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ABSTRACT
Predicting accurately the spatiotemporal evolution offfusive en-
vironmental hazard is of paramount importance for its ¢iffeacon-
tainment. We approximate the front line of a hazard with atkbe
segments (local front models). We model the progressiorecter-
istics of these front segments by appropriately modified 2D$Sian

per 1km?), which renders them impractical even for medium-scale

environmental monitoring applications. Finally the irapiof these
algorithms to provide information about the evolution beba
(direction and speed) of the diffusing hazard renders theappro-
priate for decision support based on predictive modeling.

A hazard’s front can be approximated as a piecewise lineawecu

functions. The modified Gaussian model parameters aretadjus Each line segment of this curve (local front) can be adedpate

based on the solution of a Kullback-Leibler (KL) divergem@i-

mization problem. The whole scheme can be realized by aesisel

sensor network by forming dynamically triplets of coopemgtsen-
sor nodes along the path of the hazard. Itis shown that teeitdgn
can track effectively the front characteristics (in terniglioection
and speed) even in the presence of faulty sensor nodes.

Index Terms— Environmental hazard, predictive modeling,

WSNSs, Kullback-Leibler divergence.

1. INTRODUCTION

Being able to predict with reasonable accuracy the spatioteal
behavior of an evolving environmental hazard (such as afinéld
oil slick, etc.) is of great importance to civil authoritisgnce it
helps them optimize their response and contain the potetdia-
ages. Hazard-specific mechanistic or semi-empirical nsoded

commonly used for this purpose. However, such models ysuall

depend on a large number of parameters that are difficultiitnat®
and thus quite often fail to make good predictions. To addtes
limitation, many researchers have proposed decision stippstem
architectures which attempt to integrate simulation-dgsedictive
modeling with real-time field sensing into a closed loop eyst
The majority of such systems reported so far in the litemataty
on remote sensing, where sensor data (e.g. satellite apectiges)
are used to periodically calibrate simulation models id-tieae in
order to minimize their prediction errors. These methodsaso
known as Dynamic Data Driven Assimilation, a research fibht t
has recently drawn the attention of the scientific commuditg to
its expected high societal impact [1,2].

Unfortunately, in many cases, satellite images, or imaga da
general, is not available, or may not be appropriate, foeaet
ing a diffusing hazard.
(WSNSs), that are becoming a mature state of the art techpalog
to their rapidly dropping cost, may provide a viable alt¢rreafor
large-scale environmental monitoring type applicatidRecently, a

In such cases, Wireless Sensor Nk$wo

characterized using a small number of parameters (locafi@md
points, orientation, propagation speed). In this paper veeleh
the spatiotemporal evolution of a local front line segmesing a
modified 2D Gaussian function. This approach allows us &t tiee
estimation of local front parameters problem as a staistitodel
parameters updating problem that we have formulated anedol
analytically. We show here how this solution can be implet@aén
by a distributed in-network processing algorithm using Ilsisiae
dynamically formed clusters (triplets) of cooperating samodes.
Processing at each node is relatively "light” and fast sinaeounts
to implementing closed form algebraic expressions and aptes
iterative slowly converging optimization procedure.

To the best of our knowledge this is the first attempt repoiriettie
literature to use a fully decentralized WSN to implementtve
models, based on signal processing concepts, for the ewolat
a hazard’s front line. Our work shows how to make decengdliz
short term phenomenon evolution predictions and forms tssh
for developing WSN-supported Dynamic Data Driven Applicat
Systems [1,2] for environmental monitoring and hazard @iah
prediction at large-scale.

The rest of the paper is organized as follows: In Section 2nesgnt
the justification for using modified 2D Gaussian functionsntadel
the spatiotemporal evolution of a diffusing phenomenonedent
an in-network processing algorithm for estimating theirapaeters.
The Kullback-Leibler divergence minimization problem, i is
used as the basis for the local model updating, is formulated
section 3. Experimental validation results are presentetl dis-
cussed in section 4. Finally our findings are summarized amtt w
in progress is outlined in section 5.

2. MODELING AND ALGORITHM DESIGN

2.1. Spatiotemporal hazard evolution models
The spatiotemporal evolution of diffusing phenomena aéd from
a single point source can be approximated by an evolvingseiid

number of WSN-based methods have been proposed for detectinvith a principal axes ratio depending on area prevailingddtons

the boundaries of a diffusing hazard [3,4]. Their main ofdyec
is to identify at each time step the sensor nodes locate@stide
the evolving front line. Despite their demonstrated cali#s to
delineate the area affected by the hazard these schemes kyff
construction from the severe limitation that their accyracpro-
portional to the WSN nodes density (requiring thousand®néers

[5-8] (e.g. wind direction and speed for wildfires, wateean speed
and direction for oil slicks etc.). For simulating ellipgicspatiotem-
poral evolution we are introducing the use of a modified 2D$5&n
function whose shape and orientation can be controlled figring
appropriate values to the covariance matrix elements. r€ig(a)
shows the spatiotemporal evolution (z-axis is time) of eahaniti-
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Fig. L. a) Plot of 2D modified Gaussiah) Contour plot of(a)
ated from single point as this is modeled by the proposedtifumc
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where the parametefs= {A, p, X} are: a predetermined amplitude
related constant A, the mean valuend the 2x2 covariance matrix
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the larger the time values (vertical z-axis) the larger tiemahat is

covered by the corresponding iso-temporal ellipsoidat@ars on

the x-y plain (see Figure 1(b)). The fractieal— corresponds
27 |X2| 2

to the largest value thafy(x) can take (modeled time span). The
modified 2D Gaussian function (1) has all the properties eédd
models spatiotemporal evolution, while also keeping intdkcthe
advantages that 2D Gaussians offer (i.e. adjustable sisapple
parameterization, ability to obtain analytical results).

2.2. Sensor network assumptions
Before we proceed with the algorithm’s presentation lettateshe
WSN related assumptions we have made in this work:

e Sensors are stationary and randomly deployed.
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Fig. 2. a) The prior model used by Masték, for local front evolu-
tion b) The estimated models at the intersection pojts po2 that
have minimum KL from the prior; the updated front segment iued
updated modef;>.

Master: It is responsible for the estimation and the update of the lo-
cal front parameters. The SSF of a Master has value 1.

Save: It is responsible for monitoring the phenomenon upon a re-
quest from a Master. The SSF value for Slave sensors is 2. Upon
detection of the phenomenon, its Detection Status Flag J8F
comes 1 (default value is 0) and is broadcasted to its neighld®
Slave may serve more than one Masters at any given time.

The presentation of the proposed distributed algorithrhheilfacil-
itated by using a simple running example. In Figure 2 we agsum
w.l.o.g. that the real local front is the red discontinuousse and its
local speed and direction are indicated by the length arettiim of

the corresponding red vector. In this example we assumeo(g)
that a sensor is detecting the phenomenon when it is reaghtée b
evolving front.

When the front line reaches sensfyrat timeto, Sy detects the phe-
nomenon, sets its DSF = 1, initializes an internal clock ametcks

its SSF flag. If SSF = 0 (state = Quiescent) and at least twosof it
neighbors {S1, S2, S3} in Figure 2(a)) have not detected the phe-
nomenon yet (having two neighbors with DSF = 0 and SSF = 0 or

e All sensor nodes have the same processing and communica-are the necessary conditions for becoming Masferihanges its

tion capabilities.
e Sensor node clocks do not need to be synchronized.

SSF to 1 and becomes the Master and will attempt to form a new
cluster. Subsequently, the new Master sertgobroadcast a "Mas-

e Asensor S, can communicate only with its neighbors i.e. théer Declaration Message (MDMY1D = So, SSF = 1 which sets the

sensor nodes located within the circular communicatiogean

SSF of its neighbors to 2 (they become its Slaves see Figadg 2(

of radiusR from its location. It is assumed that each sensorNow Sy waits until it has received two hazard event Detection Mes-

node has at least 2 neighbors.

sages (DM) from two Slave neighbors. Let's assume that atévias

e Each sensor keeps the following information about itself:(:So) internal clock timeso: andioz (fo2>to1 W.1.0.9.), 5o receives
{ID, Location, Detection Status Flag, Sensor Status Flagthe DMs fromS; andsS. respectively. A DM contains only the send-

Prior Model Paramete}s

e In addition, each sensor keeps the following information fo
each one of its neighbors{ID, Location, Time of (hazard)
Detection, Detection Status Flag, Sensor Statusjflag

2.3. The in-network processing algorithm

The main idea of the in-network processing algorithm is dsvi:
During the evolution of a diffusive phenomenon the deployedsor
nodes are dynamically organized into local clusters ofehredes
each. The sensor nodes of a cluster collaborate to updagritite
local front evolution belief (model) of the sensor node (kasthat
is responsible for forming the cluster. This newly updatestisd is
propagated forward as the phenomenon evolves. Below wederov
more details on the implementation of the distributed estiiom al-
gorithm.

Sensor states, self-organization into clusters: A sensor may assume
one of the following states:

ing sensor'd1D]. When the MasterS) receives a DM it updates
its neighborhood table and when it has received two suchagess
it is ready to start the local front parameters updating @doce (de-
scribed below).

The Master uses its current (prior) spatiotemporal evofuthodel (a
modified 2D Gaussian) and assumes that the local front atighn
borhood can be approximated by a line segment that is peiqend
lar to the major axis of its prior model (see Figure 2(a)). $peed
of motion and the direction, which are determined from thierpr
model, are denoted by the vector that is perpendicular tagkemed
front. Each point on this front evolves as indicated by thergllip-
tical evolution model of the Master. This assumption is juedtified
and has been extensively used by many researchers [5-7].

Model updating: Finding theintersection points. The MasterS, uses
the location of slaves$; and S, (stored in its neighborhood table)
and calculates the two pointggf , po2) where these two sensor lo-
cations project on the assumed local front line segmeetKggure

Quiescent: Default state. The Sensor Status Flag (SSF) has value @(a)). For each point on the assumed front segment (andahpsd-



e The model information communicated from the Master to
slave sensors can be summarized in a very concise férm (

jection points (po1, poz2) as well) it is assumed that the phenomenon
is best captured by the Master’s prior modified 2D Gaussiadaino
The Master §o) computes the distances,(andd.) between sensors = {A, u, X}). This also respects the stringent energy con-
S1, Sz locations and the corresponding projection poipts (po2)- straints of WSNs.

Subsequently, Mastef, estimates two new 2D modified Gaussians In essence model updating corresponds to finding the modified
foot and f5°2 (see Figure 2(b)) which (i) are centered at the pro-Gaussian model which has minimum KL-divergence from therpri

jection points (po1, po2), (i) have minimum Kullback-Leibler di-
vergence from its prior model, and (iii) assign at the cqroesling
slave locationsS; and S; time values equal toy; andto2 respec-
tively. The direction of the major axes of the two new 2D maatifi
Gaussians are the same as that of the prior model but theiofat
spread can be different, as indicated by the size of the twtore
originating at the two projection pointgdi , po2) in Figure 2(b). In
Section 3 we formulate the optimization problem used toestie
the new model parameters (in closed form). The formulated-pr
lem can be solved analytically (solution not shown here duadk
of space).

Estimating the new local front direction: MasterS, checks its table
to find out which one of the two used Slave$ (and S2) has de-
tected the phenomenon most recentfy (n our example w.l.0.g.).
The location of this sensor is one point from where the locahtf
line will pass at time2 (see green curve in Figure 2(b)). A second
point is estimated as follows: Mastég calculates using the updated
modified Gaussian modg‘ﬁ&l the point on that model’s major axis
reached aftety, (marked by a black dot in Figure 2(b)). This point

and pointS, are equi-temporal (both are reached by the front at tin D(f | &) =

to2) and thus define an estimated local front line segment afthe s
cific time instance.

Updating the prior model: One of the modelg;°" and f;°* will

be used as the new spatiotemporal evolution model for thdynew
formed local front line segment. Assuming smooth model gean
we select among them the model with the smaller KL-divergenc
from the prior model of the Mastef (it is fg’gj in our example)
rotated so that its major axis is perpendicular to the newallfsont’s
line segment. The new rate of spread and direction (same @s ma
axis) of this new front are determined from the updated medel
rameters.

Model forward propagation: After updating the prior model, the

model and explains well the most recent sensor field measunsm
Minimizing the KL-divergence to the prior model is justifisthce
it is expected that in short time periods the local model petars
change smoothly.

The KL-divergence, also known as relative entropy, betwsen
probability density functiong (x) andg(z),

D(f|lg) = / f(z)log %dw

is commonly used in statistics as a dissimilarity measute/éen
two densities [9]. For two d-dimensional normal distrilomis f and
g the KL-divergence has a closed formed expression,

2 .

B ‘+1r[z;z,]+(u, — 1) 2 —ug>—d} (3)

We have shown (the proof is not included here due to spacalimi
tions) that the KL-divergence between two 2D modified Gaussi
curvesf, g as defined in (1) has a similar closed form,
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and its absolute value satisfies the divergence propeg&jesr our
application the functiong and g have the same origin point (have
the same mean that is the location of a projection point oroded
front (see section 2)) and thus the above formula can be #ietpl
to:
1 A 2]
D(fllg) = 5[21og -+ — -
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We have formulated and solved analytically (solution navaidue
to space limitations) the following optimization problemite stated
here using the notation introduced in section 2.

Problem: Given a prior mode)f*° centered at projection poipb;,

log —Tr[E; 'S¢l +2]  (5)

MasterSy sends the updated model information to its helper-slavg;,q the parameters of the 2D modified Gaussian centered sathe

that detected the phenomenon most recerfily it our example),
and asks it to become the new MasterSifsatisfies the aforemen-
tioned necessary conditions for becoming a Master it asdbéptre-
quest and returns a confirmation messagghtoUpon receiving this

point and having minimum KL-divergence from the prior mqded.

Find: <
argmin{abs(D(fef I fom: )}

confirmation,So sends a "release slaves” message to its neighborgubject to the constraints:

and if they are not "enslaved” by some other Master(s) thengk
in turn their SSF to 0 (so that they may become Masters theesel

in the future). IfS, does not satisfy the necessary conditions to be-

come the new Master, it rejects the current Master’s recaedt,
tries the same negotiation wihy . If S; also fails to become a new
Master,Sp asks bothS; andS; to propagate the updated model in-
formation to their neighbors, releases the rest of its slarel the
algorithm repeats from the beginning.

3. MINIMIZING THE KL DIVERGENCE
We decided to model the evolution of a diffusing phenomenpa b
modified 2D Gaussian function for the following reasons:

e Its elliptical shape, approximates reasonably well thdievo
tion behavior of several phenomena of interest [5-8].

Equality constraints

2
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Inequality constraints A11; > 0,A22; > 0,|A;] > 0, as required for
a possidive definitd,; precision matrix where:

_ A1 A12i o2, o2y
Ai = Ei e 11 12 andEi = %11 %QZ
A21i  A22; 0215 022

The first equality constraint is introduced to guaranty thatpoint
which gives the specific valug; at a corresponding distance from
poi, Will fall on the major axis. The second equality constrama
necessary condition for the absolute value of (4) to satiefydiver-
gence properties. Furthermore this constraint mainthmsame (as

e Its parameters can be updated using closed form expressiorthe prior) prediction time span for the updated model.

This is important since with our method we do not have to im-

The problem can be solved analytically to obtain algebrajres-

plement in sensor networks time and energy costly recursiveions for updating the model parameters. (Due to lack ofesfiae

optimization algorithms.

solution is not presented here).
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100, 20 0 T 00 5. CONCLUSIONS

We presented a novel decentralized WSN algorithm which reaok t
effectively the evolving local front of a hazardous diffugiphe-
nomenon with a set of line segments. The spatiotemporatigool

of each segment is characterized by a modified 2D Gaussian fun
tion serving as a local predictive model. A WSN is used to tpda
the parameters of the local models and propagate them irirde d
tion of the front’s motion in a fully decentralized manndrcan also
estimate the time varying direction and speed of the phenome
by forming dynamically clusters (triplets) of sensor nadefhe
proposed scheme manages to accurately estimate the local fr
parameters even in cases where the initial prior model tevia
significantly from the reality and/or a percentage of thelolsgd
sensor nodes fail. This makes it suitable for dynamic dasaras
lation schemes used to calibrate periodically simulati@dets by
exploiting field extracted knowledge as soon as it becomaitadnle.

Fig. 3. Matlab simulator snapshot. Red (blue) crosses denotersens
which have (have not) detected the evolving circular frdmte line
segment is updated by the the three sensors indicated byrtinesan
the right side figure.The ellipsoid is the contour plot of tipelated
2D Gaussian Model which describes the evolution behavidhef
specific line segment.

4. EXPERIMENTAL VALIDATION

In this section we present simulation results that dematestithe
ability of the proposed distributed WSN algorithm to estienaith
reasonable accuracy the direction and speed of a propgdair
ard and its robustness to sensor node failures. We condtmted
simulations which differ only in sensor nodes failure probty. As
failure we consider the inability of a sensor node to pgrtite in the
algorithm, The diffusing phenomenon front line was modedsca
growing circle, with a radius increasing at a predetermiceustant  pean Union (European Social Fund ESF) and Greek nationesfthrough
rate (= 1.5 meters/minute). The initial prior model speethpa  the Operational Program “Education and Lifelong Learniofjthe National
eter for all sensors was on purpose selected to be the on@fhalf Strategic Reference Framework (NSRF) - Research Fundogy#n: Hera-
the "real” speed. Each simulation consisted of 50 runs. Behe cleitus II. Investing in knowledge society through the Epgan Social Fund.
run 100 sensors were deployed pseudo-randomly within amafre
1km? and their communication radius was assumed t&HE50m.
To study the behavior of the proposed WSN algorithm in the afe
an evolving front we have developed a Matlab based WSN stola
In order to evaluate the accuracy of the algorithm, we coetgpéne
local front estimates (in terms of direction and speed) &kimown
ground truth. To estimate the direction error we calculatedangle
of two vectors: the vector that is perpendicular to the estid front
line segment and the vector perpendicular to the tangerteofit-
cle (modeling the hazard) at the middle point of the corradpg
arc (see Figure 3). For a modgl (60 = {A, i, X}) the speed is esti-

mat the rati@s whereAs = 20,,,;, whereo 2, is the varian
ated as the ratig; whereAs = 201, whereo ], is the variance [4] W. Chang, H. Lin, Z. Cheng: "CODA: A Continuous Object

element of the diagonéli; covariance matrix which results after ro- patection and Tracking Algorithm for Wireless Ad Hoc Seniset-
tating>; such as the major axis of the corresponding 2D modified, ks  Consumer Communications and Networking Conference
Gaussie}n is aligned With the horizontal x-axis. If we cadl thtated 2008, pp.168-174.

model fy thenAt = fy(As). [5] H. Anderson,"Predicting wind-driven wildland fire size and
Table 1 provides for each simulation, the total number of ehog-  shape”. USDA For. Serv. Res. Pap. INT-305, Feb. 1983.

dates, the average number of messages exchanged per mdasl up (5] M. Alexander, "Estimating the length-to-breadth ratio ¢f e
and the Mean and Inter-Quartile Range of the direction am&dp |iptical forest fire patterns”.Proc. 8th Conf. on Fire and Forest
estimation errors. The three rows of the table summarizedhee  Meteorology, pp. 287-304.

results but under different failure probabilities for themsor nodes. 7] M. Marghany,"RADARSAT for oil spill trajectory modelJpurnal
We observe that as the number of faulty sensors increasestiger  of Env. Modeling and Software, Vol. 19, May 2004, pp. 473-483.

of model updates is reduced, as expected. However, theitalgor (3] E.S. Manolakos, D. Manatakis, G, Xanthopoulos, "Tempeeatu
still maintains its ability to provide a smaller number ofogoguality  Field "Modeling and Simulation of Wireless Sensor Netwowk b
local estimates of the evolving hazard parameters. Thigderced  haviour during a spreading wildfireProc. 16th EUSIPCO, August
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