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Rarefaction wave in relativistic steady magnetohydrodynamic flows

Konstantinos Sapountzisa) and Nektarios Vlahakisb)

Faculty of Physics, University of Athens, 15784 Zografos, Athens, Greece

(Received 23 May 2014; accepted 16 July 2014; published online 29 July 2014)

We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction

that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates

under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a

system of ordinary differential equations that describe the flow dynamics. In the specific limit of an

initially homogeneous flow, we also provide analytical results and accurate scaling laws. We con-

sider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already

present in the literature. The model includes magnetic field and bulk flow speed having all compo-

nents, whose role is explored with a parametric study. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4891441]

I. INTRODUCTION

When a flow passes an acute vertex of an angle the in-

formation of the boundary’s first derivative discontinuity

propagates in the flow, and if the velocity of the flow exceed

that of the fastest disturbances, i.e., the fast magnetosonic

velocity, that propagation is performed in the form of a rare-

faction wave; the resulting flow suffers a weak discontinu-

ity.12 The importance of the rarefaction waves is significant

in a number of phenomena and as such the reader can find

relevant studies in various conditions and environments. The

Newtonian hydrodynamic case is presented in many text-

books (see, for example, Landau and Lifschitz9), while a rel-

ativistic analytical approach under the same conditions was

made by Granik.6

Moreover, the relativistic and highly magnetized coun-

terpart of the phenomenon is mainly met at the high energy

astrophysics where these extreme conditions apply, notably,

in Gamma-Ray Bursts. Most astrophysical settings are con-

sidered as axisymmetric with ignorable azimuthal ð/Þ coor-

dinate in which case the study can be done on the so-called

poloidal plane. At sufficiently large cylindrical distances

from the symmetry axis, axisymmetry can be well approxi-

mated by planar symmetry, with the /̂ direction replaced by

the ŷ direction in a Cartesian system of coordinates. We can

continue to use the term “poloidal plane” for the xz plane of

this system and split all vector quantities in “poloidal” (i.e.,

projections on the xz plane) and transverse ðŷÞ components.

The interested reader is referred to Refs. 7 and 19 for numer-

ical simulations and relevant discussions for axisymmetric

and planar-symmetric Gamma-Ray Burst flows, Refs. 11 and

23 for simulations including an external pressure profile, and

Ref. 18 for a semi-analytical planar-symmetric model con-

taining only transverse magnetic field (By).

In this paper, we present a general semi-analytical

model which, besides By contains a poloidal magnetic com-

ponent of arbitrary magnitude, and discuss its potential

implications. We also study the effect of the initial transverse

velocity, and derive accurate scaling laws for the flow physi-

cal quantities. Our study is performed in the framework of

the planar symmetric, ideal, and relativistic steady-state

magnetohydrodynamic (MHD). The procedure is not only

similar to the one followed in Ref. 18 but also to the hydro-

dynamic approach of Ref. 9 and its relativistic counterpart,6

and it is based on the class of the r self-similar solutions.

Beyond its potential astrophysical applications, the theoreti-

cal importance of rarefaction is evident, and the aim of the

present work is to provide an insight to the relativistic mag-

netized regime, and thus to serve as a generalization of the

already available hydrodynamical solutions.

We use the similarity property to degrade the system of

the high nonlinear partial differential equations to a system

of ordinary differential ones that are easier to manipulate.

In Sec. II, we present the full steady-state equations, and in

Sec. III, we apply the self-similarity to obtain the semi-

analytical system. In Sec. IV, we integrate the resulting sys-

tem using a simple numerical algorithm for cases where the

relative significance of the poloidal magnetic field alters. We

also included some models with different initial transverse

velocities, as also three models corresponding to the numeri-

cal simulations of Ref. 11, in order to check further the valid-

ity of our model. Section V contains the relevant discussion;

while in the Appendix, we derive analytical scaling laws for

the interesting case of a cold and homogeneous flow.

II. STEADY-STATE EQUATIONS

The system of relativistic MHD equations is expressed

by the equations determining the hydrodynamical properties

of the flow under the influence of the electromagnetic field

(emf), Maxwell’s and Ohm’s laws. The energy-momentum

tensor is constructed as the superposition of the matter ðTl�
hy Þ

and the emf ðTl�
EMÞ tensors

Tl� ¼ Tl�
hy þ Tl�

EM : (1)

The former one is given by

Tl�
hy ¼ hqulu� þ pnl�; (2)
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where u� ¼ ðcc; cvÞ the plasma four-velocity, v the three-

velocity, and c ¼ 1=ð1� v2=c2Þ1=2
the Lorentz factor.

Neglecting gravity and general relativistic effects we chose a

Minkowski metric gl� ¼ nl� ¼ ð�;þ;þ;þÞ. The thermody-

namical parameters h, p, and q are the enthalpy per rest

energy, pressure, and matter density of the plasma as meas-

ured in the comoving frame. For a gas obeying a polytropic

equation of state the following relation applies:

h ¼ 1þ Ĉ

Ĉ � 1

p

qc2
; (3)

with Ĉ the usual polytropic index.

The components of the Tl�
EM in analytical form are

T00
EM ¼

E2 þ B2

8p
; T0j

EM ¼ Tj0
EM ¼

E� B

4p

� �
j

; (4)

Tjk
EM ¼ �

EjEk þ BjBk

4p
þ E2 þ B2

8p
gjk; (5)

where Latin indices i,j¼ 1, 2, 3 stand for the spatial coordi-

nates, while Greek for all, and E;B the electric and magnetic

field as measured in the laboratory frame. We can identify

T00
EM; T

j0
EM; T

jk
EM as emf energy density, energy flux, and mag-

netic stress contributions, respectively. The full energy-

momentum tensor provides the equations of motion in the

covariant form Tl�
;� ¼ 0, but a straightforward use of all of

these equations leads to difficult manipulating forms. Thus,

it is a common practice to substitute some of them with other

equivalent, but simpler ones, as explained below.

At the steady-state limit, the continuity equation

ðqu�Þ;� ¼ 0, is written in vector form

r � ðcqvÞ ¼ 0 : (6)

The projection of the energy-momentum equation on the proper

time direction ðu�Tl�
;� ¼ 0Þ provides the entropy conservation

v � r p

qĈ

� �
¼ 0 : (7)

The polytropic index takes the adiabatic values, 4/3 and 5/3

in the limits of ultrarelativistic and nonrelativistic tempera-

tures, respectively.

Maxwell’s equations for the steady-state become

r � B ¼ 0; r � E ¼ 4p
c

J0;

r� B ¼ 4p
c

J; r� E ¼ 0;

(8)

where J� ¼ ðJ0; JÞ the four-current, J0/c the charge density,

and J the current density. Moreover, at the limit of an infinite

electrical conducting plasma the comoving electric field is

zero, and Ohm’s law yields

E ¼ � v
c
� B : (9)

We can write explicitly the spatial components of the mo-

mentum equation using Maxwell’s equations as

�cq v � rð Þ hcvð Þ � rpþ J0Eþ J � B

c
¼ 0 : (10)

Equations (6)–(10) together with the boundary conditions

determine in principle the flow, but the high nonlinear char-

acter makes this task rather difficult.

We carry a first partial integration assuming Cartesian

coordinates with the axis origin on the boundary disconti-

nuity and planar symmetry along the ŷ direction

ð@=@y ¼ 0Þ, see Fig. 1. From Faraday’s law, the electric

field is related to an electric potential, E ¼ �rV.

Assuming that the potential is also planar symmetric,

V¼V(x,z), we find that the transverse electric field vanishes

(Ey¼ 0). That symmetry in conjunction with Ohm’s law

provides vp k Bp, and we can therefore write the flow veloc-

ity in the form

v ¼ k

cq
Bþ cvŷ; (11)

where

k ¼ cq
vp

Bp
; v ¼ vy

c
� vp

c

By

Bp
: (12)

Both quantities k; v are integrals of motion, i.e., remain con-

stant along a poloidal streamline (or field line). The former

integral stands for the ratio of the mass to the magnetic flux,

while the second one is investigated later. Furthermore, we

introduce the fluxes per unit length in the ŷ direction, A and

W, to label the poloidal magnetic field lines and the poloidal

streamlines, respectively:

A ¼
ð

Bp � ds� ŷ; W ¼
ð

cqvp � ds� ŷ; (13)

where the integration is performed on a line on the polidal

plane, starting from a point of the z axis. Reverting the above

relationships, we obtain

FIG. 1. The geometry of a planar symmetric rarefied flow and the coordinate

system. The coordinate y is ignorable and the plane xz is the “poloidal”

plane. Notice the three regions that, in principle, exist: the undisturbed

plasma (which is in pressure equilibrium with its environment), the rarefied

one, and the vacuum. The situation is similar to a supersonic hydrodynamic

flow around an acute angle; here, the flow is magnetized and it is super-fast

magnetosonic. The weak discontinuity, i.e., the rarefaction front, and the

contact discontinuity separating the plasma fluid from the void space, are

also shown. Angles h, # stand for the polar angle and the poloidal field/

streamline inclination, respectively; both are measured from the z-axis

clockwise.
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Bp ¼ rA� ŷ; vp ¼
1

cq
rW� ŷ; (14)

where the equivalency of whether we use the poloidal mag-

netic field lines, or the poloidal streamlines is stated explic-

itly, rW ¼ krA. In this paper, we use the magnetic field

line notation to project the energy momentum equation par-

allel ðb̂ ¼ Bp=BpÞ and perpendicularly ðn̂ ¼ �rA=jrAjÞ to

the field lines direction; notice that in the limit of the negligi-

ble poloidal magnetic field this choice poses some easy-

lifted complications of interpretation nature, see the end of

Sec. III.

The constancy of k is derived by inserting the velocity

form (11) in the continuity equation (6), using the planar

symmetry and the zero divergence of B to obtain

Bp � rk ¼ 0() k ¼ kðAÞ. The substitution of the same ve-

locity expression in Ohm’s law (9) yields

E ¼ �vrA; E ¼ vBp; (15)

which in conjunction with the Faraday’s law provides also

the constancy of v. It is useful to compare that integral with

the corresponding Ferraro’s isorotation law in axisymmetric

flows, which is related to the so-called light cylinder; see, for

example, Ref. 1 for a general analysis. On this cylinder, the

ratio E/Bp, which in the axisymmetric case is a function of

the cylindrical distance, becomes unity. In the planar sym-

metric case no such cylinder exists, and this is reflected to

the constancy of the ratio E/Bp. This is going to have an im-

portant role to the power laws derived later.

Moreover, Eq. (7) provides the usual polytropic

equation

QðAÞ ¼ p=qĈ ; (16)

and thus QðAÞ integral states the entropy conservation along

streamlines. Two more quantities complete the set of the

integrals

P ¼ P Að Þ ¼ hcvy �
By

4pk
; (17)

l ¼ l Að Þ ¼ hc� vBy

4pkc
; (18)

and stand for the total (matterþ emf) momentum-to-mass

flux ratio, and the total energy-to-mass flux ratio, respec-

tively. No more independent integrals exist, but a useful

combination which appears often in the subsequent calcula-

tions is v2
A ¼ Pv=ðlcÞ.13

Besides the five integrals (k; v; l; vA or P, Q) two more

equations are needed to fully determine the flow. For con-

venience, we introduce the “Alfv�enic” Mach number

M2 �
cvpð Þ2

B2
p= 4pqhð Þ ¼

4phk2

q
; (19)

and the magnetization parameter

r ¼ � vBy

4pchck
; (20)

i.e., the ratio of the Poynting to mass energy flux. In terms of

the above quantities, the physical quantities are written as

q ¼ 4phk2

M2
; p ¼ QqĈ ; h ¼ 1þ Ĉ

Ĉ � 1

p

qc2
; (21)

B ¼ rA� ŷ � 4plkc v2 � v2
A

� �
v M2 þ v2 � 1ð Þ ŷ; E ¼ �vrA; (22)

c ¼ l
h

M2 þ v2
A � 1

M2 þ v2 � 1
; (23)

c
v

c
¼ M2

4pckh
rA� ŷ þ v2

Al
vh

M2 þ v2 � v2=v2
A

M2 þ v2 � 1
ŷ : (24)

An interesting situation arises when the M2 þ v2 � 1 de-

nominator vanishes corresponding to the so-called Alfv�enic

surface. The requirement that By remains finite at that surface

yields v2 ¼ v2
A. Since these are integrals of motion they

remain equal everywhere, meaning that By¼ 0 and the flow

carries no Poynting flux. For this reason, magnetized planar

symmetric flows cannot be trans-Alfv�enic.

The initial conditions determine the integrals of motion,

but one seeks for the quantities A and M or h; the last two are

related by the expression, using Eqs. (21)

M2 ¼ 4pk2 Ĉ

Ĉ � 1

Q

c2

 ! 1

Ĉ�1

h h� 1ð Þ�
1

Ĉ�1 : (25)

The two remaining equations are the Bernoulli (or wind

equation)

l2

h2

M2 þ v2
A � 1

� �2 � v2
A=v

� �2
M2 þ v2 � v2=v2

A

� �2

M2 þ v2 � 1ð Þ2

¼ 1þ M2rA

4pckh

� �2

; (26)

which is obtained by substituting all the quantities in the

identity c2 � ðcvy=cÞ2 ¼ 1þ ðcvp=cÞ2, and the transfield

equation obtained by projecting the momentum equation per-

pendicular to the magnetic field

M2jrAj2 r2A�rA � rlnjrAj
� �

� Ĉ � 1

Ĉ
r 16p2k2c2 h h� 1ð Þ

M2

� 	
� rA

þv
dv
dA
jrAj4 þ v2 � 1

� �
r2AjrAj2

� 1

2
r 4pklc

v
v2 � v2

A

M2 þ v2 � 1

 !2

� rA ¼ 0 : (27)

Roughly speaking we can state that the solution of the

transfield equation determines the shape of the streamlines,

while Bernoulli the energetics along them, but this distinc-

tion is not clear neither fruitful. Both equations must be

solved simultaneously and a simple inspection shows the dif-

ficulties involved. The task of finding an analytical solution

in the general case seems impossible, and thus all the efforts

are focused on the quest of a solution with specific
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symmetries suitable to describe the particular problem; in

our case, this is the self-similar shape of the poloidal

streamlines.

III. THE r SELF-SIMILAR MODEL

In order to induce the property of similarity, we assume

that all the quantities have a dependence of the form rFi fiðhÞ,
where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

the distance from the corner and h the

angle measured from the z-axis ðx ¼ r sin h; z ¼ r cos hÞ.
Our goal is to determine the various exponents Fi in such a

way that the resulting differential equations will be separable

on the variables r, h. The method of similarity is quite famil-

iar and has been used before in a number of studies both in

Newtonian2,22 or in the relativistic context.5,10,21

The substitution of the similarity expressions in

Eqs. (26) and (27) is straightforward and by inspection we

conclude that our model derives separable equations under

the following forms:

A ¼ �rFaðhÞ; k ¼ rYjðhÞ; Q ¼ rZqðhÞ;
M ¼ MðhÞ; h ¼ hðhÞ; v2

A; l; v ¼ const : (28)

Substituting the above forms into the Bernoulli equation

(26), we obtain F� Y � 1 ¼ 0, while from Eq. (25) we con-

clude that Q follows the dependence Z ¼ �2ðF� 1Þ
ðĈ � 1Þ; notice that both k and Q are integrals and thus their

angular dependence is related to the one of the poloidal

flux: j ¼ k0 a1�1=F; q ¼ q0 a�2ðĈ�1Þð1�1=FÞ, with constant k0

and q0. For purely algebraic reasons, we use f ðhÞ � 4pck0=
ðFv2a1=FÞ instead of a. Accordingly, f is proportional to the

radial distance along the same magnetic field line (or stream-

line): for a line passing through (r0, h0) any other point obeys

r/r0¼ f/f0, with f0¼ f(h0). Moreover, we introduce one more

angle # that stands for the angle between the poloidal mag-

netic field line (or streamline) and the z-axis: tan# ¼ Bx=Bz.

Using the latter variable, we express the parallel b̂ � Bp=Bp

and the perpendicular direction n̂ � �rA=jrAj to the poloi-

dal magnetic field lines as

b̂ ¼ cos ð#� hÞr̂ þ sin ð#� hÞĥ;
n̂ ¼ sin ð#� hÞr̂ � cos ð#� hÞĥ : (29)

Under these assumptions, the expressions for the physi-

cal quantities become

A ¼ � 4pck0r

Fv2f

� �F

; q ¼ 4phk2
0

M2
A2 F�1ð Þ=F; (30)

Bp ¼
�FA

r sin #� hð Þ b̂; By ¼
FAlf v v2 � v2

A

� �
r M2 þ v2 � 1ð Þ ŷ; (31)

E ¼ �FAv

r sin #� hð Þ n̂; (32)

c ¼ l
h

M2 þ v2
A � 1

M2 þ v2 � 1
¼ l

h 1þ rð Þ ; (33)

cvp

c
¼ M2

v2fh sin #� hð Þ b̂; (34)

cvy

c
¼ v2

Al
hv

M2 þ v2 � v2=v2
A

M2 þ v2 � 1
ŷ : (35)

Before proceeding further to the equations involved, we

note that the angle # is related to the derivative of the func-

tion f: The form of A / ðr=f ÞF implies that rA is parallel to

f r̂ � ðdf=dhÞĥ, and since n̂ ¼ �rA=jrAj a first equation is

obtained using Eq. (29)

df

dh
¼ f

tan #� hð Þ : (36)

The Bernoulli equation (26) is now written as

l2

h2

M2 þ v2
A � 1

� �2 � v4
A=v

2
� �

M2 þ v2 � v2=v2
A

� �2

M2 þ v2 � 1ð Þ2

¼ 1þ M2

v2hf sin #� hð Þ

" #2

: (37)

Besides its algebraic form the differential one is also used at

the subsequent calculations:

1

tan #�hð Þ
d#

dh
¼v4f 2hsin2 #�hð Þ

M4

dh

dh

þ 1�v2l2f 2 v2�v2
A

� �2
sin2 #�hð Þ

M2þv2�1ð Þ3

" #
1

M2

dM2

dh
:

(38)

Equation (25) provides a relationship between M2 and h
(both are functions of h alone; note the Q and k are constants

along streamlines and their combination Qk2ðĈ�1Þ is a global

constant), implying

dh

dh
¼ � hu2

s

M2

dM2

dh
; u2

s ¼
Ĉ � 1ð Þ h� 1ð Þ

Ĉ � 1þ 2� Ĉð Þh
; (39)

where us ¼ cs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � c2

s

p
the sound proper velocity (over c),

with cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉp=ðqhÞ

q
.

Applying the similarity expressions to the transfield

equation (27), we find

F� 1ð Þ l2 v2 � v2
A

� �2

M2 þ v2 � 1ð Þ2
þ 2 Ĉ � 1ð Þh h� 1ð Þv2

ĈM2

" #

¼ 1

v2f 2

v2 � 1

sin2 #� hð Þ þM2

" #
d#

dh
þ F� 1ð Þ v2 � 1

� �
v2f 2 sin2 #� hð Þ

þ sin 2#� 2hð Þ
2

v2h

M2

dh

dh
� l2 v2 � v2

A

� �2

M2 þ v2 � 1ð Þ3
dM2

dh

" #
;

(40)

which, in combination with Eqs. (38) and (39), gives an

equation for M

dM2

dh
¼ F� 1ð ÞM2

tan #� hð Þ
N

D
; (41)
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N ¼ � M2 v2 � 1
� �

v4f 2h2 sin2 #� hð Þ þ
2 Ĉ � 1ð Þ h� 1ð Þ

Ĉh

þ l2

h2v2

M2 v2 � v2
A

� �2

M2 þ v2 � 1ð Þ2
;

D ¼ 1�M2 � v2

M2
u2

s �
l2

v2h2

M2 v2 � v2
A

� �2

1�M2 � v2ð Þ2

þ M2

v4f 2h2

v2 � 1

sin2 #� hð Þ þM2

" #
:

The overall procedure of integration can be stated as fol-

lows. The differential Eqs. (36), (39), and (41) together with

the algebraic Bernoulli Eq. (37) and the initial conditions

consist the system of equations that fully describe the flow.

The initial conditions f0;M0; h0; #0 and the specific values of

F; Ĉ determining the evolution of the various quantities

along the initial surface h0, also provide the integrals

k; v; v2
A; l;Q and complete the necessary set of parameters.

The integration derives the evolution of the quantities along

a specific poloidal streamline and then the similarity property

A / ðr=f ÞF is used to extend this solution to the rest of the

flow.

Two remarks are easily obtained by the straightforward

inspection of Eq. (41). The rarefaction wave front occurs

when the denominator vanishes, since these are the only

points where the first derivatives might suffer a discontinu-

ity. In order to give an intuitive interpretation, we write both

N, D in terms of the physical quantities

N ¼ 2ptotal

qhc2
; ptotal ¼ pþ B2 � E2

8p
;

D ¼

cvh

c

� �4

� cvh

c

� �2

u2
s þ

B2 � E2

4pqhc2

 !
þ u2

s

B2
h � E2

r

4pqhc2

cvh

c

� �2
:

(42)

The nature of the denominator vanishing becomes clear if

we use both Eq. (22) to rewrite the last term as

B2
h � E2

r ¼ ð1� v2ÞB2
h. The comparison with the dispersion

relations for the magnetosonic disturbances, see Appendix C

in Ref. 21, reveals that the denominator vanishes when the ĥ
component of the flow proper velocity is equal with the

comoving fast or slow magnetosonic phase velocity of a

wave propagating along the ĥ direction. These are the actual

singular points of the steady-state flow3 forming the so-

called modified fast/slow surface, or limiting characteristics,

and it is already met in a number of approaches (see Refs. 4

and 20, and references therein).14

In the limit of vanishing poloidal magnetic field

ðBp ! 0Þ, a complication of interpretation nature enters. In

such a case, A becomes zero. Also k, v, M2 become infinite,

but their ratio retains a finite value

v2

M2
¼ r;

M2

k2
¼ 4ph

q
; krA ¼ rW : (43)

For that reason, the integration has to be performed for r
rather than for M2, as in Ref. 18. In general, one could use r
instead of M2 even when Bp exists, by using the expressions

r ¼ v2 � v2
A

M2 þ v2
A � 1

;

dr
dh
¼ � r

M2 þ v2
A � 1

dM2

dh
;

¼ � r
M2 þ v2

A � 1

F� 1ð ÞM2

tan #� hð Þ
N

D

(44)

(with the latter substituting Eq. (41)).

IV. NUMERICAL RESULTS

Suppose a homogeneous magnetized plasma having

magnetic field Bp0ẑ þ By0ŷ and bulk velocity vp0ẑ þ vy0ŷ fills

the space z< 0, x< 0, supported by some external pressure

on the plane x¼ 0, z< 0, see Fig. 1. Our goal is to explore

how a sudden pressure drop at the origin x¼ z¼ 0 modifies

the flow characteristics in the region z> 0, through the rare-

faction wave that propagates as a weak discontinuity inside

the body of the flow.

Since we require the initial flow to be homogeneous, we

fix the parameter F ¼ 1. We chose three different set of ini-

tial configurations for cold super-fast magnetosonic flows

given in Table I. In relation to the strength of the poloidal

magnetic field, we include cases in which (i) the poloidal

magnetic field component is negligible (Bp � jByj, low

poloidal (LP) model), (ii) the poloidal magnetic field is

mildly smaller than the transverse one (Bp < jByj, mild poloi-

dal (MP) model), and (iii) both components are of similar

magnitude (Bp � jByj, equal poloidal (EP) model). Our

attempt to increase further the strength of the poloidal mag-

netic field is restricted by the condition of staying in the

super-fast magnetosonic regime. We also include a fourth

model (thermal driven, TD) in which the thermal energy is

non-negligible. The implications of the initial transverse ve-

locity are studied in the remaining two models (LP01, LP03).

These are the same as the cold flow model (LP) except their

initial transverse velocities (vy0¼ 0.1, 0.3, respectively).

The results of the integration show that both the poloidal

poloidal magnetic field and the initial transverse velocity

TABLE I. The initial conditions of our models were set at h0 ¼ �p=2. All

models represent cold flows h ¼ 1, except (TD) which is actually a ther-

mally dominated one with h0 ¼ 10 and Ĉ ¼ 4=3, share the same total energy

flux l¼ 1100, the same initial Lorentz factor c0 ¼ 100, are homogeneous

F ¼ 1, and the poloidal streamlines (and field lines since Bp k vp) are ini-

tially parallel to the z-axis ð#0 ¼ 0Þ.

Model r0 �ðBy=BpÞ0 vy0 M0

Low poloidal (LP) 10 40 000 0.0005 12 000

Mild poloidal (MP) 10 158 0.0005 50

Equal poloidal (EP) 10 3.5 0.0005 1.10

Thermal driven (TD) 0.1 0.6 0.01 2.0

Low poloidal 01 (LP01) 10 40 000 0.1 12 000

Low poloidal 03 (LP03) 10 40 000 0.3 11 300
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affect the spatial scale of acceleration as also the rarefaction

wave front inclination. Finally, and in order to compare our

results with the ones obtained by numerical simulations, we

included three models, a hydrodynamic (HDB), one with

poloidal field (MHDA) and one with transverse field

(MHDB), that stand for the corresponding scenarios simu-

lated in Ref. 11. The initial parameters for these models are

shown in Table II.

The initial conditions for all models were specified at

h0 ¼ �p=2 (i.e., at z¼ 0, x< 0). The main criterion over

which they were selected was the total energetic context

l ¼ chð1þ rÞ : (45)

All models shown in Table I share the same value of

l¼ 1100. The models of the cited simulations (Table II) do

not share this same value; the corresponding fluxes are shown

in the relevant column of that table. The thermally driven mod-

els (TD and HDB) have very high enthalpy ðh0 ¼ 10; 21:6Þ
and thus a polytropic index of Ĉ ¼ 4=3 was chosen.

The results for the magnetic dominated models (LP,

MP, and EP) appear in Fig. 2. The first row of diagrams

shows the physical shape of the flow, some streamlines, and

the spatial distribution of the Lorentz factor. One must have

in mind that if a line attains a specific value of the Lorentz fac-

tor at some point, self-similarity will finally ascribe this effi-

ciency and to the rest lines starting from the lines close to the

corner to the most exterior ones. So the suitable measure for

the efficiency achieved is not the efficiency itself, but the rele-

vant energetic evolution along a streamline as a function of the

angle h or similarly of the relative distance r/r0¼ f/f0, where r0

the initial radial distance that the line originates from the base

of the flow ðh0 ¼ �p=2Þ and f0 the value of f at that point.

The energetics are shown in the second row, where we

draw the energy fluxes per mass energy flux in the laboratory

frame. The Lorentz factor for a cold flow is equal to the iner-

tial energy flux (rest mass energy plus bulk kinetic), while

the thermal energy ðh� 1Þc is absent. During the rarefaction

evolution, the Poynting flux is converted efficiently to ki-

netic, reaching soon to its maximum possible value ðcmax ¼
lÞ; ðr=r0Þ95 the point where c attains 95% to its maximum

value. When Bp becomes comparable to jByj it has significant

impact both on the rarefaction wave front and the spatial

scale of acceleration in the last one. The analytical results

obtained in the Appendix interpret exactly this behavior, a

summary of which is shown in Fig. 5. The calculated rarefac-

tion front corresponds to the dashed lines in the second row

diagrams.

An important conclusion of our study appears in the

third panel exhibiting the evolution of the integrable

quantities along the streamline. The inverse of the Alfv�enic

Mach number and the magnetization parameter follow a

power law decrease ðM�2; r / r�2=3Þ, and only small devia-

tions are noticed in the EP model. The scale of the Alfv�enic

Mach number is associated to the planar geometry and is fur-

ther discussed in Sec. V as also in the Appendix, where a for-

mal derivation of the scaling law is given. The extend of the

rarefied region, equals to the so-called Prandtl-Meyer angle

which is defined as the angle between the initial and the final

orientation of the flow ðhPM ¼ #1 � h1Þ. Its monotonic

increase with decreasing magnetic field component ratio f0,

with f � �By=Bp, is also provided in the Appendix,

Eq. (A12), and demonstrated in Fig. 5 for low initial trans-

verse velocities. As for the relative magnetic field compo-

nent strength included in the diagrams, we notice that the

ratio does not alter much, although in the last case a small

difference exists that would not be significant if it did not

had serious implications on the derivation of the expression

providing hPM angle (see in Fig. 5 how sensitive is the value

of hPM as a function of f0, for not too high values of f0).

The physical quantities normalized to their initial values

appear in the last row. The decrease observed in all, except

the transverse velocity, is intuitively expected due to the rar-

efaction process and the relevant conversion of the Poynting

energy. The density decrease follows also the �2/3 power

law, as Eq. (30) suggests ðq / M�2Þ. Similar behavior fol-

lows the magnetic field components, where only small devia-

tions at the low f0 cases exist. Some special attention should

be given in the transverse velocity evolution that shows a pe-

culiar pattern either of increase (LP), or decrease (MP, EP),

explained in Sec. V.

The results of the last three models (TD, LP01, LP03)

appear in Fig. 3. The main characteristics of the mixed type

scenario is the much lengthier spatial scales of acceleration,

the latter appearance of the wave front, and the extension of

the rarefied region; compare, for example, with (EP) model.

A small bump observed in the thermal energy curve ðh� 1Þc
is due to the magnetic acceleration of the flow. That acceler-

ation yields an increases of the inertial of the thermal energy

rather than of the thermal energy context, see that h monot-

onically decreases in the bottom row. This first phase of

acceleration occurs in expense of the Poynting energy and

for that reason the Alfv�enic Mach number follows the power

law scaling mentioned before. That behavior breaks when

the thermal energy becomes the leading one, but this region

falls out of the diagram.

Models (LP01, LP03) are dedicated to the implications

of significant initial transverse velocity in contrast to the

(LP) model. As seen in Fig. 3, the effects on the rarefaction

wave inclination and on the maximum extension of the rare-

fied area are important, while M�2 and r still follow the

�2/3 power law. Besides its high initial value, the transverse

velocity finally declines to small values asymptotically.

As a final application, we examine the consistency of

our steady-state solution with the simulations appearing in

Ref. 11, and their similar ones in Ref. 23. Using the same set

of initial parameters (Table II15), the results obtained (Fig. 4)

are in excellent agreement with the simulations. The situa-

tion is identical until of course the point, where a contact

TABLE II. All models share the same initial velocity along the z-axis, with

c0 ¼ 7:089 ð#0 ¼ 0; vz0 ¼ 0:990; vy0 ¼ 0Þ. The thermal energy is also com-

mon, with h0 ¼ 4� 105 ðq0 ¼ 10�4; p0 ¼ 10; Ĉ ¼ 4=3Þ.

Model r0 Bp0 �By0 l

Poloidal field (MHDA) 0 21.27 0 2.83� 106

Transverse field (MHDB) 100 0 149 5.38� 105

Hydrodynamic flow (HDB) 0 0 0 4.11� 104
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discontinuity (CD) occurs, the left plateau at their diagrams,

corresponding to a termination of the rarefaction process.

This picture is expected whenever a nonzero external

pressure/density exists, since a contact discontinuity between

the two fluids, but also a shocked region in the exterior me-

dium are formed, see Sec. V.

FIG. 2. The results of the three cold models (LP, MP, EP). First row: The physical shape of the flow, some specific streamlines, and the spatial distribution

of the Lorentz factor. Second row: The energetics along a specific line, where c (green) is the Lorentz factor, l (blue) is the total energy flux, and hcr (red)

the Poynting flux, both per rest mass energy flux. The dashed lines stand for the rarefaction wave front, and ðr=r0Þ95 the point where the c reaches the 95%

of l. Third row: The evolution of the integrable functions normalized to the values mentioned in the diagrams. The inverse square of the Alfv�enic Mach

number (red) and the magnetization parameter (blue) follow the same power law in the first two models, while they slightly differ in the last one. The incli-

nation of the poloidal streamlines (cyan) and its final asymptotic value ð#1Þ appears, the relative strength of the magnetic field components (green) and its

asymptotic relative difference ðDf ¼ f1 � f0Þ. Bottom row: The evolution of the physical quantities normalized to their initial values. The density ratio

(q=q0, blue). The evolution of the magnetic field components (Bp=Bp0, red; By=By0, green) coincides in the first two diagrams and differing slightly at the

last one. The normalized transverse velocity (vy=vy0, cyan) and its final asymptotic value also appears; notice its negligible value at the first two models in

contrast to the last one.
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V. INTERPRETATION OF THE RESULTS—DISCUSSION

The main characteristic of the rarefaction model pre-

sented above is the significant acceleration of the flow.

Depending on the available energy reservoir, this acceleration

is performed in expense of the Poynting energy (hcr, magnet-

ically driven), of the thermal one (h, thermally driven), or

both (mixed type). But no mater in what form the leading

energy is, in all of the flows the acceleration achieved leads

to completely matter-dominated flows ðcmax � lÞ.
A phenomenological interpretation for the acceleration

spatial scale is based on the magnetization parameter power

law ðr / r�2=3Þ that applies to all cold flows, even if small

deviations like in (EP) model exist. Since in all cases the

same initial values of l; c; r apply, the relative distances are

ascribed to the early appearance of the rarefaction process. In

contrast to this, in the thermal driven rarefaction (TD) the

acceleration takes place in much greater distances, despite

the early appearance of the rarefaction wave front. The

lengthier, and thus less efficient action, is associated with the

conversion of the thermal energy to bulk kinetic, which fol-

lows a much shallower law than the Poynting energy decrease

(see Fig. 3). For the case of a mixed type rarefaction where

the poloidal magnetic field is significant, ðBp > jByjÞ and

v2
A � 1� �, with � < 1=hc. Thus, r / 1=M2 / q=h / q2�Ĉ ,

while if significant thermal context exists, then h / qĈ�1

with Ĉ ¼ 4=3 exhibiting the slower scale of the thermal con-

version. That result is in agreement with other models where

rarefaction was considered in the negligible poloidal mag-

netic field limit, in both planar18 and axisymmetric flows.7

The rarefaction wave front is determined by the vanish-

ing of the denominator of Eq. (42). In general that vanish-

ing occurs at the modified fast magnetosonic surface which

corresponds to points where cv#=c equals the comoving

phase velocity of the fast magnetosonic waves. Thus the

lines of h¼ const are also the characteristics of our system,

FIG. 3. The results for the TD, LP01, and LP03 models. First row: The total energy (l blue), the Lorentz factor (c, green), the Poynting flux (hcr, red), and the

thermal one (ðh� 1Þc, cyan); the two last models corresponds to cold flows and thus the thermal energy does not appear. The dashed line corresponds to the calcu-

lated distance where rarefaction wave occurs. Second row: The evolution of some important quantities normalized in the values shown at the diagrams. The inverse

square of the Alfv�enic Mach number (red), the magnetization parameter (blue), the inclination of the of the poloidal filed lines (cyan), and the relative transverse

velocity (magenta); the asymptotic values of the last two also appear. The ratio of the magnetic field components (green), and its relative asymptotic difference

ðDf ¼ f1 � f0Þ. Notice that in the (TD) model, we included the specific enthalpy evolution (yellow) to exhibit its effects on the thermal driven rarefaction.

FIG. 4. The three models corresponding to the numerical simulations cited in the main text (MHDA blue, MHDB green, and HDB red).
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exactly as in the hydrodynamic homogeneous rarefaction,

forming around the poloidal velocity the Mach cone of the

fast magnetosonic velocities; Fig. 2 in Ref. 18 is very in-

structive. Considering the cone at the axis origin the wave

front is the envelope surface of all the fast magnetosonic

disturbances emitted from the point of the boundary discon-

tinuity. As such, the presence of a poloidal magnetic com-

ponent and transverse initial velocity both affect the wave

front inclination and hRW is no longer given by a simple

expression like
ffiffiffiffiffi
r0
p

=c0 as in the Bp � jByj; vy0 � 0 flows,

but from the more complicated expression (A12) and Fig. 5.

For the mixed type scenario (TD), the Mach cone is not

obtained by the sonic disturbances expected to propagate in

a much narrower opening of us=ðc0vp0Þ � 6:5� 10�3, if the

flow was purely hydrodynamic, but from the more extended

one of the fast magnetosonic disturbances (cs < cf , where cf

the velocity of the fast magnetosonic disturbances at the

comoving frame, which is significantly affected by the pres-

ence of Bp).

The cold and uniform flow is studied in detail in the

Appendix, where the scaling of M2 / r�2=3 is formally

derived. Beyond that the same law can be derived by more

intuitive arguments. The invariance of

cvpð Þ2
B2 � E2

B2
p

¼ const () Bco

q
¼ const; (46)

where Bco the magnetic field, in the comoving frame, is con-

nected to the magnetic flux conservation and is obtained

using the integral expressions.16 The continuity equation and

the flux conservation along the streamline provides

qcvh ¼ kðrAÞr � kA=r, which is used in conjunction with

D ¼ 0() ðcvhÞ2 ¼ ðB2 � E2Þ=ð4pqÞ (Eq. (42)) to obtain

B2 � E2 / 1=ðqr2Þ. Combining this scale with Eq. (46), we

derive the density evolution q / r�2=3 and by Eq. (19) the

requested M2 / r2=3 power law.

The transverse velocity evolution induces implications in

some of the models considered (TD, EP, LP03), while both

cases of an increasing (LP models) or a decreasing profile of

vy exist. The general behavior of both velocity components is

obtained in terms of r in the analysis of the Appendix, see

Eqs. (A5) and (A6), according to which v2
A > 1 leads to the

decrease, while v2
A < 1 to the increase of the transverse veloc-

ity.17 The asymptotic values of the velocity components is

obtained by setting r! 0

vy1
c
¼ v2

A

v
;

vp1
c
¼ vr1

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v4

A

v2
� 1

l2

s
; (47)

and simply state that all the plasma momentum in the y-

direction has been transferred to the matter. The momentum

conservation dictates the increase of the matter’s transverse

momentum ðcvyÞ, but the acceleration at the poloidal direc-

tion leads also to the inertial matter enhancement ðcÞ.
Weather inertial increase suppresses the transverse velocity

one, or not, is not uniquely determined; it depends on the ini-

tial conditions in the way that the relationship above deter-

mines. The velocity expressions are also useful in the

calculation of the magnetic components asymptotic ratio.

For that purpose, we apply their value to the v integral, and

after some manipulation we find

f1
f0

¼ vp0

vp1

M2
0 þ v2

A � 1

M2
0

(48)

by which the insignificant alteration of the f ratio is

concluded.

The evolution of the remaining parameters can also be

understood analytically. The transverse magnetic field is eas-

ily obtained by Eq. (31), which reveals the By / r�2=3

decrease, but at distances where M2 	 v2 due to the pres-

ence of the v2 term in the denominator. The f evolution indi-

cates then that the poloidal component follows the same

evolution Bp / r�2=3, except for the case where a minor

deviation of f is observed. It is instructive to compare the

scaling of the magnetic field component with the one

obtained by the axis-symetric MHD steady-state models,

Bp / 1=-2; B/ / 1=-, see, for example, Ref. 21. Besides

the differences in the decrease of the two components, in rar-

efaction the Poynting energy conversion l� hc / jByj /
r�2=3 is to be compared with the one obtained in the semi-

analytical results of Ref. 21 and the numerical ones (Ref. 8

and references therein) where the conversion is much slower

caused by the slow decrease of -B/. Thus, the magnetic

driven rarefaction is to be considered as a powerful and short

scaling mechanism to convert Poynting energy to bulk ki-

netic, and as such its contribution to the high energy astro-

physical phenomena might be important.

FIG. 5. The calculated angles for a cold flow ðc0 ¼ 100; r0 ¼ 10Þ as a func-

tion of f0. Top: The rarefaction front ð sin2hRWÞ for two different values of

the transverse velocity, and the asymptotic expression ðf0 !1Þ. Notice

that for improper initial conditions (low f0 or high vy0), we obtain

sin2hRW > 1 corresponding to sub-fast magnetosonic flow where the rare-

faction wave is impossible. Bottom: The resulting extension of the rarefied

area ðtan hPMÞ for a cold flow of negligible vy0.
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The magnetization parameter does follow the �2/3

power law in a great extend, but as Eq. (A3) suggests, this

behavior deviates whenever f is close to unity and vy � v,

e.g., in (EP) model. The deviation has not serious implica-

tions in the scalings of most physical quantities, but it affects

the calculations for the maximum extend of the rarefied flow

(hPM), see Eq. (A12). The two terms appearing in this

expression are of the same order magnitude and thus the

accurate numerical integration is unavoidable, especially for

low f flows. The resulting hPM for low initial transverse ve-

locity as a function of f0 are shown in Fig. 5.

Our model describes the rarefaction until its full comple-

tion, leading to a completely matter-dominated flow that fills

the space up to polar angle hPM. This will be indeed the end

state if the flow is surrounded by void space. If the pressure

or density of the environment is nonzero then the expansion

of the flow will modify the environment as well, and a CD

will be formed. The details of the final state depend on the

characteristics of the environment (for example, if it is a

hydrodynamic super-sonic flow in the ẑ direction a shocked

region will be formed and the pressure at the CD will be

related to the shock jump conditions). For an initially uni-

form environment, the CD will be conical h¼ hCD passing

trough the origin. The environment characteristics define the

value of the pressure PCD at CD, and thus the rarefaction

ceases at some angle hF in which pressure equilibrium is

reached

B2 � E2

8p
þ P

� 	
h¼hF

¼ PCD : (49)

The above equation defines the angle hF, after which (and up

to hCD) the flow remains uniform. Our model correctly

describes the rarefaction till the flow becomes uniform, so

we can use it to find the end state from Eq. (49), and also

find hCD ¼ ½#
h¼hF
.

If the flow is cold then Eq. (49) can be much simplified.

Since the comoving magnetic field scales with the densityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � E2
p

/ q / 1=M2, Eq. (49) can be rewritten as

M2
0

M2

� 	
h¼hF

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pPCD

B2
0 � E2

0

s
: (50)

If, for example, the environment is a uniform static medium

with pressure 25 times smaller than the initial magnetic pres-

sure of the flow, then at hF the ratio M2
0=M2 ¼ 0:2. Using the

third row of Fig. 2, e.g., for model LP, we find r=r0 � 300,

and from the other diagrams for the same model all the rest

physical quantities. The terminal Lorentz factor is �350

(corresponding to efficiency c=l � 30%) and the flow incli-

nation # ¼ hCD ¼ 0:5#1 ¼ 0:16�.
More complicated environments are beyond the scope

of this paper, but they are definitely an interesting applica-

tion of the model. Possibly the environment itself can also be

modeled with an r self-similar model. In this paper, we focus

on the strongly magnetized cases and highly relativistic

velocities; however, the model applies to other cases as well,

for example, to slow magnetosonic weak discontinuities;

these will be examined in another connection.
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APPENDIX: THE COLD HOMOGENEOUS CASE

We derive here the analytical expressions for the cold

ðh! 1; us ! 0Þ and homogeneous flow (F ¼ 1, see

Eq. (30)), which serves as an extension of the hydrodynamic

solutions of Refs. 9 and 6. At that limit, the rarefaction wave

front is determined straightforwardly by the vanishing of the

denominator of Eq. (41). The qualitative behavior of the so-

lution is easily understood, if we use Eq. (42)

D ¼ 0) cvh

c

� �2

¼ B2 � E2

4pqc2
: (A1)

As we proceed to the integration from the initial surface

h0 ¼ �p=2 to the higher angle ones, the d=dh derivatives

equal to zero indicating the uniform flow phase. That uni-

formity breaks at the point hRW where the ĥ�component of

the flow proper velocity becomes equal to the fast magneto-

sonic one yielding the weak discontinuity. From this angle

and beyond, a (0/0) form arises and the derivatives attain a fi-

nite value signaling the initiation of the rarefaction process.

It is easy to derive an analytical expression for the rare-

faction wave angle in terms of the initial quantities and not

only for the cold limit. For this purpose, we combine the

vanishing of D (Eq. (42)) and the Bernoulli equation (37) to

eliminate f and find

sin2 #� hð Þ ¼ r2M2

v2 vp=c
� �2

� v2 � 1

M2

� 1�M2 � v2

M2 cvp=c
� �2

u2
s ; (A2)

where use of Eqs. (30)–(35) was also made. We would like

to underline that the above expression provides not only the

rarefaction wave front angle hRW, i.e., when we consider the

initial values of the quantities, but also relates the appearing

quantities at the subsequent rarefaction phase.

A point of special attention for the following calcula-

tions is the transverse velocity vy which, even if it is negligi-

ble at the beginning, it is possible to end up with significant

values (see, for example, models EP, TD) affecting the

derived asymptotic expressions. Under this perspective, two

helpful and accurate expressions are

M2 ¼ v
r

v� vy

c

� �
; (A3)

v2
A ¼

hcv
l

vy

c
þ r

v

� �
: (A4)
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It is also useful to express the velocity components in terms

of the magnetization parameter. Equations (33), (35), and

(44) yield

vy

c
¼ v2

A þ r v2
A � 1

� �
v

; (A5)

vp

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v4

A

v2
1þ v2

A � 1

v2
A

r

 !2

� h2

l2
1þ rð Þ2

vuut : (A6)

We now focus on the cold flow limit and we use Eq.

(A3) in Eq. (A2) to obtain

sin2 #� hð Þ ¼ r
v

v� vy

c

vp=c
� �2

þ 1� v2

v� vy

c

2
64

3
75 : (A7)

The effects of the transverse velocity are important in cases

where the integral v is close to unity, i.e., when the ratio f is

comparable to the transverse velocity. Assuming the initial

values, we obtain the rarefaction wave front angle; for a spe-

cific c0, the angle depends on both vy0; f0 via v. In Fig. 5, we

give the relevant plot as function of f0 for two different val-

ues of the initial transverse velocity. Notice that at the limit

of the negligible poloidal magnetic field ðBp ! 0; v!1Þ
the above expression becomes sin2hRW ¼ r0ðc2 � v2

p0Þ=v2
p0

in agreement with the results of Ref. 18.

In order to derive the spatial evolution of the integrable

quantities, we use Eqs. (37) and (42) to eliminate # this time:

1

f 2
¼ v2h2c2r2

M2
� v4h2 v2 � 1

M6
c
vp

c

� �2

�v4h2 1�M2 � v2

M6
u2

s : (A8)

In the cold limit and by use of Eqs. (A3), (A4), (A5), and

(33), we obtain a rather simple expression

1

f 2
¼ v4

M6
1� v2

A

� �2
l2 þ v2 � 1

h i
; (A9)

which gives the power law evolution of the Alfv�enic Mach

number M2 / f 2=3 / r2=3. It is instructive to compare this

result with the one obtained at the negligible poloidal case.

In that limit both M2 and v2 become infinite, but their ratio

retains the finite value of 1=r, see Eq. (44). Thus, the same

spatial scaling is provided in terms of r / r�2=3.

We use this simple result to calculate the maximum

extend of the rarefied area. For that purpose, Eq. (36)

provides

dh
dM2

¼ 3

2

tan #� hð Þ
M2

: (A10)

The tangent appearing is obtained from the Bernoulli

Eq. (37)

sin #� hð Þ ¼ M2 þ v2 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 H M2ð Þ

p ; (A11)

where H(M2) is a polynomial of M2

H M2ð Þ ¼ l2 v2 � v4
A

� �
� v2

� �
M4

l2 1� v2
A

� �2 þ v2 � 1

h i
v2

� 2M2 þ 1� v2 :

The resulting expression must be calculated numerically

hPM ¼ hRW þ
3

2

ð1
M2

0

� M2 þ v2 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2H M2ð Þ � M2 þ v2 � 1ð Þ2

q dM2

M2
: (A12)

In Fig. 5, we show the obtained hPM values as a function of

the f0 for the same model parameters ðF; l; c0; vy0Þ like the

ones used in (LP, MP, EP) models.

In the limit of negligible poloidal magnetic field and

vy¼ 0, we get HðM2Þ ¼ r�1M2½l2 � ðrþ 1Þ2
; the second

term is of order �l2=c2 and thus can be ignored. The trans-

formation dM2=M2 ¼ �dr=r provides

hPM ¼ hRW þ
3

2

ðr0

0

1þ r
l
ffiffiffi
r
p dr :

In that limit, hRW � �
ffiffiffi
r
p

0=c0, and the above calculation

yields hPM ¼ 2
ffiffiffi
r
p

=l which is exactly the result found in

Ref. 18.
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