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ABSTRACT
Predicting accurately the spatiotemporal evolution of a diffusive en-
vironmental hazard is of paramount importance for its effective con-
tainment. We approximate the front line of a hazard with a setof line
segments (local front models). We model the progression character-
istics of these front segments by appropriately modified 2D Gaussian
functions. The modified Gaussian model parameters are adjusted
based on the solution of a Kullback-Leibler (KL) divergencemini-
mization problem. The whole scheme can be realized by a wireless
sensor network by forming dynamically triplets of cooperating sen-
sor nodes along the path of the hazard. It is shown that the algorithm
can track effectively the front characteristics (in terms of direction
and speed) even in the presence of faulty sensor nodes.

Index Terms— Environmental hazard, predictive modeling,
WSNs, Kullback-Leibler divergence.

1. INTRODUCTION

Being able to predict with reasonable accuracy the spatiotemporal
behavior of an evolving environmental hazard (such as a wildfire,
oil slick, etc.) is of great importance to civil authoritiessince it
helps them optimize their response and contain the potential dam-
ages. Hazard-specific mechanistic or semi-empirical models are
commonly used for this purpose. However, such models usually
depend on a large number of parameters that are difficult to estimate
and thus quite often fail to make good predictions. To address this
limitation, many researchers have proposed decision support system
architectures which attempt to integrate simulation-based predictive
modeling with real-time field sensing into a closed loop system.
The majority of such systems reported so far in the literature rely
on remote sensing, where sensor data (e.g. satellite spectral images)
are used to periodically calibrate simulation models in real-time in
order to minimize their prediction errors. These methods are also
known as Dynamic Data Driven Assimilation, a research field that
has recently drawn the attention of the scientific communitydue to
its expected high societal impact [1,2].
Unfortunately, in many cases, satellite images, or image data in
general, is not available, or may not be appropriate, for detect-
ing a diffusing hazard. In such cases, Wireless Sensor Networks
(WSNs), that are becoming a mature state of the art technology due
to their rapidly dropping cost, may provide a viable alternative for
large-scale environmental monitoring type applications.Recently, a
number of WSN-based methods have been proposed for detecting
the boundaries of a diffusing hazard [3,4]. Their main objective
is to identify at each time step the sensor nodes located closest to
the evolving front line. Despite their demonstrated capabilities to
delineate the area affected by the hazard these schemes suffer by
construction from the severe limitation that their accuracy is pro-
portional to the WSN nodes density (requiring thousands of sensors

per1km2), which renders them impractical even for medium-scale
environmental monitoring applications. Finally the inability of these
algorithms to provide information about the evolution behavior
(direction and speed) of the diffusing hazard renders them inappro-
priate for decision support based on predictive modeling.
A hazard’s front can be approximated as a piecewise linear curve.
Each line segment of this curve (local front) can be adequately
characterized using a small number of parameters (locationof end
points, orientation, propagation speed). In this paper we model
the spatiotemporal evolution of a local front line segment using a
modified 2D Gaussian function. This approach allows us to treat the
estimation of local front parameters problem as a statistical model
parameters updating problem that we have formulated and solved
analytically. We show here how this solution can be implemented
by a distributed in-network processing algorithm using small-size
dynamically formed clusters (triplets) of cooperating sensor nodes.
Processing at each node is relatively ”light” and fast sinceit amounts
to implementing closed form algebraic expressions and not some
iterative slowly converging optimization procedure.
To the best of our knowledge this is the first attempt reportedin the
literature to use a fully decentralized WSN to implement predictive
models, based on signal processing concepts, for the evolution of
a hazard’s front line. Our work shows how to make decentralized
short term phenomenon evolution predictions and forms the basis
for developing WSN-supported Dynamic Data Driven Application
Systems [1,2] for environmental monitoring and hazard evolution
prediction at large-scale.
The rest of the paper is organized as follows: In Section 2 we present
the justification for using modified 2D Gaussian functions tomodel
the spatiotemporal evolution of a diffusing phenomenon andpresent
an in-network processing algorithm for estimating their parameters.
The Kullback-Leibler divergence minimization problem, which is
used as the basis for the local model updating, is formulatedin
section 3. Experimental validation results are presented and dis-
cussed in section 4. Finally our findings are summarized and work
in progress is outlined in section 5.

2. MODELING AND ALGORITHM DESIGN

2.1. Spatiotemporal hazard evolution models
The spatiotemporal evolution of diffusing phenomena initiated from
a single point source can be approximated by an evolving ellipsoid
with a principal axes ratio depending on area prevailing conditions
[5-8] (e.g. wind direction and speed for wildfires, water stream speed
and direction for oil slicks etc.). For simulating elliptical spatiotem-
poral evolution we are introducing the use of a modified 2D Gaussian
function whose shape and orientation can be controlled by assigning
appropriate values to the covariance matrix elements. Figure 1(a)
shows the spatiotemporal evolution (z-axis is time) of a hazard initi-
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Fig. 1. a) Plot of 2D modified Gaussian,b) Contour plot of(a)

ated from single point as this is modeled by the proposed function:
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where the parametersθ = {A, µ, Σ} are: a predetermined amplitude
related constant A, the mean valueµ and the 2x2 covariance matrix
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. In this modeling,fθ(x) corresponds to time and

the larger the time values (vertical z-axis) the larger the area that is
covered by the corresponding iso-temporal ellipsoidal contours on
the x-y plain (see Figure 1(b)). The fraction A
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corresponds

to the largest value thatfθ(x) can take (modeled time span). The
modified 2D Gaussian function (1) has all the properties needed to
models spatiotemporal evolution, while also keeping intact all the
advantages that 2D Gaussians offer (i.e. adjustable shape,simple
parameterization, ability to obtain analytical results).

2.2. Sensor network assumptions
Before we proceed with the algorithm’s presentation let us state the
WSN related assumptions we have made in this work:

• Sensors are stationary and randomly deployed.
• All sensor nodes have the same processing and communica-

tion capabilities.
• Sensor node clocks do not need to be synchronized.
• A sensor S, can communicate only with its neighbors i.e. the

sensor nodes located within the circular communication range
of radiusR from its location. It is assumed that each sensor
node has at least 2 neighbors.

• Each sensor keeps the following information about itself:
{ID, Location, Detection Status Flag, Sensor Status Flag,
Prior Model Parameters}

• In addition, each sensor keeps the following information for
each one of its neighbors:{ID, Location, Time of (hazard)
Detection, Detection Status Flag, Sensor Status Flag}.

2.3. The in-network processing algorithm
The main idea of the in-network processing algorithm is as follows:
During the evolution of a diffusive phenomenon the deployedsensor
nodes are dynamically organized into local clusters of three nodes
each. The sensor nodes of a cluster collaborate to update theprior
local front evolution belief (model) of the sensor node (Master) that
is responsible for forming the cluster. This newly updated model is
propagated forward as the phenomenon evolves. Below we provide
more details on the implementation of the distributed estimation al-
gorithm.
Sensor states, self-organization into clusters: A sensor may assume
one of the following states:
Quiescent: Default state. The Sensor Status Flag (SSF) has value 0.

Fig. 2. a) The prior model used by MasterS0 for local front evolu-
tion b) The estimated models at the intersection pointsp01, p02 that
have minimum KL from the prior; the updated front segment andthe
updated modelfp02

θ02
.

Master: It is responsible for the estimation and the update of the lo-
cal front parameters. The SSF of a Master has value 1.
Slave: It is responsible for monitoring the phenomenon upon a re-
quest from a Master. The SSF value for Slave sensors is 2. Upon
detection of the phenomenon, its Detection Status Flag (DSF) be-
comes 1 (default value is 0) and is broadcasted to its neighbors. A
Slave may serve more than one Masters at any given time.
The presentation of the proposed distributed algorithm will be facil-
itated by using a simple running example. In Figure 2 we assume
w.l.o.g. that the real local front is the red discontinuous curve and its
local speed and direction are indicated by the length and direction of
the corresponding red vector. In this example we assume (w.l.o.g.)
that a sensor is detecting the phenomenon when it is reached by the
evolving front.
When the front line reaches sensorS0 at timet0, S0 detects the phe-
nomenon, sets its DSF = 1, initializes an internal clock and checks
its SSF flag. If SSF = 0 (state = Quiescent) and at least two of its
neighbors ({S1, S2, S3} in Figure 2(a)) have not detected the phe-
nomenon yet (having two neighbors with DSF = 0 and SSF = 0 or
2 are the necessary conditions for becoming Master),S0 changes its
SSF to 1 and becomes the Master and will attempt to form a new
cluster. Subsequently, the new Master sensorS0 broadcast a ”Mas-
ter Declaration Message (MDM)”{ID = S0, SSF = 1} which sets the
SSF of its neighbors to 2 (they become its Slaves see Figure 2(a)).
Now S0 waits until it has received two hazard event Detection Mes-
sages (DM) from two Slave neighbors. Let’s assume that at Master’s
(S0) internal clock timest01 andt02 (t02>t01 w.l.o.g.),S0 receives
the DMs fromS1 andS2 respectively. A DM contains only the send-
ing sensor’s[ID]. When the Master (S0) receives a DM it updates
its neighborhood table and when it has received two such messages
it is ready to start the local front parameters updating procedure (de-
scribed below).
The Master uses its current (prior) spatiotemporal evolution model (a
modified 2D Gaussian) and assumes that the local front at its neigh-
borhood can be approximated by a line segment that is perpendicu-
lar to the major axis of its prior model (see Figure 2(a)). Thespeed
of motion and the direction, which are determined from the prior
model, are denoted by the vector that is perpendicular to theassumed
front. Each point on this front evolves as indicated by the prior ellip-
tical evolution model of the Master. This assumption is welljustified
and has been extensively used by many researchers [5-7].
Model updating:Finding the intersection points. The MasterS0 uses
the location of slavesS1 andS2 (stored in its neighborhood table)
and calculates the two points (p01, p02) where these two sensor lo-
cations project on the assumed local front line segment.(see Figure
2(a)). For each point on the assumed front segment (and thus for pro-



jection points ((p01, p02) as well) it is assumed that the phenomenon
is best captured by the Master’s prior modified 2D Gaussian model.
The Master (S0) computes the distances (d1 andd2) between sensors
S1, S2 locations and the corresponding projection points (p01, p02).
Subsequently, MasterS0 estimates two new 2D modified Gaussians
f
p01
θ01

andfp02
θ02

(see Figure 2(b)) which (i) are centered at the pro-
jection points ((p01, p02), (ii) have minimum Kullback-Leibler di-
vergence from its prior model, and (iii) assign at the corresponding
slave locationsS1 andS2 time values equal tot01 andt02 respec-
tively. The direction of the major axes of the two new 2D modified
Gaussians are the same as that of the prior model but their rate of
spread can be different, as indicated by the size of the two vectors
originating at the two projection points (p01, p02) in Figure 2(b). In
Section 3 we formulate the optimization problem used to estimate
the new model parameters (in closed form). The formulated prob-
lem can be solved analytically (solution not shown here due to lack
of space).
Estimating the new local front direction: MasterS0 checks its table
to find out which one of the two used Slaves (S1 andS2) has de-
tected the phenomenon most recently (S2 in our example w.l.o.g.).
The location of this sensor is one point from where the local front
line will pass at timet02 (see green curve in Figure 2(b)). A second
point is estimated as follows: MasterS0 calculates using the updated
modified Gaussian modelfp01

θ01
the point on that model’s major axis

reached aftert02 (marked by a black dot in Figure 2(b)). This point
and pointS2 are equi-temporal (both are reached by the front at time
t02) and thus define an estimated local front line segment at the spe-
cific time instance.
Updating the prior model: One of the modelsfp01

θ01
andfp02

θ02
will

be used as the new spatiotemporal evolution model for the newly
formed local front line segment. Assuming smooth model changes,
we select among them the model with the smaller KL-divergence
from the prior model of the MasterfS0 (it is f

p02
θ02

in our example)
rotated so that its major axis is perpendicular to the new local front’s
line segment. The new rate of spread and direction (same as major
axis) of this new front are determined from the updated modelpa-
rameters.
Model forward propagation: After updating the prior model, the
MasterS0 sends the updated model information to its helper-slave
that detected the phenomenon most recently (S2 in our example),
and asks it to become the new Master. IfS2 satisfies the aforemen-
tioned necessary conditions for becoming a Master it accepts the re-
quest and returns a confirmation message toS0. Upon receiving this
confirmation,S0 sends a ”release slaves” message to its neighbors
and if they are not ”enslaved” by some other Master(s) they change
in turn their SSF to 0 (so that they may become Masters themselves
in the future). IfS2 does not satisfy the necessary conditions to be-
come the new Master, it rejects the current Master’s requestandS0

tries the same negotiation withS1. If S1 also fails to become a new
Master,S0 asks bothS1 andS2 to propagate the updated model in-
formation to their neighbors, releases the rest of its slaves and the
algorithm repeats from the beginning.

3. MINIMIZING THE KL DIVERGENCE

We decided to model the evolution of a diffusing phenomenon by a
modified 2D Gaussian function for the following reasons:

• Its elliptical shape, approximates reasonably well the evolu-
tion behavior of several phenomena of interest [5-8].

• Its parameters can be updated using closed form expressions.
This is important since with our method we do not have to im-
plement in sensor networks time and energy costly recursive
optimization algorithms.

• The model information communicated from the Master to
slave sensors can be summarized in a very concise form (θ
= {A, µ, Σ}). This also respects the stringent energy con-
straints of WSNs.

In essence model updating corresponds to finding the modified2D
Gaussian model which has minimum KL-divergence from the prior
model and explains well the most recent sensor field measurements.
Minimizing the KL-divergence to the prior model is justifiedsince
it is expected that in short time periods the local model parameters
change smoothly.
The KL-divergence, also known as relative entropy, betweentwo
probability density functionsf(x) andg(x),

D(f ||g) =

∫

f(x) log
f(x)

g(x)
dx (2)

is commonly used in statistics as a dissimilarity measure between
two densities [9]. For two d-dimensional normal distributionsf and
g the KL-divergence has a closed formed expression,

We have shown (the proof is not included here due to space limita-
tions) that the KL-divergence between two 2D modified Gaussians
curvesf , g as defined in (1) has a similar closed form,

and its absolute value satisfies the divergence properties [9]. In our
application the functionsf andg have the same origin point (have
the same mean that is the location of a projection point on thelocal
front (see section 2)) and thus the above formula can be simplified
to:
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1
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We have formulated and solved analytically (solution not shown due
to space limitations) the following optimization problem to be stated
here using the notation introduced in section 2.
Problem: Given a prior modelfS0 centered at projection pointp0i,
find the parameters of the 2D modified Gaussian centered at thesame
point and having minimum KL-divergence from the prior model, i.e.
Find:

argmin
Λi

{abs(D(fS0

θ0
||fp0i

θ0i
))}

Subject to the constraints:
Equality constraints
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Inequality constraints λ11i > 0,λ22i > 0,|Λi| > 0, as required for
a possidive definiteΛi precision matrix where:

Λi = Σ−1

i =

[

λ11i λ12i

λ21i λ22i

]

andΣi =

[

σ2
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12i

σ2
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The first equality constraint is introduced to guaranty thatthe point
which gives the specific valuet0i at a corresponding distance from
p0i, will fall on the major axis. The second equality constraintis a
necessary condition for the absolute value of (4) to satisfythe diver-
gence properties. Furthermore this constraint maintains the same (as
the prior) prediction time span for the updated model.
The problem can be solved analytically to obtain algebraic expres-
sions for updating the model parameters. (Due to lack of space the
solution is not presented here).



Fig. 3. Matlab simulator snapshot. Red (blue) crosses denote sensors
which have (have not) detected the evolving circular front.The line
segment is updated by the the three sensors indicated by the arrows in
the right side figure.The ellipsoid is the contour plot of theupdated
2D Gaussian Model which describes the evolution behavior ofthe
specific line segment.

4. EXPERIMENTAL VALIDATION

In this section we present simulation results that demonstrate the
ability of the proposed distributed WSN algorithm to estimate with
reasonable accuracy the direction and speed of a propagating haz-
ard and its robustness to sensor node failures. We conductedfour
simulations which differ only in sensor nodes failure probability. As
failure we consider the inability of a sensor node to participate in the
algorithm, The diffusing phenomenon front line was modeledas a
growing circle, with a radius increasing at a predeterminedconstant
rate (= 1.5 meters/minute). The initial prior model speed param-
eter for all sensors was on purpose selected to be the one halfof
the ”real” speed. Each simulation consisted of 50 runs. For each
run 100 sensors were deployed pseudo-randomly within an area of
1km2 and their communication radius was assumed to beR=150m.
To study the behavior of the proposed WSN algorithm in the area of
an evolving front we have developed a Matlab based WSN simulator.
In order to evaluate the accuracy of the algorithm, we compared the
local front estimates (in terms of direction and speed) to the known
ground truth. To estimate the direction error we calculatedthe angle
of two vectors: the vector that is perpendicular to the estimated front
line segment and the vector perpendicular to the tangent of the cir-
cle (modeling the hazard) at the middle point of the corresponding
arc (see Figure 3). For a modelfθ (θ = {A, µ, Σ}) the speed is esti-
mated as the ratio∆s

∆t
where∆s = 2σ

′

11i, whereσ
′
2

11i is the variance

element of the diagonalΣ
′

i covariance matrix which results after ro-
tatingΣi such as the major axis of the corresponding 2D modified
Gaussian is aligned with the horizontal x-axis. If we call the rotated
modelf

′

θ then∆t = f
′

θ(∆s).
Table 1 provides for each simulation, the total number of model up-
dates, the average number of messages exchanged per model update
and the Mean and Inter-Quartile Range of the direction and speed
estimation errors. The three rows of the table summarize thesame
results but under different failure probabilities for the sensor nodes.
We observe that as the number of faulty sensors increases thenumber
of model updates is reduced, as expected. However, the algorithm
still maintains its ability to provide a smaller number of good quality
local estimates of the evolving hazard parameters. This is evidenced
by the insignificant change in error percentages in Table 1. We have
also performed experiments where the true speed was time varying,
or multiple hazards with different parameters are spreading in the
same area and obtained similar error profiles (results not shown).

5. CONCLUSIONS

We presented a novel decentralized WSN algorithm which can track
effectively the evolving local front of a hazardous diffusing phe-
nomenon with a set of line segments. The spatiotemporal evolution
of each segment is characterized by a modified 2D Gaussian func-
tion serving as a local predictive model. A WSN is used to update
the parameters of the local models and propagate them in the direc-
tion of the front’s motion in a fully decentralized manner. It can also
estimate the time varying direction and speed of the phenomenon
by forming dynamically clusters (triplets) of sensor nodes. The
proposed scheme manages to accurately estimate the local front
parameters even in cases where the initial prior model deviates
significantly from the reality and/or a percentage of the deployed
sensor nodes fail. This makes it suitable for dynamic data assimi-
lation schemes used to calibrate periodically simulation models by
exploiting field extracted knowledge as soon as it becomes available.
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