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Solitons of the KP equation in dusty plasma with variable
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Abstract : The propagation of nonlinear waves in dusty plasmas with variable dust charge and two
temperature ions is analyzed. By using the reductive perturbation theory, the Kadomtsev-Petviashivili (KP)
equation is derived. A Sagdeev potential has been investigated. This potential is used to study the stability
conditions for existence of solitonic solutions. Also, it is shown that a rarefactive soliton can exist in most of the
cases. The energy of the soliton has been calculated and by using the standard normal-mode analysis a linear
dispersion relation has been obtained. The effects of variable dust charge on the amplitude, width and energy of
soliton and its effects on the angular frequency of linear wave are also discussed.
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1.  Introduction

Solitary waves and solitons represent one of the interesting and famous aspects of nonlinear
phenomena in spatially extended systems. They appear as specific types of localized
solutions of various nonlinear partial differential equations and possess several important
properties.

Dusty plasmas are an ideal medium for creating solitary waves and solitons. Such
environments have been observed in the earth's magnetosphere, cometary tail, planetary
rings and so on [1-3]. Moreover study of dusty plasma media is very attractive because of
their theoretical features and also their applications.
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The low frequency oscillations in dusty plasmas have been studied in references [4,5].
The effect of dust temperature has been investigated in reference [6] and the normal
modes of plasmas because of the existence of heavy dust particles have been modified
in reference [7]. In most investigations reductive perturbation method has been used for
deriving the 'kdv' or 'mkdv' equation in one-dimensional case [8-10] and also for KP equation
in higher dimensions [11]. The charging process of dust particles is an important effect
which has been investigated in [8, 9]. This phenomenon was also studied by using semi-
inverse method, applied to ion-acoustic plasma waves in [10].

In the present paper, the dusty plasma with the variable dust charge and two temperature
ions has been considered. By using the reductive perturbation method (RPM) on two
dimensional unmagnetized case of this system, one can obtain the KP equation. Balancing
between nonlinear and dispersion effects can result in the formation of symmetrically
solitary waves. The KP equation has been obtained for dust acoustic waves in hot dusty
plasmas and also in dust ion acoustic dusty plasmas [12, 13]. In section 2, the basic
set of equations is introduced and in section 3, the KP equation has been derived. Section
4 contains discussion on soliton solution and its stability conditions. In section 5 we
obtain energy of the soliton. The linear dispersion relation and effects of variable dust
charge on this relation have been discussed in this section. Conclusions and remarks are
given in section 6.

2. Basic equations

We consider the propagation of dust acoustic waves in collisionless, unmagnetized dusty
plasma consisting of electrons, two temperature ions and high negatively charged dust
grains. Total charge neutrality at equilibrium requires that

n n Z n ne d d il ih0 0 0 0 0+ = + (1)

where n0e, n0d, n0il and n0ih are the equilibrium values of electrons, dust, lower temperature
ions and higher temperature ions number densities respectively. Z0d is the unperturbed
number of charges on the dust particles. The following set of normalized two dimensional
equations of continuity, motion for the dust and Poisson, describe dynamics of dust acoustic
wave
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where ud and vd are velocity components of the dust particles in x and y-directions. nd, φ
and Zd are dust number density, electrostatic potential and variable charge number of
dust grains, respectively. Note that all of the above variables have been normalized by
n0d . Teff is effective temperature and it is given by :
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Also dust acoustic speed, Debye length and inverse of dust plasma frequency are defined
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Electrons and ions are assumed to be distributed with Maxwell-Boltzmann distribution
functions. So related dimensionless number densities for electrons (ne), low temperature
ions (nil) and high temperature ions (nih) are :

n
n

n Z
se

e

d d
= 0

0
1exp β φb g (7)

n
n

n Z
sil

il

d d
= −0

0
exp ( )φ (8)

n
n

n Z
sih

ih

d d
= −0

0
exp β φb g (9)

where

β β β
β
β

δ δ1 2
1

2
1

0

0
2

0

0
= = = = = = =

T
T

T
T

T
T

s
T
T

n
n

n
n

il

e

ih

e

il

ih

eff

il

il

e

ih

e
, , , , , . (10)

And from (1) it follows

δ δ1 2 1 0+ − ≥ . (11)

The dust charge variable Qd is obtained from the charge-current balance equation [14]
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where V = u vd d,b g  and Ie, Iil and Iih are the electron and ions (low and high temperature)
currents. We further suppose that the streaming velocities of electrons and ions are much
smaller than the thermal velocities. Thus  and charge-current balance

equation (7) reads I I Ie il ih+ + ≈ 0 . The electron and ions currents are [15]
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where Φ  denotes the dust grain surface potential relative to the plasma potential 
[16].

The normalized dust charge, Zd is obtained from

where ψ = e TeffΦ  and . By expanding Zd with respect to φ  we have [11]
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3. The derivation of KP equation

According to the general method of reductive perturbation theory, we choose the independent
variables as

ξ ε τ ε η ε= − = =( ), ,x v t t y0
3 2 (17)
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where ε  is a small dimensionless expansion parameter which characterizes the strength
of nonlinearity in the system and v0 is the phase velocity of the wave along the x direction.
We can expand physical quantities which have been appeared in (2)-(5), in term of the
expansion parameter 

ε

 as
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substituting (17)-(22) into equations (2)-(5) and collecting terms with same powers of ε ,
from the coefficients of lowest order we have :n
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The KP equation is derived from the above equations

∂
∂ξ

∂φ
∂τ

φ
∂φ
∂ξ

∂ φ
∂ξ

∂ φ
∂ η

1
1

1
3

1
3

2
1
2 0+ +

L
N
MM

O
Q
PP
+ =a b c (29)

where a
v

v
v

b
v

c
c

= + −
+ −

+ +
−

L

N
MM

O

Q
PP + − = =0

3

1 2
2

1
2 1 2

1 2 1
2 2 1 0

0

0
3

0

2
1

2 3
2

3
2 2 2

δ δ β β
δ δ

δ δ β β
γ γd i b g

b g
, , . (30)

From (10) one can find that β β1 1, < . Notice that the derived parameter "a" is different

from what has been reported in [11]. Our calculation shows that what has been appeared
in [11] can not be correct.

Let us examine sign of "a" which has been defined in (17). Parameter "a" reaches its
maximum where the first term becomes maximum and the second term attains its minimum

value. The first term is maximum when . Thus for  and  "a" is maximal.

We choose  and in this case "a" is
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 we have

It is clear that above term is less than 1 if δ β β1 11 1< + −b g b gd i  and in this case "a"
is always negative and rarefactive solitons always exist. Also above mentioned term is
more than 1 if  and in this case "a" can get positive or negative
values and in thse cases both compressive and rarefactive solitary waves can be
propagated. Figure (1-4) show the variation of "a" with respect fo different values of 

and δ 2 .

In Figure 1 "a" is plotted as a function of β  and  when δ δ1 21 4= =,  and v0 1= .

Figure 2 presents "a" as a function of  and  when δ β1 211 0 01= =. , .  and Figure
3 shows "a" respect to β1  and δ1  when δ1 11= .  and β2 0 01= .  both two cases with
v0 = 1.
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Figure 1. The parameter "a" as a function of β  and β1  with δ δ1 21 4= =,  and v0 = 1. Figure 1b is the contour

plot of Figure 1a.

Figure 2. "a" as a function of β  and δ2  with δ β1 111 0 01= =. , .  and v0 = 1.

Figure 3. "a" as a function of β1  and δ1 with δ β2 11 0 01= =. , .  and v0 = 1.
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We can see that with a fixed value for δ1  and δ 2 , "a" reaches its maximum when β
and  have their minimum values. Figure 4 presents "a" as a function of δ1  and δ 2 ,
with β β= =0 01 0 51. , .  and v0 = 1.

Figure 4. Parameter "a" as a function of δ1 and δ2  with β β= =0 01 0 51. , .  and v0 = 1.

All of the figures show that "a" is negative for most of the acceptable values of the
parameters and it is positive only in small region of parameters.

4. Discussion

We introduce the variable

χ ξ η τ= + −l m u (31)

where χ  is the transformed coordinate relative to a frame which moves with the velocity
u. "1" and "m" are the directional cosines of the wave vector "k" along the  and 
respectively, in the way that .

By integrating (29) respect to the variable  iand using the vanishing boundary condition
for  and its derivatives up to the second-order for χ →∞ , we have
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Equation (32) has solitonic solutions and one-soliton solution for this equation is given by
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where φ0 2
3= h
l a

 is the amplitude while W l b
h

= 2
4

 is the width of the soliton.

For investigating the stability conditions of this solution, we use a method based on
the energy considerations [17]. Thus we are going to find the Sagdeev potential for this
situation. Eq. (32) can be written as
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In order to obtain the Sagdeev potential, eq. (26) is integrated to yield the nonlinear
equation of motion as
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It is clear that V φ1 0b g =  and dV d( ) ( )φ φ1 1 0b g =  at φ1 0= . A stable solitonic solution
must satisfy the following conditions [18, 19]
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The parameters, l and b are positive. Therefore h > 0 or

ul m c− >2 0 . (39)

It is clear that the width (W) of a stable solitary wave is real.

We found that h > 0 and also for most of the cases the parameter "a" is negative. By
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these conditions the term  is negative. Therefore the solution is a rarefactive
soliton in most of the cases. Figure 5 shows the Sagdeev potential  as a function
of φ1.

Figure 5. Sagdeev potential as a function of φ1 .

Figure 6 presents the soliton profile for different values of u. All of the fucntions simulated
with the values δ δ β β1 2 111 0 5 0 01 1= = = = =. , . , . , v  and l = 0.6.

Figure 6. The shape of soliton with different values of u, with δ δ β β1 2 111 0 5 0 01 1= = = = =. , . , . , v  and l = 0.6.

Now let us find the stability conditions for the above solution. From the (39) we have
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If 1 12− >l ld ie j  then u > c and when 

1 12− <l ld ie j

 we have u < c. Thus the soliton
is stable if
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Figure 7 shows the soliton amplitude (φ0 ) as a function of velocity "u" and figure 8
presents the soliton width respect to the velocity "u".

Figure 7. Soliton amplitude as a function of "u".

Figure 8. Soliton width as a function of velocity "u".

We can see that the amplitude of the soliton (φ0 ) increases when "u" is increased,
while its width decreases with an increasing velocity "u". On the other hand, from the
definition of the soliton amplitude and its width, one can find that the amplitude (width)
decreases (increases) with an increasing value for the parameter "I". This means that the
parameters "u" and "I" have important roles in the stability of soliton. Thus a soliton is
stable when the effects of these two phenomena cancel out each other.
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Finally for the case m l2 1=  and u > c, we have

W l b
u c

u c
la

h
W

=
−

= − = F
HG
I
KJ2 33

0 1 0
2, ( ) , secφ φ φ χ

. (42)

And the potential is

V a
l b

u c
l b

( ) ( )φ φ φ1 2 1
3

3 1
2

6 2
= − −

(43)

5. Energy of soliton and linear dispersion relation

The velocity components of the dust particles come from (24) and (25)
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The energy of soliton can be obtained from the following eq. [20]
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Figure 9 indicates that the energy of soliton increases with increasing γ 1 .

Figure 9. Energy of the soliton as a function of γ1  for γ δ δ β β2 1 2 10 0 6 0 7 0 01 0 5 0 6= = = = = =, . , . , . , . , .l  and
u = 1.
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The calculated energy comes from the motion of the dust particles so this is a kinetic
energy. We can add the electrostatic potential energy into this quantity. The electrostatic
potential energy is
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Linear dispersion relation can be obtained as follows. According to the standard normal-
mode analysis, by linearization of dependent variables nd, 

φ

 and Zd in terms of their
equilibrium and perturbed parts [21, 22], we have

n n u u Z Zd d d d d d= + = = = + = +1 1 11 1 1 1 1 1, , ,φ φ γ φ
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Then, we may assume that all the perturbed quantities are proportional to 

ei kx t( )−ω
with K being the wave propagation constant in the direction of x-axis and so we have
∂ ∂ ω ∂ ∂t i x ik= − =, . Substituting (49) into (10) – (12), (14) and (15) and using their
linear terms one obtains linear dispersion relation as [23]
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Figure 10 shows the angular frequency (ω ) as a function of k for 

γ 1 0=

 and γ 1 0 2= . .

Figure 10. The angular frequency respect to k for γ1 0=  and γ1 0 2= . .
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Figure 10 indicates that increasing k (γ 1 ) leads to increasing (decreasing) values for
the ω . For real values of , all perturbation variables oscillate harmonically and if any or
all of the 's have positive imaginary parts, then the system is unstable since those
normal modes will grow in time [23].

6. Conclusion and remark

The KP equation was obtained in unmagnetized dusty plasma with variable dust charge
and two temperature ions. For the KP equation (32), parameters "b" and "c" are always
positive. But parameter "a" can be positive or negative ; however it is negative for most of
the cases. This means that generally a rarefactive soliton is appeared in the medium.
Consequently amplitude of the solitary waves is smaller as compared to the one-
dimensional case [16].

The Sagdeev potential was derived and stability conditions were investigated. One can
find that for a stable soliton the velocity "u" has some limitations (see (4)). This means
that the solitons are stable only if the effects of dust and ions motion cancel out each
other. Analytically, the coefficients of the dispersive terms, "b" and "c" depend on the
parameter . Indeed dispersion decreases when γ 1  is increased. The parameter "a" is
the coefficient of the nonlinear term. It is a function of relative densities, relative
temperatures, γ 1  and γ 2 . Therefore, it is possible that the competition between the
nonlinear term and dispersion terms, lead to the formation of a soliton. The energy of
soliton and linear dispersion relation have been derived and discussed, too.

Since the parameter "a" can be positive or negative it can also be zero. But a solitonic
solution can not be established when "a" is zero; therefore "a" has a critical value. This
situation is very important and can be investigated in future.
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