
Extended Suspect and Non-Target Strategies to Characterize
Emerging Polar Organic Contaminants in Raw Wastewater with
LC-HRMS/MS
Pablo Gago-Ferrero,† Emma L. Schymanski,‡ Anna A. Bletsou,† Reza Aalizadeh,† Juliane Hollender,‡,§

and Nikolaos S. Thomaidis*,†

†Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens,
Greece
‡Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
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ABSTRACT: An integrated workflow based on liquid chromatography coupled to a
quadrupole-time-of-flight mass spectrometer (LC-QTOF-MS) was developed and applied to
detect and identify suspect and unknown contaminants in Greek wastewater. Tentative
identifications were initially based on mass accuracy, isotopic pattern, plausibility of the chro-
matographic retention time and MS/MS spectral interpretation (comparison with spectral
libraries, in silico fragmentation). Moreover, new specific strategies for the identification of
metabolites were applied to obtain extra confidence including the comparison of diurnal
and/or weekly concentration trends of the metabolite and parent compounds and the
complementary use of HILIC. Thirteen of 284 predicted and literature metabolites of selected
pharmaceuticals and nicotine were tentatively identified in influent samples from Athens and
seven were finally confirmed with reference standards. Thirty four nontarget compounds were
tentatively identified, four were also confirmed. The sulfonated surfactant diglycol ether
sulfate was identified along with others in the homologous series (SO4C2H4(OC2H4)xOH),
which have not been previously reported in wastewater. As many surfactants were originally
found as nontargets, these compounds were studied in detail through retrospective analysis.

■ INTRODUCTION

The chemical pollutants that are internationally regulated
represent a very small fraction of the universe of known and
unknown anthropogenic chemicals occurring in the environ-
ment.1 Despite this, most regulatory bodies responsible for
water and wastewater treatment still assume that a few well-
known compounds such as the priority pollutants of the Water
Framework Directive are responsible for the most significant
environmental, human health and economic risks, even though
they only represent a tiny fraction of both known and yet-to-be
identified chemicals.1,2

Waste water treatment plants (WWTPs) process numerous
organic contaminants, including emerging pollutants, related
transformation products (TPs)3,4 and human metabolites. If
removal is incomplete, these can be released into the aquatic
environment, forming a major source of contamination. Thus,
the fate of emerging pollutants and their TPs in WWTPs is of
paramount environmental importance.
Existing target screening methods, where the chemicals are

selected in advance, can only cover a relatively small proportion
of these organic contaminants. This can result in bias (due to the
preselection) and potential chemical stressors may be omitted.
Therefore, one of the hottest trends in environmental analysis is
high resolution mass spectrometry (HR-MS) coupled with liquid

chromatography (LC) to screen samples for suspect pollutants,
where some information is available but no reference standard, or
even nontarget analysis, where no preselection is performed
(generally called “non-target analysis”).5 For a holistic risk
assessment, target-based environmental monitoring should be
accompanied by nontargeted analysis.
Different comprehensive and semiautomated strategies for

LC-HRMS (generally) combining target and suspect screening
have been developed in the past few years to evaluate the
presence of a larger number of substances without necessarily
purchasing the standards for all of them. Suspect screening
methods have been performed on pesticides,6 pharmaceuticals,7

iodinated contrast media photodegradation products8 and
transformation products9 in surface or natural waters, as well
as pesticides and pharmaceuticals in effluent wastewater.10

Other studies considered a wide scope of suspects.3,4,11−13 These
strategies led to the detection of some TPs in the environment
for the first time. Although LC-HRMS is often used to identify
nontarget TPs in degradation experiments, few papers cover
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“generic non-target screening” applied to the LC-HRMS/MS
analysis of environmental samples. Schymanski et al.4 and Hug et
al.3 successfully identified suspect and nontarget compounds in
wastewater using an LTQ Orbitrap, including confirmation
with reference standards in some cases. Van Leerman et al.14 also
identified some truly unknown compounds in river water
through the use of LC-HR-MS combined with high resolu-
tion nuclear magnetic resonance spectroscopy (HR-NMR). In
general, however, the identification of unknowns remains a very
difficult and time-consuming task with no guarantee of success,15

as shown by a recent collaborative trial between 17 institutions.16

With the increasing interest in suspect and nontarget work-
flows, there is also a need to communicate the confidence in the
identification in a way that reflects the evidence available.17

None of the aforementioned studies focused on the analysis of
influent wastewaters (IWW). The analysis of micropollutants
present in influents provides valuable information about patterns
of human consumption of several substances (e.g pharmaceut-
icals, drugs of abuse).18 Here, the analysis of human metabolites
is of high importance. Thus, the main objectives of the present
work were (i) the development of additional strategies to support
identification of suspect and unknown organic compounds,
(ii) the actual identification of these substances in wastewater
using an integrated workflow based on liquid chromatography−
quadrupole-time-of-flight mass spectrometry (LC−QToF-MS),
and (iii) the use of retrospective screening in these and previous
samples4 to find additional evidence for the relevance of
identified nontarget substances.
An in-house database with eight high consumption pharma-

ceuticals18 (amisulpride, atenolol, clarithromycin, metformin,
niflumic acid, ranitidine, tramadol, and venlafaxine), plus
nicotine and their related human metabolites (284 suspects in
total) was developed, based on a metabolite prediction software
and pharmacokinetic literature. Apart from the usual criteria used
in suspect analysis (e.g., mass accuracy or isotopic fit), new
specific strategies were applied in the tentative identification
in order to increase the identification confidence of these
compounds. One investigated hypothesis was that both the
parent compounds and their related metabolites follow similar
diurnal or/and weekly concentration trends in influents. The
complementary use of HILIC was also investigated as well as
the comparison of the spectra obtained for a given substance
in ESI(+) and ESI(−), when possible, and retention time
plausibility, using an in-house developed QSRR prediction
model. Nontarget peaks were selected and elucidated using in
silico fragmentation prediction and their commercial impor-
tance, in addition to the strategies described above. Since a high
proportion of surfactants were observed among the tentatively
identified nontarget substances, a retrospective suspect screening
was performed for these compounds.

■ MATERIALS AND METHODS

Chemicals, Sampling, and Analysis. 173 compounds
substances with a wide range of physicochemical properties were
selected to prepare an artif icial suspect mixture to evaluate and
validate the suspect screening approach. Details about all
chemicals are given in the Supporting Information (SI, SI-1).
Influent and effluent wastewater samples (24 h composite

flow-proportional samples) were collected from the Athens
WWTP (Greece) on March 15, 2014 (Saturday). On the same
day, 2 h flow proportional influent samples were collected
every 2 h.

TheWWTP of Athens is designed with primary sedimentation,
activated sludge process with biological nitrogen and phosphorus
removal and secondary sedimentation. The estimated sewage flow
for the collected samples was 750 000 m3 day−1. The residential
population connected to the WWTP is 3 700 000.
Wastewater was collected in precleaned high-density poly-

ethylene (HDPE) bottles, filtered with glass fiber filters (pore
size 0.7 μm) immediately upon arrival, then stored in the dark at
−18 °C until analysis.
The samples were extracted using a slightly modified protocol

from Kern et al.9 Analyses were carried out using a UHPLC/
QTOF-MS system (Dionex UltiMate 3000 RSLC, Thermo
Fisher Scientific, Dreieich, Germany). Sample preparation and
instrumental analysis are described extensively in the SI (SI,
SI-2).

Suspect Substances Processing. Peak lists for suspect
screening were obtained using Find Compounds−Chromato-
gram (TargetAnalysis, Bruker Daltonics, Bremen, Germany),
which creates the base peak chromatograms for masses above
the given intensity threshold, excluding the isotopic peaks. The
criteria used for tentative identification are summarized a
flowchart (Figure 1). The criteria included: (1) subtraction of

compounds present in the processed method-procedural blanks
and those below a threshold of peak area and intensity, (2) amass
accuracy threshold of 2 mDa and 5 ppm on the monoisotopic
peaks, (3) a threshold (≤100mSigma) for the isotopic pattern fit,
where mSigma represents the goodness of fit between the
measured and theoretical isotopic pattern (mass and ion ratios):
the smaller the better,19 (4) the peak score, considering only peaks

Figure 1. Suspect screening flowchart.
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with the Peak Area/Peak Intensity ratio greater than 4 (SI, SI-3),
(5) the chromatographic retention time plausibility, using an
in-house QSRR retention time prediction model (CRTPM).20

The predicted tR was considered to match if it was within ±3δ
(standardized residual) of the measured value, as this covers
99.7% of normally distributed data. For most retention times,
this is approximately equivalent to ±2 min, (6) the presence of
characteristics adducts: [M + H]+, [M + Na]+, [M+K]+, and
[M+NH4]

+ in positive mode, and [M-H]−, [M-H2O−H]−,
[M+Cl−H]−; and [M+HCOOH-H]− in negative mode, (7)
MS/MS spectral interpretation, including comparisons with
spectra from the MassBank database21,22 and NIST 2014
library.23 Spectral similarity values were calculated with the
OrgMassSpecR package in R;24,25 a threshold of 0.7 was used.
Other strategies described below were applied to increase the
identification confidence. For the tentatively identified com-
pounds that were commercially available, the corresponding
standard was purchased in order to confirm the identity of the
substance (Level 1).
First, a validation of the suspect screening method was

performed using known target compounds (see list in Table S1,
SI, SI-1) to determine the successful identification rate. Second, a
suspect database (hereafter “metabolite suspects”) was created
for nine substances and their related human metabolites. Eight
high consumption pharmaceuticals (amisulpride, atenolol,
clarithromycin, metformin, niflumic acid, ranitidine, tramadol
and venlafaxine), and nicotine were selected. The related metab-
olites were obtained by reviewing the literature26−28 and by using
theMetabolitePredict software from Bruker (Version 2.0, Bruker
Daltonics, Bremen, Germany). The full list, including the
molecular formulas and the SMILES code29 (where possible)
is presented in the SI (Table S2, SI-3). For metabolites with
several possible substitution isomers, the number of structural
isomers is indicated and the SMILES code represents only the
most likely substance according to our knowledge. When a
molecular formula was detected during suspect screening, all
possible isomers were considered for the evaluation of the
identity of the compound.
A retrospective suspect screening was performed as it became

evident that surfactant peaks dominated the nontarget results
(see below). Most entries from the suspect surfactant list in
Schymanski et al.4 were used, including the linear alkylbenzyl
sulfonates (LAS), sulfophenyl alkyl carboxylic acids (SPACs),
sulfophenyl alkyl di-carboxylic acids (SPADCs), di-alkyl tetralin
sulfonates (DATS), sulfo-tetralin alkyl carboxylic acids (STACs),
sulfo-tetralin alkyl di-carboxylic acids (STADCs), alkyl sulfates
(AS), alkyl ethoxy sulfates (AES), secondary alkyl sulfonates (SAS),
and 15 nonylphenol ethoxylate (NPEO) sulfates (NPEO-S). PEGs
and AGNs were not included as they were studied in detail using
the nontarget approach.
Nontarget Substances Processing. Peak peaking for

nontarget analysis was carried out using the molecular features
algorithm, included in the DataAnalysis software (Bruker). This
function clusters all related MS signals and reports them as com-
pounds compiled in a large list for further evaluation. Relevant
peaks that were not present in either the procedural blanks or
existing target16 and suspect lists were selected based on the
intensity and the presence of distinctive isotopic patterns (as
these were considered the most relevant substances with
reasonable identification possibilities). For the selected peaks,
the most plausible molecular formula(s) were determined using
the same parameters for steps (2), (3), and (6) above. Where the
formula was not clear, the Seven Golden Rules (SGR)30 v46 and

GenForm31 were used to select the molecular formula. GenForm
was used with the parameter settings elementsC, H, N, O, P, S
(unless there was evidence of halogens), existence filter “exist”,
odd electron ions (oei), ppm = 5 and acc = 15 (MS1 andMS/MS
accuracy settings in ppm). MS/MS spectral interpretation
included using both the MassBank library and in silico
fragmentation platforms (MS Fragmenter,32 Mass Frontier33

and MetFrag34 via MetFusion35) to find candidates. To assess
the plausibility of the candidates, a CRTPM was also applied
(as Step 7 above). For selected cases, commercial importance
criteria were also used, including the number of references and
data sources from ChemSpider36,37 and the number of patents
from PubChem.38 Finally, some compounds were confirmed by
purchasing the corresponding standard and comparison of the
tR andMS/MS spectrum. The developed workflow for nontarget
screening is summarized in Figure -2.

The level of confidence for the identification of the detected
compounds was used according to Schymanski et al.,17 where
Level 1 corresponds to conf irmed structures (reference standard is
available), level 2 to probable structures, level 3 for tentative
candidate(s), Level 4 to unequivocal molecular formulas, and level
5 to exact mass(es) of interest.

■ RESULTS AND DISCUSION
Evaluation of the Suspect Screening Approach. The

suspect screening workflow was evaluated with 173 target
compounds (SI, Table S1), applied as artificial suspects, using
TargetAnalysis (Bruker). The only a priori information was the
exact mass of the protonated and deprotonated ion ([M + H]+,
PI) and [M-H]−, NI) calculated from the chemical formula.

Figure 2. Nontarget screening flowchart.
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Different parameters were optimized to obtain an acceptable
percentage of false negatives while minimizing the number of
false positives. First, the peak area and intensity thresholds were
optimized using real wastewater spiked at 1 μg L−1 with the aim
of succeeding false negative rate <5%. These values (area, 5000
(PI) and 2000 (NI); intensity, 1250 (PI) and 500 (NI)) were
further applied to lower concentrations. Results are shown
graphically in Figure S1 (SI, SI-4). As it is indicated in Figure S1,
94% of the compounds were retained at 0.05 μg L−1. Then, mass
accuracy (2 mDa and 5 ppm) and isotopic fit (100 mSigma)
thresholds were also applied and the false negative rate was below
5% for both. The combination of the aforementioned filters led
to an acceptable false negative rate of 10% at 0.05 μg L−1 as
shown in Figure S1 (red line). The reduction of features (false
positives) due to the applied filters described in this section is
summarized in Table S3 (SI, SI-4). The cumulative reduction
of hits ranged from 44% to 74% for the different evaluated
concentrations. Further steps for the reduction of false positives
will be discussed in the next section.
Suspect Screening for Pharmaceutical Metabolites.

Screening the influent wastewater (IWW) for the “metabolite
suspects” yielded 1660 hits in PI and 864 in NI applying only an
accuracy threshold (2 mDa). After the application of steps 1−5
above (also Figure 1), this number decreased to 79 hits (PI,
corresponding to 37 substances) and 71 hits (NI, corresponding
to 21 substances). The remaining substances were investigated
according to steps 6 and 7 for the presence of characteristic
adducts and spectral features. After all steps, 13 suspect com-
pounds in PI were tentatively identified fulfilling all criteria. None
of the evaluated substances remained for NI, most probably due
to the lower sensitivity of this ionization mode. The identified
suspects corresponded to all of the selected parent compounds
except niflumic acid, see Table 1.
Where library mass spectra matched the measured spectrum,

level 2a was assigned initially. Figure S2 (SI, SI-5) shows the
suspect cotinine, a metabolite of nicotine, detected at high in-
tensity in IWW and at low concentrations in EWW. TheMS/MS
spectrum in ESI(+) matched well with MassBank spectrum
WA000998 (score = 0.99). After purchase of the commercial
standard of cotinine, the identity was confirmed via MS, MS/MS
and tR to reach Level 1. Mass spectral matching also led to other
confirmed identifications in suspect (e.g., atenolol acid) and
nontarget screening (e.g., panthenol, see below), while two
substances remained at level 2a.
For substances without library mass spectra, other evidence

was pursued to increase the confidence of the suspect identi-
fication. The spectrum of the tentatively identified metabolite
hydroxycotinine (Figure S3 (SI, SI-5)) had some peaks in
common with cotinine (m/z 80.0493, 118.0647), whereas m/z
98.0602 and 146.0601 were missing and instead m/z 134.0591
and 149.0699 were present, indicating that the hydroxylation
occurred on the pyridinyl group. The measured tR in RP was
within predicted range for this substance and the measured
HILIC tR was plausible according to its physicochemical pro-
perties. Two possible candidates remained (3- or 4-hydroxy-
cotinine); 3-hydroxycotinine was confirmed through the
purchase and analysis of the standard for this compound,
reaching level 1.
The complementary nature of HILIC and RP elution as well as

presence in influent and effluent samples was exploited to
identify guanylurea, a metabolite of metformin.While guanylurea
was only present at low levels in the influent (data not shown), it
was present at much higher levels in the effluents at intensities

Table 1. Details on the 13 Suspect Metabolites

aAll the compounds presented in this table showed feasible
chromatographic retention times according to the model.20 bAddi-
tional evidence apart from the visual evaluation of the MS/MS spectra
and other previously discussed thresholds. cCalculated similarity be-
tween the experimental spectra and the one obtained in the MS/MS
database. dBy evaluating 2 h composite samples collected every 2 h
during 24 h. eBy evaluating 7 24-h composite samples corresponding
to 7 consecutive days. fPlausible elution times according to the
physicochemical properties and identical MS/MS spectra.
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higher than the parent metformin (see Figure S4, SI, SI-5),
demonstrating its formation during wastewater treatment.
Guanylurea was detected at a low tR (1.3 min) in the RP
column, but at 6.3 min in HILIC, in line with its physicochemical
properties. As the presence of the peak at m/z 60.0552 is also
present in the metformin spectrum, the standard of guanylurea
was purchased and the identification was confirmed to achieve
Level 1.
The intraday concentration profile of parent and metabolites

can also provide additional evidence for identification, as shown
in Figure 3 for clarithromycin and two related metabolites,
N-desmethyl clarithromycin and hydroxyclarithromycin. The
two metabolites had plausible tR and comprehensive MS/MS
spectra that fit with the proposed structures. The concentrations
in the IWW measured every 2 h follow identical profiles for
clarithromycin and the metabolites. N-desmethyl clarithromycin
was confirmed with a commercial standard reaching level 1, while
the hydroxylated metabolite remains at Level 3. This procedure
was also used in the case of venlafaxine and its two metabolites
N-desmethyl venlafaxine and O-desmethyl venlafaxine (final
level 2a), as shown in Figure S5A (SI, SI-5) where an excellent
interrelation in the intraday profiles among parent/metabolites
was observed. A good intraday interrelation between the two con-
firmed metabolites cotinine and hydroxycotinine (Figure S5B, SI)
was also observed, but these profiles did not match the profile
of the parent compound, nicotine, indicating that this strategy
can provide valuable additional evidence for identification, but
the results should be interpreted with caution. The absence of
interrelation does not imply a false positive.
Similar conclusions were reached from the comparison of the

intraweek concentration profiles among parent compounds and
related metabolites. Very similar profiles were observed for the

aforementioned metabolites of clarithromycin and venlafaxine
and their corresponding parent compounds during 7 consecutive
days (Figure S6A and S6B, SI, SI-5). Good interrelations were
also found for the metabolites ranitidine-S-oxide and tramadol-
N-oxide and their parent compounds (data not shown). How-
ever, poor correlations were found for the rest of investigated
compounds (some of them confirmed), showing that this
strategy may not always provide supporting evidence.
In the end, 7 of the 13 tentative candidates (amisulpride-N-

oxide, atenolol acid, N-desmethyl clarithromycin, cotinine,
norcotinine, ranitidine-S-oxide and guanylurea) were confirmed
with a commercial standard to reach Level 1, while the rest
remained tentative as shown in Table 1.

Nontarget Screening. The nontarget screening approach
was applied to masses selected from among the most intense
masses detected in the IWW from the WWTP of Athens as
described in the flowchart (Figure 2). The workflow was tested
by treating the target compounds metformin and acesulfame
(both among the most intense peaks detected in the IWW in
PI and NI, respectively) as unknown compounds to check the
performance of the procedure. Both compounds were unam-
biguously correctly identified, as shown (only for metformin) in
the SI (SI-6, Figure S7).

Nontarget Results: ESI(−) Mode. Table S4 (SI, SI-7)
summarizes the results obtained for 25 of the masses detected
among the most intense substances in NI. Three substances,
panthenol, 4-dodecylbenzenesufonic acid and 3-hydroxypyridine
(the latter also identified in ESI (+) mode, see below) were
confirmed with the corresponding standard, reaching the con-
fidence level 1. A further 13 substances were tentatively identified
as probable structures (level 2) and five more as tentative
candidates (level 3). For 3 substances it was not possible to go

Figure 3. MS/MS spectra and intraday concentration profiles of clarithromycin and its metabolites N-desmethyl clarithromycin and
hydroxyclarithromycin.
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beyond the determination of the unequivocal molecular formula
(level 4) and only one mass remained as exact mass of interest
(level 5). The nontarget results are exemplified using the
surfactant compound 2-[2-[2-(2-hydroxyethoxy) ethoxy]-
ethoxy]ethyl hydrogen sulfate (diglycol ether sulfate, AGN-
PC-03I93Q, CAS Number 767579-36-2) (Figure 4A). A peak
corresponding tom/z 273.0651 (tR 2.4min) was detected among
the most intense peaks in NI. After applying the mass accuracy
and isotopic fit criteria, 11 possible molecular formulas were
found; after applying the SGR, 3 plausible molecular formulas
remained. Further processing with GenForm revealed that only
one formula, C8H18O8S, could explain all MS/MS fragments.
Searching PubChem via MetFusion, three candidates were
retrieved but only one explained all fragments in the MS/MS
spectrum (see Figure 4A) and had the highest MetFrag and
MetFusion score. The predicted retention time for this
compound (3.8 min) was in agreement with the experimental
tR. Moreover, diglycol ether sulfate had the highest commercial
importance, with several patents in the field of hair care and
herbicide products, indicating potential wide use of this
substance and therefore high chances to be present in IWW. A
substance with this molecular formula was also detected in PI.
Although the intensity was lower, a clear MS/MS spectrum was
obtained, showing more detailed fragmentation of the ethoxylate
chain. Again diglycol ether sulfate was the only compound that
explained all the fragments obtained in the PI MS/MS spectrum.
The experimental retention time in PI (2.2 min, as different
chromatography was used), was also plausible according with the
CRTPM. With all this evidence, an identification level of 2b was
assigned.
The presence of other members in the corresponding

homologous series (SO4C2H4(OC2H4)xOH) was then screened
from X = 1 (m/z 186.0193) to X = 19 (m/z 978.4911) and 14
compounds were detected (Figure 4B), from SO4C2H4-
(OC2H4)2OH to SO4C2H4(OC2H4)15OH, most of them at
high intensity. Although the long glycol ether sulfate (GES)
surfactants were out of the domain of the CRTPM in negative
mode and thus the predicted tRs did not fit the experimental ones,
the tRs increased constantly with the number of carbons (like the
predicted tRs) and the chromatographic shape was always similar.
This is consistent with observations made for other homologous
series detected in other studies.4,39 For most compounds the
intensity was high enough to obtain clear MS/MS spectra, which
are listed in Figure S8 (SI, SI-7). The spectra were very similar,
showing in all the cases characteristic fragments at m/z 79.9562,
m/z 96.9590 and m/z 122.974656, as seen in Figure 4A.
GES surfactants were the compounds detected at the highest

intensity in NI, showing its high use in the evaluated area. Apart
from the use of these substances in the field of hair care and
herbicide products, GES could be also degradation intermediates
of AES and other surfactants formed as a result of oxidative
degradation processes where low molecular weight products
containing oxygen (hydroxyl, peroxide, aldehyde, etc.) are
formed either along polymer chain or in its end.40 To the best
of the authors’ knowledge, it is the first time that these com-
pounds are identified in wastewater. The presence of GES
surfactants was assessed retrospectively in effluent samples from
Switzerland and were detected in all samples but at greatly
varying intensities, shown in Figure S9A and S9B (SI, SI-7). This
variation indicates that either the input or removal of these
compounds may vary between different WWTPs (no corre-
sponding influent samples were available). This example
illustrates the power of retrospective analysis using HRMS.

Nontarget rResults: ESI(+) Mode. Table S5 (SI, SI-8)
summarizes the results obtained for 25 of the highest intensity
masses detected in PI. Two substances, 4-PEG and 3-hydroxy-
pyridine, were confirmed (level 1) with the corresponding
standard. Another 13 PEGs were tentatively identified and
structures were proposed (level 3, since different isomers are
possible). Another 8 remained with an unequivocal molecular
formula (level 4) and 3 masses remained as exact mass of interest
(level 5). The identity of the adduct state was confirmed by
the presence of other adducts where at least two of [M + H]+,
[M+NH4]

+ and [M + Na]+ were present.
The identification of 3-hydroxypyridine is summarized in

Figure S10 (SI, SI-8). A very intense peak corresponding to m/z
96.0446 was detected at tR 2.27 min, with only one plausible
formula, C5H5NO, found after applying mass accuracy and
isotopic fit filters. There were 38 compounds with this formula
in ChemSpider, where only two of them (3-pyrinidol and
4-pyrinidol) had a good MetFusion score when evaluating the
MS/MS spectra. Both compounds explained the two MS/MS
fragments, had plausible tR according to the CPTRM and were
both of high commercial importance according to the number
of data sources and references. ESI(+) MS/MS spectra were
available in MassBank for 3-hydroxypyridine (similarity 0.997
with MassBank spectrum PR100333). Standards of 3-hydrox-
ypyridine and 4-hydroxypyridine were purchased and the
identity of 3-hydroxypyridine was confirmed by tR.
The identification of tetraethylene glycol (4-PEG, m/z

195.1233, tR 4.2 min) is summarized in Figure S11 (SI, SI-8).
As above, only one plausible molecular formula remained after
the accuracy and isotopic fit criteria: C8H18O5. ChemSpider
yielded 13 possible structures for this molecular formula, where
only three had a MetFusion score above 0.5. The three sub-
stances were able to explain the six fragments found in the
MS/MS spectrum (see Figure S11), with similar MetFusion
scores and plausible tR. However, the number of data sources and
references indicated a greater commercial importance and thus
likelihood of presence in IWW of 4PEG (379 references)
compared with the other two candidate compounds (2 and 1
references, respectively). The identity of 4PEG was confirmed
with a standard, showing the importance of considering the
number of sources and references.
PEGs were the family of compounds present at the highest

levels in PI mode in the evaluated wastewater samples, consistent
with previous studies.4,16 5-PEG was identified following the
same procedure described above, using the protonated adduct.
From 6-PEG and onward, the [M+NH4]

+ adduct was predomi-
nant and used to provide higher sensitivity for these compounds
when increasing the length of the chain (Figure S12A, SI, SI-8).
Figure S12B shows the extracted chromatograms for all the
detected PEGs (using the ammonia adducts). Consistent peak
shapes and constant increase of tR are observed when increasing
the chain length. In all cases, MS/MS spectra were similar and
consistent with the proposed structures (data not shown), as well
as with previous observations.4,16

Retrospective Suspect Screening of Surfactants. As a
high number of tentatively identified but differing surfactant
substances were among the most intense peaks, a retrospective
suspect screening was performed using the surfactants list of 398
suspects described above. After applying the aforementioned
thresholds of intensity, mass accuracy, isotopic pattern and peak
score, 110 suspects (88 in NI and 22 in PI) remained and were
further evaluated. Plausible tR times among the homologue
series, in RP and in HILICmode, along with the evaluation of the
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MS/MS spectra were the main criteria used for the tentative
identification of the suspects. This information along with the

names, molecular formulas and exact masses is summarized in
Table S6, in the SI (SI-9).

Figure 4. (A) Nontarget identification of the unknown compound diglycol ether sulfate. (B) Extracted ion chromatograms of the corresponding
homologous series (SO4C2H4(OC2H4)xOH) (glycol ether sulfate (GES) surfactants).
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In total, 82 substances were tentatively identified, 38 withMS/
MS evidence and 44 without MS/MS evidence, but with
additional information (plausible tR and chromatographic peak
shape among the homologue series), supporting their presence.
Nineteen substances were rejected on the basis that either the
tR or MS/MS did not match or simply due to the absence of
evidence supporting their presence. The SPCs and LAS were
present at high intensity. Ten SPCs, from C4-SPAC to C13-
SPAC, were tentatively identified. Figure S13A (SI, SI-9) shows
increasing 3tR with increasing length of the alkyl chain and
consistent peak shapes. Plausible MS/MS spectra were observed,
including the characteristics fragments m/z = 79.9574 (SO3

−)
and m/z = 183.0121 (C8H7SO3

−), as shown in Figure S13B for
C8-SPAC. Some spectra are available in MassBank stemming
from the previous study4 and showed a good fit compared with
those obtained experimentally (e.g., C8-SPAC, similarity 0.978
with spectrum ETS00018). This clearly shows the benefits of
sharing also suspect spectra in public libraries. Other groups of
surfactants were tentatively identified similarly, including DATS
(7 substances), LAS (4 substances), AS (4 substances), AEOs
(13 substances) or DEAs (3 substances). However, MS/MS
spectra could not be obtained for some surfactant classes due to
the low intensity of the peaks. The less transformed surfactants
(e.g., DATS), were detected in higher number and higher
intensity than their related TPs (e.g., STACs and STADCs),
which is consistent with the evaluated matrix of IWW. The
opposite trend was observed in a previous study performed
with EWW,4 showing that the comparison between these
two matrices may provide additional evidence in the tentative
identification of surfactants. Where MS/MS was absent, the
tentative identification was based on chromatographic criteria as
demonstrated for C13-AES in Figure S14A (SI, SI-9). Seven of
these substances were identified based on the increasing tR (from
13.2 to 13.9 min) when increasing the length of the alkyl chain,
along with consistent peak shapes. A plausible chromatographic
behavior was also observed for these compounds in HILIC
mode, showing tR from 1.2 to 1.4 min, shown in Figure S14B.
The observed tR in both RP and HILIC were also plausible when
compared with those obtained for C12-AES, C14-AES, and
C16-AES. Although the identification confidence is not as high as
in the cases where MS/MS data is available, these results
are supported by the fact that previous studies also detected
these substances and a similar chromatographic behavior was
reported.4,39

In view of these results, the new strategies applied here provide
valuable additional evidence for the identification of suspect and
unknown compounds in environmental samples. The compar-
ison of the daily and/or weekly concentration trends helped
increase the identification confidence in some cases. Thirty four
nontarget compounds were tentatively identified and four were
confirmed, showing the good performance of the developed
approach. Consistent with previous studies, a high proportion of
high intensity peaks corresponded to surfactants and the identi-
fication of the surfactant series GES is reported for the first time.
The usefulness of retrospective analysis is clear as these GES
were found subsequently in samples from another European
geographical area.
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