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Basic Definitions

An abstract simplicial complex is a geometric subdivision
[ of the simplex 2" if it has a geometric realization
which subdivides the simplex.

Example:
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Basic Definitions

A simplicial complex is called flag if every minimal
non-face of [ has at most two elements.

Example of a non-flag subdivision:

b c
{a, b, ¢} is a minimal non-face
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Basic Definitions

Let f; be the number of the /-dimensional faces of a
simplicial complex I'.

f-vector. f(I') = (fy,...,f4-1)

f-polynomial: f(I,x) = fo+ fix + -+ fy_1x97!

Example:

f(I,x) = 6+ 10x + 5x°
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Basic Definitions

The h-vector h(I') = (ho, h1, ..., hg) and the h-polynomial
h(T,x) = hg + hix + - - + hyx? are defined by

d
h(T, x) = Z fi 1x'(1 —x)?", where f_; = 0.

i=0

Example:

h(T,x) =14 3x + x>
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Basic Definitions

For a geometric subdivision I' of the simplex 2V the local
h-polynomial £\,(I', x) of I with respect to V is defined as follows:

Ze X' =Y (=1) (T, x).

FCV

Example:

Mx)=143x+x>—(14+x)—(1+x)-1+1+1+1-1
Oy(T,x) = x + x°
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Basic Definitions

Theorem (Stanley)

The local h-polynomial ¢\/(T, x) has nonnegative and symmetric
coefficients, equivalently ¢; > 0 and {; = {4_; for every 0 < i < d.

Thus the local y-polynomial £y(T, x) of I with respect to V can be
uniquely defined by

) = (0 6 (T = 3 e

Example:

(M, x) = x+x% = x(1 + x) = &y(T,x) = x
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Conjecture (Athanasiadis)

For every flag geometric subdivision T of the simplex 2"
we have £y (M) > 0.

@ lIts validity implies the validity of Gal's Conjecture
and the monotonicity property for the v-vector.

@ It is proven in dimension 3 and for iterated edge
subdivisions.
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Main Results

e For every root system ® the local «y-vector of
the cluster subdivision I'(®) is nonnegative.

o Combinatorial interpretations to the entries
of the local «y-vector of the barycentric
subdivision.
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Cluster Subdivision

Given a root system ®, the cluster complex A(®) is a simplicial
complex on the vertex set ®~_; of almost positive roots, having
faces defined by a compatibility relation.

Example for type A,:

O ={ay,a, a1+ a,—a1, —ax, —a1 — a} M= {a,a}
(b+ - {317 az, a1 + 32} q)Zfl = {al7 az, a + dz, —dai, _32}
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Cluster Subdivision

The cluster complex of type Az The cluster complex of type As

The positive cluster complex A™(®) is the restriction of
A(®) on the positive roots ®*. It naturally defines a
geometric subdivision of the simplex, the cluster
subdivision T(®).
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Cluster Subdivision

Theorem (Athanasiadis, Tzanaki)

(3 500
h(A(®),x) = ;(7>(n71)x if =By or G,
= (OCT)+CC) 5 ro-o
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Cluster Subdivision

For the type A, the h-polynomial is equal to the
Narayana polynomial C,(x).

(

1, if n=1
1+ x, if n=2
Cox) = 1+ 3x + x2, if n=3
! 1+ 6x + 6x% + x5, if n=4
14 10x + 20x2 + 10x3 + x*, if n=5
\1—1—15x+50x2—|—50x3—|—15x4—|—x5, if n=6

The coefficient of x/, 0 < i < n, is the number of
7 € NCA(n) which have n — i blocks.
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Cluster Subdivision

Let / be an n-element index set and 1 = {a; : i € I}. The local
h-polynomial ¢,(I'(®), x) is given by

GF@),x) = Y (=)™ (AL (), x),

where @ is the standard parabolic root subsystem of ¢
corresponding to J.
Example for & = As:

D Ui(A)X = G(x) — G(x) — Gi(x) - Gi(x) — G(x)

i=0

+Gi(x) + Gi(x) + G(x) — Co(x)
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Cluster Subdivision - Type A

0, if n=1
X, if n=2
x + x2, if n=3
Saep = XEEEC o=
= X 4 8x° 4 8x° + x*, if n=5
x 4 13x% 4 29x3 + 13x* + x°, if n=6
x + 19x2 4+ 73x3 4+ 73x* + 19x> + x6, if n=7
x + 26x2 4+ 151x3 4 266x* + 151x5 + 26x0 + x7, if n=38

0, if n=1
X, if n=2,3
Ln/2] X + 2x2, if n=4
Z Ei(P)xT = { x+5x2, if n=5
i=0 x + 9x2 4 5x3, if n=6
x + 14x2 4+ 21x3, if n=7
x +20x2 +56x3 + 14x*, if n=38
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Cluster Subdivision - Type A

Nested and nonnested singletons in NC*(n):

The singleton block {3} is nested, while {7} is nonnested.
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Cluster Subdivision - Type A

For the root system ® of type A, the following hold:
o (;(®) is equal to the number of partitions = € NC”(n) with i blocks, such that every
singleton block of m is nested,
o &i(®) is equal to the number of partitions m € NCA(n) which have no singleton block
and a total of i blocks.

Moreover, we have the explicit formulas

0. ifi=0
&i(®) = i
%ﬂ('l’)(”:zl) if 1<i<|n/2]
and
wo) = 2 (OC DY)
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Cluster Subdivision - Type A

For the combinatorial interpretation of the local
~v-polynomial given by
ld/2) _
W x) = 3 &xi(1+x)72
i=0

an equivalence relation in NC*(n) is defined.
Example:

{1,3},{2},{4,5,6}  {1,3},{2},{4,6},{5} {1,2,3},{4,6},{5}  {1,2,3},{4,56}
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Cluster Subdivision - Type B

2x,
3x + 3x2,
n 2 3
; 4 14 4
Suop = |l
= 5x 4+ 35x< + 35x° + 5x*,

6x + 69x% + 146x3 + 69x* + 6x°,
Tx 4 119x2 + 427x3 + 427x* +119x> + 7x%, if n=7

Ln/2) _
D> Gi(o)x =
i=0

2x,

3x,

4x + 6x2,

5x 4 20x2,

6x + 45x2 4 20x3,

7x + 84x2 4 105x3,

8x + 140x2 + 336x3 + 70x*,

The Dynkin diagram for type B is of the form

if n=2
if n=3
if n=4
if n=5
if n=6

n=2
n=23
n=4
n=>5
n==6
n=7
n=238
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Cluster Subdivision - Type B

For the root system ® of type B, the following hold:

o (;(®) is equal to the number of partitions = € NCB(n) with no zero
block and i pairs {B,—B} of nonzero blocks, such that every positive
singleton block of 7 is nested,

o &(®) is equal to the number of partitions = € NC®(n) which have no
zero block, no singleton block and a total of i pairs {B,—B} of nonzero
blocks.

Moreover, we have the explicit formula

0, if i=0

(7) (”i_’11>, if 1<i<[n/2].
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Cluster Subdivision - Type D

2x 4 6x% + 2x3, if n=4
° ; 3x 4 18x2 + 18x3 + 3x4, if n=5
Z G(P)X' = 2 3 4 5 P

P 4x 4+ 40x* + 80x> + 40x” + 4x>, if n=6
5x 4 75x% + 250x3 + 250x* 4+ 75x> +5x°, if n=7

2x + 2x2, if n=4

[n/2] 3x + 9x2, if n=5

Z Ei(P)xT = { 4x 4 24x2 + 8x3, if n=6

i=0 5x 4+ 50x2 + 50x3, if n=7

6x + 90x2 + 180x3 + 30x*, if n=38

The Dynkin diagram for type D is of the form
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Cluster Subdivision - Type D

For the root system ® of type D,, we have

L(T(®), x) = (n—2) - xCh_1(x).
Moreover, we have the explicit formulas
0, if i=0
Gi(®) =

—9 _ _
n—2m=L\ (=23 i ci<n
I =1 =1

and 2(2i =2 2
n— I — n—
i(®) = —| . , for 1<i<|[n/2].
&i(®) i i—1)\2i—2)’ sisnf2)
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Cluster Subdivision

For the exceptional types we have

Ln/2]

> G(o)x =
i=0

(m—2)x,

8x,

42x + 40x?,

10x + 9x2,

7x + 35x2 + 13x3,

16x + 124x% + 112x3,

44x + 484x2 + 784x3 + 120x*,

& = h(m)
® = Hs
b =H,
®=F,
®=F
®=F
® = E.

For every root system ® the local ~y-vector of
[(®) is nonnegative.
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Barycentric Subdivision

Vertices of sd(2"): F C V

Faces of sd(2"): Chains F; C F, C ... C F, of subsets
of V

Example:
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Barycentric Subdivision

Theorem (Stanley)
ty(sd(2Y),x) = Z X&)
weD,

where D, is the set of derangements (permutations with
no fixed points) in S, and ex(w) = [{i : w(i) > i}|.

This polynomial, known as the derangement polynomial d,(x) of
order n, has been studied by

@ Brenti (1990)

@ Stembridge (1992)

@ Zhang (1995)

@ Chen, Tang, Zhao (2009).
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Barycentric Subdivision

For the first few values of n we have

;

X, if n=2
X + x°, if n=
do(x) = Q x+7x%+ x3, if n=4
x + 21x% 4 21x3 + x4, if n=5
\x+51x2—|—161x3+51x4+x5, if n=26.
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Barycentric Subdivision

Theorem

Let (0,&1,---,&(n/2)) be the local ~-vector of the barycentric
subdivision sd(2"') of the (n — 1)-dimensional simplex 2V. Then &; is
equal to each of the following:

(i) the number of permutations w € S, with i runs and no run of
length one,

(ii) the number of derangements w € D, with i excedances and
no double excedance,

(iii) the number of permutations w € S,, with i descents and no
double descent, such that every left to right maximum of w is
a descent.

vy
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Barycentric Subdivision

( X, if n=2,3
/2] x+5x2, if n=4
Zg, B x+18x2, if n=5

\x+47x2—|—61x3, if n=26

For example we have the following permutations in S,
with no run of length one

1234 13.24  14.23
23.14 2413  34.12.

Such permutations have been studied by Gessel.
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Open Problems

@ A more conceptual proof for the cluster subdivision
of type D in the spirit of those of type A and B.

@ Uniform interpretations for ¢;(®) and &;(®) for all
types .

@ Real-rootness for the local h-polynomial and the
local y-polynomial of the cluster subdivision.

@ The local h-polynomial and the local y-polynomial
of the barycentric subdivision of an arbitrary
subdivision of the simplex.
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