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20The characteristic feature of healthy living organisms is the preservation of homeostasis. Compelling evidence
21highlight that the DNA damage response and repair (DDR/R) and immune response (ImmR) signaling networks
22work together favoring the harmonized function of (multi)cellular organisms. DNA and RNA viruses activate the
23DDR/R machinery in the host cells both directly and indirectly. Activation of DDR/R in turn favors the immuno-
24genicity of the incipient cell. Hence, stimulation of DDR/R by exogenous or endogenous insults triggers innate
25and adaptive ImmR. The immunogenic properties of ionizing radiation, a prototypic DDR/R inducer, serve as suit-
26able examples of howDDR/R stimulation alerts host immunity. Thus, critical cellular danger signals stimulate de-
27fense at the systemic level and vice versa. Disruption of DDR/R–ImmR cross talk compromises (multi)cellular
28integrity, leading to cell-cycle-related and immune defects. The emerging DDR/R–ImmR concept opens up a
29new avenue of therapeutic options, recalling the Hippocrates quote “everything in excess is opposed by nature.”

30 © 2015 Published by Elsevier Inc.
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46 1. The DNA damage response/repair and immune
47 signaling networks: Is their intertwining a teleological demand?

48 To perform its physiological function, the cell requires, above all, the
49 integrity of all of the encoded information it harbors. Experiencing nu-
50 merous genotoxic insults on a daily basis, it has developed a highly con-
51 served and sophisticated DNA damage recognition and repair network
52 to cope with the variety of DNA lesions that occur. The DNA damage re-
53 sponse (Jackson & Bartek, 2009) is a hierarchically structured signaling
54 pathway consisting of DNA damage sensors, mediators, transducers,
55 and effectors (Fig. 1A). Depending on the specific types of alterations
56 and the cell cycle phase they occur in, the DNA damage response/repair
57 (DDR/R) signaling cascade demonstrates variations in order to coordi-
58 nate effectively recognition of the defect and “assign” the proper repair
59 process (Fig. 1A) (Thompson, 2012). In the event of unrepaired lesions
60 and depending on the extent and type of damage, the cell either passes
61 the mutated genome to its offspring or is neutralized by programmed
62 cell death (apoptosis) or senescence (Ciccia & Elledge, 2010).
63 When apoptosis ensues at themulticellular level (metazoa), a clear-
64 ance process removes the apoptotic bodies, thus preserving tissue ho-
65 meostasis. Senescent cells must be removed as well, because they can
66 systemically affect neighboring cells by triggering various pathologies,
67 including cancer, due to their so-called senescence-associated secretory
68 phenotype (SASP), despite being a beneficial response, particularly in
69 oncogenic events (Coppe et al., 2008). In both cases, the cells are cleared
70 by the mononuclear phagocyte system, the main cellular compartment
71 of the innate immune system that recognizes exposed ligands on apo-
72 ptotic and senescent cells (Munoz-Espin & Serrano, 2014). Within this
73 system, p53, one of the main downstream effectors of the DDR/R path-
74 way, has been shown to drive an inflammatory response contributing to
75 tumor clearance by eliminating tumor cells undergoing senescence
76 (Xue et al., 2007). Given that the triggering signal is extensive DNA
77 damage in the majority of these cases, this type of cellular recognition
78 is considered as a damage-associated molecular pattern (DAMP), thus
79 represents a link between DDR/R and immune response (ImmR)
80 (Chatzinikolaou et al., 2014; Ermolaeva & Schumacher, 2014).
81 As with the DDR/R cascade, the ImmR system is also organized in a
82 hierarchical manner. It relies on both innate and adaptive immune

83subsystems (Fig. 1Bi). The innate subsystem is considered a generic
84first-line defense against pathogens, and it does not confer long-
85lasting immunity to the host, unlike the adaptive immune subsystem.
86Conversely, the adaptive immune subsystem is highly specialized, com-
87posed of cells that are capable of discriminating “non-self” from “self,”
88through the process of antigen presentation. These cells develop
89responses that are tailored to eliminate specific antigens effectively,
90andmost importantly they are capable of “remembering” (immunolog-
91ical memory) the “pathogen” and thus being prepared if it reappears
92(Fig. 1Bi).
93The innate immune subsystem employs individual germ-line-
94encoded pattern recognition receptors (PRRs), which recognize non-
95self products from infectious agents, including foreign nucleic acids,
96termed pathogen-associated molecular patterns (PAMPs), as well as
97host molecules called DAMPs, as previously mentioned. Toll-like recep-
98tors (TLRs) are among the best-characterized PRRs. In particular, the
99TLR9 recognizes the highly immunogenic CpG motifs frequently found
100in bacteria. As discussed later, this activates the transcription factors nu-
101clear factor kappa B (NF-κB) and interferon-regulatory factor 7 (IRF7),
102which in turn induce a number of pro-inflammatory cytokines promot-
103ing an inflammatory response (Bauer et al., 2001). This is an example
104demonstrating that immunosurveillance is capable of discriminating
105foreign from host DNA in a sequence-independent manner, as
106suggested, by recognizing physicochemical structural differences
107(Kawasaki et al., 2011). However, DNA replication by-products that
108are not rapidly turned over and released from the “immune-privileged”
109nucleus into the cytoplasm can also act as potent immunostimulators
110engaging DNA sensors, eventually setting the pathophysiological basis
111for autoimmune reactions. At another level, innate immune system
112adaptors have been shown to interact with DNA damage sensors in
113the cytosol. A similar interaction is observed between caspase activation
114and recruitment domain 9 (CARD9) and theDNA damage sensor Rad50,
115a key component of theMre11–Rad50–Nbs1 (MRN)DNAdouble-strand
116break (DSB) recognition complex, thus forming a module required for
117NF-κΒ activation and pro-interleukin (IL)-1β induction (Roth et al.,
1182014). One of the most characteristic links between innate immunity
119and DDR/R is the activation of natural killer group 2, member D
120(NKG2D) ligands in DNA-damaged cells by ataxia telangiectasia
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121 mutated (ATM), which alerts and recruits mainly natural killer (NK)
122 cells at the injured site (Gasser et al., 2005). Themacrophage is common
123 to both the innate and acquired immune subsystems: On the one hand,
124 it is a key player in innate immunity and, on the other, it is capable of an-
125 tigen presentation, placing it in the front line of the cells that initiate
126 acquired immunity. A number of cell surface molecules involved in an-
127 tigen presentation and expressed bymacrophages, such as intercellular
128 adhesion molecule 1 (ICAM-1), CD59, lymphocyte-function-associated
129 antigen-3 (LFA-3), and CD58, are activated by p53 (Q4 Gazouli et al.,
130 2002; Gorgoulis et al., 2003). Moreover, DDR/R activation can trigger
131 antigen-presenting-like functions in fibroblasts and in turn activate
132 naive cytotoxic T cells in a DNA-dependent manner, which demon-
133 strates the ability of the DDR/R to modulate both the innate and adap-
134 tive ImmR (Tang et al., 2014).
135 From these introductory paradigms, an interplay between DDR/R
136 and ImmR is evident, clearly emerging as a necessity inmetazoans, dur-
137 ing their long evolutionary transition from their unicellular ancestors, to
138 supervise and intervene at both the systematic and cellular levels. As
139 presented in the following sections, several bidirectional DDR/R–
140 ImmR links are evident, which we believe will steadily increase in the
141 future providing us with a novel insight into how these fundamental
142 biochemical and cellular networks orchestrate their function during
143 pathological conditions.

1442. Evidence supporting a
145bidirectional connection between DDR/R and ImmR

146Over the past years, our perception into the immunological pro-
147perties of DNA and RNA has changed significantly, with studies demon-
148strating that nucleic acids trigger a robust ImmR under certain
149circumstances. The vigorous cellular reactions occurring after foreign
150genetic material is detected within the cytoplasm or the nucleus of eu-
151karyotic cells as well as the systemic immune reactions occurring after
152DNA damage herald a new era in the conceptualization of the defense
153mechanisms of (multi)cellular organisms. In the following section, we
154provide strong evidence supporting the bidirectional relationship be-
155tween DNA damage and ImmRs (Fig. 2). We begin our study of the
156DDR/R–ImmR cross talk by first investigating the activation of the
157DDR/R machinery via infection of eukaryotic cells by foreign genetic
158material.

1592.1. Lessons from viruses, part 1: the first
160evidence supporting the DDR/R–ImmR cross talk

161In 1963, Isaacs et al. (1963) demonstrated that infection of mouse
162cells with chick nucleic acid triggered the production of interferons
163(IFNs), which supports the notion of IFN stimulation as a cell response

Fig. 1. A. Schematic presentation of the DNA damage response and repair (DDR/R) pathways activated by various exogenous and endogenous insults. The DNA damage is recognized by
sensor proteins (in light blue boxes) that recruit and activate the transducer kinases (in yellow boxes). The latter convey the “threatening” signal to the upstream effector kinases (in pink
boxes), which phosphorylate their substrates – the downstream effectors (in red boxes) – in turn recruiting the appropriate DNA repair module (in blue boxes) depending on the type of
DNA lesion. Thefine-tuning ofDDR/R is performedby themediators (in light pinkboxes),which are substrates and regulators of both the transducers and effector kinases. EachDNA repair
routemaywork either independently or in coordinationwith other repairmechanisms depending on the complexity of theDNA lesion. The time for repair is provided by theDNA damage
signaling checkpoints, which inhibit the cyclin–CDK complexes that slow down or arrest cell cycle progression. If the DNA damage is extensive or not effectively repaired, the cell is driven
to apoptosis, senescence, or acquiring chromosomal aberrations, whichmay lead to genomic instability and carcinogenesis. Detailed description of each DDR/R pathway is provided in the
corresponding SupplementalData. B: (i) The earlyfirst-line defense against pathogens that invade the body is provided by innate immunity,which is characterized by rapid but not specific
responses. Adaptive immunity is activated subsequently, providing a specific and efficient response against pathogens, as well as immunological memory protecting the body from a sec-
ond encounter of the same invader. (ii) CD4+ T helper (Th) cells are critical for proper immune cell homeostasis and host defense. Among the effector Th subsets (Th1, Th2, Th17, Th22, Th9,
and Treg) characterized by specific cytokineprofiles (Raphael et al., 2014), Th1 and Th2 aremajor contributors to the achievement of balance in the immunedefense, developing the immune
response type 1 (ImmR1) and immune response type 2 (ImmR2), respectively. In ImmR1, Th1 cells orchestrate the activation ofM1 (classically activated) macrophages, B and NK cells, as
well as neutrophils (Abbas et al., 2010Q1 ; Biswas&Mantovani, 2010). In ImmR2, Th2 cells direct the activation ofM2 (alternatively activated)macrophages, B cells, basophils, and eosinophils.
The prototype cytokines of ImmR1 are IFN-γ and IL12, whereas those of ImmR2 are IL4, IL5, and IL13, and to a lesser extent IL10. Note that IFN-γ has a potentmicrobicidal role, promoting
phagocytosis first by acting on M1 macrophages and second by promoting IgG antibody production by B cells that in turn opsonize microbes. TGF-β is produced, among others, by M2
macrophages and it has an anti-inflammatory function. Imbalance in the type 1/type 2 cytokine ratio is implicated in the pathogenesis of several conditions throughout life (Zhang
et al., 2014). A fine example arises from studying the immunology during pregnancy and in neonatal pathology. A Th2-predominant state is favored during pregnancy, supporting the
tolerance of fetal and placental antigens and hence promoting pregnancy maintenance (Sykes et al., 2012). A shift towards a Th1 immune profile is implicated in recurrent pregnancy
loss (Nakashima et al., 2012). Moreover, premature infants with respiratory distress syndrome exhibit Th1 polarization (Varvarigou et al., 2012). Within this frame, there is a modest re-
mission in Th1-based autoimmune diseases during pregnancy (i.e., rheumatoid arthritis and multiple sclerosis) (Sykes et al., 2012). (iii) Schematic presentation of costimulatory and in-
hibitory receptors involved in antigen-presenting cells (APCs) and T cell interplay (Abbas et al., 2010). The costimulatory receptors of T cell are depicted in shades of green, whereas the
inhibitory receptors of T cell are depicted in shades of red.
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164 to the introduction of foreign nucleic acids. The term “interferon” was
165 introduced because these cytokines were capable of interfering with
166 viral replication (Q5 Isaacs & Lindenmann, 1957). Currently, it is well
167 established that viral genetic material triggers animal immunity by di-
168 rectly inducing Type I IFN inmost cases,mainly IFN-α alongwith its nu-
169 merous isoforms as well as IFN-β, and Type III IFN comprising IFN-λ1,
170 IFN-λ2, and IFN-λ3 to a lesser extent (McKenna et al., 2005; Fensterl
171 & Sen, 2009). IFN-γ, also called Type II IFN, is produced as an indirect re-
172 sponse to viral PAMPs, with a less potent antiviral effect than Type I and
173 III IFNs. The action of IFNs action lies at the intersection of innate and
174 adaptive immunity, promoting an “antiviral state” in an autocrine, para-
175 crine, and systemic manner. Hence, it is not surprising that knockout
176 mice lacking Type I IFN receptors are highly susceptible to viral infec-
177 tions. In a similar manner to animals, introduction of viral nucleic
178 acids in plants elicits a systemic defense mechanism that travels ahead

179of the virus, named as systemic acquired resistance (SAR) (Kachroo &
180Robin, 2013). Interestingly, it has been demonstrated that viral infection
181in plants leads to systemic DNA genetic and epigenetic changes includ-
182ing an increased frequency of homologous recombination alongwith al-
183tered methylation patterns. In turn, these alterations possibly favor the
184creation of resistance (R) genes with varying specificities, thus promot-
185ing the antiviral defense of the host plant (Lucht et al., 2002; Kovalchuk
186et al., 2003; Boyko & Kovalchuk, 2011). Of note, induction of SAR not
187only protects the individual plant but also passes on the immunemem-
188ory to the next generations (Luna et al., 2012; Slaughter et al., 2012).

1892.2. PRRs: behind the curtains

190In both animals and plants, PRR-induced defense is the core of the
191ImmR to infection by foreign genetic material. So far, six categories of

Fig. 1 (continued).
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192 PRRs sensing nucleic acids have been recognized, including TLR, NOD-
193 like receptor (NLR), PYHIN, DExD/H-box helicases, DDR/R families, as
194 well a few additional unclassified receptors presented as “other” in
195 Table 1; this list will continue to grow. Because several of these PRRs
196 were discovered only recently, at present, we cannot verify that all sen-
197 sors included therein are indeed bona fide sensors (Unterholzner, 2013).
198 Nevertheless, the multiplicity of DNA/RNA sensors underlines their sig-
199 nificance in host immunity. This supports the original view of Charles A.
200 Janeway, who introduced the term PRR in 1989 in the pioneering article
201 titled “Approaching the asymptote? Evolution and Revolution in Immu-
202 nology.” He stated that PRRs are part of a primitive immune system be-
203 fore the onset of clonal selection (Janeway, 1989). Beyond their
204 diversity, PRRs share a common structural pattern, evolutionarily con-
205 served especially among vertebrates (Tam & Jacques, 2014), consisting
206 of a high-affinity domain for nucleic acids (Table 1, depicted in red) at-
207 tached to a domainmediating protein–protein interaction (Table 1, col-
208 ored in blue). The latter is involved in the recruitment of the appropriate
209 adaptor protein for linking the specific PAMP–PRR pair with the stimu-
210 lation of identical but shared signaling pathways (Fig. 2).

211 2.2.1. Effects following PAMP–PRR axis activation
212 So far, the most well described adaptors include STING, MyD88,
213 Mavs, and β-catenin (interacting with leucine-rich repeat (in FLII)

214interacting protein 1 (LRRFIP1)) (Ishikawa & Barber, 2011; Keating
215et al., 2011; Cavlar et al., 2012; Paludan & Bowie, 2013; Maringer &
216Fernandez-Sesma, 2014; Ran et al., 2014). Mostly IFNβ are directly pro-
217duced by nonimmune cells including epithelial cells and fibroblasts, as
218well as IFNα by plasmacytoid dendritic cells (DCs), when the STING–
219TANK-binding kinase 1 (TBK1)–IRF3, MyD88–IRF7–NF-κB, Mavs–
220TBK1–IRF3, and β-catenin–IRF3 signaling pathways are activated
221(Fig. 2). Interaction between IFNs and the corresponding receptors
222(with the generic term IFNR) in the target cells activates the Janus ki-
223nase (JAK)–signal transducer activator of transcription (STAT) pathway
224that a) leads to the transcription of interferon-stimulated genes (ISGs)
225and b) favors adaptive immunity, altogether inducing cellular defense
226(driving an antimicrobial and antitumoral state) (further discussed,
227Schoggins et al., 2011). Of note, negative feedbackmechanisms are acti-
228vated in parallel in order to balance and inhibit the pro-inflammatory
229signaling pathways ( Q6Ivashkiv & Donlin, 2014). In addition, several
230other inflammatory mediators are released, including IL-6, IL-8, IL-12,
231and tumor necrosis factor (TNF), in a NF-κB- or p38-dependentmanner,
232therefore enhancing host immunity (Langefeld et al., 2009). In immune
233cells includingmacrophages and DCs aswell as in epithelial cells, mem-
234bers of the NLR family and the PYHIN protein AIM2 associate in a
235stimulus-specific manner with apoptosis-associated speck-like protein
236containing a CARD (ASC) by homotypic interactions via the CARD and

Fig. 2. Interplay betweenDNAdamage response and repair (DDR/R) and immune response (ImmR) (DDR/R⇄ImmR). Electronmicrograph of a representative breast luminal epithelial cell
found within normal-appearing tubuloalveolar secretory unit (demonstrated in the left-side image with γH2AX immunohistochemistry), adjacent to invasive ductal breast carcinoma
(not shown). DNA damage including the formation of double-strand breaks (DSBs) in the host orthotopic gDNA triggers the DDR/R machinery by recruiting the MRE11–RAD50–
NBS11 (MRN) complex along with the apical kinase ATM. ATM may in turn: a) upregulate NKG2DL and DNAM1L favoring the sequestration of immune cells such as NK, NKT, γδΤ, and
CD8+ T cytotoxic cells; b) induce ICAM1 expression; and c) activate nuclear factor κΒ (NF-κB) in an IKKγ (NEMO)-dependent manner. Several PRRs including TLR9, RIG1, MAD5,
MRE11, DAI, RNA polIII, and LRRFIP1 sense foreign genetic material as well as host misplaced DNA, and they promote the production of proinflammatory mediators including INFs, inter-
leukins, and TNF production. IFN signaling potentially triggers the DDR/R pathway, denoting the strong relationship between ImmR andDDR/R. Note thatMRE11 has a dual role serving as
a component of the DDR/R machinery and as a PRR sensing cytoplasmic DNA. The functional cross talk between the two nodal transcription factors p53 and NF-κB is complex, and this
should be studied in a context-dependent manner (Cooks & Oren, 2010). All DNA/RNA sensors are depicted in green; adaptors in yellow, mediators in pink, and downstream effectors
in red. e: endosome; euh: euchromatin; het: heterochromatin; IRF3,7: INF regulatory factor 3,7;m: mitochondrion; Mavs: mitochondrial antiviral signaling protein;MyD88:myeloid dif-
ferentiation primary response gene 88; N: nucleus; n: nucleolus; RER: rough endoplasmic reticulum; STING: stimulator of IFN genes (also known as MITA, mediator of IRF3 activation);
TBK1: TANK-binding kinase 1; arrow: positive effect; double ended arrow: bidirectional effect; curved arrow: potential activation of DDR/R pathways.
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237 Pyrin/PYD domains. This in turn favors the recruitment of the 45-kDa
238 procaspase-1 (also described as zymogen), forming a multimeric cyto-
239 solic complex termed as an inflammasome (Mariathasan & Monack,
240 2007). Inflammasome assembly triggers the autoactivation of caspase-
241 1 (previously known as ICE), leading to the production of the potent py-
242 rogen IL-1β responsible for fever reactions IL-18 coupling innate to
243 adaptive immunity (Kim et al., 2010;Q7 Rathinam et al., 2010a, 2010b;

244Kersse et al., 2011; Lamkanfi, 2011). Besides this, stimulation of the
245caspase-1 inflammasome complex may also promote pyroptosis, a pro-
246grammed form of cell death, wherein cells lose their membrane integri-
247ty. Therefore, in contrast to apoptosis, it is a highly inflammatory type of
248cell death (Aachoui et al., 2013). Interestingly, induction of AIM or
249NLRP3 inflammasomes inmacrophages can be accompanied by autoph-
250agy in a p62-dependent manner, which limits inflammasome activity,

t1:1 Table 1
t1:2 Well-characterized types of PRRs alongwith the correspondingmembers functioning as intracellular DNA/RNA sensors. A few still-unclassified PRRs are
t1:3 presented as “other.” The size of the protein domains is not depicted to scale; blue-colored domains are implicated in protein–protein interactions,
t1:4 whereas red-colored domains interactwith nucleic acids. Detailed description of each PRRmember is provided in the corresponding Supplemental Data.

t1:6t1:6
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251 suggesting a negative feedback loop by autophagy that restricts exces-
252 sive inflammation (Shi et al., 2012). However, a large volume data also
253 support the pro-inflammatory role of autophagy, including the induc-
254 tion of NF-κB activity and the stimulation of the Type I INF axis, suggest-
255 ing that the interplay between autophagy and innate immunity remains
256 a key challenge (Faure & Lafont, 2013). In addition, activation of PRRs
257 triggers immunological “silent” apoptosis as well as necrosis, including
258 a form of necrotic cell death termed as necroptosis, which is dependent
259 on TNF and mediated by RPK1 and RPK3 (Q8 Vanlangenakker et al., 2012;
260 Aachoui et al., 2013).
261 The regulation of the cell's fate by PRR activity is followed by meta-
262 bolic and cell cycle modulations. Stimulation of TLR signaling shifts the
263 metabolism of immune cells towards aerobic glycolysis, a phenomenon
264 originally described in cancer metabolism known as the “Warburg ef-
265 fect” (Q9 Cheng et al., 2014). Furthermore, there is strong evidence of
266 PRRs interfering with critical modulators of the cell cycle (Ludlow
267 et al., 2005). Overexpression of IFI16 and the murine p202 and p204
268 HIN-200/PYHIN proteins induces cell cycle arrest through their interac-
269 tion with the pRb–E2F1 and p53–p21 molecules (Choubey et al., 1996;
270 Sangfelt et al., 1999; Hertel et al., 2000; Johnstone et al., 2000). Notice-
271 ably, IFI16 and p53 form a positive feedback loop (Q10 H. Song et al., 2008;
272 L.L. Song et al., 2008). On the one hand, IFI16 directly binds to the C-
273 terminal region of p53 and promotes p53-mediated transcriptional ac-
274 tivity, and on the other p53 directly upregulates IFI16, through a func-
275 tional p53 DNA-binding site in the 5′ regulatory region of IFI16. Hence,
276 it is not surprising that IFI16 expression favors cellular senescence
277 both in human normal and cancerous prostatic epithelial cells and in
278 human fibroblasts (Xin et al., 2003; Xin et al., 2004;Q11 Song et al., 2010;

279Duan et al., 2011). In addition, there is evidence supporting the cross
280talk of the cytosolic and nucleic double-stranded DNA (dsDNA) sensors
281of the PYHIN/HIN-200 family with DDR/R components (Ouchi & Ouchi,
2822008). BRCA1 interacts with the Pyrin domain of IFI16 favoring DNA-
283damage-induced apoptosis (Aglipay et al., 2003). Likewise, p202 inter-
284acts via the conservedMFHATVAT regionwithin theHIN domain ofmu-
285rine homolog of human 53 binding protein 1 (53BP1) both in vitro and
286in vivo (Datta et al., 1996). Interestingly, the authors demonstrated that
287p202 inhibits the transcriptional activity of p53; the underlyingmecha-
288nismwarrants further investigation. Despite the lack of a human homo-
289log for p202, a potential interaction between 53BP1 and human HIN-
290200 members may also be valid because the conservative MFHATVAT
291sequence is involved (Cridland et al., 2012). Based on these findings,
292we conducted a bioinformatics analysis and found that several PRRs
293interact with components of the DRR/R machinery (Fig. 3).

2942.3. From ImmR to DDR/R activation: let the main story begin

295Within this frame, there is a growing body of evidence on the activa-
296tion of the DDR/R pathway by microbial infection in humans. Takaoka
297et al. (2003) clearly proved that IFNα/β signaling promotes p53 in
298turn evoking apoptosis that is critical for antiviral immunity, thus show-
299ing a novel link between IFNs and p53 in antiviral immunity and tumor
300suppression. The authors showed that infection ofmouse embryo fibro-
301blasts (MEFs) and the human hepatic cancer cell lineHepG2with differ-
302ent viruses including vesicular stomatitis virus (VSV), Newcastle disease
303virus (NDV), and herpes simplex virus (HSV) induces ATM-mediated
304phosphorylation of p53 at Ser-18 (mouse equivalent of human p53

Fig. 3. Putative interactions between different pattern recognition receptors (PRRs) with components of the DNA damage response and repairmachinery (DDR/R). The Ingenuity Pathway
Analysis Software (Qiagen) alongwith theunderlying Ingenuity KnowledgeBase,which comprises ~5.1million relationships, was used for thenetwork analysis. Initially, all proteins of the
DDR/R where recalled from the Knowledge Base. The interactions of DDR/R proteins with the groups of proteins defined in Table 1 were retrieved and visualized as networks. Only ex-
perimentally verified interactions were selected from the Knowledge Base in order for highly valid networks to be constructed. Solid lines in the networks indicate direct relationships
whereas dashed lines indicate indirect ones.
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305 Ser-15) and Ser-15, respectively. Of note, within this setting, p53 induc-
306 tionwas accompanied only byMdm2 and Puma but not by p21 andNoxa
307 transcription, implying a differential activation of p53-inducible genes
308 after viral infection, thus warranting further studies. In line with the
309 above mentioned data, prolonged expression of IFNβ in normal
310 human diploid fibroblasts and of IFNγ in human umbilical endothelial
311 cells (HUVEC) induces the DDR-p53 axis in a p16INK4A-independent
312 manner, in addition to the accumulation of γ-H2AX foci along with
313 the phosphorylated forms of ATM–Ser1981, checkpoint kinase 2
314 (Chk2)–Thr68, and p53-Ser15 with ensuing senescence (Q12 Kim et al.,
315 1999; Moiseeva et al., 2006). Interestingly, both studies demonstrated
316 that the DNA damage signaling pathway was stimulated by an increase
317 in reactive oxygen species (ROS), because treatment with the antioxi-
318 dant N-acetyl-cysteine (NAC) inhibited DDR/R activation. Notably, de-
319 spite activating the ATM–Chk2–p53 pathway, Guo et al. (2010) did not
320 observe phosphorylation of H2A at Ser139 in response to H2O2 treatment
321 in human primary fibroblasts, thus implying that oxidative stress triggers
322 aDDR that is below the threshold needed to activate the “canonical”DDR/
323 R route. Instead, treatment with bleomycin, a genuine radiomimetic drug
324 that induces complex DSBs, results in H2A phosphorylation (Regulus
325 et al., 2007). Hence, oxidative stress potentially induces both “canonical”
326 and “non-canonical”DDR/R signaling (Ogrunc et al., 2014). Canonical sig-
327 naling is favoredwhen triggered by IFNs, although discrepancies between
328 the various settings may exist. Furthermore, stimulation of the down-
329 stream effector of IFN–IFNR axis, STAT1, induces the ATM–Chk2–
330 CDC25A and ATM–Nijmegen breakage syndrome 1 (NBS1) pathways by
331 modulating the expression of MDC1 and 53BP1, triggering the S phase
332 and theG2–Mcheckpoint (Townsend et al., 2005).Moreover, theDNA re-
333 pair protein FANCC facilitates the trafficking of STAT1 to the IFNγR1
334 docking site (Pang et al., 2000).

335 2.3.1. How do viruses trigger DDR/R in the host?
336 Several DNA and RNA viruses trigger DDR/R in the host (Table 2)
337 (reviewed by Georgakilas et al., 2010;Q13 Lilley et al., 2013; McFadden &
338 Luftig, 2013; Xiaofei & Kowalik, 2014). Although the underlyingmecha-
339 nisms are still obscure, viral infection may stimulate DDR both directly
340 and indirectly by the following mechanisms: a) the recognition of
341 viral DNA as damaged DNA, such as the exposed (unintegrated) viral
342 DNA ends that could resemble DSBs; b) the presence of DNA breaks
343 within the viral genome; c) the induction of host DNA damage during
344 viral infection (e.g., retroviral DNA integration); d) the identification
345 of aberrant viral DNA structures; e) the expression of viral oncoproteins

346leading to a hyperproliferative phase, whichmay in turn cause DNA rep-
347lication stress, favoring the generation of single-strand breaks (SSBs)
348and DSBs; and f) PRR–IFN-dependent axis as previously described
349( Q14Wilkinson & Weller, 2003; Q15Sinclair et al., 2006; McFadden & Luftig,
3502013; Xiaofei & Kowalik, 2014). With respect to aberrant viral DNA
351structures in particular, the rolling-circle structure as well as the newly
352produced linear products and the presence of replication intermediates
353often with a nonlinear, branched structure synthesized during lytic rep-
354licationmay be recognized as SSBs or DSBs. In addition to these features,
355increased expression of the newly described PRR adaptor β-catenin in
356thymocytes induces DDR/R, favoring senescence independently of p53
357and apoptosis dependent on p53 ( Q16Xu et al., 2008). In addition, the cross
358talk between DDR/R machinery and ImmR is further strengthened by
359the dual role of MRE11 and Ku70 both as PRRs sensing cytoplasmic
360DNA and as DDR/R components (Fig. 2).

3612.4. Lessons from viruses, part 2: interplay with DDR/R machinery

362Perhaps, one of the strongest proofs of the tight association between
363ImmR and DDR machinery stems from the various strategies employed
364by viruses to take control of DDR (Lilley et al., 2007; McFadden &
365Luftig, 2013). Viruses abrogate the activity of critical components of
366DDR/R, including the MRE11 complex, usually by mislocalizing them
367and/or targeting them for proteasome-mediated degradation, implying
368a potential “bright” side of DDR/R stimulation. Indeed, DDR/R can be en-
369visaged as part of the innate immunity of the host against several viruses.
370The Epstein–Barr virus (EBV) is a good example of this connection. Infec-
371tion of B lymphocytes with EBV leads to a transient hyperproliferative
372phase that coincides with c-Myc up-regulation and robust DDR activa-
373tion, followed by slower cell divisions (Nikitin et al., 2010). Inhibition
374of ATM or Chk2 during this initial period increases B cell proliferation
375and enhances their transformation, whereas ATM or Chk2 suppression
376had minimal effect after this initial phase, denoting the antitumor activ-
377ity of DDR/R activation during this acute oncogenic stress period. In light
378of our recent work demonstrating a functional cross talk between DDR/R
379and p14 alternate reading frame (p14ARF) antitumor barriers (Velimezi
380et al., 2013), the status of p14ARF after ATM silencing in the initial phase
381is of interest. Subsequent upregulation of the Epstein–Barr virus nuclear
382antigen 3C (EBNA3C) results in reduced c-Myc expression, attenuated
383DDR/R activity, and repressed p16INK4A and p14ARF expression, favoring
384the establishment of latency (Jiang et al., 2014). It is highly interesting
385that this ubiquitous herpes virus infecting N90% of adults causes malig-
386nancy only in a limited number of human hosts. The increased incidence
387of EBV-related malignancies in immunocompromised patients suggests
388that the interplay between EBV and the host cellular and systemic re-
389sponses possibly determines the final outcome of this symbiosis. To
390this end, studies have maintained that disruption of T cell activity leads
391EBV-transformed cells to escape (Hislop et al., 2007).
392DDR/R activity may also possess a “dark” side, facilitating viral infec-
393tion. HIV-1 infection triggers ATM-dependent DDR/R, favoring the effi-
394cient repair of the integrase-induced DNA damage, ultimately leading
395to the survival of host cells (Lau et al., 2005). Inhibition of ATM activity
396suppresses HIV-1 replication because the integrase-related DNA dam-
397age cannot be efficiently restored (Lau et al., 2005; Q17Nunnari et al., 2005).
398Noticeably, a key step in the activation of the twomajor RNA sensors
399RIG1 andMDA5 is the dephosphorylation of their CARD domain by pro-
400tein phosphatase 1α (PP1α) and PP1γ ( Q18Wies et al., 2013). Of note, acti-
401vation of ATM in response to DNA damage leads to stimulation of PP1
402(Tang et al., 2008). Therefore, DDR/R may activate PP1 directly (includ-
403ing the integrase-induced DNA damage) or indirectly manner (like the
404RLR-IFNα/β axis) when cells are infected with RNA viruses, which aug-
405ments RLR activity forming a positive feedback loop that promotes the
406ImmR. Two recent works depict two identical mechanisms wherein
407the antiviral response is suppressed by the V protein of measles virus
408via downregulation of the PP1-mediated dephosphorylation of RLRs in
409human DCs (Davis et al., 2014; Mesman et al., 2014). In addition, during

t2:1 Table 2
t2:2 Viruses triggering the DNA damage response and repair
t2:3 machinery (DRR/R). All viruses presented therein poten-
t2:4 tially activate ATM (Q2 Lilley et al., 2013). There is evidence
t2:5 supporting the fact that HIV-1 stimulates both ATM and
t2:6 ATR. Besides induction of ATM, B19V as well as HTLV1
t2:7 may also activate DNA-PKcs (Xiaofei & Kowalik, 2014).
t2:8 It is well documented that EBV, KSHV, HPV, HCV, HTLV1,
t2:9 HIV-1, and SV40 promote human carcinogenesis
t2:10 (Georgakilas et al., 2010).

t2:11 Epstein Barr Virus (EBV)
t2:12 Herpes Simplex Virus 1, 2 (HSV-1, HSV-2)
t2:13 Kaposi's Sarcoma-associated Herpes Virus (KSHV)
t2:14 Murine gamma Herpes Virus 68 (γHV68),
t2:15 Human Papilloma Virus 8, 16 (HPV8, 16)
t2:16 Adeno-Associated Virus (AAV)
t2:17 Polyomavirus
t2:18 Human Cytomegalovirus (HCMV)
t2:19 Hepatitis C Virus (HCV)
t2:20 Human parvovirus B19 (B19V)
t2:21 Rift Valley Fever Virus (RVFV)
t2:22 Human T-cell lymphotrophic Virus type 1 (HTLV1)
t2:23 Human Immunodeficiency Virus 1 (HIV-1)
t2:24 Simian Virus 40 (SV40)
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410 lytic replication, several viruses including EBV hijack the DDR/R ma-
411 chinery to promote their own replication, suggesting a yin–yang
412 virus–host relationship according to the different stages of the viral
413 life cycle (Li & Hayward, 2011; Grywalska et al., 2013). In the lytic
414 stage, DDR/R may be activated in two ways: a) during the generation
415 of a prolonged pseudo-S-phase environment where the downstream
416 activity of DDR/R is mitigated and b) during replication of the viral
417 DNA itself. In both cases, DDR/R activitymay foster viral replication con-
418 tributing to faithful DNA replication and packaging. Recently, Laguette
419 et al. (2014) demonstrated that HIV-1 viral protein R (Vpr) induces
420 the Holliday junction resolution pathway relying on Synthetic lethal X
421 (of unknown function) 4 (SLX4)–MUS81–essential meiotic endonucle-
422 ase 1 (EME1), leading to FANCD2 foci accumulation and G2/M arrest.
423 Activation of the SLX4 complex suppresses the spontaneous production
424 of Type I IFN. The latter finding reveals a novel interaction between the
425 DDR machinery and innate immunity suggesting that HIV-1 DNA can
426 escape immunosurveillance mechanisms when processed through
427 Vpr–SLX4–MUS81–EME-1. Interestingly, apart from viruses, two well-
428 known bacterial pathogens known to cause common human infections,
429 namely Escherichia coli and Helicobacter pylori, trigger DDR/R in host
430 cells (Q19 Nougayréde et al., 2006;Q20 Toller et al., 2011).

431 2.5. Ionizing radiation: from DDR/R to ImmR

432 So far, we examined how immune insults trigger DDR/R. In the fol-
433 lowing, we focus on the reciprocal relationship of how DDR/R activates
434 host immunity. First, we discuss the immunogenic function of ionizing
435 radiation (IR).
436 IR induces complex DNA damage comprising a variety of closely
437 spaced DNA lesions such as DSBs, SSBs, oxidized bases, and abasic (AP)
438 sites (Georgakilas et al., 2013). This type of damage is expected to induce
439 DDR and a variety of DNA repair pathways (Fig. 1A). This multi-pathway
440 induction of DNA damage may first involve a danger signal for labeling
441 this damage as a type of “special stress” above the regular DDR thresh-
442 olds (Nikitaki et al., 2015), thereafter triggering the systemic effects
443 and participating in secondary signaling based on inflammatory (cyto-
444 kines and chemokines) or oxidative molecules (ROS/reactive nitrogen
445 species (RNS), oxidized proteins, lipids, etc.) (Georgakilas et al., in press).
446 Radio-immunotherapeutic approaches are promising new curative
447 anticancer treatments (de la Cruz-Merino et al., 2014; Vatner et al.,
448 2014;Q21 Golden et al., 2015; Pilones et al., 2015). In addition to being direct-
449 ly cytotoxic, IR has also been traditionally considered as immunosup-
450 pressive. However, several findings over the past years suggest that it
451 maypromote host immune effectormechanisms, favoring antitumor im-
452 munity (Haikerwal et al., 2015). Almost two decades ago, Hallahan et al.
453 (1989) demonstrated that exposure to X-rays increases the levels of the
454 pro-inflammatory cytokine TNFα in human sarcoma cells, thus enhanc-
455 ing the lethality of radiation. Since then, a number of studies have corrob-
456 orated the immunostimulatory (immunogenic) role of IR therapy.
457 Interestingly, low doses of IR (0.5 Gy) can exert an immunosuppressive
458 effect in some cases, revealing the crucial role of the level and type of
459 DNA damage as a control switch for the type of effect of IR on the im-
460 mune system (Scheithauer et al., 2014). For an in-depth analysis of this
461 topic, the reader is advised to refer to the aforementioned recent reviews.
462 Within this context, ablative local radiotherapy induces Type I INF signal-
463 ingwhen IFNβ is upregulated by the tumormicroenvironment (Burnette
464 et al., 2011). The latter enhances the cross-priming ability of tumor-
465 infiltrating DCs, thus triggering antitumor immunity and in turn tumor
466 regression. On investigating this issue further, Deng et al. (2014) showed
467 that IR activates the cGAS–STING–IRF3–IFNβ axis in DCs favoring cross-
468 priming to CD8+ T cells. This suggests that DCs sense the DNA produced
469 by irradiated tumor cells. Indeed, the authors demonstrated that DNA
470 from irradiated tumor cells activates cGAS in DCs during a cell–cell
471 contact-mediated process. Noticeably, IR triggers the expression of
472 major histocompatibility complex (MHC) class I, which boosts T cytotox-
473 ic lymphocytic adoptive transfer, restricting tumor growth in vivo in

474mouse colon adenocarcinoma (Reits et al., 2006). Treatment with
475rapamycin blocked the cell surface expression of MHC-I as a response
476to IR treatment in the later phase, suggesting the involvement of mam-
477malian target of rapamycin (mTOR). Indeed, two other studies have
478shown that IR promotes mTOR activity, which is greatly enhanced in
479MEFs and in the human colon carcinoma cell line HCT116 in the absence
480of adenosine monophosphate-activated protein kinase (AMPK), an up-
481stream negative regulator of mTOR (Braunstein et al., 2009; Zannella
482et al., 2011). It is worth noting that IR activates AMPK in an ATM-
483dependent manner, inhibiting excessive mTOR expression in both nor-
484mal and cancerous environments, leading to cell cycle arrest and favor-
485ing cell survival (Sanli et al., 2010; Zannella et al., 2011; Sanli et al.,
4862014). In addition to the lately established immunomodulatory role of
487mTOR these findings ( Q22Cobbold, 2013) highlight the importance of the
488AMPK–mTOR signaling pathway in radiation biologywith potential ther-
489apeutic applications.

4902.6. Bystander or non-targeted effects enter the game

491The effect of IR is not limited to the cells, tissues, and organs subject
492to irradiation; it also acts “out of field” within the same organism. The
493radiation-induced bystander or non-targeted effects are well accepted,
494although the underlying mechanisms are still obscure especially
495in vivo (Hatzi et al., 2015; Georgakilas et al., in press). Irradiated cells
496send signals to non-exposed neighboring cells such as damage-
497mediated or protective responses that include DNA damage formation,
498apoptosis, senescence, terminal differentiation, as well as radioadaptive
499responses ( Q23Prise & O'Sullivan, 2009;Martin et al., 2011). Bonner's group
500examined the dynamics of DSBs in irradiated and bystander cells in
501three-dimensional (3-D) human tissue models (Sedelnikova et al.,
5022007). Maximal γ-H2AX foci formation was observed 30min after irra-
503diation in the former, whereas the incidence of γ-H2AX foci reached a
504maximum by 12–24 h after irradiation in the latter, followed by in-
505creased apoptosis, micronucleus formation, senescence, and loss of nu-
506clear DNA methylation. The bystander effect is mediated through two
507key routes: a) by direct cell–cell contact via gap junctions allowing
508molecules weighing up to 1.0–1.5 kDa to pass through and b) by release
509of soluble factors including RONS and cytokines such as TNFα,
510transforming growth factor-beta 1 (TGFβ1), IL-1β, IL-6, IL-8, and IL-33
511(Najafi et al., 2014; Havaki et al., 2015). In addition, activated macro-
512phages are recruited to the irradiated sites, thus promoting cytokine
513production and in turn oxidative stress further. Interestingly, experi-
514mental evidence points to the saturation of bystander responses,
515which indicates that no additional effect occurs above a certain dose, in-
516stead reaching a plateau ( Q24Nagasawa et al., 2002). The latter contrasts
517with the direct effect of IR, where the response increases with elevated
518radiation dose. However, even in this case, the relative biological effect
519(RBE) increases up to 100–200 keV/μm and starts decreasing, possibly
520because the additional energy deposited does not cause further damage
521per se ( Q25Prise & O'Sullivan, 2009). Monte Carlo damage simulation
522(MCDS), which relies on repeated random sampling, is frequently
523used to reproduce clustered DNA damage (closely spaced DNA lesions),
524includingDSBs and SSBs, in irradiated tissues (Carlson et al., 2008). For a
525population of cells uniformly inflicted by irradiation, the induction and
526repair of DSBs can be measured by determining the rate of change of
527the average number of potentially rejoinable DSBs per cell at time t
528with the following equation (Carlson et al., 2008):

dL tð Þ
dt

¼ f R
X

D
�

tð Þ− λþ η f RZ F

X� �
L tð Þ−ηL tð ÞL tð Þ:

530530

L average number of DSBs in a cell
531Ḋ(t) absorbed doserate
532fR∑Ḋ(t)dt
533potentiallt rejoinable DSBs occuring in a cell during dt
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534 λ L(t) the first-order DBS repair process, where the rate constant λ
535 is the sum of λR (rate of DBS repair) and λF (rate of damage
536 fixation)
537 η f RZ F∑LðtÞ
538 intratrack (along on track) misrepair
539 ηL2(t) intertrack (along different tracks) misrepair540

541 Although difficult, a mathematical formula can be developed to de-
542 termine the rate of DSBs in bystander cells in the near future. Consider-
543 ing that the irradiated and bystander cells have similar effects of
544 irradiation, but different time and extent, the equation should include
545 the following parameters: a) the rate of DSBs in the irradiated cells
546 and b) the underlying mechanisms mediating the bystander effect.
547 The former has already been addressed,whereas the latterwarrants fur-
548 ther investigation as it is challenging.

549 2.7. How does DDR/R induce ImmR?

550 In the following section, we discuss the underlying mechanisms
551 linking DDR activity with ImmR.

552 2.7.1. NF-κB: linking DDR/R activity with ImmR
553 Brzostek-Racine et al. (2011) demonstrated a clear connection be-
554 tween DDR/R activation and IFN production, despite IR being a prototypic
555 DDR/R inducer (Q26 Han & Yu, 2011) (Fig. 2). The authors showed that treat-
556 ment of human cell lines with various DNA-damaging agents induce IRF7
557 and IRF1, leading to elevated levels of IFN-α and IFN-λ1 in an NF-κB-
558 dependent manner. MEFs that lack nuclear factor kappa B essential mod-
559 ulator (NEMO), one of the regulatory subunits of the IKK complex, could
560 not upregulate IFN-α and IFN-λ1 after etoposide treatment. Activation
561 of NEMO allows NF-κB dimers to translocate to the nucleus favoring
562 gene transcription (Pasparakis, 2009). An interesting role of NEMO is
563 that it serves as the molecular linkage between ATM and NF-κB signaling
564 after genotoxic stress, revealing a novel function of ATM in the cytoplasm,
565 mediating NF-κB activation in response to DSBs (Fig. 2) (Li et al., 2001;
566 Wu et al., 2006, reviewed in Miyamoto, 2011). Thus, NEMO (phosphory-
567 lated at Ser85) triggers an inside-out signaling pathway when shuttling
568 between the nucleus and the cytoplasm, leading to an ImmR because of
569 DDR activity (Fig. 2B). The ATM–NF-κB cross talk is further analyzed in
570 Section 3. Moreover, UV-mediated activation of NF-κB is compromised
571 in primary skin fibroblasts isolated from patients with xeroderma
572 pigmentosum (Muotri et al, 2006), thus reiterating the strong interaction
573 between theDDR/Rmachinery andNF-κB, themaster regulator of inflam-
574 mation. Within this frame, the critical role of p38 mitogen-activated pro-
575 tein kinase (MAPK) signaling pathway should be recognized. p38MAPK
576 responds to a variety of external and internal stimuli including DDR/R ac-
577 tivity, which in turnmodulates several genes involved in the inflammato-
578 ry response (Cuadrado & Nebreda, 2010). The latter is frequently
579 mediated by the positive regulation of NF-κB activity.

580 2.7.2. Activation of DDR triggers NKG2DL and DNAML expression
581 In 2005, Gasser et al. (Nature 2005) demonstrated that constitutive
582 activation of DDR/R in human dermal foreskin fibroblasts upregulates
583 NKG2D ligands (NKG2DL). Pharmacological inhibition of ATM, ataxia
584 telangiectasia and Rad3 related (ATR), and checkpoint kinase 1 (Chk1)
585 prevented their overexpression in nontumor cell lines. Moreover,
586 NKG2DL expression was reduced when ATM was silenced in a murine
587 ovarian cancer cell line, whereas no difference was observed with ATR
588 short interfering RNA (siRNA) in this particular setting. Likewise, treat-
589 ment of multiple myeloma (MM) cell lines with low doses of chemo-
590 therapeutic agents elevates the status of NKG2D and DNAX accessory
591 molecule-1 (DNAM-1)/CD226 ligands in an ATM/ATR-dependent man-
592 ner (Soriani et al., 2009). Of note, NKG2D andDNAM-1 ligandswere up-
593 regulated in MM cells expressing a senescence phenotype. NKG2D is an
594 activating and costimulatory receptor that belongs to a family of lectin-
595 like Type II transmembrane proteins expressed in humans as a homodi-
596 mer on NK cells, γδ T cells, and a subset of CD8+ and CD4+ T cells

597(Burgess et al., 2008). DNAM-1 is another activating immune receptor
598that belongs to the Ig superfamily, expressed in humans at the cell sur-
599face of NKandNKT cells; CD8+, CD4+, andγδ T lymphocytes; andmac-
600rophages (de Andrade et al., 2014). MICA, MICB, UL binding protein 1–6
601(ULBP1–6), and RAE1 aswell as CD112/nectin-2 and CD155/PVR (polio-
602virus receptor) are the human ligands for NKG2D and DNAM-1, respec-
603tively. NKG2D and DNAM-1 ligands are usually expressed poorly by
604healthy cells, but they are up-regulated on the surface of infected, trans-
605formed, or otherwise “stressed” cells of various cell types (Zingoni et al.,
6062013; Cerboni et al., 2014) (Fig. 2). Ligation with the NKG2D and
607DNAM-1 receptors triggers innate and adaptive immunity, leading to
608enhanced cytokine production and cytotoxicity, favoring cell lysis of
609the incipient cells. Several viruses have evolved the ability to downreg-
610ulate NKG2D andDNAM-1 ligands (Cerboni et al., 2014). Moreover, cer-
611tain tumors reduce the levels of NKG2DL or DNAM-1L at the cell surface
612and release soluble NKG2DL via proteolytic shedding or phospholipace
613C cleavage, exosome secretion, and alternative splicing to promote im-
614mune escape (Chitadze et al., 2013; Q27de Andrade Immunol, 2014). There-
615fore, it is not surprising that NKG2D- and DNAM-1-deficient mice are
616susceptible to tumorigenesis (reviewed in Raulet & Guerra, 2009). Of
617note, the acquisition of an EMT phenotype in the Snail-HT29 M6 colon
618carcinoma cell line is associated with an upregulation of NKG2DL,
619followed by enhanced lysis of cancer cells by NK cells ( Q28Lopez-Soto
620et al., 2013). In a conceptual twist, human cancer cells in several
621common carcinomas express the NKG2D immunoreceptor themselves,
622which confers a growth advantage by triggering the PI3K–AKT–mTOR
623axis (Benitez et al., 2011). The latter reveals a complex role for
624NKG2D/NKG2DL during tumorigenesis, which should be taken into ac-
625count in future therapeutic applications.

6262.7.3. Persistent DDR activation
627promotes the accumulation of cytoplasmic DNA
628Hence, in addition to the evidence of DDR/R machinery stimulation
629soon after viral infection, the activation of DDR/R from the earliest
630stages of carcinogenesis (Bartkova et al., 2005; Q29Gorgoulis et al., 2005a,
6312005b) suggests a critical role of the DDR–NKG2D/DNAM-1 axis as a
632prompt immunosurveillance mechanism (Fig. 2). The recent finding
633that activation of the DDR cascade induces the expression of NKG2DL
634and RAE1, in a STING–TBK1–IRF3-dependent manner in lymphoma
635cell lines, further elucidates the underlying pathways linking DDR/R
636with ImmR ( Q30A.R. Lam et al., 2014; E. Lam et al., 2014). Of note, the
637same group very recently depicted that induction of DDR in normal
638and various cancerous settings favors the presence of cytosolic single-
639stranded DNA (ssDNA) and dsDNA (Shen et al., 2015). Accumulation
640of cytosolic DNA promotes the expression of Type I IFNs, contributing
641to the immunogenicity of tumor cells. Overexpression of RNASE H1,
642which hydrolyzes RNA from RNA:DNA hybrids, as well as Trex1, a
643major mammalian 3ʹ DNA exonuclease, reduces the levels of cytoplas-
644mic DNA, thus inhibiting Type I IFN-mediated rejection. By contrast,
645Trex1-deficient cells exhibit ATM-dependent checkpoint activation
646(Yang et al., 2007). According to Yang et al. (2007), Trex1 degrades
647ssDNA generated from the aberrant processing of replication intermedi-
648ates, thereby suppressing abnormal DDR/R activity. Mutations in TREX1,
649resulting in a dysfunctional nuclease enzyme, have been identified in
650Aicardi–Goutières Syndrome (AGS) (Aicardi & Goutieres, 2000). AGS
651shares common features with the autoimmune syndrome systemic
652lupus erythematosus (SLE). Trex1 deficiency possibly promotes a path-
653ological ImmR via aberrant DDR/R activation. However, some questions
654remain unanswered: How does the loss of Trex1 trigger autoimmunity?
655This may be partly explained by the accumulation of ectopic nucleic
656acids in the cytoplasm, which ultimately leads to the upregulation of
657NKG2D andDNAM-1 ligands. Further, NKG2DLmay be activated by his-
658tone deacetylase inhibitors, demethylating agents, all-trans-retinoic
659acid, HER2/HER3 signaling, and IL-18 (which can be induced after
660inflammasome activation as mentioned earlier) (reviewed by Chitadze
661et al., 2013).
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662 2.7.4. Activation of p53 favors immunosurveillance
663 Conflicting data on the role of p53 in the immunosurveillance mech-
664 anism exist. Although previous studies described that p53 was not re-
665 quired for NKGDL upregulation (Gasser et al., 2005), two other studies
666 demonstrated the presence of functional p53-responsive elements in
667 ULBP1-2 (Li et al., 2011; Textor et al., 2011). Conversely, the expression
668 of miR-34 represses ULBP2 in a p53-dependent manner (Heinemann
669 et al., 2012). Further, restoration of p53 in mouse liver carcinomas pro-
670 motes tumor regression because senescence activity and a robust
671 ImmR interact cooperatively (Xue et al., 2007). Reactivation of p53 in-
672 creased the expression of several inflammatory modulators by tumor
673 cells including ICAM-1 (CD54), LFA-1 as well as MICA, ULBP2, and
674 CD155, accompanied by the recruitment of neutrophils, macrophages,
675 and NK cells, thus promoting tumor elimination (Xue et al., 2007;
676 Krizhanovsky et al., 2008). The presence of a functional p53-responsive
677 element in ICAM-1 conferring inducibility to p53, as observed in our lab-
678 oratory, further supports a direct immunosurveillance role of wild-type
679 p53 (Fig. 2) (Gorgoulis et al., 2003;Q31 Gorgoulis et al., 2005a, 2005b). Of
680 course,we should bear inmind that p53 reactivation triggers senescence,
681 which in turn produces an inflammatory response called SASP (Rodier &
682 Campisi, 2011). Overall, p53 is found to favor immunosurveillance in dif-
683 ferent settings both directly and indirectly (Collado & Serrano, 2010;
684 Gorgoulis & Halazonetis, 2010; Salama et al., 2014). However, the extent
685 of their action in parallel or separately in eradicating tumors needs to be
686 addressed.

687 2.8. Senescence-associated secretory
688 phenotype: another paradigm of DDR/R–ImmR cross talk

689 The persistent activation of the DDR/R machinery favors the secre-
690 tion of inflammatory cytokines, including IL-6 and IL-8 (Q32 Rodier et al.,
691 2009). Activation of ATM, NBS1, and Chk2 is essential for cytokine pro-
692 duction, whereas p53 activity is dispensable. The term Senescence-
693 associated secretory phenotype (SASP) encompasses several of these in-
694 flammatory elements, as they are also associated with the senescence
695 phenotype. Hence, DDR activity triggers inflammation, again demonstrat-
696 ing thatDDR/R and ImmR forma functional networkwithhighly connect-
697 ed associations. The state of chronic inflammation observed in several
698 pathological settings, including neoplasias and autoimmune diseases,
699 may be partially attributed to persistent DDR activation. The senescence
700 inflammatory response (SIR) is a unique type of senescence-related in-
701 flammation that overlaps with the SASP signature (Lasry & Ben-Neriah,
702 in press), thereby conforming to the term “parainflammation” introduced
703 by Medzhitov (2008). SIR/parainflammation represents a state of low-
704 grade inflammation, an intermediate between homeostasis and overt
705 inflammation. However, the control of SIR by persistent DDR and the se-
706 quence of events in relation with SASP remain elusive. SASP components
707 in the cell act both autonomously and non-autonomously, favoring com-
708 munication between damaged cells and their neighboring cells. The net
709 effect of the non-cell-autonomous activity depends on the cell and tissue
710 context. SASP favors senescence in normal or low-grade premalignant
711 cells but it boosts tumorigenesis in high-grade premalignant ormalignant
712 cells (Gorgoulis & Halazonetis, 2010). SIR exerts a “yin–yang” effect, with
713 a pro- or antitumorigenic activity based on the cell context (Pribluba et al.,
714 2013).

715 2.9. A common denominator behind different diseases

716 Overall, the DDR/R and ImmR are clearly part of a tightly regulated
717 mechanism protecting (multi)cellular integrity from both exogenous
718 and endogenous threats. Thus, a unifying model emerges with DDR/R,
719 PRR, and inflammatory/immune mediators (including INFs and ILs)
720 being activated in concert as a response to D/PAMPs within a particular
721 time frame (Fig. 5). Aberrant activation disrupts cellular and systemic
722 homeostasis, often leading to chronic and potentially fatal diseases.
723 Hence, this model underlines the common routes activated during

724malignancies, connective tissue diseases, and infectious diseases. Stimu-
725lation of the INF signaling pathway in a TLR-dependent and TLR-
726independent manner contributes to autoimmunity ( Q33Moutsopoulos &
727Hooks, 1983; Meyer, 2009; Conigliaro et al., 2010; Q34Delgado-Vega et al.,
7282010; Crow, 2014; Kato & Fujita, 2014; Lemos et al., 2014; Smith &
729Jefferies, 2014; Land, 2015). Similarly, the TLR pathway plays a signifi-
730cant role in inflammation-associated carcinogenesis ( Q35Mairov et al.,
7312013). Recently, Funabiki et al. (2014) demonstrated that lupus-like
732features developed spontaneouslywith amutantMDA5 gain of function
733(GOF) that activated the corresponding signaling in the absence of the
734appropriate ligand. In the past, we demonstrated a marked association
735of particular NOD2/CARD15 variants with sarcoidosis aswell aswith ul-
736cerative colitis and Crohn's disease, two chronic inflammatory condi-
737tions that pose an elevated risk of colorectal carcinoma ( Q36Gazouli et al.,
7382004; Gazouli et al., 2005; Gazouli et al., 2006). In addition, DDR has
739been proven to be involved in the pathogenesis of autoimmune diseases
740( Q37Schild-Poulter et al., 2008; Davies et al., 2012; Solier & Pommier, 2014;
741Gunther et al., 2015). Examples from bedside experience support the
742common molecular background behind the different pathologies men-
743tioned previously. Fever is one of the most common manifestations of
744several diseases. It is a prominent sign that reflects the activation of a
745common route leading to the release of pyrogens irrespective of the ini-
746tial trigger. Based on our previous analysis, activation of both sensors,
747PRR and DDR/R, may lead to the production of pyrogenic substances in-
748cluding IL-1β, TNF-α, IL-6, and INF-α ( Q38Dinarello, 1999). This explains
749why fever of unknown origin (FUO) is a major challenge for physicians,
750as the underlying cause may fall under one of the following three enti-
751ties capable of activating the PRR–DDR/R–inflammatory mediator cir-
752cuit: neoplasms, collagen vascular diseases, or infections (Becker &
753Wu, 2010). In addition, one of the characteristics of DNA repair-
754deficient syndromes is elevated expression of immune and inflammato-
755ry genes (Ermolaeva & Schumacher, 2014). Werner syndrome (WS), a
756progeroid disorder caused by a deficiency in a RecQ-type DNA helicase
757(encoded by WRN), exhibits an increased inflammatory status (Turaga
758et al., 2009). Moreover, prolonged DDR/R activation has been linked
759with diabetesmellitus (Shimizu et al., 2014). DNA damage promotes in-
760creased inflammation, which in turn interferes with insulin signaling as
761well as reduced regenerative ability, impaired metabolism, and sup-
762pressed endocrine function provoking insulin resistance. Paraneoplastic
763syndromes (PSs) can represent another example, from daily practice,
764supporting the DDR/R–ImmR cross talk. PSs are disorders attributed to
765benign ormalignant neoplasms remote from the direct local ormetasta-
766tic effects and are considered to be immunemediated (Darnell & Posner,
7672003). The oncogene-induced DNA replication stress pathway, which
768leads to deregulated DDR/R activation and in turn favors genomic insta-
769bility (Halazonetis et al., 2008), may increase the levels of certain
770cytokines including IL-6, IL-5, granulocyte colony-stimulating factor
771(G-CSF), and granulocyte/macrophage colony-stimulating factor (GM-
772CSF), as well as the production of paraneoplastic autoantibodies ob-
773served in PSs. This hypothesis remains to be confirmed in the future.
774In the following section, we present an interesting connection between
775ATM and NF-κB, further supporting the DDR/R–ImmR interplay.

7763. The ATM apical DDR/R kinase
777as a hub of the DDR/R–ImmR network

778It is well known that the main function of ATM is to coordinate the
779DDR/R network (Jackson & Bartek, 2009). However, ATM also responds
780to a wider variety of stressogenic stimuli, bringing about cellular reac-
781tions that aim to preserve cellular homeostasis (Shiloh & Ziv, 2013).
782Within this context, ATM seems to modulate NF-κB activity in a multi-
783faceted manner.
784One of the best characterized ATM–NF-κB interactions occurs in the
785cytoplasmwhere ATM assembles with ΙΚΚγ (NEMO) dimers, activating
786IκB kinases (IKKα and IKKβ) and in turn triggering NF-κB-dependent
787gene expression (Miyamoto, 2011). This type of ATM signaling
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788 constitutes a nuclear to cytoplasmic (“inside-out”) innate pathway, as
789 mentioned previously (Fig. 2), and it is part of the endogenous DAMP
790 mechanism that is triggered independently of membrane and cytosolic
791 receptors (Fang et al., 2014). Nevertheless, ATM has also been shown to
792 coordinate NF-κB-mediated signaling initiated by membrane and cyto-
793 solic receptors (“outside-in”), predominantly by modulating NF-κB-
794 dependent activation of early pro-inflammatory cytokines upon TNF
795 stimulation (Fang et al., 2014).
796 The cross talk between ATM and NF-κB has been demonstrated in
797 both normal and malignant cells. For example, in the differentiation of
798 pre-B cells, ATM–NEMO mediates the stimulation of NF-κB during
799 DSB-induced V(D)J recombination of the immunoglobulin loci
800Q39 (Bredemeyer et al., 2008), whereas the same axis is constitutively acti-
801 vated in patients suffering from primary myelodysplastic syndrome
802 (MDS) and acute myeloid leukemia (Miyamoto, 2011). Persistent acti-
803 vation of NF-κB is observed in many types of cancer, but the underlying
804 mechanism remains obscure (Q40 Chatuverdi et al., 2011). Given that geno-
805 mic instability is an “enabling” hallmark of cancer, it is possible that the
806 DDR/R network could fill this mechanistic gap in certain cases (Negrini
807 et al., 2010). In line with this notion, evidence from human cancer cell
808 lines has shown the significance of NF-κB in processes such as

809homologous recombination (HR)-mediated repair aswell as nonhomol-
810ogous end joining (NHEJ) repair of DSBs, thereby potentially explaining
811NF-κB-based chemotherapy and radiotherapy resistance in certain ma-
812lignancies (Lim et al., 2002; Volcic et al., 2012).
813An intriguing link between ATM and NF-κB was revealed based on
814an earlier study showing that mouse skin cells bypassed senescence
815and became more invasive upon ATM inhibition (Bartkova et al.,
8162006). Prompted by thisfinding,we set out to investigate themechanis-
817tic basis of this outcome. As invasiveness is associated with increased
818metalloproteinase activity in most instances (Hadler-Olsen et al.,
8192013), wemeasured, for example, the genericmatrixmetalloproteinase
820(MMP) activity in ATM-depleted cells and found it increased (Fig. 4A).
821From the various MMPs assessed, we discovered that the enhanced ge-
822neric MMP activity was driven by increased transcriptionally-based
823MMP-3 (stromelysin-1) expression (Fig. 4B, C). On conducting a bioin-
824formatic analysis of the mouse MMP-3 promoter, we noticed, among
825various regulatory elements, an NF-κB-binding site (Fig. 4D), which is
826reported to be responsive and evolutionarily conserved in mammals
827(Gilmore, 2006). To test whether ATM could control MMP-3, via NF-
828κB, we examined the subcellular localization and phosphorylation sta-
829tus of the latter. Notably, ATM silencing was followed by a shift of the

Fig. 4. Silencingof ATMexpression inmouse skin PDVC57 cells leads to an increased, NF-κB-mediated,MMP3 status. (A)Genetic silencingof ATM in the PDVC57mouse skin cell line results in
increasedMMP activity. Histogram depicting total MMP activity exhibited by PDVC57 and PDVC57–shATM cells as assessed by FRET assay. (B) Immunoblot depicting the increased levels of
MMP-3 (stromelysin 1) produced by PDVC57–shATM cells. Inset showing that PDVC57–shATM cells secrete higher levels of MMP-3 in the culture supernatant. l: latent form of MMP-3; a:
active form ofMMP-3. (C) Histogram showing that PDVC57-shATM cells express increased transcription levels ofMMP-3. (D) Structural organization of theMMP-3 promoter. Note the pres-
ence of a NF-κB-responsive element. (E and F) Silencing of ATM in the PDVC57 cells increases NF-κB activity as assessed by nuclear translocation (E) and S536 phosphorylation (F) of the p65
subunit. (G and H) siRNA silencing of the p65 subunit decreasesMMP-3 expression in the ATM-deficient PDVC57 cells, at themRNA (G) and protein (H) levels. (I) Structural presentation of
the RelA/p65 protein subunit along with characterized positions of posttranslational modifications. Material and methods are provided in Supplemental Data.
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830 RelA/p65 subunit from the cytoplasm to the nucleus (Fig. 4E), with a
831 concomitant increase in NF-κB phosphorylation levels at Ser 536
832 (Fig. 4F), whereas silencing of NF-κB evoked a remarkable reduction
833 in MMP-3 levels (Fig. 4G, H). Although most studies have shown ATM
834 to activate NF-κB, it must be noted that cellular context, in the form of
835 either a cell type or a species, could dictate the outcome of the protein
836 network interplay. NF-κB is posttranslationally modified to a great ex-
837 tent, and these modifications control its transcriptional activities or sta-
838 bility in the cytoplasm and the nucleus (Fig. 4I) (Q41 Perkins, 2006;Q42 Huang
839 et al., 2010). In this context, phosphorylation at Ser 536 is a well-
840 established activating modification that enhances its global transcrip-
841 tional capabilities in response to a variety of stimuli. However, other
842 phosphorylations have a more limited or temporal effect on its tran-
843 scriptional repertoire. Characteristically, ATM has been reported to di-
844 rectly bind and phosphorylate NF-κB, upon genotoxic stress, at Ser
845 547 leading to transactivation of a small number of genes (Sabatel
846 et al., 2012). This ATM-dependent NF-κB-stimulating route is unrelated
847 to theNEMO-mediatedmechanism (Wuet al., 2006). In our cellular set-
848 ting, silencing, and not activation, of ATM triggered NF-κB activity, sug-
849 gesting that ATM either does not stimulate NF-κB or exerts a
850 constrained effect, similar to that reported from the phosphorylation
851 of NF-κB at Ser 547 (Sabatel et al., 2012).
852 Altogether, these studies and results clearly demonstrate that ATM
853 and NF-κB cross talk as two of the most important players in DDR/R
854 and ImmR, respectively, and ATM appears to act to be a vital center
855 that harmonizes cell autonomous defense(s) within a wider systematic
856 response.

857 4. Questions and perspectives from
858 the DDR/R–ImmR link in human diseases

859 Until now, with the exception of immune disorders linked to NHEJ
860 defects, the DDR/R pathways were mainly examined with respect to
861 cell-cycle-related defects, such as cancers, whereas the deregulated
862 ImmR network was mainly studied related to infectious diseases and
863 autoimmune disorders. From the concepts provided in this study, a
864 common role of these interlinked networks in disease pathogenesis
865 and development can be envisioned. For example, the recently pro-
866 posed oncogene-induced model for cancer development can be

867embedded in a broader model (Fig. 5) that includes the ImmR and
868other noncancer-related disorders. In linewith this, the recently revised
869“Hallmarks of Cancer” include genomic instability and tumor-
870promoting inflammation as enabling hallmarks and immune evasion
871as an emerging hallmark (Hanahan & Weinberg, 2011). From this as-
872pect, patients suffering from cell-cycle-deregulated defects concurrent-
873ly with autoimmune disorders, with different pathologies and separate
874treatment, may ultimately have a common denominator. This unifying
875view raises certain issues so that effective therapeutic tools can be
876developed.
877A “yin–yang” relationship exists between the immune system and
878themost commonhuman diseases. The immunosurveillance theory pro-
879posed by Burnet (1957), and by Thomas (1959) about the same time,
880supported the tumor-protecting role of the immune system. In 2002,
881Dunn et al. (2002) proposed the three Es of cancer immunoediting,
882namely elimination, equilibrium, and escape. The first E corresponds to
883immunosurveillance; the second, which lasts longer than the others, to
884a period of Darwinian selection favoring the less immunogenic tumor
885cells; and the third to the last phasewhere the immunologically sculpted
886transformed cells breach the host immunity. The DDR/R pathway seems
887to follow a similar route. Replication-stress-mediated DDR/R activates
888the antitumor barriers of apoptosis and senescence to protect the host
889at the precancerous stage, whereas key tumor suppressors such as p53
890are eliminated during the “battle,” favoring genomic instability and ma-
891lignant clonal expansion. Thus, the DDR/R network loses its “bright” side,
892transforming into a “dark servant” that supports cancer survival
893(Bartkova et al., 2005; Q43Gorgoulis et al., 2005a, 2005b; Halazonetis et al.,
8942008). Of course, the level and type of DNA damagemay act as a regulat-
895ing switch in this case. Considering the cross talk between theDDR/R and
896the ImmR networks, the following question arises: does the DDR/R ma-
897chinery interferewith each “E”? If so, thenwhat is its effect at the turning
898point when the immune system is overcome by malignant transforma-
899tion?Within this frame and considering that genomic instability triggers
900PRR activity (Nagi et al., 2014), what is the role of PRRs in the initial
901phases of cancer development? The expression of PRRs in both immune
902and nonimmune cells highlights the significance of examining these re-
903lationships in different cellular compartments such as the stroma. Re-
904cently, ARF was shown to act as a complementary and delayed barrier
905to carcinogenesis, responding to escalating oncogenic stress and being

Fig. 5. A unifyingmodel emerges with DDR/R and ImmR (including PRR and Inflammatory/Immunemediators) activated in concert as a response to D/PAMPs. The DDR–ImmR cross talk
prevents disease development at early stages (bright side), whereas it promotes disease progression at later stages (dark side). DDR/R: DNA Damage Response/Repair; ImmR: Immune
Response; D/PAMPs: Damage/Pathogen-Associated Molecular Patterns.
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906 robustly activated when the DDR/R kinase ATM is disabled. In view of
907 this, it is interesting to examine the effect of ARF, along with the DDR/
908 R, in relation to the ImmR during cancer development (Evangelou
909 et al., 2013; Velimezi et al., 2013).
910 From the evidence presented so far, it follows that the DDR/R and
911 ImmR pathways can be proposed as representing two branches of a
912 commonnetwork that, inmany cases, underlies both neoplastic and im-
913 munological disorders. However, the way these branches act in cancer
914 and immune-related diseases may differ. For example, if immunoregu-
915 lation of pro-inflammatory Th1 activity is disrupted (Ellyard et al.,
916 2007) failure of homeostasis of the immune system and in turn self-
917 tolerance results, leading to what Paul Ehrlich termed as “horror
918 autotoxicus” (harmful immune reactions against self). In general, such
919 a state is antitumorigenic, as immunoregulation of Th2 activity is medi-
920 ated by type 2 immunity including Th2, and by M2macrophages, which
921 play a pro-cancerous role as potent immunosuppressive cells (Fig. 1Bii).
922 In a similar vein, blockage of the immune-checkpoint receptors cytotox-
923 ic T lymphocyte-associated antigen 4 (CTLA4) and programmed death
924 ligand 1 (PDL1/CD274/B7-H1) has promising results in various types
925 of cancer by boosting antitumor immunity (Pardoll, 2012) (Fig. 1Biii).
926 Likewise, CLTA4-/- as well as PDL1-/- mice develop spontaneous autoim-
927 mune pathologies (Tivol et al., 1995; Ansari et al., 2003; Fife et al., 2006;
928 Keir et al., 2006; Fife et al., 2009). However, the latter course of action is
929 not always clear. For instance, the role of regulatory T cells (Tregs) in
930 human neoplasia remains to be clarified. There is evidence supporting
931 an adverse effect of Tregs in fatal malignancies, such as ovarian and pan-
932 creatic cancer, but their role in colorectal cancer remains obscure
933 (Q44 Műzes et al., 2008; Pages et al., 2010). Within this context, the role of
934 the DDR/R network in the pathogenesis of autoimmune diseases
935 needs to be investigated. Gunther et al. (2015)) recently demonstrated
936 a functional role of Trex1 in the initiation of autoimmunity in AGS, im-
937 plying that the DDR/R network emerges as a new player in the autoim-
938 munity field. Whether prolonged DDR/R activity can trigger PRR
939 signaling and vice versa also remains unanswered.
940 The outcome of these emerging potentially pathogenic links should
941 always be evaluated within a spatiotemporal frame. IL-4, a prototype
942 mediator of the Th2 response that favors experimental autoimmune
943 myocarditis, is an interesting example related to organ/cell specificity,
944 whereas IFNγ produced by Th1 cells limits this pathology. Contrary ob-
945 servations have been made in other sites and settings, such as experi-
946 mental autoimmune encephalomyelitis and type 1 diabetes, with
947 respect to the Th1/Th2 immunoregulatory function (Afanasyeva et al.,
948 2001). Within the frame of topology, the two immune-privileged or-
949 gans, namely the testis and thymus, can also additionally support the
950 DDR/R–ImmR concept. The natural development of germ cells and lym-
951 phocytes is highly dependent on the continuous function of the DDR/R
952 network, which could lead to host immunity under non-tolerant condi-
953 tions possibly by upregulating the NKG2D andDNAM ligands (Jackson &
954 Bartek, 2009; Fijak et al., 2011; Nunes-Alves et al., 2013). Similarly, this
955 may also explain the features shared by both the cancer microenviron-
956 ment and the immune-privileged sites (Swartz & Lund, 2012). Cancer
957 cells exhibit an unremitting cycle of DSB formation and repair, which
958 could render them susceptible to the immune system if the protective
959 shield of immune tolerance was absent (Halazonetis et al., 2008;
960 Hanahan & Weinberg, 2011). Time, the second element of the “spatio-
961 temporal” parameter, determines the situation in many cases. For in-
962 stance, prolonged activity of activated macrophages, conventionally
963 classified as antitumor cells, favors tumor promotion through the pro-
964 duction of ROS and RNS (Q45 Biswas & Mantovani, 2010; Lawrence &
965 Natoli, 2011; Murray & Wynn, 2011). Similarly, a “timing”-dependent
966 dual role of p38α signaling, a key pathway implicated in immunity, in-
967 flammation, and recently DDR/R (Phong et al., 2010), was shown during
968 colorectal carcinogenesis (Gupta et al., 2014, 2015). p38α suppresses tu-
969 morigenicity at the initial developmental stages of colon cancer, while
970 subsequently fostering tumor progression by promoting proliferation
971 and inhibiting apoptosis of cancer cells. Recently, the activation of

972mutant H-Ras in mouse epidermis was report to trigger a different re-
973sponse in aged mice compared with young mice (Golomb et al., 2015,
974Q46in press). In aged mice, H-Ras activation resulted in a neoplastic pheno-
975type that correlated with senescence, most probably via DDR/R activa-
976tion (Di Micco et al., 2006; Q47Gorgoulis et al., 2006, 2010), and an ImmR
977that was more extensive than in young mice, in addition to delayed
978tissue recovery. The aged mice showed an increase in pro-
979inflammatory mediators along with a robust anti-inflammatory re-
980sponse tending towards Th2 polarization, accompanied by the upregula-
981tion of PDL1(CD274). Investigating the mediators implicated in the
982DDR/R–PRR–inflammatory/immune signaling network after exerting
983the same insult in both young and old counterparts will further our un-
984derstanding of (multi)cellular responses during aging.
985Another parameter to be considered is the type of insult that dictates
986and orchestrates the proper defense mechanism. Taking for example
987the immunological branch of the DDR/R–ImmR network, elimination
988of phagocytosed microbes is promoted by a committed Th1 response,
989whereas Th2 polarization favors the defense against helminthic infec-
990tions (Fig. 1Bii) (Jankovic et al., 2001). Likewise, the DDR/R limb reacts
991in a manner similar to that presented in detail in Fig. 1A. Nevertheless,
992if and how both branches of the DDR/R–ImmR network are coordinated
993in response to the same exogenous or endogenous insults remain to be
994examined.
995All of these parameters provide plasticity to the interaction between
996theDDR/R pathway and the ImmR, sculpturing the end effects.Most im-
997portantly, this cross talk promotes inflammation, an emerging charac-
998teristic feature of cancer as mentioned earlier (Hanahan & Weinberg,
9992011). Although inflammation is considered a protective host response
1000to danger signals, maintaining harmony in both growing and adult ani-
1001mals according toMetchnikoff (Tauber, 2003), aberrant activation of the
1002inflammatory response disrupts (multi)cellular homeostasis, favoring
1003the pathogenesis of chronic diseases including neoplasms and autoim-
1004mune diseases (Karin & Greten, 2005; Q48de Visser et al., 2006; Tzioufas
1005et al., 2012; Elinav et al., 2013; Holmdahl et al., 2014). In tumor biology,
1006chronic inflammation does not merely foster tumor initiation, but it
1007might also be an “active component of the cancerous play,” favored by
1008full-blown cancers, in order to support their self-aggrandizement. The
1009lattermay be achieved by promoting several cancer hallmarks including
1010genomic instability, angiogenesis, invasion,metastasis, and possibly im-
1011mune evasion, by favoring T cell exhaustion, and potentially others such
1012as deregulatedmetabolism. In cancer, abnormal activity of PRR andDDR
1013can promote an inflammatory reaction; the physiological counterpart of
1014this counterpart is still unknown. Therefore, what are the key features of
1015cancer-associated inflammation? Some of these features may be ex-
1016plained by the concept of parainflammation/SIR (Medzhitov, 2008;
1017Lasry & Ben-Neriah, in press) and the “over-healing wound” hypothesis
1018(Schäfer & Werner, 2008). Cooks and colleagues recently proved the
1019significance of the DDR/R–ImmR functional interplay in this scenario
1020by the promotion of chronic inflammation and colitis-associated carci-
1021nogenesis by certain p53 mutant proteins through prolonged NF-κB ac-
1022tivation (Cooks et al., 2013; Q49Cooks et al., 2014a, 2014b). Taking into
1023consideration that TP53 mutations are among the most frequent in
1024human malignancies (Olivier et al., 2004; Oren & Rotter, 2010), the
1025GOF activity of p53 mutants (mt) p53 may play a significant role in
1026supporting the unique inflammatory environment of different malig-
1027nancies. It is also worth noting that loss of wild-type p53 activity by it-
1028self causes a critical breach in cellular homeostasis (Vousden & Prives,
10292009). This is proved by its protective role against inflammatory stress
1030( Q50Cooks et al., 2014a, 2014b). Hence, when considering the GOF of mt
1031p53 in addition to the wild-type p53 loss, a highly inflammation-
1032prone environment is favored. The p53 “symphonic orchestra” is also
1033known for performing a lesser-known function, described by Herkel
1034et al. (2001) a decade ago, which further supports the functional con-
1035nection between DDR/R and autoimmune disorders. Patients with SLE
1036produce Ab's against the carboxy-terminal DNA-binding domain of
1037p53, whereas patients with tumors produce anti-p53 Ab's that

14 I.S. Pateras et al. / Pharmacology & Therapeutics xxx (2015) xxx–xxx

Please cite this article as: Pateras, I.S., et al., The DNA damage response and immune signaling alliance: Is it good or bad?Nature decideswhen and
where, Pharmacology & Therapeutics (2015), http://dx.doi.org/10.1016/j.pharmthera.2015.06.011

http://dx.doi.org/10.1016/j.pharmthera.2015.06.011


U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

1038 recognize the amino terminus (Lubin et al., 1993). This could possibly be
1039 explained by the varying exposure to p53 in malignancies versus auto-
1040 immune diseases, including SLE (Herkel, et al., 2001). It is worth consid-
1041 ering that the Ab's against p53 are usually related to mutant p53 in
1042 tumors (Davidoff et al., 1992), whereas no p53 mutations are found
1043 and anti-p53 Ab's are directed against wild-type p53 in SLE (Kovacs
1044 et al., 1997). Yet, the functional consequences of the anti-p53Ab's in dif-
1045 ferent settings need to be clarified. This becomes evenmore challenging
1046 because of the ongoing trials with drugs targeting p53, either with reac-
1047 tivation of mutant p53 (Lambert et al., 2009) or with activation of wild-
1048 type p53 (Brown et al., 2009). Noticeably, murine double minute 2
1049 (MDM2) blockage with nutlin-3 attenuates inflammation in various
1050 settings, through suppression of NF-κB signaling (Liu et al., 2009;
1051 Hashimoto et al., 2011;Mulay et al., 2012), suggesting that the potential
1052 therapeutic effect of this drug is mediated by regulating both p53-
1053 dependent and p53-independent pathways (Thomasova et al., 2012).
1054 MicroRNAs (miRNAs) have also emerged as modulators of the DDR/
1055 R–ImmR interplay, which are also considered critical players in
1056 inflammation-associated pathologies (Kapsogeorgou et al., 2011;
1057 Singh et al., 2013). This type of noncoding RNAs is indispensable for T
1058 cell homeostasis implicated in the development of Tregs (Yan et al.,
1059 2014). Strong evidence supports their involvement in inflammation-
1060 driven cancer (Q51 Schetter et al., 2010). Because miRNAs have been
1061 shown to be more abundant at common fragile sites (CFSs),
1062 representing the preferential target sites for oncogene-mediated repli-
1063 cation stress from the earliest stages of cancer (Q52 Gorgoulis et al., 2005a,
1064 2005b; Halazonetis et al., 2008; Tsantoulis et al., 2008; Aqeilan, 2014;
1065 Georgakilas et al., 2014; Ozeri-Galai et al., 2014), the extent to which
1066 DDR/R-mediated miRNA deregulation affects immune signaling can
1067 be investigated further. Similarly, miRNAs target the 3′-untranslated
1068 region (UTR) of NKG2DL including MICA, MICB, and ULBP1-3, reduc-
1069 ing their cell surface expression and leading to evasion of malignant
1070 or virus-infected cells from immunosurveillance (Jasinski-Bergner
1071 et al., 2014). Furthermore, p53 enhances the posttranscriptional
1072 maturation of miRNAs, particularly those that suppress growth
1073 (Suzuki et al., 2009).
1074 The players and biochemical interactions that surface from examin-
1075 ing the interplay between the DDR/R and ImmRmodules not only boost
1076 future therapeutic applications but also increase themodes of new ther-
1077 apeutic interventions, targeted more optimistically and with lesser side
1078 effects than the existing one. For instance, it was recently shown that
1079 the vasculature of solid tumors selectively expresses FasL (CD95L),
1080 which kills effector CD8+ T cells, thus establishing immune tolerance.
1081 Blockage of vascular endothelial growth factor A (VEGF-A) attenuated
1082 endothelial FasL expression, leading to an increase in the influx of
1083 CD8+ cells and in turn tumor growth suppression (Motz et al., 2014).
1084 An alternative approach could be based on FasL induction by the DDR/
1085 R pathway (Mo & Beck, 1999). If VEGF-A cannot be targeted directly
1086 (Breccia et al., 2014), then a differential option by inhibiting ATM can
1087 be followed. This would lead to downregulation of FasL and concurrent-
1088 ly ARF induction by hindering ATM activity (Velimezi et al., 2013),
1089 which can eventually suppress VEGF-A, as previously reported
1090 (Kotsinas et al., 2014). Therefore, the latter therapeutic strategy may
1091 offer a better result because it targets three pathogenic factors (ATM,
1092 FasL, and VEGF-A) instead of the two (FasL and VEGF-A) inhibited in
1093 the former strategy. It is worth noting that several of the data produced
1094 were obtained from mice models, and they must be extrapolated to
1095 humans and vice versa with caution (as an example, see Suppl. Fig. 1).
1096 As the ImmR has a memory of its own (Fig. 1Bi) (Crotty, 2011Q53 ) it ap-
1097 pears that DNA can also “remember” its damage. The latter was report-
1098 ed in yeast, with the evidence showing the marked influence of DDR/R
1099 on the state of a cell for many generations (Burrill & Silver, 2011). If
1100 this holds true in humans, then the DDR/R–ImmR functional interplay
1101 has further implications for potential therapeutic applications, as cells
1102 with “DNA damage memory” will be much more resistant to DNA-
1103 damaging interventions.

1104Overall, the DDR/R–ImmR concept broadens our insight into the
1105pathogenesis of many diseases that were previously considered “unre-
1106lated,” with the emergence of common underlying mechanisms. Previ-
1107ously isolated biomedical fields are now being linked by commonalities
1108detected between different entities, allowing us to join forces for a better
1109and more prosperous world. Besides, previous studies have already pro-
1110vided us with the concept of (multi)-cellular organisms espousing the
1111motto of the Three Musketeers: “unus pro omnibus, omnes pro uno.”
1112Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.pharmthera.2015.06.011.
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