11/9/2014

OZONATION OF RANITIDINE UNDER VARIOUS PHYSICOCHEMICAL CONDITIONS. DEGRADATION KINETICS AND INTERMEDIATE BY-PRODUCTS

Christophoros Christophoridis, Nikolaos Thomaidis

Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens 15771, Greece, <u>ntho@chem.uoa.gr</u>

EuCheMS

Overall ki	netics					
CO ₃ (mg.L ⁻¹)	C _o Ran (mg L ^{.1})	рН	t-BuOH (mM)	matrix	k _{obs} (min ⁻¹)	\mathbb{R}^2
0.5	5	5.8	-	Ultrapure water	0.52	0.797
1	5	5.8	-	Ultrapure water	0.92	0.846
2	5	5.8	-	Ultrapure water	1.70	0.969
4	5	5.8	-	Ultrapure water	4.13	0.980
6	5	5.8	-	Ultrapure water	5.15	0.981
8	5	5.8	-	Ultrapure water	6.06	0.973
1	5	3	-	Acetate buffer	0.25	0.993
1	5	4	-	Acetate buffer	0.83	0.800
1	5	7	-	Acetate buffer	0.99	0.974
1	5	9	-	Acetate buffer <	1.53	0.955
1	5	10	-	Acetate buffer	5.53	0.944
1	1.5	5.8	-	Ultrapure water	2.01	0.901
1	2	5.8	-	Ultrapure water	1.44	0.912
1	5	5.8	_	Ultranure water	0.92	0.846

C O ₃ (mg.L ⁻¹)	C _o Ran (mg.L ⁻¹)	рН	t-BuOH (mM)	matrix	k _{obs} (min ⁻¹)	\mathbb{R}^2
0.5	1	7.6	-	Drinking Water (medium hardness)	1.27	0.734
0.5	1	7.6	-	Drinking Water (increased hardness)	1.72	0.669
1.25	1	5.8	-	DOC 2mg.L ⁻¹	5.05	0.951
1.25	1	5.8	-	DOC 5mg.L ⁻¹	4.35	0.993
1.25	1	5.8 5.8	- 20uM	DOC 10 mg.L ⁻¹	4.29	0.961
1.25	1	5.8	20 μM	DOC 5mg.L ⁻¹	3.19	0.903
1.25	1	5.8	20 μM	DOC 10 mg.L ⁻¹	2.50	0.767

By produc	ct determi	nation wor	kflow
Full MS Chromatogram preparation	MS peak recognition	Structure elucidation MS/MS	
Internal Calibration Background subtract Mass exclusions (known m/z)	For each t _R , m/z accurate Check presence in blank (plus m/z predicted, bibliographic al references) EIC of possible by products	(MS/MS) minimum – max formula, m/z tolo possible chemica Match with struc based on error a patterns) insert possible b using the theoret experimental m/ calculated error	imum elemental erances al formulas cture (best score nd isotope y products in table tical and z and the

tъ	Compound	Precursor	Fragment	Elemental	Exp mass	Theor mass	Error	Error	Error
		and	losses	formula	[M+H]+	[M+H]+	ppm	mDa	mSigm
		production					``		a
1.6	P-131	[M+H]+		C4H10N3O2	132.0763	132.0768	-3.79	0.2	9.1
1.8	P-299	[M+H]+		C13H22N3O3S	300.1380	300.1376	-1.2	-0.4	18.4
		[M+H- C ₅ H ₁₀ N ₂ O ₃ S] ⁺	162.0472	C ₈ H ₁₂ NO	138.0908	138.0913		-0.5	4.1
1.8	P-381	[M+H]+		$C_{13}H_{24}N_3O_6S_2$					
		[M+H- H ₂ O ₃ S]+	81.9727	C13H22N3O3S	300.1376	300.1376		-0.2	11.6
		[M+H- C ₅ H ₁₂ N ₂ O ₅ S ₂]+	244.0197	C ₈ H ₁₂ NO	138.0908	138.0913		-0.5	4.1
2.3	P-315	[M+H]+		$C_{13}H_{22}N_3O_4S$	316.1322	316.1326	1.2	0.4	11.5
		[M+H- C ₉ H ₁₂ NO ₃]+•	182.0823	$C_4H_{10}N_2OS$	134.0498	134.0508		-1.0	5.2
6.6	P-330	[M+H]+		C13H22N4O4S	331.1437	331.1435	0.1	0.2	19.1
		[M+H- C ₇ H ₁₃ O ₄ S]+•	193.0529	$C_{6}H_{10}N_{4}$	138.0905	138.0900		0.5	23.8
		[M+H- C ₈ H ₁₂ NO]		$\mathbf{C}_5\mathbf{H}_{10}\mathbf{N}_3\mathbf{O}_3\mathbf{S}$	192.0437	192.0427	5.5		50.7
6.6	P-283	[M+H]-NHO		$C_{13}H_{21}N_{3}O_{2}S$	284.1427	284.1427	0.00	0.6	21.2
6.6	P-365	[M+H]+		C13H24N3O5S2	366.1158	366.1152	0.2	0.7	20.6
		[M+H- CH ₂ NS]+•	59.9910	$C_{12}H_{22}N_2O_5S$	306.1239	306.1244		-0.5	9.0
		[M+H-SO3H2]+	81.9728	$C_{13}H_{22}N_3O_2S$	284.1422	284.1427		-0.6	8.6
		[M+H- C ₂ H ₉ NO ₃ S]+	127.0306	C ₁₁ H ₁₅ NO ₃ S	239.0843	239.0849		-0.6	8.2
		[M+H- CeHy/NO/S]+	221.0724	$C_5H_9N_2OS$	145.0425	145.0430		-0.5	24.6

t _R	Compound	Precursor and production	Fragment losses	Elemental formula	Exp mass [M+H]+	Theor mass [M+H] ⁺	Error ppm	Error mDa	Error mSigr a
7.1	P-394 P-330	[M+H]*		$C_{13}H_{23}N_4O_6S_2$	395.1051	395.1054	-0.6	-0.2	25.4
		$[M+H-SO_3]^+$	79.9570	$C_{13}H_{23}N_4O_3S$	315.1481	315.1485		-0.4	10.3
		[M+H- C ₂ H ₇ NO ₃ S] ⁺	125.0149	$C_{11}H_{16}N_3O_3S$	270.0902	270.0907		-0.5	7.9
		[M+H- C ₄ H ₄ N ₃ O ₂ S]+*	158.0027	$C_9H_{19}NO_4S$	237.1024	237.1029		0.5	9.8
		[M+H- C ₆ H ₆ O ₃ S] ⁺	158.0027	$C_7H_{17}N_4O_3S$	237.1024	237.1016		0.8	11
		[M+H- C ₄ H ₁₁ N ₃ O ₅ S] ⁺	185.0363	$C_9H_{12}N_3OS$	210.0689	210.0696		-0.7	6.9
		[M+H - C ₈ H ₁₃ NO ₄ S] ⁺	219.0572	$C_5H_{10}N_3O_2S$	176.0479	176.0488	-5.5		14.2
7.4	P-299 P-255	[M+H]+		$C_{13}H_{22}N_3O_3S$	300.1375	300.1376	0.4	0.1	19.5
		$[M+H-C_{6}H_{12}N_{2}O_{2}S]^{+}$	176.0621	C7H10NO	124.0754	124.0757		-0.2	10.6
		[M+H- C ₇ H ₁₅ O ₃]*+	147.1016	$C_6H_7N_2S$	153.0359	153.0355		-0.4	12.4
		[M+H – C3H14N3S]	124.0899	$C_{10}H_8O_3$	176.0476	176.0468		0.8	n.a.
7.9	Ranitidine	[M+H]+		C13H22N4O3S	315.1501	315.1495	2.2	0.6	4.5

