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We present approximate analytical expressions for the estimation of the degenerate four-wave mixing conversion 
efficiency in slow light photonic crystal waveguides. The derived formulas incorporate the different effective modal 
areas and the frequency-dependent linear and nonlinear parameters of the pump, signal and idler waves. The 
influence of linear loss, two-photon absorption and free-carrier generation is also accounted for. Numerical solution 
of the coupled propagation equations is used to verify the validity of the proposed expressions under different 
values of the linear and nonlinear parameters of the waveguide. It is shown that the derived expressions provide 
an accurate estimation of the conversion efficiency and are thus expected to be very useful in the design of photonic 
crystal waveguides for nonlinear signal processing applications.      
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1. INTRODUCTION 

Four wave mixing (FWM) is an important nonlinear 
phenomenon which may hold the key for many signal processing 
applications in future optical networks, including wavelength 
conversion, signal regeneration, phase inversion, optical 
switching and optical de-multiplexing [1-7]. Degenerate FWM 
occurs when part of the optical power of a signal wave can be 
transferred to an idler wave located at another frequency 
through the mediation of a strong pump wave located at a third 
frequency. The efficiency of the energy exchange in this process is 
larger when the phases of the three waves are matched, i.e. when 
Δφ=2φp-φs-φi is small, where φp, φs, φi denote the total phase of the 
pump, signal and idler waves respectively. The most commonly 
adopted figure-of-merit which characterizes FWM is the 
conversion efficiency defined by, 
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where Ps(0) is the incident signal power and Pi(L) is the idler 
power at the output of the waveguide of total length L. 
Nanophotonic slow-light structures such as photonic crystal 
waveguides (PCWs) [8] offer the possibility of achieving sub-
wavelength light confinement, while at the same time enhancing 
nonlinear effects like FWM [5],[6]. Figure 1(a) shows the 
horizontal cross-section of a PCW formed in a triangular lattice of 
air holes embedded in a higher refractive index material. It was 
recently shown that this waveguide is particularly advantageous 
in FWM applications [9]. Figure 1(b) shows the dispersion 
relation of the waveguide along with the variation of the group 
index ng with respect to the wavelength. One observes a smooth 
variation of ng near ng≅60, implying a small value of the group 
velocity dispersion (GVD) coefficient β2, highlighted with bold 

lines. Usually, this area is referred to as flat-band region and in 
our case is defined as the wavelength range in which the group 
index varies ±10% from the value of ng=60.  
The estimation of η can play a crucial role in the design of the 
waveguide and guide us through the choice of several geometric, 
material and signal parameters. In the case of degenerate FWM, 
the evolution of the three waves is generally described by a 
system of coupled ordinary differential equations (ODEs) [10], 
the detailed form of which has recently been derived in the case 
of PCWs [11]. By solving this system of equations, one can in 
principle estimate η using Eq. (1). 
Accounting for nonlinear losses complicates the problem, 
rendering the derivation of an exact analytical expression 
extremely difficult. In semiconductor materials such as silicon, 
nonlinear losses usually stem from two photon absorption (TPA) 
and free carrier (FC) generation [3]. Self-phase modulation 
(SPM), cross-phase modulation (XPM) and dispersion should also 
be taken into account. Another complication arises from the fact 
that the wave parameters can exhibit substantial frequency 
dependence in PCWs, especially in the slow light regime. Even if 
the waveguide is designed to ensure a smooth linear loss and 
group index frequency dependence [12, 13], there is no guarantee 
that the nonlinear propagation parameters such as the effective 
modal areas A for all three waves will be the same. In fact, recent 
studies argue that SPM, XPM and FWM may each perceive 
different values for A, unlike the case of a weakly guiding 
dielectric fiber, where such intricacies can be ignored [9]. 
In this work we undertake the task of providing approximate 
analytical expressions for the four wave mixing conversion 
efficiency η, when both linear and nonlinear losses affect the 
propagation of the three waves. The usefulness of these formulas 
is two-fold: First they provide significant insight into the nature 
of the FWM phenomenon from a theoretical point-of-view. They 
can also provide a target optimization function that requires 
much less computational time than the numerical solution of 
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ODEs, when designing the PCW for nonlinear signal processing 
applications. Unlike the design of PCWs for buffering 
applications [14], when optimizing the waveguide for FWM 
applications, one must also consider a multitude of signal 
parameters such as the pump-signal wavelength detuning and 
the incident pump power which necessitate a large number of 
efficiency calculations for each structure. Simple analytical 
expressions can therefore speed up the optimization process. 
The rest of the paper is organized as follows: we first summarize 
the FWM model used in our calculations in section 2. In section 3, 
we estimate the efficiency η, initially assuming only the TPA 
nonlinear loss term. The derived formula incorporates the 
different modal effective areas as well as the frequency 
dependence of the nonlinear parameters. The influence of 
nonlinear loss attributed to FC generation is then taken into 
account in section 4. To our knowledge, the derivation of η in the 
presence of either or both effects has never before been 
sufficiently addressed in the literature. To verify the validity of 
our approximations we compare the values of η obtained, against 
rigorous numerical solution of the coupled propagation ODEs. 
Good agreement is obtained for different values of wavelength 
detuning between the three waves as well as for various pump 
intensities and propagation lengths. A special treatment of the 
free-carrier effects is adopted in section 4.E in the case of pulsed 
pump. Finally, some concluding remarks are provided in section 
5. 

2. DEGENERATE FWM MODEL 

Assuming that the waves are propagating in the 
quasi-continuous wave regime, the coupled ODEs that describe 
the evolution of the three waves inside the PCW are given by 
[11]: 
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In Eqs. (2)-(4), Bμ and aμ stand for the amplitude and the linear 
loss coefficients of the pump (μ=p), signal (μ=s) and idler (μ=i) 
waves, respectively. In Eq. (2), the coefficient Tp encompasses the 
effect of SPM and TPA of the pump wave and is determined by: 

 ( )1 2 11
2 TPA2p p p pppT jn c S Aω β− −= −  (5) 

where n2 is the nonlinear Kerr coefficient, ωp=2πc/λp, c is the speed 
of light in vacuum, βTPA is the TPA coefficient and Sp stands for the 
slow-down factor of the pump wave, while Appp is derived from 
[11]: 
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In Eq. (6), V is the volume of the waveguide cell, Eρ, Eκ, and Eψ are 
the electric field components for waves ρ,κ and ψ respectively 
along y-direction and a0 is the lattice constant of the PCW 
waveguide. The selection of only the transverse y-component of 
the TE guided mode of the PCW was made based on the fact that 
the component along the vertical x direction contains only a small 
fraction of the incident power. In Figure 2(a), the variation of the 
effective modal areas pertinent to the SPM coefficient (Appp), in 
the coupled propagation equations (2)-(4) is shown with respect to 
the idler wavelength for a fixed signal wavelength at 1.55μm. In 
the same figure, we depict the values of the effective modal areas 
of the FWM (Apsi) and XPM (Apss, Apii) with respect to the idler-
signal detuning for a signal wavelength fixed at 1.55μm. The 
figure indicates that, as stated in the introduction, the modal 
areas can exhibit strong frequency dependence even inside the 
flat-band region of the waveguide. It is therefore incorrect to 
assume the same modal area for all three waves, especially when 
the detuning is larger. Also the modal areas corresponding to 
each phenomenon may differ significantly in the case of large 
detuning. In Figure 2(b), the variation of the linear loss coefficient 
with respect to wavelengths inside the flat-band region is 
illustrated. The linear loss coefficients can be calculated using the 
model proposed in [15]-[16]. This model takes into account the 
geometry of the PCW and the loss coefficient in the fast-light 
regime af which for the waveguide in question is assumed 
2dB/cm. As depicted in Figure 2(b), the linear loss coefficient is 
strongly wavelength dependent and hence, this should be taken 
into account when calculating the efficiency of FWM. 

 

Figure 1(a): The horizontal cross section of a PCW formed in a triangular
lattice of air holes embedded in a high index material (e.g. Si) with lattice
constant a0=412nm, slab height h=220nm and hole radius 0.2913a0.
Introducing a horizontal dislocation of the holes closest to the line defect
(1st neighbors) by s1=0.1019a0 and the 2nd neighbors by s2=-0.0485a0, results in a
flat dispersion relation near 1.55μm, corresponding to a group index ng≅60.
In Figure 1(b), the dispersion relation of the defect mode is shown. In the
inset we show the variation of the mode group index with respect to the
wavelength. The thick portion of the curves corresponds to the flat band
region where ng does not change more than ±10% from its specified value,
ng=60. 



The coefficients Ts and Ti reflect the influence of XPM of the signal 
and idler waves with the pump as well as the effect of TPA 
nonlinear loss and are determined by: 

 ( )1 1
2 TPA2s s p s pssT jn c S S Aω β− −= −  (7) 

 ( )1 1
2 TPA2i i p i piiT jn c S S Aω β− −= −  (8) 

In Eqs. (7)-(8), Ss and Si are the slow-down factors for the signal 
and idler waves respectively, βTPA is the TPA coefficient [17] while 
in Eqs. (2)-(4) the terms containing the coefficients Fμ describe the 
TPA-induced free carrier absorption and dispersion effects 
determined by [3]: 
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where Pp=|Bp|
2, Nc=βTPASp

3τC/(2ħωpAppp
2)Pp

2 is the carrier density 
[5,11], μ=p,s,i and for silicon waveguides, C1=-1.35×10-27m3, 
C2=1.45×10-21m2 and λ0=1550nm [18]. The free carrier lifetime τC, 
ranges from 400ps to 2ns in Si PCWs [19]. Unless otherwise 
specified, we use the value of τC=600ps in our calculations. There 
is a third order power dependence of NC on the slow-down factor, 
as discussed in [5]. In Eqs. (3)-(4), the terms proportional to Ms 
and Mi describe the FWM interaction between the signal and the 
idler wave, mediated through the pump wave. These coefficients 
are determined by: 

 1 1
2x x psi p s iM n c A S S Sω − −=  (10) 

In Eq. (10), x=s,i for the FWM interaction of the signal and idler 
waves, respectively. The linear phase mismatch Δk in Eqs. (3)-(4), 
is determined by Δk=ks+ki-2kp where kμ=k(ωμ) is the propagation 
constant of the three waves and ωμ=2πc/λμ, λμ is the wavelength for 
wave μ. A direct relation between Δk and the dispersion 
characteristics can be obtained using the Taylor expansion on Δk 
[20], Δk≅(Δω)2β2(λp)+(Δω)4β4(λp)/12 where Δω=|ωp-ωs|, and β2, β4 are 
the dispersion coefficients of second and fourth order, 
respectively. It is therefore clear that dispersive designs will 
result in larger Δk, further downgrading the FWM conversion 
efficiency. 
There are two assumptions implied in Eqs. (2)-(4) that should be 
stated. First of all, we assume that the pump power Pp=|Bp|2 is 
significantly larger than the power of the idler and the signal 
waves Pi=|Bi|2 and Ps=|Bs|2, respectively. In actual experiments, 
the pump power is usually more than ten times higher than the 
signal power, hence XPM and FWM effects in Eq. (2) can be 
ignored compared to SPM of the pump-wave. This also suggests 
that SPM effects in Eqs. (3)-(4) can be neglected in the presence 
of the much stronger XPM interaction between the pump and the 
signal or idler waves. The incident signal power is assumed, 
Ps(0)=0.5mW throughout our calculations. Another assumption 
commonly adopted in FWM efficiency calculations is that the 
waves are propagating in a quasi-CW regime and hence 
dispersion effects can be ignored. This can be justified by 
comparing the propagation distances with the dispersion length 
LD=T0

2/|β2| (where T0 is the root mean square pulse width). For the 
PCW of Figure 1(a) we obtain |β2|≤24.7psec2/mm inside the flat-
band region (thick portion of Figure 1(b)). For a signal of 
Rb=10Gb/s, one can choose the full width half maximum pulse 
width equal to 1/(4Rb)=25ps [14] which for Gaussian pulses 
corresponds to T0≅15ps and a dispersion length equal to  LD≅9mm. 
The dispersion length is therefore much larger than the 
propagation distances considered here (L≤500μm) and as a 
consequence, the dispersion terms in the propagation equations 
are neglected for the three waves. Of course dispersion effects are 
still accounted for in the phase mismatch Δk. Using a similar 
reasoning, we deduce that if a pulsed pump is used, dispersion 
effects can be ignored in the pump propagation equation as long 
as the pulse width is T0>3.5ps.  
Before turning our attention to nonlinear loss, it is interesting to 
state the approximate expression for the FWM efficiency η in the 
presence of linear loss only: 
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This equation is based on the expression used previously in the 
literature [20-22] but we have now taken into account the 
variation of the various parameters with respect to wavelength. 
In Eq. (11), L is the waveguide length, and κ and g are the total 
phase mismatch and parametric gain determined by, 
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Figure 2. (a) The various effective modal areas with respect to the pump-
signal detuning. The rectangles correspond to XPM where we assume that
all three modal fields in (6) are located at wavelength satisfying the
expression λψ=λκ=λρ+Δλ, and we vary λρ. The circles correspond to FWM, i.e.
λψ=λρ+Δλ, λκ=λρ-Δλ and we again vary λρ. The effective modal area for SPM is
shown with plain line for fixed λκ and we vary λψ. (b) The linear loss
coefficient in dB/cm inside the flat-band region. 
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In Eqs. (12)-(13), pP is the average pump power across the 

waveguide given by: 
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The expression of the FWM conversion efficiency in Eq. (11) can 
be used in the case where the TPA nonlinear losses can be 
suppressed. This is usually accomplished concerning materials 
possessing lower TPA coefficient (βTPA) frequently referred to as 
TPA-free materials [23]-[25], which are currently receiving 
increased attention in signal processing applications. Although 
this result is known and frequently used in the literature, its 
derivation provides the underlying idea used in the next sections. 
To derive Eq. (11), one uses the lossless formula for FWM 
efficiency [10] and a) accounts for the losses experienced by the 
idler wave multiplying by the factor exp(-aiL) in Eq. (11) and b) 
neglects the variation of the pump power assuming that the 
pump power is equal to the average pump power pP . In the case 

where the pump wave experiences nonlinear losses, the 
calculation of pP is not straightforward. One must also account 

for the nonlinear loss experienced by the idle wave which is 
mainly due to the existence of the pump wave.  
In this work we focus on the estimation of the FWM conversion 
efficiency in the presence of both linear and nonlinear losses. It is 
worth mentioning that in the linear case, the exact FWM 
conversion efficiency formula could be derived in terms of 
Whittaker confluent hypergeometric functions [26]. Although 
this is a very useful result, one should note that the estimation of 
Whittaker functions is usually quite involved and the 
corresponding computational cost can be comparable to that of 
solving the ODEs in the first place. 

3. INCLUSION OF TPA-INDUCED LOSS. 

In this section we discuss the analytic estimation of the FWM 
efficiency in PCWs when both the linear and the nonlinear TPA 
loss are included in Eqs. (2)-(4). TPA is typically accompanied by 
free-carrier generation causing an additional absorption and 
dispersion term expressed by the real and imaginary parts of Fp,s,i 
respectively in Eqs. (2)-(4). As discussed by several authors, FC 
effects can be significantly reduced when either a low repetition/ 
low duration pulsed pump is used [21], or when an external DC 
field is applied driving the free carriers away from the center of 
the waveguide [27], [28]. Under this assumption, the evolution of 
the three waves is governed by setting Fp,s,i=0 in Eqs. (2)-(4).   
To derive an expression for the efficiency, we start by estimating 
the power of the pump wave, Pp(z)=|Bp(z)|

2. Substituting 
Bp(z)=Pp(z)

1/2exp(jφp) in Eq. (2) and using the fact that Fp=0, it is 
straightforward to show that: 
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The above equation can be readily solved to yield: 
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where we have substituted the value of Re{Tp} determined by Eq. 
(5). The average pump power pP  is calculated by substituting 

Eq. (16) in Eq. (14), yielding: 
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As stated in the previous section, we can assume that the 
propagation of the signal and idler waves is lossless and that the 
pump power is constant and equal to pP , i.e.: 
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This lossless version of the coupled propagation equations can be 
solved exactly by generalizing the method used in [10] and 
properly taking into account the different coefficients for each 
wave. The lossless FWM efficiency η0 obtained turns out to be:  
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Figure 3. Wavelength dependence of FWM conversion efficiency (a) 
numerically calculated and (b) estimated using (22), assuming 
Pp(0)=2W and L=200μm.  



It is worth noticing that, in Eq. (20) the total phase mismatch κ 
and the parametric gain g are still given by Eqs. (12) and (13), 
respectively since the TPA term is a purely loss term but this 
time pP is given by Eq. (17) instead of Eq. (14). As outlined in 

Section 2, we next need to account for the power loss experienced 
by the idler wave as it propagates through the waveguide (in the 
absence of FWM). Using Eq. (4) and the fact that Pi(z)=|Bi(z)|

2, we 
can show that: 

 { }( )2Rei
i i p i

dP
a T P P

dz
= − +  (21) 

Dividing by Pi and integrating with respect to z, we can show that 
the losses of the idler wave, Pi(L)/Pi(0), are equal to 

{ }exp( 2Re )i i pa L T P L− − . Therefore, we can derive an 

approximate formula for the FWM efficiency in the lossy case by 
accounting for the idler wave loss, in the following expression, 
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We compare the values obtained by Eq. (22) against the 
numerical solution of the propagation equations Eqs. (2)-(4) using 
an embedded Runge-Kutta scheme [29] for the waveguide in 
Figure 1. In our calculations, the incident pump power is 
Pp(0)=2W and the waveguide length is set at L=200μm. We also 
assume that the TPA coefficient βTPA is 2×10-11m/W comparable to 
that of AlxGa1-xAs [30]. This TPA coefficient is somewhat higher 
than that of silicon (βTPA≅5×10-12m/W) and is assumed in order to 
increase the TPA loss level compared to the linear loss level (for 

βTPA=5×10-12m/W, the average TPA loss, concerning all possible 
signal-idler wavelength detunings inside the flat-band 
wavelength range,  is only -2dB, but increasing βTPA to 
2×10-11m/W results in an average TPA loss of almost -6.5dB, for 
an incident pump power of Pp(0)=2W. The average linear loss level 
for the same wavelength range is almost -8dB). 

In Figure 3, we compare the values obtained by Eq. (22) against 
numerical solution of the ODEs with respect to the wavelength of 
the signal and the idler waves. We visually infer that overall the 
approximate formula provides an adequate description for 
medium-to-high efficiency values which are important from a 
practical point of view. There is some discrepancy in low value 
regions (i.e. where the ODEs efficiency is ≤-10dB than the 
maximum efficiency value obtained by the ODEs, ηmax≅-11.4dB). 
To quantify the error in the approximation, we calculated the 
average error e5 and e10 between the numerical and the analytical 
efficiency (measured in dB) for wavelength combinations in 
which the ODEs efficiency is not lower than -5dB and -10dB 
compared to ηmax, respectively. In the case of Figure 3, we obtain 
e5=0.35dB and e10=1.1dB implying very good agreement for 
efficiency values of practical interest.  In Figure 4(a) and (b), we 
compare the FWM efficiency with respect to the waveguide 
length and the incident pump power obtained by the ODEs and 
the analytical approximation in Eq. (22). In these calculations, we 
have assumed that the signal and idler waves are located at fixed 
wavelengths, λs = 1553.6nm and λi=1549.3nm respectively resulting 
a pump-signal detuning of Δλ≅2nm. Inspecting Figure 4, we again 
deduce that at medium-to-high efficiency values, the analytical 
approximation agrees well with the numerical result. However 
as the efficiency becomes smaller, the analytical formula predicts 
smaller efficiencies than the ODEs. To explain this discrepancy 
observed in Figure 3 and Figure 4 at small efficiency values, we 
examine Eq. (22), according to which, the analytical 
approximation for the efficiency can become very small for gL≅jπm 
where m is an integer, due to the sinh(gL) factor. Taking into 
account Eq. (13) we deduce that if pP is chosen large enough that 

the first term under the root is smaller than κ2/4 then g will be 
imaginary. Hence as L increases, there will be an infinite number 
of values of L=Lm for which gLm will be multiple of jπ and hence 
the approximate η will be zero. For these values of L, the total 
linear and non-linear phase mismatch is such that the waves 
interfere destructively at the end of the waveguide. In the actual 
case where the pump power varies with distance as a result of 
the linear and nonlinear loss, the phase relation will turn out 
more complicated and in general one can no longer expect to find 
values of L for which the efficiency is exactly zero. This is why 
there are no black regions in Figure 4(a) in which η is very close 
to zero. We do however point out that in these regions, the actual 
ODEs efficiency is much smaller that its maximum value 
anyway, so this error in the approximation has little bearing 
from a practical point-of-view. 

4. INCLUSION OF FREE-CARRIER EFFECTS. 

If no measures are taken, the free-carrier generation can severely 
limit the FWM conversion efficiency. When this effect is included, 
then deriving an analytical approximation for η is much more 
involved. For one thing, the pump power cannot be obtained in 
exact form as in the previous cases. To see this, we again use the 
transformation Bp(z)=Pp(z)

1/2exp(jφp) in Eq. (2) but this time the 
term proportional to |Bp|

4Bp corresponding to the free carrier 

 

Figure 4. FWM conversion efficiency with respect to the waveguide 
length and the incident pump power calculated (a) numerically, and 
(b) analytically using (22). The wavelength of the signal and the idler 
waves are considered fixed at λs=1553.6nm and λi=1549.3nm, respectively. 



generation is retained. We obtain the following equation for the 
pump power evolution: 

 { } { }( )22 Re 2Rep
p p p p p p

dP
a T P F P P

dz
= − + +  (23) 

The differential equation in Eq. (23) is simply not amenable to 
analytical solution but a number of alternatives  can be pursued. 
In the following sub-sections, we present two alternative methods 
for obtaining Pp(z) which can be used in the estimation of η.  

A. Loss independence approximation 
First we may assume that the three loss types (free-carrier 
absorption, TPA and linear loss) act independently and that the 
overall pump loss can be approximated by the product of the 
three loss factors. The loss factor for the linear loss is simply the 
exponential exp(-apz), while for the TPA-induced factor, it can be 
obtained by Eq. (21) in the limit ap→0 and is equal to 
[1+Pp(0)βTPASp

2z/Appp]
-1. In the case of free-carrier generation, we 

simply solve Eq. (23) assuming that ap=0 and Tp=0, i.e. 
dPp/dz=-2Re{Fp}Pp

3 which yields Pp(z)/Pp(0)=[1+4Pp(0)2Re{Fp}z]-1/2. 
Hence, the pump power can be approximated by: 
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K z K z

−
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where we have defined the parameters K1=Pp(0)βTPASp
2/(Appp) and 

K2=4Pp(0)2Re{Fp}. We now use this expression to obtain the 
average pump power. To facilitate the calculations, the linear loss 
coefficient is approximated by a first order polynomial, i.e. 
exp(-apz)≅e0+e1z. The coefficients e0 and e1 can be obtained so that 
the difference between the exponential and its first order 
approximation is minimum in the least-square sense inside [0, L], 
in which case we find that: 

 ( )0 01 1
0 0 02 2 3 ( 1)l le l e l e− −− − = + + −   (25) 

 ( )0 01 1 1
1 0 06 ( 1) 2 1l le l L e l e− −− − − = − + + −   (26) 

with l0=apL. Adopting this first order approximation for the 
exponential, we may readily obtain a closed form formula for the 
average pump power, 
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where[ ( )] ( ) ( )d
bf z f d f b= − . We may also obtain an 

expression for the average square pump power which will be 
useful in our subsequent analysis, 
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B. Ignoring the TPA losses 
An alternative is to solve Eq. (23) in the case where the nonlinear 
loss is dominated by the free-carrier absorption, i.e. 
Re{Fp}Pp>>Re{Tp}, in which case, 

 { }( )22 Rep
p p p p

dP
a F P P

dz
≅ − +  (29) 

This equation can be solved analytically to yield: 
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where δ is given by, 

 { }1 22 Re (0)p p pa F Pδ −=  (31) 

The expression in Eq. (30) has also been derived elsewhere 
[28],[31-32]. Integrating with respect to z and dividing with the 
waveguide length, we readily obtain the following expressions for 
the average pump power and the average square pump power: 
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C. Efficiency calculations 
Once the pump power is obtained by either one of the two 
methods discussed above, we can proceed to the estimation of the 
approximate efficiency in a similar manner to the previous 
sections. The lossless problem is described by equations (3)-(4) 
retaining only the imaginary parts of the terms corresponding to 
XPM, FWM and FC generation. We arrive at the same 
expression for η0 as before in Eq. (20), except that the total phase 
mismatch κ  is replaced by totκ which is determined by:  

 { } 2
tot Im 2s i p pF F F Pκ κ= + + −  (34) 

where κ is determined by Eq. (12) substituting the expression 
for pP derived in either sections 4.A or 4.B. The second term in 

the sum is the surplus mismatch due to the free carrier 
dispersion. We also proceed to calculate the losses experienced by 
the idler wave, in the absence of FWM. The idler power is 
described by:  

 { } { }( )22 Re 2 Rei
i i p i p i

dP
a T P F P P

dz
= − + +  (35) 

Solving (35), we can estimate the loss li experienced by the idler 
wave, 

{ } { }( )2( )
exp 2 Re 2 Re

(0)
i

i i p p i p
i

P L
l a L L T P L F P

P
= = − + +  (36) 



The above equation dictates that the losses of the idler wave can 
be estimated once the average power pP and the average square 

power 2
pP are calculated. Multiplying the lossless efficiency with 

the idler losses in Eq. (36), we obtain the approximate expression 
for the FWM conversion efficiency, 
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where g is the parametric gain obtained by Eq. (13) only this time 
the total phase mismatch will be given by Eq. (34) instead of Eq. 
(12).  

D. Validation of the analytical solution 
In this sub-section we validate the results obtained by the 
analytical formula (37) considering both alternative methods for 

estimating the pump power. In Figure 5, we compare the FWM 
conversion efficiency obtained by Eq. (37) against numerical 
solution with respect to the wavelength of the signal and the idler 
waves, assuming βTPA=5×10-12m/W, τC=600ps, L=200μm and 
Pp(0)=2W. Figure 5(b) and (c) show the approximate FWM 
conversion efficiency obtained when the pump power estimated 
by the methods considered in Section 4.A and 4.B, respectively. 
As shown in Figure 5, an overall good agreement is obtained 
between the numerical and the analytical solution for medium to 
high efficiency values. The average error for (λi ,λs) combinations 
for which the ODE efficiency is not smaller than -5dB and -10dB 
than ηmax=-21dB is e5=0.53dB and e10=2.03dB in the case of Figure 
5(b).  In Figure 5(c) where the TPA loss is neglected, we obtain 
slightly better results, e5=0.28dB, and e10=1.95dB. We have 
confirmed that for these combinations of (λi ,λs) the value of the 
TPA loss is much lower than the FC-induced loss and it is 
therefore not surprising that the method of Section 4.B yields 
better results. In Figure 6, we compare the FWM conversion 
efficiency to the numerical solution, for various waveguide 

 
Figure 6. FWM conversion efficiency with respect to the waveguide 
length, L and the incident pump power, Pp(0) incorporating the FC 
effects is calculated (a) numerically, (b) by treating the three loss 
mechanisms independently and (c) by ignoring the TPA loss term. 
The wavelength of the signal and the idler waves are considered fixed 
at λs= 1553.6nm and λi=1549.3nm, respectively. 

 

Figure 5. Wavelength dependence of FWM conversion efficiency 
when the FC effects are included, (a) numerically calculated, (b) by 
treating the three loss mechanisms independently and (c) by 
ignoring the TPA loss term. The waveguide length is L=200μm and 
the incident pump power Pp(0)=2W. 



lengths and incident pump powers, when the pump power is 
estimated by the methods outlined in sections 4.A and 4.B, 
respectively. We assume that the wavelength detuning between 
the pump and signal waves is fixed at Δλ≅2nm (for λs=1553.6nm 
and λi=1549.3nm). We obtain e5=0.27dB and e10=3.27dB in the case of 
Figure 6(b) and e5=0.21dB and e10=3.26dB in the case of Figure 6(c).  
We note that the analytical formulas provide excellent results 
near ηmax, but there is a larger error for smaller efficiency values. 
This is a consequence of the fact that the variations of η are now 
smoother. For example, as shown in Figure 5(a), the regions of 
(λi,λs) which are considered in the estimation of e10 (i.e. where the 
efficiency is no less than -10dB lower than its maximum value) 
cover most of the surface plot and correspond to rather large 
wavelength detuning, Δλ. 
The results obtained in Figures 5 and 6 are calculated based on 
state-of-the-art fast-light linear loss levels and values of βTPA 
corresponding to silicon. If no measures are taken to limit free-
carrier effects, then these dominate the nonlinear losses. We 

would however like to validate our theory in a case where all 
three loss factors (linear, TPA and free-carrier induced) are 
comparable. To this end we recalculate the three efficiencies for 
the same linear loss level assuming βTPA=2×10-11m/W and τC=15ps 
[28]. Assuming a range of values [0.1W 2W] for the initial pump 
power P0=Pp(0) and [5μm 400μm] for the waveguide length L, we 
have estimated the loss for each of the three contributions and we 
found that each one has an average value of about -6dB in the 
absence of the other two loss factors. From a practical point-of-
view, the choice of these parameters corresponds to a material 
with higher TPA nonlinearity and taking measures to alleviate 
free carrier effects such as applying an external DC field [28].  
In Figure 7 shows the results obtained for the parameters 
assumed above. The average error, in this case is e5=0.31dB and 
e10=3.83dB under the loss independence approximation of Section 
4.A, while ignoring TPA-induced loss discussed in Section 4.B 
yields an average error of the e5=0.49dB and e10=4.67dB. The 
results of Figure 7, indicate that the analytical approximations of 
the conversion efficiency are still valid even in an hypothetical 
case where none of the loss mechanisms can be considered 
dominant. Since the TPA loss cannot be neglected in this case, 
the aforementioned loss independence approximation outlined in 
section 4.A, does provide more accurate results. 

E. Free-carrier effects in the pulsed regime 
 
In this section, we briefly examine how the nonlinear loss due to 
FC generation and its impact on the efficiency η can be estimated 
in the case of a pulsed pump. The time evolution of the FC 
density, NC is given by [5], 

 0C C

C

N N N

t τ
∂ −

=
∂

 (38) 

where N0=βTPAτCSp
3Pp

2(z,t)/2ħωpAppp
2 is the free carrier density in the 

continuous wave regime [5,11]. We assume that the input pump 
signal has a period equal to T and is comprised of rectangular 
pulses and duration equal to T1. As discussed in Section 2, we can 
assume that dispersion effects do not significantly affect the pulse 
shape. Therefore the pump pulse will approximately retain its 
rectangular shape along the propagation length and only its peak 
power will decrease because of loss. Solving equation (38) for the 
nth pulse period [tn,tn+1] where tn=nT,  one finds that, 
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during the "on" period of the pulse tn<t≤tn+T1 and  
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if tn+T1<t≤tn+1. In the initial pulse periods (small n) there will be a 
gradual build-up of free carriers until one reaches a point where 
the free carrier density NC(z,tn) at the start of each period will be 
the same regardless of n. Under this condition one obtains 
NC(z,tn+1)=NC(z,tn) and combining Eqs. (39)-(40) we find that, 
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Using Eqs. (39)-(41), we can easily calculate the average carrier 
density Navg inside the pulse duration and use this carrier density 

 
Figure 7. FWM conversion efficiency assuming that the three loss 
mechanisms have comparable impact to the propagating light with 
respect to the waveguide length, L and the incident pump power, 
Pp(0) calculated (a) numerically, (b) by treating the three loss 
mechanisms independently and (c) by ignoring the TPA loss term. 



in the estimations of the loss coefficient in Eq. (9). In Figure 8, the 
FWM conversion efficiency is shown assuming T1=50ps for 
various pulse repetition rates 1/T. In our calculations, we have 
assumed that the peak pump power is Pp=1W, L=200μm, τC=600ps, 
λs=1553.6nm and λi=1549.3nm. As shown in Figure 8, as the 
repetition rate becomes smaller, at some point T becomes much 
larger than τC and the generated free-carriers have the necessary 
time to fully recombine before the next pulse arrives. Therefore in 
this regime, Nc(z,tn)≅0 and the nonlinear losses are due solely to 
the carriers generated inside the current pulse period which do 
not depend on T and the repetition rate. As a consequence the 
efficiency tends to remain constant at small repetition rates. For 
repetition rates above 1GHz, an exponential degradation of η is 
observed. In this case, carriers generated in the previous pulse 
duration do not recombine fully and there is a build-up of carriers 
which increase the nonlinear loss. The figure also shows the 
efficiency calculated by Eq. (22) when the FC-induced loss is 
neglected all together. We see that when free-carrier effects are 
included, the repetition rate has a strong influence in the 
achieved efficiency and the inclusion of free-carriers induces a 
penalty ranging from -8dB to -20dB.  

 

F. Practical implications 
Observing Figures 4 and 6, we deduce that there is no gain on 
choosing a waveguide length larger than 200μm. It is also 
interesting to note that as shown in Figure 4 when only the TPA-
induced loss is incorporated, one can increase the efficiency by 
increasing the pump power (there are some brighter spots at 
higher pump power in the surface plots). A different behavior is 
observed in Figure 6, where the FC effects are dominating, the 
maximum conversion efficiency is lower and obtained at 
significant lower pump powers. If the waveguide parameters are 
such that none of the three loss factors can be neglected then as 
shown in Figure 7 the efficiency is nearly optimal for a wider 
range of pump power values. Such considerations are useful 
when designing a PCW for nonlinear applications and can also be 
drawn from the semi-analytical results as shown in the figures. 
In order to gain a better perspective of the impact of the TPA and 
FCA nonlinear phenomena on the conversion efficiency, we have 
calculated ηmax for PhC waveguides possessing flat variation of 
the group index around different values previously proposed in 
the literature. In Table 1, ηmax is calculated for a wavelength 
detuning of 0.1nm. The table compares the efficiency values with 
and without the free-carrier induced absorption assuming a CW 
regime. The results in Table 1, show that in larger group index 
designs, the maximum efficiencies are obtained for shorter 
lengths since optical losses are increased. In all cases, FCA poses 

a significant penalty in the achieved efficiencies which is about -
9dB. At larger detunings we have verified that similar penalties 
due to FC generation are obtained as shown in Table 2. Note that 
in Table 2, the design of [33] is not mentioned since the 
corresponding flat-band region is narrow (≅0.6nm). 

Table 1. Impact of TPA and FCA on the FWM at various ng 
Design 

(ng) 
ηmax (dB)

 using (22) 
ηmax (dB) 

using (37) 
Pp(W) L(μm) 

[33] (100) -17.6 -25.6 0.2 25 
[9] (60) -13.2 -23.7 0.2 75 
[11] (30) -11 -18.5 0.4 400 

Table 2. Impact of detuning on the FWM penalty (with and 
without FC effects) at various ng 

Δλ (nm) 
FC-penalty (dB) 

ng=30 [9] 
FC-penalty (dB)

ng=60 [11] 
1 -8.4 -14.8 
2 -8.5 -16.2 
3 -7.6 -14.1 

5. CONCLUSIONS 

In this paper, we have provided approximate expressions of the 
degenerate FWM conversion efficiency in photonic crystal 
waveguides. In order to investigate the validity of the derived 
expressions we have compared their values against numerical 
solution of the coupled propagation equations for a wide set of 
parameter values. Our approach is based on modifying the FWM 
efficiency obtained in the lossless problem in order to account for 
the pump variation across the waveguide and the losses 
experienced by the idler wave. This approximation allows us to 
obtain simple analytical expressions of the FWM conversion 
efficiency. The model incorporates the effect of linear losses and 
the loss induced by TPA and free carrier effects. In all cases we 
have shown that the analytical expressions accurately predict the 
efficiency values -5dB away from its maximum value. As we move 
to lower efficiency values, the error increases but the formulas 
can still be used with reasonable accuracy. These expressions for 
the FWM efficiency are expected to be very useful in the design of 
photonic crystal waveguides considered for nonlinear signal 
applications. 
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