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Abstract : Assuming an approximated effective mass and using Bastard’s boundary conditions, we introduce a simplified method which 
allows the determination of the energy levels forming the sub-band structure of non-symmetrical, non-periodical potential samples. The energy 
quantification condition allows the determination of the energy levels for electron and hole. The wave functions are easily deduced as well 
as the energy transition. We have applied this method to both theory and experimental data. Our finding shows a good agreement with 
previous experimental and theoretical results. The method is useful for any number of semiconductor layers arranged in any random way; 
thus making it more realistic, simpler and applicable to superlattice analysis and device designs.
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1. Introduction

The superlattices that consist of many alternating semi-
conductor layers, have recently attracted attention of the 
researchers and attempts have been made to determinate 
their band structures. The Kronig-Penney  model [1] was 
applied with the purpose to find out the nature of the 
band structure of massive semiconducting samples with 
periodically varying potentials [2,3]. It has also been ap-
plied to semiconductor superlattices [4–8] to investigate 
the qualitative nature of band structures and calculate 
quantum confined boundary energy sub-bands.

Mukherji and Nag [4] assumed that the wave function 
and its first derivative are continuous at the interface when 
they considered the effective-mass difference in formula-
tion. Bastard [5] calculated the band structure  of GaAs/
GaAlAs and InAs/GaSb superlattices by matching propa-
gating or evanescent envelope functions at the boundary 
of consecutive layers. In his model, Bastard [5] showed 

that the first derivative function divided by the effective 
mass is continuous at each interface when he used an 
envelope function approximation.  In comparison to other 
boundary conditions [9–11], this proved to be the simplest. 
In addition, the results of particle energy calculation based 
on Bastard’s boundary conditions were consistent with 
the experimental data obtained by Masselink et al [12].  
Chomette et al [13] used the Kronig-Penney model [1] 
and the Bastard’s boundary conditions and calculated the 
band offset of GaAs/GaAlAs superlattices. Cho and Prunal 
[14]  developed a new formalism of the Kronig-Penney 
model [1], considerably simpler than the conventional 
one. Maiz et al [15] presented a simple method and 
applied it to study the  GaAs/GaAlAs super-lattices their 
theoretical results showed a good agreement with those 
obtained by Cho and prunal [14]. Girault [16] has also 
prepared the InP/GaInAs superlattices and has carried 
out such study.  

In this paper, assuming an approximated effective mass 
and using Bastard’s boundary conditions, we introduce a 
further simplified method which allows the determination Present Address : Jizan Teachers College, Jizan, Abu-Areesh, P.O. 
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of the energy levels forming the sub-band structure of a 
non-periodical-potential multilayer sample. 

We practice this method from both theoretical and 
experimental points of view. First, we apply it on the 
GaAs/GaAlAs superlattice and compare the findings with 
the previous ones. Secondly, we use this method to in-
terpret the experimental data obtained by Girault [16] for 
the InP/GaInAs superlattice.

2. Formulation
To formulate our simple method, we have considered a 
general case where the sample consists of n semiconduc-
tor layers deposited on a substrate and limited by two 
media B and F, as shown in Figure 1.  

Table 1. Characteristic of a heterostructure with n  layers.
Layer Index Thickness Barrier height Electron
   difference effective mass
Backing B lb Vb mb* 
Substrate S l Vs ms* 
Layer i Li h1 V1 m1* 

Medium F F lf Vf mf*

The characteristics of the different layers are given by 
Table 1. The  Schrödinger’s  equation may be described 
as :

For region B  ,  

For region S  , 

For region Li , 

For region F , 

where , 

and Hi = .
For values of the energy less than the potential limits Vb  
and Vf, the acceptable solutions of these equations are
 ( ) :

  For 

  For

 

  For

  For
The use of  Bastard’s boundary conditions at each interface 
and the elimination of W, U, V, Xi , and Yi  ( ) 
lead to the following equality :

 an Pn Xn+bnQnYn=0,

where

 , , , 

 , 

 ,

 .
The substitution of Xn   and  Yn  by their expressions 
as a function of A gives :

 ,

where 
The demonstration of this expression in general, was 

done by the recurrence method [14]. Since A is the 
amplitude of the function in the medium F, it must be 
different from zero and then Bn  = 0 is the energy quan-
tification condition. The energy levels are obtained by 
the energy values for which the curve of the Bn  meets 
the energy axis.  

When we consider the function F(E) definite as: 
where the signum function 

computes the sign of the leading coefficient of expression 
[if x ≠ 0 then signum (x) = x/abs(x) and signum(0) = 0]. 
The energy levels are indicated by a vertical segments  
perpendicular to the energy axis which constitute the curve 
of the function F(E).  In this case, the energy values are 
determined with a great precision.

3. Study of the GaAs/AlGaAs superlattice

In order to verify our method, we use the application of 
Maiz et al [15]. We have calculated the electron energy 
values of the GaAs/AlxGa1-xAs superlattice sub-bands, with 
x = 0.5, a = 100Å, and b = 10 Å, the barrier of potential 
V is 375 meV [12,17–19], the electron effective mass is 
0.067mo inside the well and  0.1085mo [20] at the 

Figure 1. A schematic view of n layers .

Vb Vs
V1 V2 Vi Vn

Vf

V

-(1b + 1) Hn + 1f0

L2

Ln

H n

x



 A simple method for the determination of the superlattices band structure etc. 311

Table 2. Characteristics of  the   AlxGa1-xAs /GaAs superlattice.
 Layer Thickness Barrier height  Electron effective
   difference mass 
 GaAs 100Å 0 0.067 m0

 AlxGa1–x As 25Å 375 meV 0.01085 m0

barrier (see Figure 2), mo is the free electron mass.  
Table 2 shows the physical characteristics of this super-
lattice.  Figure 3 describes the dependence of F(E) as 
a function of the energy for n = 8 ( five wells). The 
positions of the sub-bands and the exact energy values 
are indicated by vertical segments. We find two bands, 
the first is made up of five levels, and their values are : 
30.56, 31.39, 32.58, 33.82, 34.74 (meV) and five levels : 
122.2, 125.7, 130.65, 135.98, 140.12 (meV) for the second 
band. We notice that the number of levels is equal to 
the number of wells and that all the picks are located 
in the sub-band predicted elsewhere [1,14,15]. The exact 
wave function associated with each energy is calculated 
by inserting the value of the energy.    

4. Study of the InP/GaInAs superlattice
In order to explain the optical spectrum of the InP/
GaInAs superlattice, we applied our method to calculate 
the energy levels of electron and hole. The thickness of 
the GaInAs ranges between 1.8 nm and 30 nm which is 
smaller than the InP ones.  First,  we tackle the experi-
mental study made by Girault [16]. Second, we find the 
energy of electron (e), high hole (hh) and low hole (lh) 
for, calculating the energy of different transitions  and 
compare it with the experimental results.

4.1. Experimental study :
Girault [16] experimented three various samples S1, S2, 
and S3 of the InP/GaInAs superlattice. Table 3 shows 
the thickness of the GaInAs layers. He proved that many 
transitions can be seen  and calculated. He noticed that 
the transition energy changes according to the thickness 
of the constituting wells. Girault observed about ten tran-
sitions between the levels of electrons and holes but he 
could detect only two transitions for the sample S1 and 
four for each of the other ones. Table 4 summarizes the 
energy of the observed transitions for each sample.

Table 3. Wells  thickness. 
 Sample S1 S2 S3 
 GaInAs layer thickness 1.8 nm 18 nm 30 nm

Table 4. Observed transitions energies.
 Transition energies  (meV) S1 S2 S3
 hh1  →  e1 1050 740  730
 hh2  →  e2 * 800  760
 hh3  →  e3 * 885  800
 hh4  →  e4 * 990  850
 lh1  →  e1 1160 * *

4.2. Theoretical study :
The energy quantification condition is written assuming 
that the media B and F represent the same medium 
which is the InP layer where the barrier potential  is 
adjusted to Ve = 360 meV for electron and Vh = 260 
meV for holes. As the conduction band of  GaInAs is 
not parabolic, we write the effective mass for the electron 
in the well as :

.
Eg represents the energy gap. Palik et al [21] proposed 
the value 1.3 meV–1 for α and later Sarkar et al [22] 
assigned it to 2 meV–1 but we find it to be 1.8 meV–1.  
Table 5 gives the characteristics of the InP/GaInAs su-
perlattice.

(a) Electron energy levels :
Using our method, we calculate the electron energy 
levels and we find only one level  for the sample S1 
because of the smallness of the GaInAs thickness. We 
also noted four other energy levels for each of the other 
samples. We observe that the first energy level decreases 
when the well thickness increases. Table 6 describes our 
theoretical results.
Table 5. InP/GaInAs superlattice characteristics.
 Layer Ve Vt me mh ml

 InP 360 meV 260 meV 0.079 mo 0.45 mo 0.12 mo

 GaInAs 0 0 0.04 mo 0.6 mo 0.05 mo

Table 6. Electron energy levels.
 Samples Energy levels (meV) 
 S1 S2 S3 
Electron 965 743 794 869 957 733 756 790 
835

(b) Hole energy levels :
To calculate the energy levels of the hole, we assume that 
an electron is inside a well instead of a hole. The barrier 
potential is Vh and the effective masses are the ones of 
holes. For the sample S2, the exact high hole energy 
values are indicated by vertical segments as shown in 
Figure 4. Table 7 summarizes the hole energy levels.

Table 7. Hole energy levels.
 Hole and Energy levels (meV)
 samples  
 S1 S2 S3 
 High 83 1.46 7 15 28 3 6 11 16

 Low 173 13 56 129 230 5.8 24 54 99

Figure 3. curve of F(E) for n = 8 and 10 < E (meV) < 150.
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Figure 2. A schematic view of the GaAs/AlGaAs superlattice.

V

6 

0

G
aA

s

G
a 

A
l A

s
0.

5 
0.

5

G
a 

A
l A

s
0.

5 
0.

5

2.5 nm 10  nm

x



312 F Maiz

Figure 4. curve of F(E) for n = 0 and 0 < E(meV) < 40.

(c)  Discussion :

To compare the experimental results with the theoretical 
ones, we find the energy of the transitions as observed 
by Girault. We note that the difference is small and does 
not exceed 2%. This justifies the success of  our method.  
Table 8 displays transition energies both theoretical and 
experimental transition energies.

Table 8. Comparison of theoretical results with experimental data.
 Superlattice S1  S2  S3
 Transition energies (meV) Theor. Exper. Theor. Exper. Theor. Exper.
 hh1  →  e1 1048 1050 744 740 736 730
 hh2  →  e2 * * 801 800 762 760
 hh3  →  e3 * * 884 885 801 800
 hh4  →  e4 * * 985 990 851 850
 lh1  →  e1 1138 1160 * * * *

5. Conclusion
We have introduced a more simplified method which 
allows the determination of the band structure of non-
symmetrical, non-periodical potentials samples. The energy 
quantification condition allows the determination of the 
energy levels for electron and hole by a simple look at 
the energy axis, and are indicated directly by vertical 
segments. The wave functions are easily deduced as well 
as the energy transitions. We have applied this method 
on both theoritical and experimental levels. Our finding 
shows a good agreement with previous experimental [16] 
and theoretical [14] results. Our method is useful for any 
number of semiconductor layers arranged in any random 
way, thus making it more realistic, simpler and applicable 
to superlattice analysis and device designs. 
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