

COMBINATORIAL DESIGN, SELECTION AND SYNTHESIS OF PEPTIDE

INHIBITORS AGAINST HUMAN GLUTATHIONE TRANSFERASE P1-1

Nikolaos Georgakis¹, Eleni Pappa², Aikaterini Zompra², Giorgos Pairas², Fotini Lamari², Petros Tsoungas³, Nikolaos Labrou¹, Paul Cordopatis² and Yannis Clonis¹

¹Laboratory of Enzyme Technology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece. ²Department of Pharmacy, University of Patras, Patra, Greece. ³Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece.

ABSTRACT. Certain glutathione S-transferase (GST) isoenzymes detoxify the cell from xenobiotics, thus becoming inhibition targets when overexpressed in various tumours leading to MDR. We developed a combinatorial strategy aiming at designing peptide inhibitors against the hGSTP1-1 isoenzyme involved in MDR. We employed a combinatorial peptide library featuring engineered *E. coli* cells harboring a plasmid able to express a fusion protein containing random 12peptides which were inserted into the active loop of thioredoxin, which itself was inserted into the dispensable region of the flagellin gene. After five selection rounds, clones were screened for hGSTP1-1 binding and those with the strongest signal were selected and sequenced. Sequence alignments showed a core binding sequence which, along with selected peptide fragments, were synthesized using the solid phase methodology and Fmoc/tBu chemistry on 2-chlorotrityl chloride solid support. The four peptides were studied for their inhibition potency against hGSTP1-1 allozymes A, B and C.

INTRODUCTION. Glutathione S-transferases (GSTs, EC 2.5.1.18) are a family of isoenzymes that differ in their tissue-specificity expression and distribution. They catalyse the conjugation of glutathione (GSH) to a variety of hydrophobic endogenous and exogenous substrates, rendering them hydrophilicity and facilitating their metabolic processing and eventual secretion from the cell [1]. Cancer cells may acquire resistance by overexpressing GST activities, hampering the effectiveness of certain chemotherapeutic drugs [2,3]. Several synthetic compounds exhibiting inhibition potency against GSTs have been proposed as strategies to overcoming MDR attributed to GST overexpression [5-8]. We report on the design, synthesis and enzymological evaluation of peptides as inhibitors for hGSTP1-1 allozymes A,B,C.

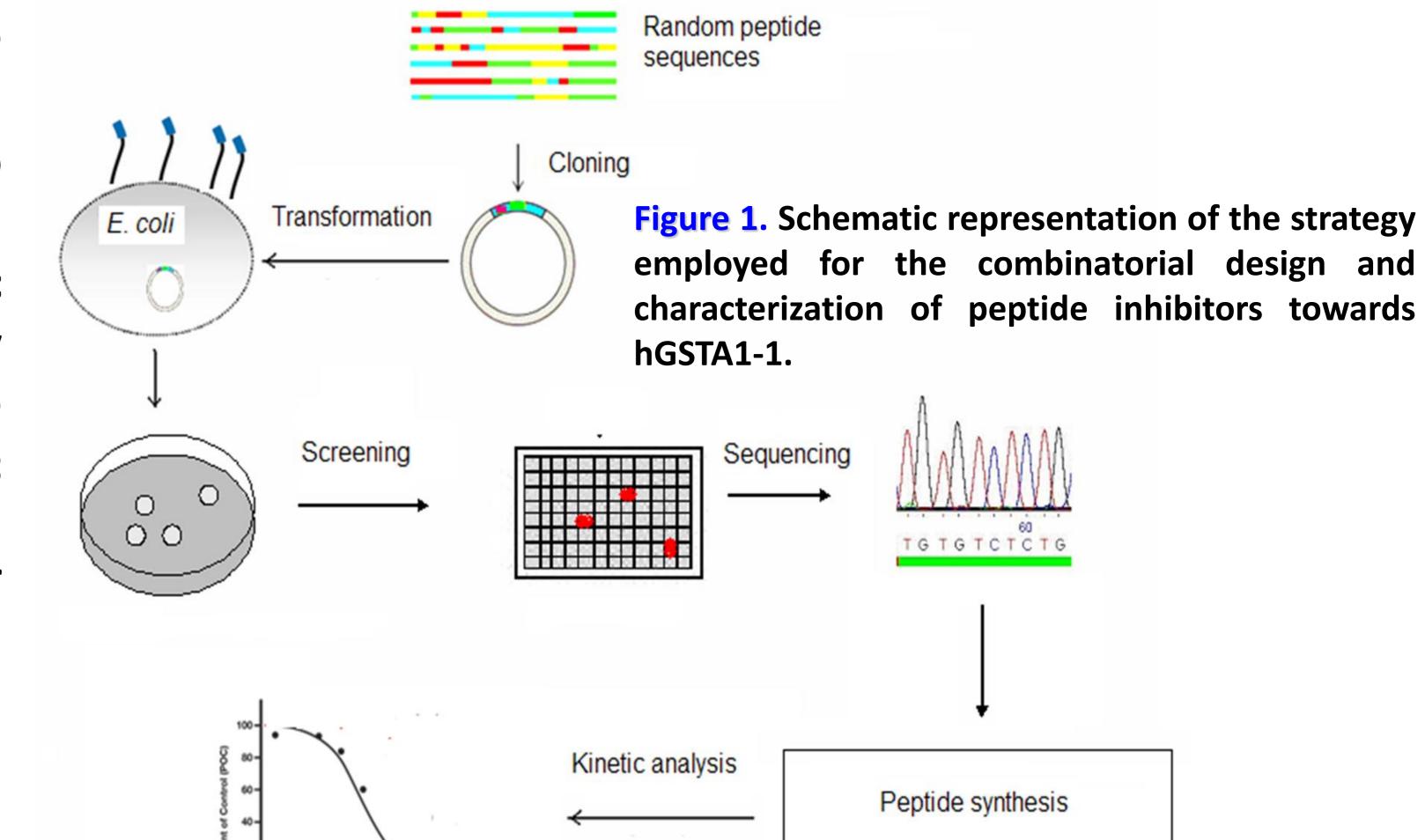

RESULTS/CONCLUSIONS. Peptide design (Figure 1) was accomplished through an iterative binding cycle called panning using a bacterial surface peptide display library (FliTrx) with an estimated diversity of 1.77X10⁸ possible peptide combinations using hGSTP1-1 as the target. The bacterial peptide display library was comprised of *E. coli* cells harbouring a plasmid (pFlitrx, Figure 2) engineered to express a fusion protein containing random dodecapeptides that were inserted into the active loop of thioredoxin, which itself was inserted into a dispensable of flagellin, the major constituent of flagellar filaments. When the fusion protein becomes an integral part of the flagellar filaments on the bacterial cell surface, the dodecapeptides become available to interact with target proteins. After 5 continuous selection rounds, different clones were screened for hGSTP1-1 binding by dot blot (Figure 3) and the clones exhibiting the strongest signal were selected and their sequence determined by nucleotide sequencing. Sequence alignments showed a core binding sequence (PATAISLGGG) which, along with selected peptide fragments (PATAI, SLGGG, AISL), were synthesized using the solid phase methodology and Fmoc/tBu chemistry on 2-chlorotrityl chloride solid support.

Table 1. Kinetic constants for hGSTP1 allozymes A, B & C.

Allozyme	Substrate	V _{max} (µmol·min ⁻¹ ·mL ⁻¹)	k _{cat} (min ⁻¹)	K _m (mM)	k _{cat} /K _m (min ⁻¹ ·mM ⁻¹)
hGSTP1A	GSH	0.0284 ±0.0005	1051.85 ±18.52	0.1277 ±0.0065	8236.88 ±594.55
	CDNB	0.0688 ±0.0023	2991.30 ±100,00	1.3205 ±0.0844	2265.28 ±235.56
hGSTP1B	GSH	0.0165 ±0.0003	458.33 ±8.34	0.1489 ±0.0081	3078.11 ±236.31
	CDNB	0.0321 ±0.0005	891.67 ±13.89	1.1627 ±0.0488	766.90 ±46.06
hGSTP1C	GSH	0.0140 ±0.0003	205.88 ±4.41	0.1275 ±0.0071	1614.75 ±131.84
	CDNB	0.0233 ±0.0003	456.86 ±5.89	1.0692 ±0.0366	427.29 ±20.85

REFERENCES

- 1. Oakley, A. J. *Drug Metab. Rev.* **2011**, *43*, 138.
- 2. Morrow, C.S., Smitherman P.K., Townsend A.J. Biochem. Pharmacol., 1998, 56, 1013.
- 3. Sau, A.; Trengo, F. P.; Valentino, F.; Federici, G.; Caccuri, A. M. Arch. Biochem. Biophys. 2010, *500*, 116.
- 4. Mahajan, S.; Atkins, W. M. *Cell. Mol. Life Sci.* **2005**, *62*, 1221.
- 5. Adang, A. E.; Brussee, J.; van der Gen, A.; Mulder, G. J. *J. Biol. Chem.* **1991**, *266*, 830.
- 6. Koutsoumpli, G. E., Dimaki, V. D., Thireou, T. N., Eliopoulos, E. E., Labrou, N. E., Varvounis, G. I., Clonis, Y. D. *J. Med. Chem.* **2012**, *55*, 6802.
- 7. Zoi, O.G.; Thireou, T.N.; Rinotas, V.E.; Tsoungas, P.G.; Eliopoulos, E.E.; Douni, E.K.; Labrou, N.E. and Clonis, Y.D. *J. Biomol. Screen.*, **2013**, *18*, 1092.
- 8. Perperopoulou F.D., Tsoungas P.G., Thireou T.N., Rinotas V.E., Douni E.K., Eliopoulos E.E., Labrou N.E. and Clonis Y.D. Bioorg. Med. Chem., 2014, in press; DOI: 10.1016/j.bmc.2014.06.007.

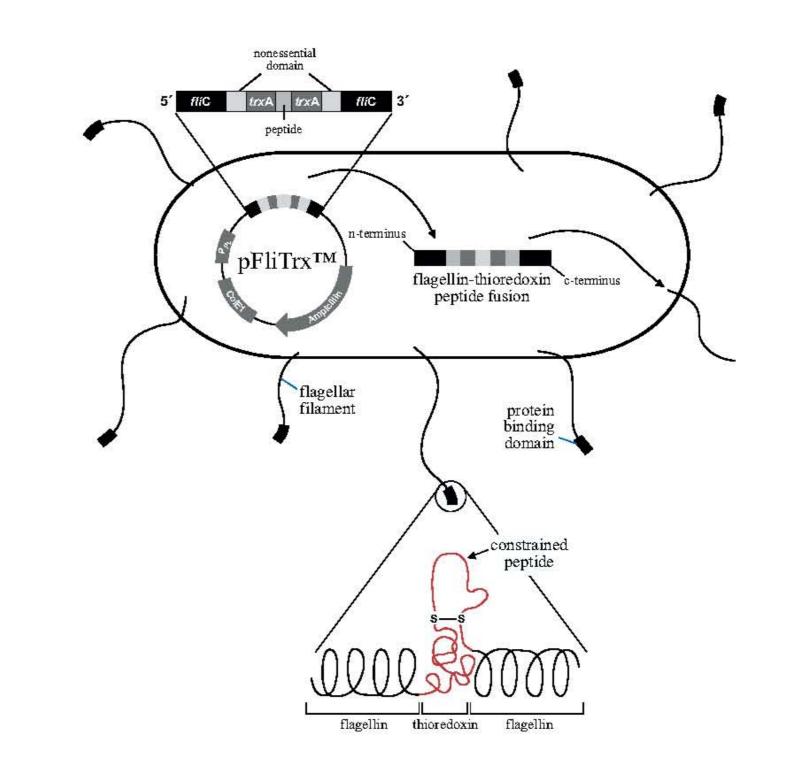
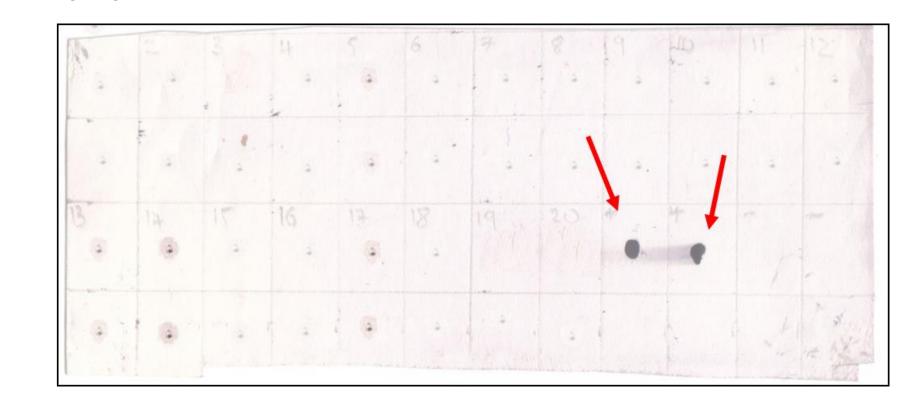



Figure 2. The structure of the plasmid pFlitrx.

Figure 3. Dot blot analysis for the selection hGSTP1-1 binding peptides.

The purified allozymes were subjected to kinetic study and inhibition tests with the desiged peptides.

It appears that the mutations of the allozymes hGSTP1*A (Ile¹⁰⁴/Ala¹¹³), hGSTP1*B (Val¹⁰⁴/Ala¹¹³) & hGSTP1*C (Val¹⁰⁴/Val¹¹³) have small influence on the binding affinity between substrate & enzyme (Table 1, K_m values), but result in significant changes of the catalytic reaction (Table 1, k_{cat} values) and, hence, the overall catalytic efficiency (Table 1, k_{cat} /K_m values).

Furthermore, these mutations influence the inhibitory ability of the designed peptides. TH10 is the most effective inhibitor (Table 2), with the shorter counterparts showing varied inhibitory potency depending on the allozyme.

Rationalization of the above results requires the engagement of molecular modeling and dynamic approaches.

Table 2. Inhibition of hGSTP1 allozymes by peptides designed on the basis of results from the $E.\ coli$ displayed combinatorial library.

Peptide	Inhibition of hGSTP1-1 (%, compared in the absence of inhibitor)				
	Α	В	С		
TH10: Pro-Ala-Thr-Ala-Ile-Ser-Leu-Gly-Gly	32.2	58.0	25.4		
TH5 ^N : Pro-Ala-Thr-Ala-Ile	29.2	46.6	14.3		
TH5 ^c : Ser-Leu-Gly-Gly-Gly	34.2	42.2	18.7		
TH4: Ala-Ile-Ser-Leu	15.0	30.6	16.8		

ACKNOWLEDGEMENTS

We acknowledge financial support from the grant program THALES, co-funded by the European Union – European Social Fund and National Resources. The grant THALES- falls under the Operational Programme "Education and Lifelong Learning".