two nuclei each of
unit charge. The energy E’y, of a 2s-electron in a field Z’,=
Z,'=1 has not been given by Hylleraas; but we can apply the
formula (8) and utilise the table IT for E,, in finding E'y, .
We get the following values :—

F'so I -1 —0930 —0°846 I —0'777
!

R f 0 05 1 l 15

3  Nasksmura, Zs., f. Phys., 59, 218 (1980).
4 Treland, Phye. Rev., 43, 381 (1933).
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By graphical extrapolation we extend the table further :—

E'-“m ‘ - €70 —0N2 —-0'55 —-047 -4

R } 2 2'5 3 23 s

‘We assume that the 2s-electron of one Li atom effectively
reduces the nuclear charges by %e; then the energzy of the
2s-electron of the second atom must be E,, of table II. Then
the total energy of the molecule is E,, =FE'w +E.. +2 R.
The values of E,;, are given below :(—

ELig 2°82 092 i 033 0-09 | -o-crg! —007 —0'0R — 307

R ‘5 1 15 2 ' 2'5 ‘ 3 L35 | 3

Emg has thus a minimum value — 0'08 units, which is the
same as Furry® and Bartlett’s. A Morse formula fits into the
above table easily. If in the formula E=De ™ 'B-§,' -
2De*®% ) we put D=008, R,=3'5 and e*=0'59, we get the
following table of values :—

' 1
ELig (Morse) ! 092 l 083 1 0053 | —0028 ’—o-o:-:» s —L;'O&"; —(°075

| | | | P
R ’ 1 | 15 | 1 25 { 3 | &5 i 4
| : 1

&

The heat of dissociation D=-08%13'53=1"0S volts as
against the observed value 1-14 volts.

We finally consider the hydrogen terms. If one electron
be in the 1s-state while the other is in the 2p-state with guan-
tum numbers (2, 1, 0) the resulting molecular terms are
1s2p '*X. Hylleraas's table No. 3 gives the value E,. of a
(2, 1, 0) electron in a field of half the nuclear charges. Add-
ing E;,, E',, and 2/R we get the energy in the 1:2p X state,

§ Furry and Bartlett, Phys. Rev., 83, 1615 (1931).

6
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and the minimum value is found to be —1°490 against the
observed value —1°4989 of the 1s2p'S term.

1f the second electron is in the (2, 0, 0) state, the mole-
cular term are 1s2s %, and the energy value E,y +E';,, +2/R
has a minimum —1'416 as against the observed value —1-4645
of the 1s2¢°S term. The difference is a little marked here,
showing that the amount of screening is not exactly half on
the 2s-electron because of its penetrative character.

If the second electron is in the (2, 1, 1) state the mole-
cular terms are 1s2p *?#, and the calculated value has a mini-
mum —1-'442. The observed mean value

(1s2plx +182p37)/2 is — (14176 +1°4600) /2= —1°4388
which nearly agrees with the calculated term.

If both the electrons are in the 1s-state, the molecular
term is 1s1s'S, but in this case the amount of screening is
found to be about £ and not {. Thus putting Z,=Z,=§ and
Z,=Z7Z,=1, we get from (8)

Ejo0 (R)=(—g)2 E’xoo( 5: ) 9

The value of the total energy

2
Ejgo+E/ 190+ =~ =E
100 100t & Hy

is calculated with the help of (9) and tabulated below :—

EHg oo =090 —2°205 —2-81 | -2-82 —2-30 —2°25
| 16

B 0 05 1 126 176 2

The experimental value of Egn, is —2:'3262, and R,=1'42.
From the foregoing table we get Eg,= —2°82 and R,=1"5.
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It is obvious that all the labour involved in the numerical
computation made by the writers referred to, when the atomic
wave functions are used and the exchange integrals have to be
evaluated, is reduced to a minimum here, principally because
the use of elliptic co-ordinates gives a nearly exact eizen
value, and secondly because of the consideration of the pro-per

amount of screening.



