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The dielectric charging in MEMS capacitive switches is a complex effect. The high electric field during
pull-down causes intrinsic free charge migration and dipole orientation as well as charge injection.
The macroscopic dipole moment of the first two mechanisms is opposite to the one arising from charge
injection. This causes partial compensation hence mitigates the overall charging and increases the device
lifetime. The charging due to intrinsic free charge migration and dipole orientation can be monitored
under contactless electric field application in the pull-up state. The paper investigates the characteristics
of contactless charging and compares them with the ones of contacted charging. The characteristics of the
discharging process that follows each charging procedure are also presented.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Micro-electro-mechanical-systems (MEMS) technology has al-
ready emerged as an enabling technology for a new generation of
high-performance RF components such as RF MEMS switches, tun-
able capacitors and inductors. In addition, RF MEMS components
can be fully integrated with monolithic microwave integrated cir-
cuits and therefore can potentially lead to systems with small size,
smaller weight, low power consumption and mass production
[1,2]. Among the mentioned RF MEMS devices, the MEMS capaci-
tive switch is a key device due to its unique RF performance com-
pared to the current existing devices. The unique characteristics of
MEMS capacitive switches make them ideal candidates for integra-
tion into passive circuits, such as phase shifters or tunable filters,
for implementation in many terrestrial and space applications,
including portable telecommunication, wireless computer net-
works, reconfigurable antennas and others.

However, the commercialization of the electrostatic MEMS
capacitive switch is still hindered by reliability issues, especially
the dielectric charging phenomenon [3]. The dielectric charging
has been principally monitored through the number of switching
cycles for different operating bias [4] and ambient conditions
[5-7] and dielectric materials and substrates, a detailed presenta-
tion of all these being given in [8,9].
Regarding the dielectric charging mechanisms two mechanisms
have been identified up to now, the contacted charging, where
charges are injected under the presence of high electric field during
the pull-down state and the contactless one, where charging is in-
duced under the presence of much lower electric field intensities
with the moving armature being still in the pull-up state [10].
The later has been shown to have polarity opposite of the con-
tacted one [10] thus giving rise to a compensation mechanism,
but the effect has not been further investigated.

Taking these into account the present paper aims to provide a
better knowledge of the characteristics of the two mechanisms,
by presenting information on the characteristic time constants
and charging/discharging current magnitudes. This in turn will al-
low the understanding of the degree of compensation process,
hence the mitigation of dielectric charging by proper engineering
of the dielectric material.
2. Theoretical background

2.1. Charging mechanisms

In principle the charging/polarization of a dielectric material is
achieved through two basic processes: (i) the contact-less, termed
as blocking contacts polarization [11], where the electrodes gener-
ating the electric field are not in contact with the film, hence no
charge is injected and (ii) the contacted one where the dielectric
film is in contact with the electrodes generating the electric field
allowing charge injection (Fig. 1). In the first case the charging
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Fig. 1. (a) Contact-less and (b) contacted charging.
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arises only from dipole orientation, which generates a charge den-
sity rdip in the dielectric, and intrinsic free charge displacement, a
mechanism that produces a charge density rint. In the second case
the charge injection provides an additional mechanism to overall
charging, with a corresponding charge density rext. The two mech-
anisms, that are the dipole orientation and the intrinsic free charge
displacement, give rise to same polarity charging and the contribu-
tion of each mechanism can be identified with methods based on
DC and AC characterization.

In a MEMS capacitive switch the first mechanism, the contact-
less charging, is monitored under low electric field intensities
because the moving armature has to be in the pull-up state [11]
in order to avoid charge injection. Both mechanisms, contact-less
and contacted charging, occur under the presence of the high elec-
tric field intensities during the pull-down state. In the specific case
of capacitive switches with stiff bridge and therefore with large
pull-down voltage, the case of power devices operating at bias lev-
els close but below pull-down, field emission may occur. Then
charges may be injected into dielectric film and give rise to ‘‘con-
tacted’’ charging, thus producing an additional charge density
r0ext in the dielectric film, while the moving armature is still in
the pull-up state [12,13]. Here it must be pointed out that this con-
dition can be achieved by the superposition of power RF signal, the
different work functions of the moving armature metal and the
dielectric film composition. This phenomenon may give rise to
charging current that will affect the shift rate of pull-down and
pull-up voltages with the number of cycles and therefore it will af-
fect the lifetime of the switches.

According to these, the total charge density r that arises in a
dielectric film of a MEMS capacitive switch during its operation
may be written as:

r ¼ ðrext þ r0extÞ � ðrdip þ rintÞ ð1Þ

where rdip arises from dipole orientation, rint from intrinsic space
charges, rext from extrinsic space charges due to metal-dielectric
contact and r0ext comes from extrinsic space charges that are in-
jected in the dielectric film due to field emission, as already men-
tioned above.
2.2. Kelvin probe method in MEMS

The bulk discharge current transient in a MEMS capacitive
switch is determined using the device model proposed in [14,15],
which includes a fixed non-flat metal plate of area A covered with
a dielectric film of uniform thickness de and dielectric constant er.
In the general case of distributed equivalent charge and air gap
[16], the bias at which the up-state capacitance attains its mini-
mum (Vmin) is the one for which the electrostatic force attains min-
imum. For small bridge up-state deformation the capacitance
variance can be considered low and the bias for capacitance mini-
mum is given by:

VminðtÞ ¼
de

ere0
� lw þ Voffset ð2Þ

where lw represents the mean value of the equivalent surface
charge distribution of the dielectric film and Voffset arises from back-
ground charging of substrate [17], ESD, etc. The value of Vmin will
shift after each stress step, and this shift is determined by the
stressing time or number of cycles and the applied electric field
intensity. The value of Vmin will also shift during the discharge
process.

Taking all these into account the calculated net charging (Jch) or
discharging (Jdisch) current density will be given by:

Jch;dischðtÞ ¼
dlw

dt
¼ ere0

de
� dVminðtÞ

dt
ð3Þ

which describes the average value of current density due to charge
injection and storage or charge collection by the bottom electrode.
Moreover, the stored or collected charge density, rch orrdisch, can be
calculated by integrating the charge/discharge current density
within the time window of observation:

rch;dischðtÞ ¼
Z t

t0

Jch;dischðtÞ � dt ð4Þ
3. Experimental procedure

The switches measured are bridge-type capacitive switches
with 70 nm thick SiNx dielectric film, deposited with PECVD meth-
od at 350 �C. The membrane is suspended about 2 lm above the
dielectric in the unactuated position and the active area is about
1.3 � 10�4 cm2. The devices used in the present work were se-
lected for low pull-down voltage, Vpd ffi 13 V, in order to avoid ex-
cess charging during contacted stress. For the contacted charging
the devices were stressed for a total time of 1020 s in steps of
30 s at 15 V. The contactless charging was performed under bias
of +8 V and for a total time of 7200 s in steps of 900 s. After stress
the devices were assessed by obtaining the C–V characteristics in
the up state for 5500 s in order to monitor the shift of the bias
for minimum capacitance towards the pre-stress level.

The charging and discharging processes have been monitored
through the bias for up-state capacitance minimum with the aid
of a Boonton 72B capacitance meter while sweeping the voltage
in 50 mV steps and the acquired bias was applied to the bottom
electrode by a 6487 Keithley voltage source-picoampere meter.
Here it must be pointed out that the measured capacitance in-
cluded the parasitic one induced by the low frequency probes.
The minimum of the C–V characteristics was determined by fitting
a parabola to the experimental data, assuming a small capacitance
variance in order to derive Eqs. (2) and (3), in agreement to the the-
ory proposed in [14,16]. Finally, all measurements have been per-
formed under vacuum, with prior annealing of the samples at a
temperature of 140 �C for 2 h, in order to avoid any interference
from humidity.



Fig. 3. Shift of the bias for capacitance minimum for (a) contactless and (b)
contacted charging.
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4. Results and discussion

The shift of the C–V characteristic with stress time for contact-
less charging is shown in Fig. 2. The contactless charging was per-
formed under a bias of +8 V, that corresponds to an applied electric
field of the order of 4 � 104 V/cm, resulting in a shift to more neg-
ative voltages. For contacted charging the devices have been
stressed under bias of +15 V, that corresponds to an electric field
of 2.1 � 106 V/cm.

The shift of the bias for minimum capacitance (Vmin) for the case
of contactless and contacted charging is shown in Fig. 3a and b
respectively. Due to the large difference of stressing electric fields
the shift is larger and faster for contacted charging with respect to
the shift for contactless charging. It is important to emphasize that
during contactless charging the dipole orientation and charge
translation will decrease the internal electric field intensity that
will in turn decrease the dipoles alignment and free charge trans-
lation rate with time (Fig. 3a). On the other hand in the case of con-
tacted charging the electric field at the dielectric-metal contact
decreases with charging time hence decreasing the rate of charge
build-up in the dielectric (Fig. 3b). These charging processes in-
clude the effect of charge trapping, hopping [18] and percolation
and they will lead to a macroscopic behavior that obeys the
stretched exponential law [14,15] with time constants of 48 s
and 1005 s for the contacted and contactless charging respectively.
The low value of charging time can be attributed to the large ap-
plied electric field and mainly to the short observation time win-
dow. Moreover the stretched exponential factor b has been found
to be smaller for the case of contacted charging, as presented in
Fig. 3, thus revealing that this process is probably more complex
than the one referring to contactless charging.

The charging current for each process has been also calculated
according to Eq. (3) and it has been found to decrease exponen-
tially with time, with corresponding time constants of 104 s and
4425 s for the contacted and contactless charging respectively
(Fig. 4). The total equivalent charge density has been calculated
from Eq. (4) and leads to 8.85 � 10�8 C/cm2 for the contacted and
2.45 � 10�8 C/cm2 for the contactless charging. It is interesting to
notice that the equivalent charge for the contactless charging,
although accumulated in a long time (�7200 s), is non-negligible
compared to the one from contacted charging. Despite the fact that
contacted charging is expected to accumulate large amount of
charge in a long term, the calculated value for contactless charging
raises the question of whether an effective compensation would
result in a longer lifetime. This can only be achieved if the
contactless charging will arise from dipole orientation and/or ion
Fig. 2. Shift of capacitance–voltage characteristics after successive contactless
charging.

Fig. 4. Charging current densities for (o) contactless and (�) contacted charging.
translation, since the charging from free charge translation will
be immediately annealed.

The discharge process after contacted and contactless charging
has been also investigated and correlated. Fig. 5a presents the shift
of the bias for minimum up-state capacitance after contactless
charging. The time constant of this process has been found to be
equal to 1097 s, a value very close to the characteristic time of
the contactless charging process. Moreover there is a small poten-
tial offset in Vmin of about �0.20 eV as shown in Fig. 5a. This offset
arises during the time window of observation due to dipoles that
have not been reoriented and/or ions that are collected under very
long time constants. As far as it concerns the discharging process
after contacted charging, the time constant is found to be 980 s
and thus of the same order as the corresponding time after contact-
less charging, as shown in Fig. 5b.



Fig. 5. Shift of the bias for minimum capacitance during discharge, after (a)
contactless and (b) contacted charging.
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According to these, the discharge process is found to be similar
for both cases, i.e. after contactless and contacted charging, since
the charge decay obeys a stretched exponential law during dis-
charge, with similar relaxation time (s) and stretched exponential
factor (b) (Fig. 5). The discharge mechanism depends on the dielec-
tric material properties and so in both cases the dominant conduc-
tion mechanism during discharge is expected to be variable range
hopping [18].
5. Conclusions

The present paper investigates and correlates the properties of
contacted and contactless charging that occurs in the dielectric
films of MEMS capacitive switches. Charge accumulation follows
stretched exponential law for both contacted and contactless
charging processes. The characteristic time of contacted charging
has been found to be much smaller than the corresponding time
of contactless charging and the magnitude of the charging current
is much larger for the case of contacted charging. Despite these, the
equivalent charge density for the two processes has been found to
be similar in magnitude. Finally, the discharge process that follows
contactless charging has the same characteristics with the one that
follows contacted charging, since the charge collection mechanism
depends on the properties of the dielectric material and both take
place under relatively low electric fields.

In order to obtain a better understanding of charging and dis-
charging processes in dielectric films of MEMS capacitive switches
it is essential to bear in mind that during charging the electric field
is high so that the hopping effect can be considered negligible leav-
ing the Poole–Frenkel effect to control the charge redistribution.
But after pull-out, the discharge is performed under low electric
field where variable range hopping dominates this process [18,19].

The obtained results of this paper raise the question of whether
an effective compensation due to contactless charging would be
exploited resulting in a slower charging rate and therefore a longer
lifetime of a MEMS capacitive switch. This constitutes an issue that
presently is under further investigation.
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