
Designing Slow-Light Photonic Crystal 

Waveguides for Four-Wave Mixing Applications 

Panagiotis Kanakis,
1* 

Thomas Kamalakis,
2 

 Thomas Sphicopoulos,
1  

1Department of Informatics and Telecommunications, National and Kapodistrian University/Athens, 

Panepistimioupolis, Athens GR157 84, Greece 
2Department of Informatics and Telematics, Harokopio University/Athens, 9 Omirou Street, Athens GR17778, Greece 

*Corresponding author: kanakis@di.uoa.gr 

We discuss the optimization of photonic crystal waveguides for four-wave mixing applications, taking into account linear 

loss and free-carrier effects. Suitable figures-of-merits are introduced in order to guide us through the choice of practical, 

high efficiency designs requiring relatively low pump power and small waveguide length. In order to realistically perform 

the waveguide optimization process, we propose and validate an approximate expression for the four-wave mixing 

efficiency, which significantly alleviates our numerical calculations. Promising waveguide designs are identified by means of 

exhaustive search, altering some structural parameters. Our approach aims at optimizing the waveguides for nonlinear signal-

processing applications based on the four-wave mixing. 
OCIS Codes: (190.4380) Nonlinear optics, four-wave mixing, (130.5296) Photonic crystal waveguides. 

 
 
Four-wave mixing (FWM) bears great promise for 
achieving signal processing functionalities in future 
optical networks such as wavelength conversion, signal 
regeneration/reshaping, time division demultiplexing, etc 
[1-3]. Degenerate FWM consists of the nonlinear 
interaction between three co-propagating waves (pump, 
signal and idler). The most commonly used figure-of-merit 
(FoM) for evaluating FWM is the conversion efficiency η 
defined as: 
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where Pi(L) is the power of the idler wave at the output of 
the waveguide (of length L), and Ps(0) is the incident power 
of the signal wave. The efficiency depends not only on the 
waveguide parameters but on the choice of signal and 
idler wavelengths λs and λi respectively as well as the 
incident pump power P0. The quest for a waveguide design 
that exhibits large values of η, is the most common task 
undertaken by many authors. Coupled resonators optical 
waveguides (CROW), highly nonlinear fibers (HNLF), and 
photonic crystal waveguides (PCWs), are examples of 
photonic structures that are currently attracting attention 
in that respect [4-7]. 
Simply achieving a large η is not always sufficient in 
many applications, since other important aspects need to 
be evaluated. For a given length L and pump power P0, 
one should also be interested in the available bandwidth, 
which can be quantified in terms of the optical pump 
wavelength range ∆λ in which η does not fall below a 
certain level (say -3dB) of its maximum value η0(P0,L). 
Tunability is also another important aspect and can be 
quantified as the wavelength separation δλ between the 
pump and the signal waves for which η is again higher 
than -3dB compared to η0. These parameters are more 
thoroughly explained further below. We are therefore led 
to a more suitable FoM, defined by the product of the 
maximum efficiency, the bandwidth and the tunability 
(EBT): 
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where the maximum is taken over an appropriate wide 
range of values for P0 and L. A large EBT value should 
ensure a smooth wavelength dependence for η which is 
important in wavelength division multiplexing systems. 
Also, since modern trends in optical research dictate the 
use of compact, low-power components we may also use a 
more power and size aware FoM,  
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For an individual waveguide design, we estimate 
η(λi,λs,P0,L) on a multi-grid of (λi,λs,P0,L) values. For each 
pair of (P0,L) we estimate η0,  δλ and ∆λ, numerically as 
explained below, and use Eqs. (2) and (3) to obtain the 
EBT or EBTPL values. Various waveguide designs can 
therefore be compared on the basis of their EBT or EBTPL 
values. To estimate the proposed FoMs for a given design, 
it is evident that η(λi,λs,P0,L) must be computed in a four 
parameter space (λi,λs,P0,L) and if one compares many 
different designs the required number of computations 
grows significantly. An efficient calculation of η is 
therefore of vital importance.  
In this work, we apply this design optimization method in 
the case of PCWs by means of exhaustive search after 
discussing an efficient way of obtaining η. PCWs combine 
large slowdown factors and sub-wavelength light 

 

Figure1. A PCW formed by embedding air holes in a thin layer of 
silicon. The numbers indicate the hole class according to their 
proximity to the waveguide defect while arrows indicate the structural 
perturbation. 
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confinement leading to an enhancement of nonlinear 
effects like FWM. A photonic crystal slab is formed by 
embedding a two-dimensional array of holes of low 
refractive index material (e.g. air) inside a thin film of 
higher index material (e.g. silicon). Removing an entire 
row of holes, as illustrated in Figure 1, introduces a defect 
mode thereby effectively forming a PCW. The remaining 
holes can be classified according to their proximity to the 
waveguide defect, i.e. the 1st class is located closest to the 
defect and so forth, as shown in Figure 1. Altering a few 
structural characteristics, it is possible to minimize the 
group velocity dispersion, creating a nearly linear region 
in the dispersion relation which corresponds to a flat 
wavelength dependence of the group index ng [7]. This 
wavelength region is usually referred to as the flat-band 
region. The PCW dispersion relation and the guided mode 
fields are obtained by a 3D plane-wave expansion mode 
solver implemented in MATLAB [8]. The dispersion 
characteristics (e.g. ng) are calculated through polynomial 
fitting on dispersion relation of the guided mode [8]. 
The FWM conversion efficiency can be calculated by 
numerically solving the coupled ordinary differential 
equations (ODEs) for the three propagating waves 
recently derived in the case of PCWs [9]. Given the multi-
parameter space, that needs to be considered in the 
estimation of EBT and EBTPL, we have found that 
numerical solution of the ODEs generally leads to 
impractical computational times. We instead estimate η 
with a much faster, approximate expression. To obtain 
this expression, we generalize a technique previously 
applied when only linear losses are present [10]: We use 
the lossless FWM efficiency formula and account for the 
pump power variation across the waveguide by replacing 
the incident pump power P0 with the average pump power 
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induced in the pump wave. We also account for the linear 
loss experienced by the idler wave [10]. To accurately 
estimate the pump power variation Pp(z) in silicon we need 
to include the nonlinear two-photon absorption (TPA) and 
the free-carrier (FC) effects [9]. However, the latter loss 
contribution is significantly more important. Thus, by 
neglecting TPA nonlinear losses, the evolution of the 
pump power will be determined by [11]:  

 ( )2
/ 2p p p p pdP dz a F P P≅ − +  (4) 

where ap is linear loss coefficient for the pump wave and Fp 
is the free-carrier effect coefficient determined by [9]: 
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In Eq. (5), µ=p,s or i (corresponding to pump, signal and 
idler waves, respectively), NC=βTPASp

3
τCPp

2
/(2ħωpAppp

2
) is the 

free-carrier density [9,12], λµ is the corresponding 
wavelength, λ0=1550nm, βTPA is the TPA coefficient, Sµ is 
the slow-down factor and τC is the free-carrier life-time. 

The effective modal areas are determined by the modal 
fields as [9]: 
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using numerical integration. In Eq. (6), V is the volume of 
the waveguide supercell, Eµ is the electric field component 
for  wave µ along the y-direction and a is the lattice 
constant of the waveguide. The selection of only the 
transverse y-component is made based on the fact that for 
TE-like guided modes the component along the x-direction 
contains only a small fraction of the wave power. For 
silicon waveguides, we use the values C1=1.35×10

-27m3 and 
C2=1.45×10

-21
m

2 [9]. Equation (4), can be solved analytically 
to yield: 
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where δ=2ap
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, while using standard 

integration formulas, we obtain the following expressions: 
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The losses experienced by the idler wave are given by: 
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where ai is the linear loss coefficient of the idler wave. 
Extending the method in [10], the efficiency is written as: 
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In Eq. (11), { } 2

tot Im 2s i p pF F F Pκ κ= + + −  is the total 

phase mismatch while κ is the phase mismatch in the 
presence of linear losses only and g is the parametric gain, 
given by: 

 

Figure 2. FWM conversion efficiency with respect to the wavelength of 
the idler (λi) and the signal (λs) waves obtained (a) numerically solving 
the ODEs and (b) using (11).  
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where ωµ=2πc/λµ,  ∆k is the linear phase mismatch [10], c is 
the speed of light in vacuum and n2 is the nonlinear Kerr 
coefficient. The linear loss coefficients aµ are calculated 
using the loss model proposed in [7],[8]. In our work, a 
silicon PCW slab embedded in air is assumed. To validate 
the analytical formulas, we plot in Figure 2, the values of 
η in the case of a PCW obtained by perturbing the 
positions of all first class holes by ∆y1=0.148a for P0=0.4W 
and L=400µm. In our calculations throughout the paper, 
we assume that Ps(0)=0.5mW, τC=600ps, βTPA=5×10

-11
m/W 

while the slab height is h=0.5a and the lattice constant is 
a=412nm. Unless specified otherwise, the radii of all holes 
are equal to r=0.27a. In Figure 2, the values of η with 
respect to all possible wavelength combinations (λs,λi), 
inside the flat-band region are shown. The flat-band 
region is defined as the wavelength range in which ng 
varies no more than ±10% from the ng value at the point 
where the group velocity dispersion coefficient is 
minimum. The wavelength distance between the idler 
and signal waves,|λi-λs|, is always taken larger than 
0.1nm. Figure 2(a) presents the values obtained by solving 
the ODEs using a Runge Kutta scheme [13], when a 
quasi-continuous wave regime is assumed taking into 
account the TPA nonlinear loss term ignored in Eq. (11), 
while Figure 2(b) plots the values obtained by Eq. (11). 
The figure shows that the two methods are in very good 
agreement despite the fact that the TPA nonlinear losses 
in Eq. (11) are neglected. We estimated the average error 
to be approximately 0.5dB for the wavelength 
combinations where the ODE efficiency is not smaller 
than -10dB from its maximum value, η0≅-19dB. We have 
observed that using the analytical formula yields a 
significant speedup in computational time of at least one 
order of magnitude. 
Once η(λs,λi) is obtained, we proceed to calculate ∆λ and δλ 
for given values of P0 and L. For every pair (λs,λi) for which 
the efficiency η(λs,λi)≥η0/2 (≥-3dB), we estimate the 
corresponding pump wavelength λp and the wavelength 
detuning |λp-λs|. The range of values of λp determines the 
bandwidth ∆λ(P0,L)≡max(λp)-min(λp) (≅18nm for the case of 
Figure 2). To calculate δλ(P0,L) we take the average of the 
detuning values |λp-λs| (≅3nm for Figure 2). Note that δλ is 
calculated as the average rather than the range of 
detuning values. This is because, referring to Figure 2, 
one can see that for some combinations of (λi,λs), high 

efficiencies are obtained even at large |λi-λs| or equivalently 
|λp-λs| (e.g. grey areas near λi≅1595nm, λs≅1570nm and vice 
versa). However there are many (λi,λs) combinations with 
high detuning where the efficiencies are much lower and 
hence averaging over all these detuning values is a much 
more representative tunability measure. Once η0, ∆λ and 
δλ are obtained for a multitude of P0 and L values we 
calculate EBT and EBTPL through maximization 
according to Eqs. (2) and (3). In this work we consider 
values of the incident pump power 0.1W≤P0≤2W with 
0.1W spacing and waveguide lengths 25µm≤L≤500µm at 
25µm spacing. Applying this procedure for the waveguide 
in question we find ΕΒΤ=0.62nm2 and EBTPL=3.88fm/W 
for the waveguide in question in Figure 2. 
Alternative waveguide designs can be obtained by 
repositioning the first and the second class of holes along 
the y-directions. Figure 3(a) and (b) plot the values of EBT 
and EBTPL with respect to ∆y1 and ∆y2 which are the 
perturbations of y1 and y2 shown in Figure 1. We sweep in 
a grid of (∆y1, ∆y2) values where 0.1a≤∆y1≤0.15a and 
0≤∆y2≤0.1a spaced by 0.005a and 0.01a respectively. The 
ranges for these design parameters are chosen to ensure 
monomode operation. In Figure 4, we explore alternative 
waveguide designs where we perturb (y1,r1), i.e. the y-
positions and radii of the 1st class of holes. We use 0.004a 
spacing for the r1 values. As illustrated in the figures, the 
largest EBT and EBTPL values are obtained in Figure 3(a) 
and 4(b) respectively. To better identify these designs we 
have performed the EBT and EBTPL calculations in a 
finer grid around the optimum parameters values of 
Figures 3 and 4. Table 1 summarizes the best designs for 
each case obtained in a tighter parameter range, 
0.11a≤∆y1≤0.14a, 0.08a≤∆y2≤0.1a and 0.23a≤r1≤0.24a. In the 
table, Navg is the average free-carrier density obtained 
inside the flat band region. 

 

Figure 3. (a) EBT and (b) EBTPL values with respect to the design 
parameters ∆y1 and ∆y2.  

 

Figure 4. (a) EBT and (b) EBTPL values with respect to the design 
parameters ∆y1 and r1. 

Table 1. Table 1. Table 1. Table 1. Waveguide designsWaveguide designsWaveguide designsWaveguide designs        

Parameter 
Optimum with respect 

to EBT (Design A) 

Optimum with respect to 

EBTPL (Design B) 

EBT 1.96nm2 0.2nm2 

EBTPL 3.92fm/W 16.14fm/W 

∆y1 0.128a 0.124a 

∆y2 0.095a unchanged 

r1 unchanged 0.235a 

P0 1W 0.1W 

L 500µm 125µm 

η0 -18.3dB -24.5dB 

δλ 4.7nm 2.9nm 

∆λ 28nm 19.6nm 

Navg 5⋅1018cm-3 18⋅1018cm-3 

 



To further validate the results we have computed η0 
values obtained for the designs A and B, using numerical 
solution of the ODEs for the values of P0 and L quoted in 
the Table 1. Negligible differences are obtained for both 
designs. Figure 5(a) and (b) show the wavelength 
dependence of η for the designs shown in Table 1.  
It is noteworthy that, as shown in Table 1 designing the 
waveguide by maximizing the EBT leads to relatively 
high efficiencies over a wide range of pump wavelengths 
and with significant tunability. However, this behavior is 
obtained at the cost of high pump powers and rather 
lengthy waveguides. This is not surprising since EBT does 
not explicitly take into account these two parameters. On 
the other hand, optimizing the design with respect to 
EBTPL results in lower efficiency values over somewhat 
narrower bandwidths ∆λ and tunability ranges δλ, but 
these waveguides are much shorter and require much less 
pump power. Moreover, according to [14] the power of the 
idler wave and as a consequence the FWM efficiency is 
experiencing a (P0L)2 dependence in the lossless case. 
Thus, it would be interesting to evaluate an alternative 
FoM similar to Eq. (3) but where a (P0L)2 term appears in 
the denominator instead of P0L. Optimizing with this 
alternative FoM, results in almost the same design 
parameters as the design B of Table 1. However ηmax for 
this design is significantly decreased due to (P0L)2 in the 
denominator which favors shorter waveguides with 
smaller efficiencies yielding ηmax≅-30dB for ∆y1=0.126a, 
r1=0.236a, P0=0.1W and L=50µm.  

Table Table Table Table 2222. . . . FWFWFWFWM efficiency dependence on the loss mechanism.M efficiency dependence on the loss mechanism.M efficiency dependence on the loss mechanism.M efficiency dependence on the loss mechanism.    

Loss case 
 Design A  Design B 

η0 Pp(L)/P0 η0 Pp(L)/P0 

Only linear -5dB 2.3dB -20.5dB 0.69dB 

Linear and TPA -7.2dB 3dB -20.9dB 0.8dB 

Linear, TPA and FC -19.2dB 9.5dB -24.6dB 2.6dB 

 
Another interesting aspect is the fact that FC effects seem 
to severely affect waveguide performance. To show this, 
we have numerically calculated the efficiencies and the 
pump loss for designs A and B under different loss 
conditions. Table 2, summarizes our findings for the cases 
where a) only linear losses, b) TPA and linear losses and c) 
all three loss mechanisms are assumed. The results 
indicate that including the TPA losses result in a small 
change in η0 as well as the pump loss level. FC effects are 
more degrading: A significant efficiency drop of 12dB for 
design A and 3.7dB for design B is obtained when FC 
effects are accounted for. Since design B requires much 
less pump power and is shorter, the importance of 
nonlinear loss is less significant than the case of design A.  

In conclusion we have discussed how PCW designs can be 
optimized by the proposed FoMs. Optimizing with respect 
to EBT tends to lead to large efficiencies with considerable 
bandwidths and wide tunabilities. Optimizing with 
respect to EBTPL yields shorter devices with smaller 
power requirements. One could also apply other similar 
FoMs depending on the application at hand and its 
requirements. We have also derived an approximate 
solution of the FWM efficiency which yields accurate 
results at only a fraction of the computational time 
compared to numerical solutions. Suitable PCW designs 
can be identified through exhaustive search and are 
characterized by relatively large FWM efficiencies over 
large bandwidths and wavelength detunings. The 
proposed design framework can play a useful role in 
designing PCWs, CROWs and highly nonlinear fibers for 
FWM-based signal-processing applications.  
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Figure 5. FWM conversion efficiency with respect to the signal and idler 
wavelengths for designs a) A and b) B, in Table 1. 


