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The storage capacity of slow light photonic crystal waveguides is maximized using a systematic procedure based on
the optimization of various parameters of the structure. Both optical loss and dispersion-induced broadening are
incorporated into the model. The results indicate that this procedure can provide up to a threefold increase in
storage capacity. © 2012 Optical Society of America
OCIS codes: 130.5296, 220.0220.

Slow light nanophotonic structures such as photonic crys-
tals (PhCs) or coupled resonator optical waveguides
(CROWs) [1] are attracting increased attention, combin-
ing large slowdown factors, subwavelength light confine-
ment, and enhancement of nonlinear effects [2,3].
However, dispersion and propagation loss limit the
performance of these devices, especially in the slow light
regime. By intentionally altering the structural character-
istics of the PhC waveguide, several attempts have been
made to minimize the group velocity dispersion (GVD)
coefficient β2 [4–7]. Inmostworks, the proposed structure
is identified through exhaustive search, altering only a few
design parameters. This is a consequence of the large
computational time associated with exhaustive search in
a multiparameter space. Also, most works focus on the
dispersion characteristics, ignoring the influence of opti-
cal loss. Hence, one may obtain structures that achieve
large slowdown factors but may exhibit unacceptably
high propagation losses, limiting their suitability for de-
lay-line applications. In this work, we show how a PhC
waveguide can be designed systematically, using optimi-
zation methods instead of a time-consuming exhaustive
search.We carry out our optimization using the actual sto-
rage capacityNmax of the delay line at a given data rateRb,
taking into account both loss and dispersion.
The storage capacity Nmax measured in bits can be es-

timated using the ratio of the achieveddelayLW∕jvgj to the
bit duration 1∕Rb, i.e.,

Nmax � LWRb∕jvgj; (1)

where LW is the waveguide length and vg is the group ve-
locity of the defect mode that carries the signal. Nmax is
therefore a function of Rb but also of the wave vector k
and the geometry of the waveguide superlattice. Figure 1
illustrates a horizontal cross section of a defect PhC slab
waveguide (PCSW) showing some geometry parameters
that can be considered in the design. The holes are
classified according to their proximity to the waveguide
defect (e.g., class “1” denotes the neighbors closest to the
waveguide center, and so on). In the y direction, we as-
sume that all the holes of the same class are placed
symmetricallywith respect to thex axis. In thexdirection,
the holes located to opposite sides of the x axis can be

displaced in either the same (as shown in Fig. 1) or in
the opposite direction [4]. Furthermore the radii of the
holes in the ith class are all equal to ri. Formally we can
write Nmax � f �Rb;a;k; ra;εa;εb;h;x1; y1; r1;…;xNyNrN�,
where N is the number of hole classes considered in
the optimization, ra is the radii of the rest of the lattice
holes not contained in any of the classes, a is the lattice
constant, and εa and εb are the relative dielectric constants
of the high- and low-index material, respectively. The
function f is not known in closed form, but as discussed
below, it can be computed using a plane wave expansion
eigenmode solver [8] to obtain the modal fields and the
dispersion relation k � k�ω� of the waveguide.We can ap-
ply standard optimization methods to choose the argu-
ments of f in order to maximize Nmax in Eq. (1). Since
local optimization depends on the choice of the initial
point, a good practice is to carry out the optimization con-
sidering several different initial points. In this work we
used MATLAB’s fmincon function, which is based on
an interior-point approach and combines a direct method
for solving the constrained minimization problem along
with conjugate gradient steps using trust regions [9].

To estimate Nmax, one must estimate LW , which is de-
termined by the maximum tolerable optical loss and the
dispersion-induced pulse broadening. In this work, we
consider that the loss limit is lmax � −20 dB, which
can be easily compensated by semiconductor optical am-
plifiers [10]. Given the optical loss coefficient Γ of the
waveguide in dB∕cm, the maximum propagation distance
due to losses is simply LΓ � −lmax∕Γ. The loss coeffi-
cient, Γ, can be written as Γ � c1γng � c2ρn2

g, where γ
and ρ are the out-of-plane and backscattering coeffi-
cients, c1 and c2 are constants that describe the techno-
logical parameters (independent of design), and ng is the

Fig. 1. Illustration of the various geometry design parameters.
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group index [6]. The coefficients γ and ρ can be calcu-
lated from the modal fields using the expressions pro-
vided in [6]. For the waveguide designs considered
below, we have verified that backscattering is the domi-
nant optical loss contribution and hence Γ ≅ c2ρn2

g. This
simple expression for Γ allows us to relate the losses Γref
of any structure operating at a group index ng to that of a
reference waveguide operating at the same ng. It can be
easily shown that

Γ � Γref�ρ∕ρref�: (2)

In our calculations, we have used the loss-engineered
waveguide of [6] as a reference, assuming 2 dB∕cm loss
in the fast light regime (ng≅ng0 � 5). For this design, both
the loss and the backscattering coefficient ρref have been
well documented and are in good agreement with the loss
model ofEq. (2). Thebackscattering coefficients ρ and ρref
can be calculated using the expressions outlined in [6].
Although Eq. (2) ignores the effect of out-of-plane losses,
we have later considered the influence of the latter in the
capacity of an optimum structure described below. Alter-
native loss models could also be used in the calculations
provided they are not time consuming.
The dispersion-induced broadening factor, i.e., the ratio

of the rmswidth of the pulse at a given position x along the
waveguide to the input rms width, can be calculated in
closed form [10]. Assuming Gaussian pulses with initial
full width at half-maximum TF � 1∕�4Rb�, the initial
rms width is σ0≅TF∕2.36, and we can show that the max-
imum allowable length due to dispersion LB is

LB � K�B2
max − 1�12

�
β22R

4
b �

1
4
K−1β23R

6
b

�
−
1
2

; (3)

where, β2 and β3 are the GVD and third-order dispersion
coefficients, respectively, Bmax � 1.3 is the maximum al-
lowable broadening factor [10], andK � 0.0224. The coef-
ficients β2 and β3 are obtained through polynomial fitting
of thedispersion relationk � k�ω�of themode.Note that if
β2 � 0and thewaveguide isdispersion-limited (LW � LB),
then Nmax ∼ L2∕3

W , as in the case of CROWs [11].
We choose the maximum propagation length LW as the

minimum of LB, LΓ, and Lmax where Lmax is the wave-
guide length limit imposed by optical integration consid-
erations. We set Lmax � 1 cm, in order to ensure that the
waveguide is short enough to be realized in integrated
form. Given LW , the storage capacity Nmax is easily cal-
culated by Eq. (1).
Figure 2 shows the values ofNmax as a function of k ob-

tained by optimizing various PCSW designs proposed in
the literature [3–6]. The figure also illustrates the wave
vector intervals for which the optimized design is disper-
sion-limited (LW � LB), loss-limited (LW � LΓ), or limited
due to size considerations (LW � Lmax). The optimization
process was carried out by altering the same design para-
meters as proposed in each work, at a bit rate of Rb �
40 Gb∕s (Gb∕s). Figure 2(a) shows the results obtained
for thePCSWproposed in [6],which is realized by perturb-
ing the positions of the neighboring holes by Δy1 �
0.1171a and Δy2 � −0.039a. The figure illustrates that
the original design corresponds to Nmax � 13.4 bits.

Applying the optimization process we obtain almost dou-
ble the storage capacity (Nmax � 25.6 atng≅20) forΔy1 �
0.1354a and Δy2 � 0.0436a. For these parameters,
the waveguide is loss-limited (LW � LΓ≅9.6 mm). In
Fig. 2(b), we show the capacity obtained by optimizing
the structure of [5]. The original design was obtained
through exhaustive search by altering x1 and y2. The x po-
sitions of theholes onopposite sides of thex axis are chan-
ged in opposite directions. The optimum dispersion delay
bandwidth product (DBP) is obtained for Δx1 � 0.105a
and Δy2 � −0.084a without considering the effect of
optical losses. Figure 2(b) suggests that this design
corresponds to Nmax � 8.3 bits. Applying the optimiza-
tion procedure we obtain a size-limited design
(LW � Lmax � 1 cm) with Nmax≅12 at ng � 9 for Δx1 �
0.0302a and Δy2 � −0.0287a. Figure 2(c) discusses the
improvement brought about in the air-claddingwaveguide
design of [4], which maximizes the DBP, perturbing the
hole positions by Δy1 � 0.1208a and Δy2 � 0.029a,
achieving a capacity of Nmax � 10.4 bits. The optimiza-
tion process yields a loss-limited design with Nmax �
17.7 bits at ng � 24, forΔy1 � 0.1257a andΔy2 � 0.04a.
Finally, Fig. 2(d) shows the structure proposed by [7], set-
ting Δx3 � 0.32a for an air-cladding chalcogenide PCSW
corresponding to Nmax � 13.2 bits. The holes are moved
in the x axis as shown in Fig. 1. The optimization process
yields a dispersion-limited designwithNmax � 16.7 bits at
ng � 22, obtained for Δx3 � 0.3a. Note that this result is
obtained assuming the same loss level as in silicon,
although chalcogenide waveguides are inherently more
lossy [7]. If one assumes a more realistic loss level (more
than a tenfold fast light loss compared to silicon), then
changing x3 does not yield any increase in Nmax since it
does not affect the loss and the waveguide remains loss
limited, even at moderate values of ng.

The results presented thus far indicate that the optimi-
zation process can be used in order to maximize Nmax,
taking into account the effects of optical losses and dis-
persion-induced broadening in a rigorous manner. It is
also interesting to note that as shown in Fig. 2, the
optimum Nmax corresponds to a point in the dispersion
relation near the transition from one length-limiting
factor to another. For example, in the designs of
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Fig. 2. Capacity of the original structures (curve only) pro-
posed by (a) O’Faolain et al. [6], (b) Liang et al. [5], (c) Li et al.
in [4], and (d) Suzuki and Baba [7] and the structures obtained
by optimization (curve with open circle).
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Figs. 2(c) and 2(d) we obtain LB≅LΓ, indicating that loss
and dispersion are equally important as in the case of
CROWs [12].
We nowdiscuss how the optimization procedure can be

applied in order to design a PCSWdelay line from scratch,
considering the effect of multiple design parameters. We
choose the standardW1waveguide as a starting pointwith
ra � 0.27a, and perform a step-by-step optimization gra-
dually increasing the number of parameters considered.
The capacity of the original waveguide is shown in Fig. 3.
The figure also shows the capacity obtained by first opti-
mizing the structure with respect to y1 and k, which yields
Nmax≅23 for Δy1 � 0.1345a. The second optimization
step uses as a starting point the parameters obtained in
the first step but also considers y2 in addition to y1 and
k. The capacity now reaches Nmax � 25.6 for Δy1 �
0.1354a andΔy2 � 0.0436a. In the third optimization step,
we are optimizing with respect toΔy3 as well, which does
not yield significant improvement, bringing the maximum
capacity to Nmax � 26.7. Since the change was small, we
have not included the curve of the third step in Fig. 3. In
the fourth step, we have also considered the radius pertur-
bations Δr1, and the optimization yields a loss-limited
design with Nmax � 31.3 at ng≅24 for Δy1 � 0.1297a,
Δy2 � −0.0248a, Δy3 � 0.0399a, and Δr1 � 0.25a.
Figure 3 also includes the dispersion relation of this
waveguide design and the group index. Interestingly en-
ough, a flat group index is obtained for an 11 nm wave-
length range where the group index variation is less
than 10% around ng≅24. This is consistent with the rela-
tively smooth variation of Nmax with respect to k around
ka∕�2π� � 0.39, suggesting the suitability of this design for
wavelength division multiplexing applications, although
no specific measures have been taken to ensure this dur-
ing the optimization process. Monomode operation is
guaranteed for a wide frequency range around the opti-
mum k point in every step of the optimization process.
Rounding the parameters of the optimum design up to
a seconddecimal digit (e.g.,Δy1 � 0.13a and so forth),we
obtain a negligible change in Nmax (<1%), indicating that
the design is insensitive to small variations due to limited
fabrication resolution. This also holds for the rest of the
designs. For example, in the case of the design in Fig. 2(a),
the corresponding change in Nmax is less than 3%.
Thusfar,ouranalysisneglectedtheeffectofout-of-plane

scattering.We also examined an alternative lossmodelΓ0,
where out-of-plane scattering is no longer negligible and is
assumed tohave equal contribution to the losses in the fast
light regime(ng � ng0).Under theseassumptions, it iseasy
toseethatΓ0 � ½Γ� ½Γ0�γng�∕�γ0ng0�,where thesecond
term corresponds to the out-of-plane losses, γ � γ�ng� is
the out-of-plane scattering coefficient [6], γ0 � γ�ng0�,
andΓ0 � Γ�ng0� � Γ0�ng0� is thelossinthefast lightregime
assumed equal for both models. Figure 3 includes the ca-
pacity obtained forΓ0,which ismarginally higher since the
out-of-plane loss part is proportional to ng rather than n2

g,
andhencethetotal lossesare lowerintheslowlightregime.
Considering the rest of the design parameters x1, x2,

x3, r2, and r3, only a marginal improvement was ob-
tained, Nmax≅33. It should be mentioned that the full op-
timization process including all nine steps involved about
10 iterations per step and each iteration required 10–15
function evaluations, resulting in no more than 1350

evaluations in total. Finally, we examined the case of
Rb � 100 Gb∕s, where the maximum capacity obtained
was Nmax≅65 at ng≅21 for Δy1 � 0.14a, Δy2 � 0.025a,
Δy3 � 0.018a, Δr1 � 0.26a, and LW � LΓ � 9.5 mm. In
conclusion, we have presented an optimization metho-
dology for slow light photonic crystal waveguides that
takes into account both dispersion and loss-induced ef-
fects. We have shown that the optimization can increase
the storage capacity of known designs and may also be
used to design a slow light waveguide from scratch.
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Fig. 3. Storage capacity obtained in various optimization
steps. The subfigures show the mode dispersion relation and
the group index of the optimum design.
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