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Abstract.

This work aims at reconstructing Petri net models for biological systems from
experimental time-series data. The reconstructed models shall reproduce the ex-
perimentally observed dynamic behavior in a simulation. For that, we consider
Petri nets with priority relations among the transitions and control-arcs, to ob-
tain additional activation rules for transitions to control the dynamic behavior.
An integrative reconstruction method, taking both priority relations and control-
arcs into account, was proposed by Favre and Wagler in 2013. Here, we detail
the aspect of choosing priorities and control-arcs such that dynamic con�icts can
be resolved to �nally arrive at the experimentally observed behavior.

Keywords: Petri nets, time-series data, priority relations, control-arcs

Résumé

Ce travail vise à reconstruire des modèles à l'aide de réseaux de Petri pour les sys-
tèmes biologiques à partir des séries de données expérimentales chronologiques.
Les modèles reconstruits doivent reproduire le comportement dynamique obser-
vée expérimentalement lors une simulation. Pour cela, nous utilisons des réseaux
de Petri associés à des relations prioritaires entre les transitions et contrôle-arcs,
a�n obtenir des règles d'activation supplémentaires pour les transitions et ainsi
contrôler le comportement dynamique de notre modèle. Une méthode de re-
construction intégrée, prenant les deux relations prioritaires et contrôle-arcs en
compte, a été proposé par Favre et Wagler en 2013. Ici, nous détaillons l'aspect
de choix des priorités et contrôle-arcs ainsi que les con�its dynamiques pouvant
être résolus pour �nalement arriver à un modèle reproduisant les comportements
observés expérimentalement.

Mots clés : Réseaux de Petri, données de séries temporelles, relations de prio-
rités, arêtes de control
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1 Introduction

Systems biology aims at the integrated experimental and theoretical analysis
of molecular or cellular networks to achieve a holistic understanding of biological
systems and processes. To gain the required insight into the underlying biological
processes, experiments are performed and experimental data are interpreted in
terms of models. Depending on the biological aim, the type and quality of the
available data, di�erent types of mathematical models are used and correspond-
ing reconstruction methods have been developed. Our work is dedicated to Petri
nets which turned out to coherently model both static interactions in terms of
networks and dynamic processes in terms of state changes, see e.g. [9,14].

In fact, a network P = (P, T,A,w) re�ects the involved components by places
p ∈ P and their interactions by transitions t ∈ T , linked by weighted directed arcs
(p, t), (t, p) ∈ A. Each place p ∈ P can be marked with an integral number xp of

tokens de�ning a system state x ∈ Z|P |+ , i.e., we obtain X := {x ∈ Z|P | : xp ≥ 0}
as set of potential states. A transition t ∈ T is enabled in a state x if xp ≥ w(p, t)
for all p with (p, t) ∈ A, we denote the set of all such transitions by T (x).
Switching t ∈ T (x) yields a successor state succ(x) = x′ with x′p = xp − w(p, t)
for all (p, t) ∈ A and x′p = xp + w(t, p) for all (t, p) ∈ A. Dynamic processes are
represented by sequences of such state changes.

Our central question is to reconstruct models of this type from experimen-
tal time-series data by means of an exact, exclusively data-driven approach.
This approach takes as input a set P of places and discrete time-series data X ′
given by sequences (x0,x1, . . . ,xk) of experimentally observed system states.
The goal is to determine all Petri nets (P, T,A,w) that are able to reproduce
the data, i.e., that perform for each xj ∈ X ′ the experimentally observed state
change to xj+1 ∈ X ′ in a simulation. Hence, in contrast to the normally used
stochastic simulation, we require that for states where at least two transitions
are enabled, the decision between the alternatives is not taken randomly, but a
speci�c transition is selected. Thus, (standard) Petri nets have to be equipped
with additional activation rules to force the switching of special transitions (to
reach xj+1 from xj), and to prevent all others from switching. For that, di�erent
types of additional activation rules are possible.

On the one hand, in [2] the concept of control-arcs is used to represent cat-
alytic or inhibitory dependencies. An extended Petri net P = (P, T, (A ∪ AR ∪
AI), w) is a Petri net which has, besides the (standard) arcs in A, two additional
sets of so-called control-arcs: the set of read-arcs AR ⊂ P × T and the set of
inhibitor-arcs AI ⊂ P × T ; we denote the set of all arcs by A = A ∪ AR ∪ AI .
Here, a transition t ∈ T (x) coupled with a read-arc (resp. an inhibitor-arc) to
a place p ∈ P can switch only if at least w(p, t) tokens (resp. less than w(p, t)
tokens) are present in p; we denote by TA(x) the set of all such transitions.

On the other hand, in [12,16,18] priority relations among the transitions
of a network are employed to re�ect the rate of the corresponding reactions,
where the fastest reaction has highest priority and, thus, is taken. In Marwan
et al. [12] it is proposed to model such priorities with the help of partial orders
O on the transitions. We call (P,O) an (extended) Petri net with priorities,
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if P = (P, T,A, w) is an (extended) Petri net and O a priority relation on
T . Priorities can prevent enabled transitions from switching: For each state x,
a transition t ∈ TA(x) is allowed to switch only if there is no other enabled
transition in TA(x) with higher priority; we denote by TA,O(x) the set of all
such transitions.

To enforce a deterministic behavior, TA,O(x) must contain at most one el-
ement for each x ∈ X to enforce that x has a unique successor succX (x), see
[16] for more details. For our purpose, we consider a relaxed condition, namely
that TA,O(x) contains at most one element for each experimentally observed
state x ∈ X ′, but TA,O(x) may contain several elements for non-observed states
x ∈ X \ X ′. We call such Petri nets X ′-deterministic.

Based on earlier results in [2,3,5,12,18], we proposed in [7] an integrative
method to reconstruct all X ′-deterministic extended Petri nets with priorities
�tting given experimental time-series data X ′ (see Section 2). The contribution
of this paper is to detail the aspect of choosing priorities and control-arcs: we dis-
cuss the mathematical structures and underlying combinatorial problems which
allow us to e�ectively resolve dynamic con�icts in order to �nally arrive at the
experimentally observed dynamic behavior (see Section 3). We close with some
concluding remarks and lines of future research.

2 Reconstructing extended Petri nets with priorities

We describe the input, the main ideas, and the output of our approach from
[7].

Input. A set of components P (standing for proteins, enzymes, genes, receptors
or their conformational states, later represented by the set of places) is chosen
which is expected to be crucial for the studied phenomenon.

To perform an experiment, one �rst triggeres the system in some state x0

(by external stimuli like the change of nutrient concentrations or the exposition
to some pathogens), to generate an initial state x1. Then the system's response
to the stimulation is observed and the resulting state changes are measured
for all components at certain time points. This yields a sequence of (discrete
or discretized) states xj ∈ Z|P | re�ecting the time-dependent response of the
system to the stimulation in x1, which typically terminates in a terminal state
xk where no further changes are observed. The corresponding experiment is

X ′(x1,xk) = (x0;x1, . . . ,xk).

Several experiments starting from di�erent initial states in a set X ′ini ⊆ X ′,
reporting the observed state changes for all components p ∈ P at certain time
points, and ending at di�erent terminal states in a set X ′term ⊆ X ′ describe the
studied phenomenon, and yield experimental time-series data of the form

X ′ = {X ′(x1,xk) : x1 ∈ X ′ini,xk ∈ X ′term}.

Thus, the input of the reconstruction approach is given by (P,X ′).
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Example 1. As running example, we will consider experimental biological data
from the light-induced sporulation of Physarum polycephalum as in [7,18]. In P.
polycephalum plasmodia, the photoreceptor involved in the control of sporulation
Spo is a protein which occurs in two stages PFR and PR. The developmental
decision of starving P. polycephalum plasmodia to enter the sporulation path-
way is controlled by environmental factors like visible light [15]. If the dark-
adapted form PFR absorbs far-red light FR, the receptor is converted into its
red-absorbing form PR, which causes sporulation [10]. If PR is exposed to red
light R, it is photoconverted back to the initial stage PFR, which prevents sporu-
lation. The experimental setting consists of

P = {FR,R, PFR, PR, Spo}, X ′(x1,x3) = (x0; x1,x2,x3), X ′
ini = {x1,x4},

X ′(x4,x0) = (x2; x4,x0), X ′
term = {x3,x0}

as input for the algorithm, we present all observed states schematically in Fig 1.

x


xFR

xR

xPFR

xPR

xSpo




x0


0
0
1
0
0




x1


1
0
1
0
0




x2


0
0
0
1
0




x3


0
0
0
1
1







0
1
0
1
0




x4

FR

R

d1

d2

d4

Fig. 1. A scheme illustrating the experimental time-series data described in Exp. 1
concerning the light-induced sporulation of Physarum polycephalum, where the entries
of the state vectors are interpreted as shown on the left (dashed arrows represent
stimulations x0 → x1, solid arrows responses xj → xj+1).

For a successful reconstruction, the data X ′ need to satisfy two properties:
reproducibility and monotonicity.

The data X ′ are reproducible if for each xj ∈ X ′ there is a unique observed
successor state

succX ′(xj) = xj+1 ∈ X ′.
Reproducibility is obviously necessary and can be ensured by a preprocessing
step [20].

Note that a state xj ∈ X ′ and its observed successor succX ′(xj) = xj+1 ∈ X ′
are not necessarily also consecutive system states (this depends on the chosen
time points to measure the states in X ′). Instead, xj+1 may be obtained from xj
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by a switching sequence of some length, where the intermediate states are not
reported in X ′. The data X ′ are monotone if for each pair (xj ,xj+1) ∈ X ′, the
values of the elements do not oscillate in the possible intermediate states between
xj and xj+1. It was shown in [3] that monotonicity has to be required, too (which
is equivalent to demand that all essential responses are indeed reported in X ′).

Output. An extended Petri net with priorities (P,O) with P = (P, T,A, w) �ts
the given data X ′ when it is able to perform every observed state change from
xj ∈ X ′ to xj+1 ∈ X ′. This can be interpreted as follows. With P, an incidence
matrix M ∈ Z|P |×|T | is associated, where each row corresponds to a place p ∈ P
of the network, and each column M·t to the update vector rt of a transition
t ∈ T :

rtp =Mpt :=





−w(p, t) if (p, t) ∈ A,
+w(t, p) if (t, p) ∈ A,
0 otherwise.

Reaching xj+1 from xj by a switching sequence using the transitions from a
subset T ′ ⊆ T is equivalent to obtain the state vector xj+1 from xj by adding
the corresponding columns M·t of M for all t ∈ T ′:

xj +
∑

t∈T ′

M·t = x
j+1.

T has to contain enough transitions to perform all experimentally observed
switching sequences. The underlying standard network P = (P, T,A,w) is con-
formal with X ′ if, for any two consecutive states xj+1 ∈ X ′, the linear equation
system xj+1 − xj = Mλ has an integral solution λ ∈ N|T | such that λ is the
incidence vector of a sequence (t1, ..., tm) of transition switches, i.e., there are
intermediate states

xj = y1,y2, ...,ym+1 = xj+1

with yl+M·tl = y
l+1 for 1 ≤ l ≤ m. The extended Petri net P = (P, T,A, w) is

catalytic conformal with X ′ if tl ∈ TA(yl) for each intermediate state yl, and the
extended Petri net with priorities (P,O) is X ′-deterministic if {tl} = TA,O(y

l)
holds for all yl.

The desired output of the reconstruction approach consists of the set of all
X ′-deterministic extended Petri nets (P,O) (all having the same set P of places
as part of the input).

Example 2. We represent in Fig. 3 (page 10) the 8 alternative X ′-deterministic
extended Petri nets �tting the experimental data X ′ from our running example.

We now brie�y sketch the reconstruction procedure.

Representation of observed responses. As initial step, extract the observed changes
of states from the experimental data. For that, de�ne the set

D :=
{
dj = xj+1 − xj : xj+1 = succX ′(xj) ∈ X ′

}
.

6



Generating the complete list of all X ′-deterministic extended Petri nets P =
(P, T,A, w) includes �nding the corresponding standard networks and their in-
cidence matrices M ∈ Z|P |×|T |. Hence, the �rst step is to describe the set of
potential columns of M . Due to monotonicity [3], it su�ces to represent any
dj ∈ D using sign-compatible vectors from the following set only:

Box(dj) =



r ∈ Z|P | :

0 ≤ rp≤ dp if djp > 0
dp ≤ rp≤ 0 if djp < 0

rp=0 if djp = 0



 \ {0}.

Next, we determine for any dj ∈ D, the set Λ(dj) of all integral solutions of

dj =
∑

rt∈ Box(dj)

λtr
t, λt ∈ Z+,

and for each λ ∈ Λ(dj), the (multi-)set R(dj , λ) = {rt ∈ Box(dj) : λt 6= 0} of
update vectors used for this solution λ. By construction, Box(dj) and Λ(dj) are
always non-empty since dj itself is always a solution due to reproducibility [7].

Every permutation π = (rt1 , . . . , rtm) of the elements of a set R(dj , λ) gives
rise to a sequence of intermediate states xj = y1,y2, ...,ym,ym+1 = xj+1 with

σ = σπ,λ(x
j ,dj) =

(
(y1, rt1), (y2, rt2), . . . , (ym, rtm)

)

which induces a priority relation Oσ since transition ti resulting from rti is
supposed to have highest priority in yi for 1 ≤ i ≤ m.

Example 3. For the running example we obtain as sequences

x0 x1

x2 x3x4

x5x6 x0x2

FR

R

d1

d2

d4

r1r2

r3 r4 r1 r2

r3r4

with x5 = (1, 0, 0, 1, 0)T and x6 = (0, 1, 1, 0, 0)T .

Sequences and their con�icts. Two sequences σ and σ′ are in priority con�ict
if there are update vectors rt 6= rt

′
and intermediate states y,y′ such that

t, t′ ∈ T (y) ∩ T (y′) and (y, rt) ∈ σ but (y′, rt
′
) ∈ σ′ (since this implies t > t′ in

Oσ but t′ > t in Oσ′). We have a weak (resp. strong) priority con�ict if y 6= y′

(resp. y = y′) which can (resp. cannot) be resolved by adding control-arcs.
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Priority con�ict graph. Construct a priority con�ict graph G = (VD∪Vterm, ED∪
EW ∪ ES) whose nodes correspond to all possible sequences σπ,λ(x

j ,dj) and
whose edges re�ect weak and strong priority con�icts:

- VD contains the sequences σπ,λ(x
j ,dj) for all xj ∈ X ′ \X ′term and the dif-

ference vector dj = succX ′(xi)−xi, for all λ ∈ Λ(dj) and all permutations
π of R(dj ,λ).

- Vterm contains for all xk ∈ X ′term the trivial sequence σ(xk,0).
- ED contains all edges between two sequences σ, σ′ stemming from the same
di�erence vector

- ES (resp. EW ) re�ects all SPCs (resp. WPCs) between sequences σ, σ′

stemming from distinct di�erence vectors.
The edges in ED induce a clique partition Q of VD in as many cliques 3 as there
are observed states in X ′\X ′term resp. di�erence vectors inD: VD = Q1∪. . .∪Q|D|.
Moreover, each node in Vterm corresponds to a clique of size 1, so that G is
partitioned into |X ′| many cliques.

For illustration, we present in Fig. 2 the WPCs and SPCs between sequences
of our running example.

Selection of suitable sequences. In G, all node subsets S are generated that select
exactly one sequence σπ,λ(x

j ,dj) per di�erence vector dj ∈ D such that no SPCs
occur between the selected sequences. The set of all such solutions S∪Vterm can
be encoded by all vectors x ∈ {0, 1}|VD∪Vterm| satisfying

∑
σ∈Qj

xσ = 1 ∀Qj ∈ Q (1a)

xσ = 1 ∀σ ∈ Vterm (1b)

xσ + xσ′ ≤ 1 ∀σσ′ ∈ ES (1c)

xσ ∈ {0, 1} ∀σ ∈ VD ∪ Vterm. (1d)

Q3Q1 Q3

Q2

Q0

Q4

σ(x1,d1)

σ2(x
1,d1)

σ3(x
1,d1)

σ(x3, 0)

σ(x2,d2)

σ(x0, 0)

σ(x4,d4)

σ2(x
4,d4)

σ3(x
4,d4)

Fig. 2. The priority con�ict graph resulting from the running example, where bold
edges indicate SPCs, thin edges WPCs and gray boxes the clique partition Q.

3. A clique is a subset of mutually adjacent nodes.
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Example 4. From G shown in Fig. 2, we obtain as feasible subsets Si ∪ Vterm:

S1 = {σ1(x
1,d1), σ1(x

2,d2), σ1(x
4,d4)}, S3 = {σ1(x

1,d1), σ1(x
2,d2), σ3(x

4,d4)},
S2 = {σ3(x

1,d1), σ1(x
2,d2), σ1(x

4,d4)}, S4 = {σ3(x
1,d1), σ1(x

2,d2), σ3(x
4,d4)}.

Construction of standard networks, inserting control-arcs. Each subset S gives
rise to a standard network PS = (P, TS , AS , w) which is conformal with X ′
and can be made X ′-deterministic by inserting appropriate control-arcs and
combining the priority relations Oσ∀σ ∈ S. Let P (y,y′) = {p ∈ P : yp 6= y′p}:

- we obtain the columns of the incidence matrix MS of PS by taking the
union of all sets R(dj , λ) of the sequences σ = σπ,λ(x

j ,dj) selected by
σ ∈ S;

- for each WPC between σ, σ′ ∈ S involving update vectors rt 6= rt
′
and

intermediate states y 6= y′, include either a read-arc (p, t) ∈ AR with
weight w(p, t) > y′p for some p ∈ P (y,y′) with yp > y′p or an inhibitor-arc
(p, t) ∈ AI with weight w(p, t) < yp for some p ∈ P (y,y′) with yp < y′p to
disable transition t resulting from rt at y′,

- for each σ ∈ S, de�ne Oσ = {ti > t : t ∈ TAS∪AR∪AI
(yi) \ {ti}, 1 ≤ i ≤ m}

and let OS =
⋃
σ∈S Oσ be the studied partial order.

This implies �nally that every extended network PS = (P, TS , AS ∪AR ∪AI , w)
together with the partial order OS is X ′-deterministic, see [7] for details.

Example 5. We apply the method only to the feasible set S4∪Vterm from Exp. 4.
The standard network PS4

= (P, TS4
, AS4

) has TS4
= {r1, r2,d2, r3, r4}. There

are four WPCs between sequences of S4:

WPC1 between σ3(x
1,d1) and σ(x0,0) due to r2, 0 ∈ T (x1) ∩ T (x0)

WPC2 between σ(x2,d2) and σ3(x
4,d4) due to d2, r4 ∈ T (x2) ∩ T (x4)

WPC3 between σ(x2,d2) and σ(x0,0) due to d2, 0 ∈ T (x2) ∩ T (x0)

WPC4 between σ(x3, 0) and σ3(x
4,d4) due to 0, r4 ∈ T (x3) ∩ T (x4)

For WPC1, we obtain P (x1,x0) = {FR}, by x1
FR > x

0
FR, the read-arc (FR, r

2)
disables r2 at x0 ∈ X ′τ . For WPC2, we have P (x2,x4) = {R}, by x2

R < x4
R,

the read-arc (R, r4) disables r4 at x2 or, alternatively, the inhibitor-arc (R,d2)
disables d2 at x4. For WPC3, we obtain P (x2,x0) = {PFR, PR}, to disable d2

at x0 ∈ X ′τ , by x2
PR

> x0
PR

, the read-arc (PR,d
2) or, by x2

PFR
< x0

PFR
, the

inhibitor-arc (PFR,d
2) can be used. For WPC4, we have P (x3,x4) = {R,Spo},

to disable r4 at x3 ∈ X ′τ , by x4
R > x

3
R, the read-arc (R, r4) or, by x4

Spo < x
3
Spo,

the inhibitor-arc (Spo, r4) can be used. All possible control-arcs have weight 1.
The priority relation O4 = {(r2 > r1), (r4 > r3)} is required, the resulting

8 alternative X ′-deterministic extended Petri nets are presented in Fig. 3.
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Spo
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FR
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r1

r2

PFR
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FR

Spo

PR
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r3

d2

r1

r2

(g) (h)

Fig. 3. The eight X ′-deterministic extended Petri nets resulting from PS4 .

3 Handling and resolving priority con�icts

In this section, we discuss the underlying mathematical structures and com-
binatorial problems of the two main reconstruction steps.

3.1 The priority con�ict graph and selecting sequences

By construction of the priority con�ict graph G = (VD∪Vterm, ED∪EW ∪ES)
and the selection of S ⊆ VD according to system (1), we note the following. Every
solution S∪Vterm of (1) corresponds to a stable set 4 in the strong priority con�ict
graph GS = (VD ∪ Vterm, ED ∪ ES). In particular, the two constraints (1a) and
(1b) enforce to select exactly one node from each of the cliques Q1, . . . Q|D| and
all nodes from Vterm, resp. Since Q1, . . . Q|D| together with the nodes from Vterm

4. A stable set is a subset of pairwise non-adjacent nodes.
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built a clique partition Q of GS by construction, we aim at �nding a stable set
S ∪ Vterm of the same size as the clique cover number χ(GS) is. In general, not
every graph G has a stable set of size χ(G), but making use of the reproducibility
of the given data X ′, we can ensure that at least the selection of all sequences
σ1(x

j ,dj) = ((xj ,dj)) in GS , called canonical solution S1, always satis�es (1).
This implies:

Theorem 1. GS has at least one stable set of size χ(GS) and, thus, system (1)
is always feasible.

Finding all solutions of (1) means to enumerate all stables sets of size χ(GS) in
GS , i.e., all maximum stable stets of GS . We next discuss which nodes of GS can
never enter any solution of (1) and propose a corresponding reduction of GS .

Lemma 1. A node σ ∈ VD can never be selected for any solution S if there is
a clique Q in Q so that σ is in strong con�ict with all sequences σ′ ∈ Q.

Corollary 1. No σ ∈ VD can be selected for any solution S if the sequence
contains a terminal state as intermediate state.

This leads to the following reduction of the priority con�ict graph: We obtain
the reduced priority con�ict graph G′ = (V ′D ∪ Vterm, E′D ∪E′S ∪E′W ) from G by
recursively removing from VD all nodes which are completely joined to a clique
in Q and the edges being adjacent to them.

Example 6. The reduced priority con�ict graph G′ of the running example can
be obtained as follows: We remove σ2(x

1,d1) since it is in SPC with (the only
sequence σ(x0,0)) in Q0 due to r2,0 ∈ T (x0). We omit σ2(x

4,d4) since it is in
SPC with (the only sequence σ(x2,d2)) in Q2 due to d2, r4 ∈ T (x2).

Furthermore, let G′S = (V ′D ∪ Vterm, E′D ∪ E′S) be the reduced strong priority
con�ict graph. We �nally obtain from the above considerations:

Theorem 2. The sets of maximum stable sets in GS and G′S are equal.

Hence, we can also reduce system (1) based on G′S and obtain the same solutions.

3.2 Interpretation of resolving WPCs as set cover problem

For each WPC between two sequences σ, σ′, there are update vectors rt 6= rt′
and intermediate states y 6= y′ with t, t′ ∈ T (y) ∩ T (y′) s.t. (y, rt) ∈ σ but
(y′, rt

′
) ∈ σ′. We denote this for short by WPC(σ, σ′). This priority con�ict can

be solved by adding control-arcs which
- either turn rt into a transition t which is disabled at y′ (then t > t′ forces
t to switch in y whereas only t′ is enabled at y′),

- or turn rt
′
into a transition t′ which is disabled at y (then t′ > t forces t′

to switch in y′ whereas only t is enabled at y).
For that, consider for each WPC the set P (y,y′) of places where y and y′ di�er.
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Remark 1. If one of y,y′ is a terminal state, say y′, one of the alternatives is
not possible, then t has to be disabled at y′ and t > t′ = 0 holds automatically.
Note that if y = y′ then P (y,y′) = ∅ follows which is the reason why SPCs
cannot be resolved by adding control-arcs.

Let CA(σ, σ′) be the set of all possible read-arcs that can resolveWPC(σ, σ′),
involving rt 6= rt

′
and states y 6= y′ by either disabling t at y′ or t′ at y then

CA(σ, σ′) contains:
- a read-arc (p, t) ∈ AR with weight w(p, t) > y′p ∀p ∈ P (y,y′) with yp > y′p,
- an inhibitor-arc (p, t) ∈ AI with w(p, t) < yp ∀p ∈ P (y,y′) with yp < y′p,
- a read-arc (p, t′) ∈ AR with weight w(p, t′) > yp ∀p ∈ P (y,y′) with y′p >
yp,

- an inhibitor-arc (p, t′) ∈ AI with w(p, t′) < y′p ∀p ∈ P (y,y′) with y′p < yp.

Lemma 2. Inserting in PS any non-empty subset A′ ⊆ CA(σ, σ′) resolves the
weak priority con�ict WPC(σ, σ′).

We next discuss which subsets of control-arcs for all WPCs are suitable to turn
PS into a catalytical conformal extended Petri net. On the one hand, a control-
arc (p, t) ∈ CA(σ, σ′) might disable t at a state in a sequence σ′′ ∈ S \σ, σ′ where
t is supposed to switch. In this case, (p, t) has to be removed from CA(σ, σ′),
resulting in a reduced set CAS(σ, σ

′). On the other hand, one control-arc may
resolve several WPCs in PS if the corresponding sets CAS(σ, σ

′) intersect.
This motivates the following consideration: Introduce one variable z(p,t) ∈

{0, 1} for each possible control-arc (p, t) ∈ CAS(σ, σ
′) for all WPCs in PS .

Construct a 0/1-matrix AS whose columns correspond to all those variables
(resp. control-arcs) and whose rows encode the incidence vectors of the sets
CAS(σ, σ

′) for all WPCs in PS . Then any 0/1-solution z of ASz ≥ 1 encodes a
suitable set of control-arcs resolving all WPCs in PS and, thus, a hitting set or
cover of AS .

Lemma 3. Any cover of AS corresponds to a set of control-arcs making PS
catalytical conformal with X ′.
According to [19], we are only interested in �nding minimal models �tting X ′,
where minimality is interpreted in the sense that all non-minimal models contain
another one also �tting the data. Based on results in [19], we can show:

Lemma 4. Non-minimal covers of AS yield extended Peri nets with unnecessary
control-arcs and, thus, being not minimal.

Hence, it su�ces to only consider minimal covers of AS but, for the sake of
completeness, we are interested in �nding all of them. The set of all minimal
covers of a matrix A is called its blocker b(A). This �nally implies:

Theorem 3. All minimal catalytical conformal extended Petri nets based on PS
can be obtained by computing the blocker b(AS).

Example 7. For the feasible set S4 ∪ Vterm, we obtain as matrix AS4 :
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(FR,r2) ∈ AR (PFR,d
2) ∈ AI (PR,d

2) ∈ AR (Spo,r4) ∈ AI (R,r4) ∈ AR (R,d2) ∈ AI

WPC1 X
WPC2 X X
WPC3 X X
WPC4 X X

The 15 covers of AS4
are shown in the table below. The 8 X ′-deterministic ex-

tended Petri nets from Fig. 3 correspond to the 8 covers (a-h) of AS4
where we

chose one by one, one control-arc to solve one WPC. Note that Pe,Pf ,Pg and Ph
are not minimal since they contain unnecessary control-arcs, whereas the mini-
mal covers from b(AS4

) correspond to the four minimal solutions Pa,Pb,Pc,Pd.

(FR, r2) ∈ AR (PFR,d
2) ∈ AI (PR,d

2) ∈ AR (Spo, r4) ∈ AI (R, r4) ∈ AR (R,d2) ∈ AI

Pa WCP1 WCP3 WCP4 WCP2
Pb WCP1 WCP3 WCP2 and WCP4
Pc WCP1 WCP3 WCP4 WCP2
Pd WCP1 WCP3 WCP2 and WCP4
Pe WCP1 WCP3 WCP4 and WPC2 WCP2
Pf WCP1 WCP3 WCP4 WCP2 and WCP4
Pg WCP1 WCP3 WCP4 and WPC2 WCP2
Ph WCP1 WCP3 WCP4 WCP2 and WCP4
i WCP1 WCP3 WCP3 WCP4 WCP2 and WCP4
j WCP1 WCP3 WCP3 WCP4 WCP2
k WCP1 WCP3 WCP3 WCP2 and WCP4
l WCP1 WCP3 WCP3 WCP2 and WCP4 WCP2
m WCP1 WCP3 WCP4 WCP2 and WCP4 WCP2
n WCP1 WCP3 WCP4 WCP2 and WCP4 WCP2
o WCP1 WCP3 WCP3 WCP4 WCP2 and WCP4 WCP2

Note that b(AS) is non-empty if and only if none of the sets CAS(σ, σ
′) is

empty. Finally, one can show that b(AS1) 6= ∅ always holds for the canonical
solution S1, so there is at least one catalytical conformal network for any given
X ′. By construction, all catalytic conformal extended Petri nets based on PS
can be made X ′-deterministic by taking all the priorities Oσ for all σ ∈ S.

4 Concluding Remarks

In [7], an integrative method to reconstruct all X ′-deterministic extended
Petri nets with priorities �tting given experimental time series data is proposed.
We detailed here the aspect of handling priority con�icts and choosing control-
arcs by discussing the underlying mathematical structures and related combina-
torial problems, feasibility as well as minimality issues. For that, we interpreted

- the selection of suitable sequences from the priority con�ict graph GS as
the problem of �nding all stable sets S of size χ(GS) to obtain all conformal
standard networks PS (Thm. 1);

- resolving all WPCs in a standard network PS as hitting set or set cover
problem involving a matrix AS whose blocker b(AS) yields all minimal
catalytic conformal extended Petri nets based on PS (Thm. 3).

These interpretations in terms of two classical combinatorial problems open us
the possibility to apply e�ective techniques known from the literature to compute
the blocker of a matrix [1,6,13] or to enumerate all maximal stable sets of a graph
[8,17], which include all maximum ones.
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Moreover, we can ensure the existence of at least one conformal network
outgoing from reproducible data (Thm. 1), since we allow the occurrence of
WPCs in PS which can be later resolved by inserting control-arcs. In contrast,
not using control-arcs does not always result in a solution [12,5], whereas not
using priorities may force the insertion of arti�cial control-arcs [2].

5 Concluding Remarks: Long version

In [7], an integrative method to reconstruct all X ′-deterministic extended
Petri nets with priorities �tting given experimental time series data is proposed.
We detailed here the aspect of handling priority con�icts and choosing control-
arcs by discussing the underlying mathematical structures and related combina-
torial problems, feasibility as well as minimality issues. For that, we interpreted

- the selection of suitable sequences from the priority con�ict graph as the
problem of �nding all stable sets S of size χ(GS) in the priority con�ict
graph GS to obtain all conformal standard networks PS ;

- resolving WPCs as set cover problem involving a matrix AS encoding all
possible control-arcs to resolve all WPCs in a standard network PS and
showed that computing the blocker b(AS) yields all minimal catalytic con-
formal extended Petri nets based on PS .

These interpretations in terms of two well-known combinatorial optimization
problems open us the possibility to apply e�ective techniques known from the
literature, e.g., the classical algorithm of Berge [1] or one of its recent, more
e�cient variants [6,13] to compute the blocker of a matrix, or algorithms to
enumerate all maximal stable sets of a graph [8,17], which include all maximum
ones. Here, it could be interesting to design a specialized algorithm for enumer-
ating all stable sets of size χ(G), based on a known clique partition of G of the
same size χ(G).

Moreover, we can ensure the existence of at least one conformal network out-
going from reproducible data (Thm. 1), since we allow the occurrence of WPCs
in PS which can be later resolved by inserting control-arcs. In contrast, during
the reconstruction of standard networks without control-arcs, all priority con-
�icts have to be excluded so that we obtain a solution outgoing from reproducible
data only if none of the observed di�erences dj is enabled at a terminal state
xk [12] (since the resulting WPC(σ, σ′) between (xj ,dj) ∈ σ and (xk,0) ∈ σ′
cannot be resolved in standard networks).

On the other hand, we always obtain an extended network being conformal
with reproducible data, since a catalytical conformal extended network exists if
none of the observed di�erences dj starts at a terminal state xj [2], and this
property is guaranteed by the preprocessing [20] (otherwise, xj would have two
di�erent successors xj + dj and xj + 0).

During the reconstruction of extended networks without priorities in [2], all
occuring WPCs are resolved by inserting control-arcs only: a WPC(σ, σ′) be-
tween (y, rt) ∈ σ and (y′, rt

′
) ∈ σ′ is resolved by disabling t at y′ and disabling

t′ at y (since no priorities are at hand to force the desired switch). Hence, the
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resulting networks may contain more control-arcs than catalytic or inhibitory
dependencies indeed exist, since several switches are not controled by reaction
rates (re�ected by priorities), but by additional control-arcs.

In contrast, during the reconstruction of extended networks with priorities
we only introduce control-arcs if the experimentally observed behavior cannot
be forced by priorities alone. Moreover, only using minimal sets of control-arcs
needed to resolve all WPCs in a network PS has a further advantage: instead
of �rstly computing all possible solutions (in terms of all possible covers of the
matrix AS) and later removing non-minimal solutions in a postprocessing step
(as described in [19]), we avoid to generate such solutions already during the
reconstruction process.

Our further goal is to avoid not only generating non-minimal solutions, but
also minimal solutions which are �technically correct� but would be ruled out
later during a subsequent verication process to check whether the returned so-
lutions are �biological meaningful� or contradict well-established biological pre-
knowledge (e.g. on catalysts or inhibitors of certain reactions). This could be
done by integrating further biological pre-knowledge (beyond the information
given with the experimental data) into the reconstruction process.

For standard networks, we already provided an implementation of the re-
construction approach using Answer Set Programming [4]. The �nal goal is to
provide such an implementation also for extended Petri nets with priorities and
to apply the presented reconstruction approach to di�erent biological exper-
imental data. We indeed expect an important impact of Automatic Network
Reconstruction in order to support the integrated experimental and theoretical
analysis of biological systems and processes towards their holistic understanding.

In [7], an integrative method to reconstruct all X ′-deterministic extended
Petri nets with priorities �tting given experimental time series data is proposed.
We detailed here the aspect of handling priority con�icts and choosing control-
arcs by discussing the underlying mathematical structures and related combina-
torial problems: we interpreted

- the selection of suitable sequences from the priority con�ict graph as the
problem of �nding a stable set of size χ(GS) in GS and ensured the existence
of such a stable set (Thm. 1).

- resolving WPCs as set cover problem involving a matrix AS encoding all
possible control-arcs to resolve all WPCs in a standard network PS and
showed that computing the blocker b(AS) yields all minimal catalytic con-
formal extended Petri nets based on PS (Thm. 3).

These interpretations in terms of two well-known combinatorial optimization
problems open us the possibility to apply e�ective techniques known from the
literature, e.g., the classical algorithm of Berge [1] or one of its recent, more
e�cient variants [6,13], to compute the blocker of a matrix.

On the other hand, there exist algorithms to enumerate all maximal stable
sets of a graph [8,11,17], which include all maximum ones. Here, it could be
interesting to design a specializes algorithm for enumerating all stable sets of
size χ(G), based on a known clique partition of G of the same size χ(G).
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6 Appendix

The following appendix should not be considered as part of the paper, but
only as con�dential supplementary information for the program committee.

6.1 The priority con�ict graph and selecting sequences

For any graph G, the maximum size of a stable set in a graph, called its
stability number α(G), is a lower bound for its clique cover number χ(G) (since
a stable can meet a clique in at most one node). In general, we do not have
equality (e.g., the chordless cycle C5 on 5 nodes has α(C5) = 2 but χ(C5) = 3).

Theorem 4. We have α(GS) = χ(GS) for the strong priority con�ict graph GS
and, thus, system (1) is always feasible.

Proof of Theorem 4. Making use of the reproducibility of the given data X ′
guaranteed by the preprocessing [20], we show that the canonical solution S1,
the selection of all canonical sequences σ1(x

j ,dj) = ((xj ,dj)) ∀ dj ∈ D, is
always a solution of (1).

For that we have to verify that σ1(x
j ,dj) is neither in strong priority con�ict

with any other canonical sequence σ1(x
i,di) for some di ∈ D \dj , nor with any

trivial sequence σ(x,0) for some x ∈ X ′term.
Recall that the reproducibility of X ′ guarantees that each xj ∈ X ′ has a

unique successor xj+1 = xj + dj ∈ X ′, and that this includes dj 6= 0 ∀ dj ∈ D
(otherwise, if dj = 0, then xj+1 = succ(xj) = xj + 0 = xj holds and, thus, xj

has two di�erent successors xj+1 = xj and succ(xj+1) 6= xj , a contradiction).

Case 1: Consider two canonical sequences σ1(x
i,di) and σ1(x

j ,dj) in priority
con�ict, i.e., we have di 6= dj and di,dj ∈ T (xi) ∩ T (xj).

Then xi 6= xj follows from reproducibility (otherwise, xi = xj would have
two di�erent successors xi + di 6= xj + dj in X ′ by di 6= dj), hence the priority
con�ict is not strong.

Case 2: Consider a canonical sequence σ1(x
i,di) and a trivial sequence σ(x,0)

for some x ∈ X ′term in priority con�ict, i.e., we have di ∈ T (x).
We infer x 6= xi from the reproducibility of X ′ (otherwise x = xi would have

two di�erent successors x + di 6= x + 0 in X ′ by di 6= 0), hence the priority
con�ict is not strong.

Finally, observe that neither two canonical sequences σ1(x
i,d) and σ1(x

j ,d)
nor two trivial sequences σ(x,0) and σ(x′,0) can be in any priority con�ict
(since d = d and 0 = 0 holds, resp.). 2

Theorem 1 is clearly a corrollary from the more general Theorem 4.
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Proof of Lemma 1. A node σ ∈ VD being in SPC with all sequences from some
Q ∈ Q is adjacent to all nodes in Q. Since exactly one node, say σ′ ∈ Q, has to
be selected from Q by (1a) or (1b), inequality (1c) forces xσ = 0 (by xσ′ = 1 and
xσ + xσ′ ≤ 1) due to the SPC between σ and σ′. Hence, σ cannot be selected
for any solution S of (1). 2

Note that Lemma 1 includes the case addressed in [2] that no sequence σ
containing a terminal state x as intermediate state is appropriate: Then σ con-
tains a reaction vector rt 6= 0 which is supposed to switch in x, leading to a
SPC between σ and the trivial sequence σ(x,0) since t ∈ T (x) holds.

Since σ(x,0) is a clique Qx in GS of size 1 and σ is in SPC with the whole
clique Qx, Lemma 1 implies the assertion of Corollary 1.

The reduced version of the original priority con�ict graph from Fig. 2 is pre-
sented in Fig. 4.

Q3Q1 Q3

Q2

Q0

Q4

σ(x1,d1)

σ3(x
1,d1)

σ(x3, 0)

σ(x2,d2)

σ(x0, 0)

σ(x4,d4)

σ3(x
4,d4)

Fig. 4. The reduced priority con�ict graph resulting from the running example, where
bold edges indicate SPCs, thin edges WPCs and gray boxes the clique partition Q.

Theorem 5. We have α(G′S) = χ(G′S) for the reduced strong priority con�ict
graph and the sets of maximum stable sets in GS and G′S are equal.

Proof of Theorem 5. By construction, G′ is an induced subgraph of G, hence G′S
is an induced subgraph of GS as well.

Since from G and GS , only nodes are deleted during the reduction step which
cannot occur in any maximum stable set of GS by Lemma 1, we have α(G′S) =
α(GS).

None of the cliques in Q turns into the empty set by applying the reduction
(since at least the canonical sequence σ1(x

j ,dj) remains in Qj and all trivial
sequences σ(x,0) from Vterm remain in G′ due to Theorem 4 and Lemma 1).

This implies χ(G′S) = χ(GS), and the assertion α(G′S) = χ(G′S) follows from
Theorem 4. 2

Theorem 2 is a direct consequence of the more general Theorem 5.
We �nally obtain the reduced system to compute all maximum stable sets in G′S .
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∑
σ∈Qj

xσ = 1 ∀Qj ∈ Q (2a)

xσ = 1 ∀σ ∈ Vterm (2b)

xσ + xσ′ ≤ 1 ∀σσ′ ∈ E′S (2c)

xσ ∈ {0, 1} ∀σ ∈ V ′D ∪ Vterm. (2d)

6.2 Interpretation of resolving WPCs as set cover problem

Proof of Lemma 2. We can partition the set CA(σ, σ′) in two di�erent subsets:
- CAt,y′(σ, σ′) containing all control-arcs that disable t at y′,
- CAt′,y(σ, σ

′) containing all control-arcs that disable t′ at y.
We distinguish the following cases:

Case 1: A′ ⊆ CAt,y′(σ, σ′). In this case, the control-arcs in A′ disable t at
y′ (such that only t′ remains in T (y′)), but still t, t′ ∈ T (y) holds. Adding the
priority t > t′ forces t to switch in y and, thus, the WPC(σ, σ′) is resolved by
adding A′ and t > t′.

Case 2: A′ ⊆ CAt′,y(σ, σ
′). This case is analogously to Case 1, by interchanging

the roles of t and t′ resp. y and y′.

Case 3: A′ intersects both CAt,y′(σ, σ′) and CAt′,y(σ, σ
′). In this case, the

control-arcs in A′ disable t at y′ and t′ at y (such that only transition t remains
in T (y) and transition t′ in T (y′)). This already forces t to switch in y and t′

in y′, thus, the WPC(σ, σ′) is resolved by adding A′, without adding a further
priority between t and t′. 2

Proof of Lemma 3. Any cover C of the matrix AS encoding row-wise all sets
CAS(σ, σ

′) for all WPCs in PS selects, by construction, a non-empty subset
A′ ⊆ CAS(σ, σ

′) for each WPC. According to Lemma 2, the union of these sets
A′ resolves all WPCs in PS . Moreover, it is ensured for all sequences σ ∈ S, that
rtl ∈ TA(yl) holds for all reaction vectors rtl and intermediate states yl in

σ = σπ,λ(x
j ,dj) = ((y1, rt1), . . . , (ym, rtm),

since the control-arcs do not remove tl from TA(y
l) for any tl involved in a WPC

at yl by construction of CA(σ, σ′) and for any tl not e�ected by a WPC at yl

by the reduction of the sets CA(σ, σ′) to CAS(σ, σ
′), if necessary.

Hence, inserting the control-arcs selected by C in PS indeed yields a catalyt-
ical conformal extended Petri net. 2

Note: AS does not necessarily have a cover (namely, not if CAS(σ, σ
′) is empty

for one WPC(σ, σ′)). On the other hand, if there is a cover C for AS , then the
resulting catalytical conformal extended Petri net can be made X ′-deterministic
by adding appropriate priorities (as in the proof of Lemma 2).
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Proof of Lemma 4. According to [19], two X ′-deterministic extended Petri nets
with priorities are M -equivalent if they have the same incidence matrix M .
In particular, all X ′-deterministic extended Petri nets with priorities stemming
from the same standard network PS are M -equivalent (since they di�er only in
their sets of control-arcs or priorities).

We call a control-arc essential if the network is not X ′-deterministic anymore
after its removal (since at least one of the WPCs in PS remains unresolved), and
unnecessary otherwise.

We ensure that a cover C of the matrix AS encoding row-wise all sets
CAS(σ, σ

′) for all WPCs in PS is minimal if and only if it only contains es-
sential control-arcs:

Case 1: Each CAS(σ, σ
′) intersects C in exactly one element. Then all control-

arcs selected by C are clearly essential and C is a minimal cover.

Case 2: There is a set CAS(σi, σ
′
i) having with C at least 2 elements in common.

Case 2.1: (At least) one control-arc in CAS(σi, σ
′
i) does not show up in the

intersection of C with any other CAS(σj , σ
′
j), say (pi, ti). Then C \ {(pi, ti)}

is still a cover of AS and, thus, C is not minimal and contains an unnecessary
control-arc (pi, ti).

Case 2.2: All control-arcs in CAS(σi, σ
′
i)∩C show up in the intersection of C with

another set CAS(σj , σ
′
j). If each of them is the only control-arc in CAS(σj , σ

′
j)∩

C, then all of them are essential and C is minimal. Otherwise, at least one of
them, say (p, t), is not the only control-arc in CAS(σj , σ

′
j) ∩ C (for each WPC

with (p, t) ∈ CAS(σj , σ
′
j)). Then C \{(p, t)} is still a cover of AS , C not minimal

and (p, t) ∈ C unnecessary. 2
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