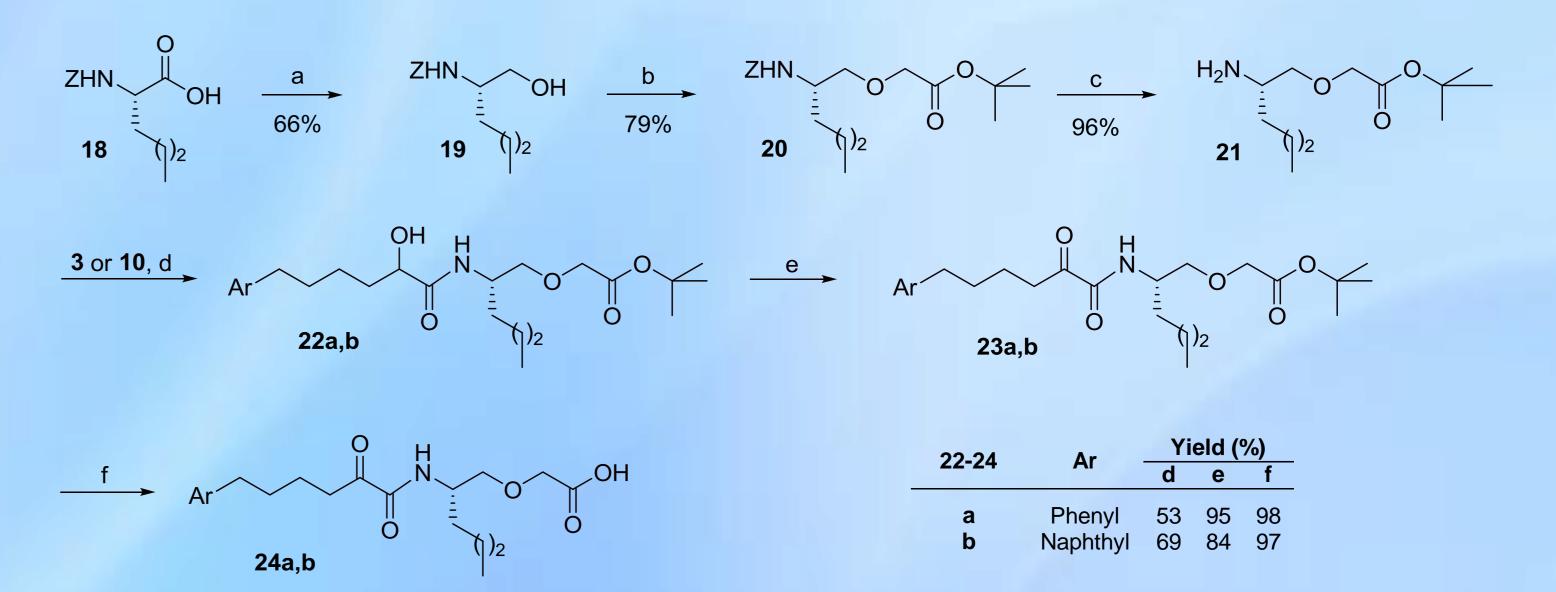
# INHIBITION OF Ca<sup>2+</sup>- INDEPENDENT PHOSPHOLIPASE A<sub>2</sub> BY 2-OXOAMIDES BASED ON DIPEPTIDES AND ETHER PSEUDODIPEPTIDES




## <u>Anneta Smyrniotou</u>,<sup>a</sup> Efrosini Barbayianni,<sup>b</sup> Ishita Shah,<sup>c</sup> Violetta Constantinou-Kokotou,<sup>a</sup> Edward A. Dennis,<sup>c</sup> George Kokotos<sup>b</sup>

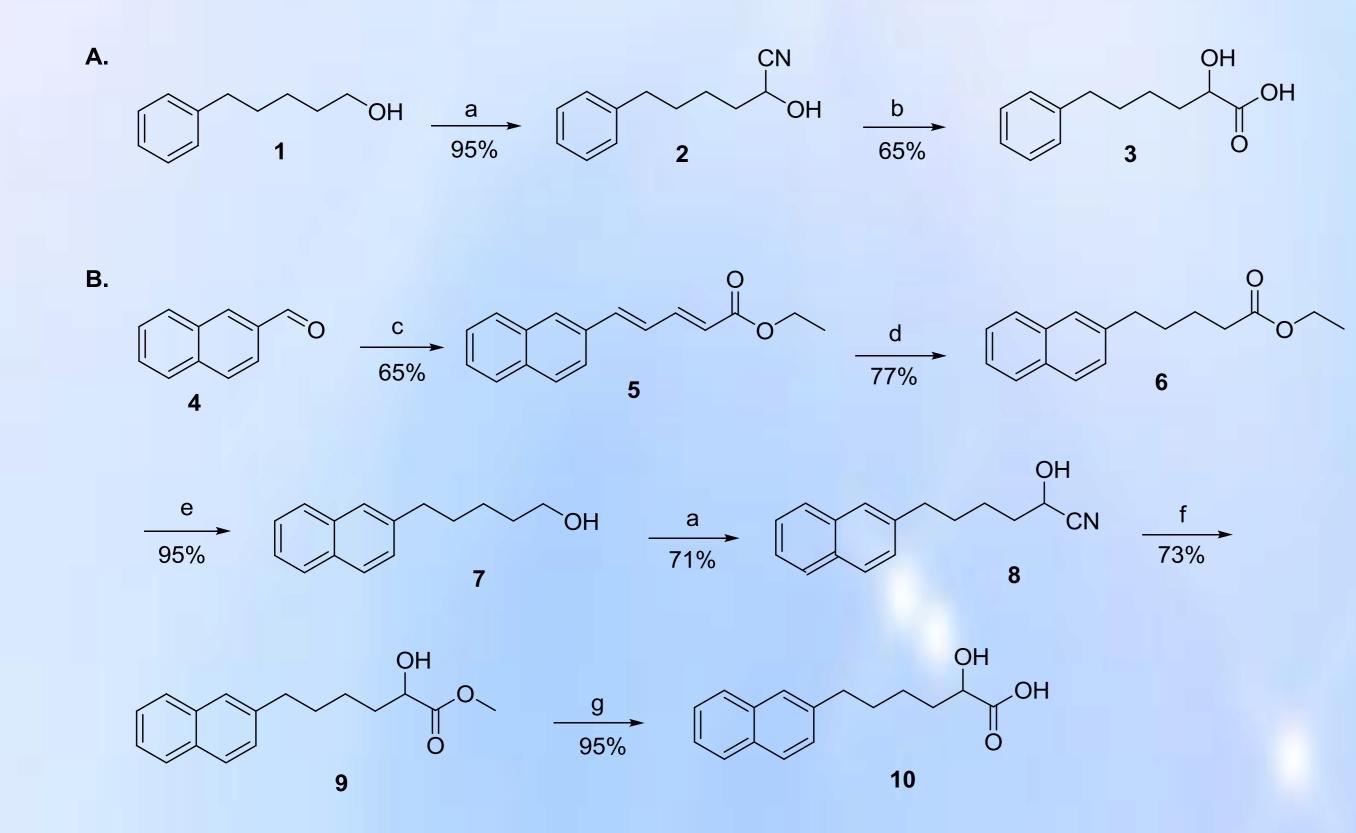
<sup>a</sup>Chemical Laboratories, Agricultural University of Athens, Athens 11855, Greece; <sup>b</sup>Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece; <sup>c</sup>Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601, USA.

#### Introduction

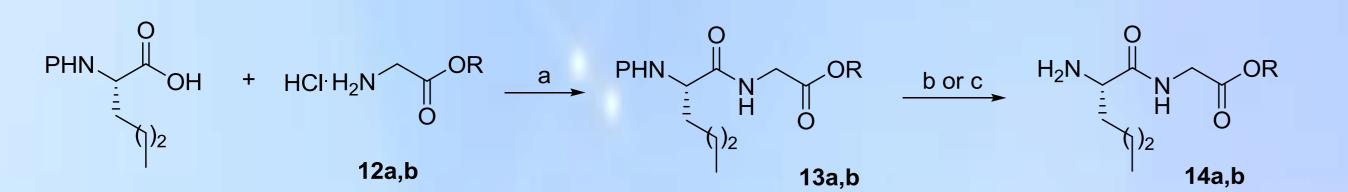
Phospholipases  $A_2$  (PLA<sub>2</sub>) catalyze the hydrolysis of the *sn-2* ester bond of glycerophospholipids producing free fatty acids and lysophospholipids. The free arachidonic acid (AA) that is released may be converted to a variety of proinflammatory eicosanoids. Therefore, inhibiting AA release is of great therapeutic relevance for the development of new anti-inflammatory drugs. Moreover, selective inhibition of the less studied enzyme of the three main categories, GVIA iPLA<sub>2</sub>, may offer valuable information about the enzyme's physiological role. A new class of PLA<sub>2</sub> inhibitors has been developed by our group: long chain 2-oxoamides based on amino acids.<sup>1-3</sup> Among others, we have shown that two molecules based on a pseudodipeptide ethyl ester and a dipeptide *tert*-butyl ester are the first 2-oxoamide derivatives, which preferentially inhibit GVIA iPLA<sub>2</sub> with  $X_1(50)$  values of 0.017 and 0.011  $\mu$ M, respectively.<sup>4</sup> To extend our studies, we synthesized a variety of 2-oxoamides based on dipeptides and ether pseudodipeptides, bearing an aryl terminal group on their 2-oxoamide aliphatic chain and we studied their *in vitro* activity on three human PLA<sub>2</sub> classes: GIVA cPLA<sub>2</sub>, GVIA iPLA<sub>2</sub> and GV sPLA<sub>2</sub>.

Coupling reaction between the free amino group of the dipeptides or the ether pseudodipeptide and the 2-hydroxy acid took place in the presence of WSCI/HOBt and the resulting 2-hydroxy amides **15a-d** and **22a,b** were oxidized to 2-oxoamides **16a-d** and **23a,b** using the Dess-Martin method. Oxoamides **17a,c** and **24a,b** containing a free carboxyl group, were obtained by treatment of **16a,c** and **23a,b** with trifluoroacetic acid (**Schemes 2 and 3**).




#### Synthesis

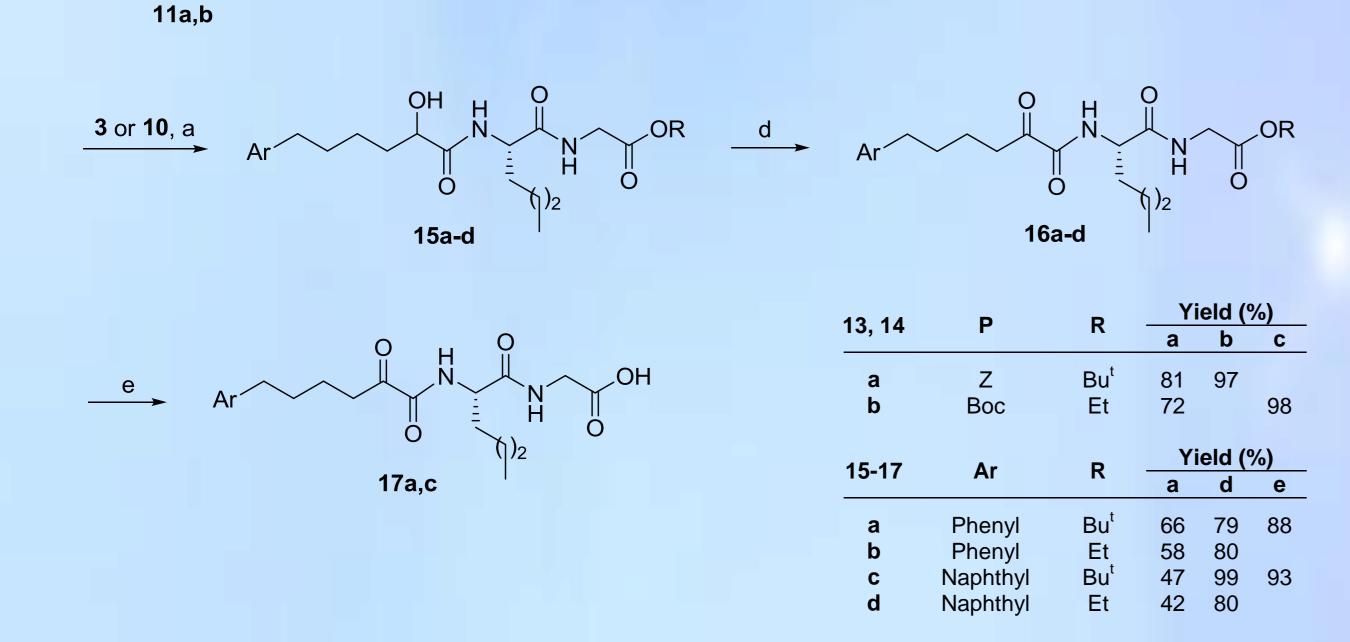
As starting materials for the synthesis of 2-hydroxy-acids we used 5-phenyl-1-pentanol (1) and 2-naphthaldehyde (4). Alcohol 1 was oxidized to aldehyde using the AcNH-TEMPO method, which was treated with NaHSO<sub>3</sub>/KCN to provide the corresponding cyanhydrin 2. The latter was converted to the 2-hydroxy-acid 3 after treatment with condensed hydrochloric acid and subsequently with potassium hydroxide in a solution of ethanol/water. 2-Naphthaldehyde (4) underwent a Horner – Wadsworth – Emmons olefination, in order to extend the carbon chain, followed by catalytic hydrogenation. The resulting ester 6 was reduced to the corresponding alcohol 7 using DIBALH. Following the same chemical steps as previously, cyanhydrin 8 was obtained, which was converted to the 2-hydroxy-methylester 9 after treatment with methanolic hydrochloride. The desired 2-hydroxy-acid 10 was produced after saponification (Scheme 1). *N*-Protected L-norleucines 11a,b and glycine esters 12a,b were coupled using WSCI.HCl as a condensing agent in the presence of HOBt to provide the desired dipeptides (13a,b) (Scheme 2), while the pseudodipeptide 20 was obtained after reaction of L-norleucinol with *tert*-butyl bromoacetate under phase transfer conditions (Scheme 3).


Scheme 3. *Reagents and conditions:* a) i. NMM, ClCOOEt, THF; ii. NaBH<sub>4</sub>, CH<sub>3</sub>OH; b) BrCH<sub>2</sub>COOBu<sup>t</sup>, 50% NaOH, Bu<sub>4</sub>NHSO<sub>4</sub>, benzene; c) H<sub>2</sub>, 10% Pd/C; d) WSCI, HOBt, Et<sub>3</sub>N, CH<sub>2</sub>Cl<sub>2</sub>; e) Dess-Martin periodinane, CH<sub>2</sub>Cl<sub>2</sub>; f) 50% TFA/CH<sub>2</sub>Cl<sub>2</sub>.

| Table 1. In vitro results of the human | phospholipases A | $A_2$ inhibition | by 2-oxoamides. |
|----------------------------------------|------------------|------------------|-----------------|
|----------------------------------------|------------------|------------------|-----------------|

|          | C4                                                                                                              | % Inhibition      |                                   |                   |
|----------|-----------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------|-------------------|
| Compound | Structure                                                                                                       | cPLA <sub>2</sub> | iPLA <sub>2</sub>                 | sPLA <sub>2</sub> |
| 16a      | $ \begin{array}{c} O \\ H \\ H \\ O \\ H \\ H \\ O \\ H \\ H \\ O \\ O$ | 46.9              | 91.1                              | 43.4              |
| 16c      | $(1)^{O}$                                                                                                       | 57.5              | 89.1                              | 44.8              |
| 16d      | $ \begin{array}{c}                                     $                                                        | 70.5              | 77.1                              | 54.4              |
| 17a      |                                                                                                                 | 11.2              | -                                 | -                 |
| 17c      | $ \begin{array}{c}                                     $                                                        | 43.1              | _                                 | -                 |
| 23a      |                                                                                                                 | 82.3              | 76.0                              | 57.5              |
| 23b      | (                                                                                                               | 85.5              | 88.4                              | 63.9              |
| 24ª      | $ \begin{array}{c} 0 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 12 \\ 12 \\ 12$                                           | 72                | <b>X<sub>I</sub>(50)</b><br>0.011 | 59                |
| 25ª      | $(1)_{13}$                                                                                                      | 52                | <b>X<sub>I</sub>(50)</b><br>0.017 | 81                |




**Scheme 1.** *Reagents and conditions:* a) i. NaOCl, NaBr, AcNH-TEMPO, NaHCO<sub>3</sub>, AcOEt/toluene/H<sub>2</sub>O 3:3:0.5, -5 °C; ii. NaHSO<sub>3</sub>, KCN, CH<sub>2</sub>Cl<sub>2</sub>, H<sub>2</sub>O; b) i. conc. HCl, ii. KOH, EtOH/H<sub>2</sub>O; c)  $C_2H_5OOCCH=CHCH_2P(=O)(OC_2H_5)_2$ , LiOH, THF, reflux; d) H<sub>2</sub>, 10% Pd/C, EtOH; e) DIBALH, anhydrous Et<sub>2</sub>O; f) 3N HCl/ MeOH; g) NaOH 1N, MeOH.



<sup>a</sup> Data taken from Ref. 4

#### **Results and discussion**

Preliminary PLA<sub>2</sub> inhibition results are summarized in Table 1. Derivatives **24** and **25** have been also included for comparison reasons. Among the seven compounds tested, **16a** and **16c**, based on Nle-Gly *tert*-butyl ester, bearing phenyl and naphthyl side chain terminal moieties respectively, appear to inhibit preferentially GVIA iPLA<sub>2</sub>. This observation is in full agreement with our previous report, that the 2-oxoamide derivative based on Nle-Gly *tert*-butyl ester (**24**) is potent and selective inhibitor of GVIA iPLA<sub>2</sub>.<sup>4</sup> The other two *tert*-butyl esters of this series, namely **23a** and **23b**, based on ether pseudodipeptides, exhibited considerable but lower activity towards GVIA iPLA<sub>2</sub>, though they inhibit also GIVA cPLA<sub>2</sub> to a similar level. 2-Oxoamide derivatives containing free carboxylic acids (**17a** and **17c**) do not



Scheme 2. Reagents and conditions: a) WSCI, HOBt,  $Et_3N$ ,  $CH_2Cl_2$ ; b)  $H_2$ , 10% Pd/C, THF; c) 4N HCl/ $Et_2O$ ; d) Dess-Martin periodinane,  $CH_2Cl_2$ ; e) 50% TFA/ $CH_2Cl_2$ .

### inhibit GVIA iPLA<sub>2</sub>.

#### References

- 1. Stephens, D.; Barbayianni, E.; Constantinou-Kokotou, V.; Peristeraki, A.; Six, D. A.; Cooper, J.; Harkewicz, R.; Deems, R. A.; Dennis, E. A.; Kokotos, G. J. Med. Chem. **2006**, 49, 2821.
- Six, D. A.; Barbayianni, E.; Loukas, V.; Constantinou-Kokotou, V.; Hadjipavlou-Litina, D.; Stephens, D.; Wong, A. C.; Magrioti, V.; Moutevelis-Minakakis, P.; Baker, S.; Dennis, E. A.; Kokotos, G. J. Med. Chem. 2007, 50, 4222.
- 3. Antonopoulou, G.; Barbayianni, E.; Magrioti, V.; Cotton, N.; Stephens, D.; Constantinou-Kokotou, V.; Dennis, E. A.; Kokotos, G. *Bioorg. Med. Chem.* **2008**, *16*, 10257.
- 4. Barbayianni, E.; Stephens, D.; Grkovich, A.; Magrioti, V.; Hsu, Y.-H.; Cotton, N.; Dolatzas, P.; Kalogiannidis, D.; Dennis, E. A.; Kokotos, G. *Bioorg. Med. Chem.* **2009**, *17*, 4833.

#### Acknowledgements

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

