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Summary

We performed the ®rst ®eld-scale atrazine remedia-

tion study in the United States using chemically killed,

recombinant organisms. This ®eld study compared

biostimulation methods for enhancing atrazine degra-

dation with a novel bioaugmentation protocol using a

killed and stabilized whole-cell suspension of recom-

binant Escherichia coli engineered to overproduce

atrazine chlorohyrolase, AtzA. AtzA dechlorinates

atrazine, producing non-toxic and non-phytotoxic

hydroxyatrazine. Soil contaminated by an accidental

spill of atrazine (up to 29 000 p.p.m.) supported signif-

icant populations of indigenous microorganisms cap-

able of atrazine catabolism. Laboratory experiments

indicated that supplementing soil with carbon inhib-

ited atrazine biodegradation, but inorganic phosphate

stimulated atrazine biodegradation. A subsequent

®eld-scale study consisting of nine (0.75 m3) treat-

ment plots was designed to test four treatment proto-

cols in triplicate. Control plots contained moistened

soil; biostimulation plots received 300 p.p.m. phos-

phate; bioaugmentation plots received 0.5% (w/w)

killed, recombinant E. coli cells encapsulating AtzA;

and combination plots received phosphate plus the

enzyme-containing cells. After 8 weeks, atrazine

levels declined 52% in plots containing killed recom-

binant E. coli cells, and 77% in combination plots. In

contrast, atrazine levels in control and biostimulation

plots did not decline signi®cantly. These data indicate

that genetically engineered bacteria overexpressing

catabolic genes signi®cantly increased degradation

in this soil heavily contaminated with atrazine.

Introduction

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-

s-triazine) is a herbicide widely used in the United States

for the control of broad-leaved weeds in corn, sorghum

and sugar cane. Atrazine is relatively recalcitrant in soil

(Best and Weber, 1974; Cohen et al., 1984; Koskinen

and Clay, 1997), especially below the soil surface,

where it is commonly detected after 1 year. Atrazine has

been reported to have a half-life greater than 170 days

in soils known to contain atrazine-degrading microorgan-

isms (Radosevich et al., 1996), and is signi®cantly more

persistent in soil when present at concentrations higher

than the suggested application rate of 1 p.p.m. (Davidson

et al., 1980). Such a situation may result from normal pes-

ticide handling techniques that predate current environ-

mental regulations (Fadullon et al., 1998), or from

accidental spills.

Atrazine removal from the soil environment can occur by

several different mechanisms. At typical soil pH, atrazine

is only very slowly chemically hydrolysed (half-life of 200

days) to produce hydroxyatrazine (Armstrong et al.,

1967; Plust et al., 1981). A more signi®cant degradation

mechanism for atrazine in soils is microbial metabolism

(Mandelbaum et al., 1993a; Radosevich et al., 1995). Micro-

bial degradation of atrazine has been demonstrated to occur

via dealkylation (Giardina et al., 1982; Giardi et al., 1985;

Behki and Khan, 1986; Behki et al., 1993; Masaphy et al.,

1993; Behki and Khan, 1994; Hickey et al., 1994; Mougin

et al., 1994; Nagy et al., 1995), deamination (Giardina et

al., 1980) or dechlorination (Mandelbaum et al., 1993b;

Bouquard et al., 1997) reactions. Complete biodegradation

pathways are shown in the Biocatalysis and Biodegradation

Database web page (Ellis and Wackett, 1999).

For decontamination purposes, the most ef®cient

method of transforming atrazine into a less harmful end-

product is by biostimulation or bioaugmentation (Liu and

Su¯ita, 1993). Biostimulation involves supplementing

the contaminated soils to change the physical state of

the contaminant, thereby converting it to a bioavailable

form (Atlas and Bartha, 1992), or supplying a nutritional
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supplement or co-substrate to increase the population of

indigenous bacteria capable of catabolizing the contami-

nant (Adriaens and Focht, 1990). Bioaugmentation

involves inoculating soils with a non-indigenous microor-

ganism capable of catabolizing the contaminant (Brodkorb

and Legge, 1992).

The ability of introduced live cultures of atrazine-degrad-

ing bacteria to increase biodegradation has been investi-

gated in laboratory studies. In studies performed using

non-sterile soil, the success of bioaugmentation was inver-

sely related to population levels of indigenous atrazine-

degrading microorganisms (Kontchou and Gschwind,

1993; Radosevich et al., 1996; Struthers et al., 1998). In

sterile soils devoid of indigenous atrazine-degrading bac-

teria, it has been reported that atrazine concentration

was reduced by 70% (from 20 p.p.m. to 6 p.p.m.) in 30

days (Fadullon et al., 1998), or eliminated from 15 p.p.m.

in 5 days (Wenk et al., 1998).

In view of these studies, we decided to test the perfor-

mance of a novel form of bioaugmentation: direct addition

of killed and stabilized suspensions of whole recombinant

Escherichia coli cells engineered to overexpress the

enzyme atrazine chlorohyrolase (AtzA). AtzA dechlori-

nates atrazine in a single step to produce hydroxyatrazine,

which is non-toxic to plants. The atzA gene was cloned

from Pseudomonas strain ADP, a bacterium capable of

mineralizing atrazine rapidly (deSouza et al., 1995; Man-

delbaum et al., 1995).

In this paper, laboratory studies are described that

were performed to determine the extent to which bacteria

indigenous to spill-contaminated soil were capable of

degrading atrazine. We tested a range of biostimulation

supplements to optimize the nutritional additives and

took this information to the ®eld to test systematically the

ability of different bioremediation methods to remediate

soil heavily contaminated with up to 29 000 p.p.m. atrazine

by an accidental spill. In this study, we show that, in ®eld-

scale experiments, bioaugmentation of the contaminated

soil with killed and stabilized recombinant E. coli expres-

sing AtzA, in conjunction with phosphate supplementation,

was effective in removing 77% of atrazine from the con-

taminated soil.

Results

Enzyme activity

Viability tests of the killed cell suspension showed no cell

growth on solid LB medium or LB plus atrazine and chlor-

amphenicol. Cross-linking to kill cells resulted in some

enzyme inactivation; immediately after cross-linking, killed

cells retained 65% of enzyme activity compared with the

live cell activity. The A270 in the suspension containing

30 p.p.m. atrazine and killed cells dropped 0.25 absorption

units in 55 min, corresponding to an AtzA enzyme velocity

of 167 mg dayÿ1 gÿ1 cross-linked cells (data not shown).

Cross-linked cell suspensions retain signi®cant enzyme

activity over a long storage time, if stored properly. Suspen-

sions stored at room temperature for 7 months retained only

24% of their original enzyme activity when stored in complex

media consisting of the growth media plus cross-linking che-

micals and neutralizers, as described in Experimental pro-

cedures, but they retained 55% of the original enzyme

activity if stored in pH 7 phosphate buffer. After 8 and 9

months of storage in pH 7 phosphate buffer, cross-linked

cells retained 51% and 41% of the original enzyme activity

respectively. Cross-linked cells that were frozen showed

no enzyme activity after 7 months.

Microbial mechanism for atrazine degradation

The results of a bench test for microbial degradation of

atrazine in the spill-contaminated soil are shown in Fig. 1.

In unsterilized soil, the atrazine concentration declined by

84% from 17 100 p.p.m. to 2700 p.p.m. over the 5 week

sampling period. The ®rst-order reaction rate constant

was 0.08/day (R2
� 0.95). This is well within the 0.01±

0.2 dayÿ1 range of rate constants for atrazine minerali-

zation in soil under laboratory conditions measured by

Radosevich et al. (1996). In sterilized soil, no atrazine

degradation occurred, and atrazine concentration

remained constant at 15 100 p.p.m. The sterilized soil

remained sterile for the length of the experiment, as deter-

mined by plating assays. This indicates strongly that

microorganisms are responsible for atrazine degradation

in soil, and is consistent with other reports in the literature

(Jones et al., 1982; Smith and Walker, 1989; Winkelmann

and Klaine, 1991).

Biostimulation bench-top experiments

Soil from the atrazine spill site that was directly plated onto

Q 2000 Blackwell Science Ltd, Environmental Microbiology, 2, 91±98

Fig. 1. Microbial degradation of atrazine in bench test studies. (l)
sterilized soil; (B) non-sterilized soil. Error bars represent 1
standard deviation.
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minimal media with no nitrogen source supported no

bacterial growth. However, when this soil was plated

directly onto minimal media augmented with 500 p.p.m.

atrazine as the sole nitrogen source, abundant bacterial

growth resulted. This con®rmed the existence of microbes

in the soil, whose capability for catabolizing atrazine might

be enhanced by biostimulation.

Preliminary screening of potential biostimulation agents

indicated that atrazine degradation in this soil appeared to

be most in¯uenced by phosphate buffer and perhaps sim-

ple sugars (Table 1). Further testing of the effects of pH,

carbon addition and phosphate addition on atrazine degra-

dation was implemented using a statistically designed cen-

tral composite experiment. These results are shown in

Table 2. Carbon addition decreased atrazine degradation

(P-value� 0.002), and phosphorus addition increased

atrazine degradation (P-value�0.03). The effect of pH

manipulation was statistically insigni®cant. Optimal atrazine

degradation occurred at 300 p.p.m. phosphorus addition.

These results were used to construct the four ®eld site treat-

ment protocols described in Experimental procedures.

Field studies

Atrazine concentration as a function of elapsed time in ®eld

test plots is presented in Fig. 2. After 12 weeks, atrazine

levels in plots containing atrazine-degrading enzyme in

the form of 0.5% (w/w) killed recombinant E. coli cells

declined by 53% from 3800 p.p.m. to 1800 p.p.m. (this is

statistically signi®cant at P-value� 0.16). In plots augmen-

ted with the combination of phosphate and killed recombi-

nant cells, atrazine degradation was 77%, with levels

declining from 6700 p.p.m. to 1450 p.p.m. (signi®cant at

P-value� 0.03). In contrast, plots not treated with enzyme

(the control plots and plots augmented with 300 p.p.m.

phosphate) exhibited no signi®cant degradation (P-values

of 0.43 and 0.73 respectively), and atrazine concentration

remained at its initial average of 2500 p.p.m. Soil tempera-

ture at 10 cm depth dropped from 19.28C to 3.68C over the

experimental time period (data not shown). Signi®cant

degradation in the test plots continued until the soil tem-

perature dropped below 78C. This analysis shows that

no signi®cant degradation occurred during this time period

when the soil temperature averaged 3.68C.

Discussion

In the 18 months that this soil was stored on site following

contamination by an accidental atrazine spill, a signi®cant

population of indigenous microorganisms capable of cata-

bolizing atrazine developed. In laboratory experiments,

atrazine levels in non-amended moistened soil declined

by 84% from 17 100 p.p.m. to 2700 p.p.m. over a 5 week

period. Results from our studies show that, when microbial

populations were killed by autoclaving, no atrazine degra-

dation occurred, and atrazine levels remained constant at

15 100 p.p.m.

Despite the presence of signi®cant populations of indi-

genous atrazine-degrading microorganisms, the ability of

these bacteria to reduce the atrazine concentration signif-

icantly under ®eld conditions appears to be limited. If the

original atrazine was uniformly distributed in the 26 m3 of

containment soil, the concentration of atrazine would

average < 11 500 p.p.m. Atrazine was not uniformly dis-

tributed, however, and ranged from 400 to 29 000 p.p.m.

Q 2000 Blackwell Science Ltd, Environmental Microbiology, 2, 91±98

Table 1. In¯uence of soil amendments on degradation of atrazine in
spill-site soil.

Degradation
Amendment (%)

1 0.5 ml of soybean oil 42
2 1 ml of soybean oil 12
3 1 ml of 0.1% sodium citrate � 0.1% glucose 21
4 2 ml of 0.1% sodium citrate � 0.1% glucose 48
5 1 ml of glycerol 36
6 2 ml of glycerol 16
7 1 ml of non-fat whey 37
8 2 ml of non-fat whey 27
9 1 g of ground corn 33

10 2 g of ground corn 39
11 Buffer only 43
12 Water only, no buffer 26
13 No amendment 11

Amendments were added to 45 g of soil, and degradation was mea-
sured19 days after addition. Initial atrazine concentration in each
sample was individually determined and ranged from 3400 p.p.m. to
6700 p.p.m.

Table 2. Experimental design to analyse simultaneously the effects
of soil modi®cations on atrazine degradation.

Carbon Phosphorus Final [atrazine]
pH (g 45 gÿ1 soil) (p.p.m.) (p.p.m.)

1 7 0.08 150 1370
2 8 0.08 150 1970
3 7 0.8 150 1705
4 8 0.8 150 1350
5 7 0.08 450 2280
6 8 0.08 450 1090
7 7 0.8 450 3515
8 8 0.8 450 1870
9 7.5 0.44 300 1840

10 7.5 0.44 300 1320
11 6.5 0.44 300 1420
12 8.5 0.44 300 1475
13 7.5 0 300 900
14 7.5 1.16 300 1910
15 7.5 0.44 0 2540
16 7.5 0.44 600 1730

Initial atrazine concentration was 4500 p.p.m. Amendments were
added to 45 g of soil, and degradation was measured 13 days after
addition. Multiple regression of the results shows that carbon addition
reduces atrazine degradation (P -value � 0.002), and phosphorus
addition increases atrazine degradation (P -value � 0.03).
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(Fig. 3). For our test procedures, the portions of the soil

with the highest atrazine concentrations were selected

and homogenized. The weighted average of the initial atra-

zine concentration in the ®eld test plots was 3500 p.p.m.

This means that, over the 18 months of storage, the indi-

genous population reduced the atrazine concentration by

< 70%, corresponding to a half-life of 300 days. This is

longer than the reported 170 day half-life of atrazine in

soil environments (Radosevich et al., 1995), but is not sur-

prising because of the very large initial concentration.

While our results show that signi®cant degradation is

occurring naturally in this soil, the ability to store large

amounts of soil for long periods of time while waiting

for natural degradation to occur is not feasible; therefore,

developing a more rapid remediation procedure is

desirable.

To address this issue, we have attempted the ®rst use of

killed, recombinant organisms in ®eld remediation studies

in the United States. We have demonstrated the ability to

effect a 77% reduction in atrazine concentration (from

6700 p.p.m.) in only 8 weeks by adding a suspension of

stabilized, killed recombinant bacterial cells containing

active atrazine chlorohydrolase. This result is likely to be

at the lower limit of treatment ef®cacy, because the experi-

ment was performed in the late autumn when tempera-

tures were falling rapidly, and our data indicate that

remediation using this method is likely to be more effective

at higher temperatures. Because atrazine is typically

applied to ®elds during the spring, accidents are most

likely to occur at this time. Remediation can be implemen-

ted immediately during the season in which temperatures

are rising and stay elevated for many weeks.

There was a reduction in atrazine concentration from

6700 p.p.m. to 1450 p.p.m. in the enzyme plus phosphate-

treated plots. This occurred while soil temperatures were

dropping from 198C to 78C (678F to 388F). While the atra-

zine-degrading ability of the recombinant organism is clearly

temperature related, it is also related to other factors. To

show this, enzyme activity as a function of temperature is

presented as an Arrhenius plot in Fig. 4. In this form, the

line slopes represent activation energy for the ®rst-order

reaction. If this atrazine dechlorination reaction (catalysed

by whole stabilized cell suspension) was a simple ®rst-

order reaction, the slopes of all the lines would be equal,

but the slopes increase with increasing media complexity.

Cells stored on the bench top in clear buffer retain the

highest reaction activity. Reaction activity decreases when

cells are stored in complex media, compared with that mea-

sured in an identical batch of cells stored as a moistened

pellet. Finally, reaction activity decreases to a minimum for

the cells used at the ®eld remediation site. This indicates

Q 2000 Blackwell Science Ltd, Environmental Microbiology, 2, 91±98

Fig. 2. Atrazine biodegradation in ®eld test plots.
A. (l) Bioaugmentation plots (0.5% killed recombinant E. coli
cells) and (O) biostimulation plus bioaugmentation plots (0.5% killed
recombinant E. coli cells plus 300 p.p.m. phosphate).
B. (X) Control and (B) biostimulation (300 p.p.m. phosphate) plots.
Error bars represent 1 standard deviation. Soil temperature over
the experimental time period at 10 cm depth dropped from 19.28C
to 3.68C.

Fig. 3. Distribution of atrazine (p.p.m.) in the 26 m3 soil excavated
after an accidental spill. Values are from independent
determinations of atrazine concentration at each test point. If
atrazine were uniformly distributed, which it clearly is not, average
concentration would be 11 500 p.p.m., based on the known amount
of atrazine spilled.
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that perhaps the drop in measurable activity may be asso-

ciated with chemical interactions occurring between the

enzyme embedded in the cross-linked cells and other mol-

ecules present in the complex soil environment.

While it is true that the enzymatic activity of killed cells

decreases in the chemically complex soil environment,

and that the chemical process used to kill the cells results

in a 35% initial loss of enzyme activity, this ®eld experi-

ment has demonstrated that the overall enzyme activity

remains acceptably high for soil remediation work. There

is a bene®cial trade-off involved in the use of enzyme

encapsulated in whole cells to be considered as well:

cells that have been chemically cross-linked show stabili-

zation of enzyme activity during storage. After 8 months

of storage at room temperature, cross-linked cells retained

more than 50% of their original enzyme activity. This com-

pares extremely favourably with storage of puri®ed

enzymes, which must be maintained under special condi-

tions to retain activity over time. In addition, it should be

noted that major costs of cell preparation and on-site engi-

neering are clearly cheaper than incineration, or transport

of the soil to a land-®ll rated to accept hazardous waste.

These factors combine to make the use of atrazine-degrad-

ing enzymes encapsulated in genetically engineered bac-

teria an economically viable and environmentally effective

remediation method, even when implemented under subop-

timal environmental conditions.

Experimental procedures

Chemicals

Authentic atrazine, provided by Novartis Crop Protection, was

used for gas chromatography standards, and enzyme activity
and plate clearing assays. High-performance liquid chroma-
tography (HPLC)-grade dichloromethane used for atrazine
extraction, 50% aqueous glutaraldehyde (photographic qual-
ity), Tris base and sodium tetraborate used in cell cross-
linking were obtained from Fisher.

Bacterial strains, plasmids, cross-linking and growth

conditions

Atrazine chlorohydrolase, AtzA, was produced by growing a
large quantity of E. coli DH5a containing plasmid pMD4 (deS-
ouza et al., 1995). Cells (300 l) were grown at 378C in a batch
fermentor at 207 mmHg (4 psi), pH 7.0, with a stir rate of
400 r.p.m. Air ¯ow was maintained at 125 l minÿ1 with oxygen
supplementation if dissolved oxygen fell below 50%. Medium
(66 l) containing 12 g lÿ1 tryptone, 24 g lÿ1 yeast extract,
1.1 g lÿ1 KH2PO4, 4.7 g lÿ1 K2HPO4, 4 g lÿ1 glucose and
25 mg lÿ1 chloramphenicol was fed continuously into the reac-
tor. Feed was controlled with a peristaltic pump, and feed rate
was increased from 2 to 5 l hÿ1 over 14 h. Cells were killed and
cross-linked by the addition of 0.3% glutaraldehyde. Cross-
linked cells were allowed to incubate for 1 h at 228C, with stir-
ring at 300 r.p.m. After incubation, 7.5 kg of sodium tetrabo-
rate was added to the 370 l culture, and the pH was
adjusted to 8.8 with the addition of H3PO4. After another
hour of incubation, 1 kg of Tris base was added and the pH
adjusted to 8.6 with H3PO4. The suspension was stirred over-
night at 228C; then, the cells were harvested by centrifugation
at 15 000 ´ g in a Sharples AS-16 centrifuge. Killed and cross-
linked whole cells were used as enzyme carriers. To deter-
mine whether the cross-linked E. coli cell suspension con-
tained only dead cells, aliquots of the killed cell suspension
were plated onto LB agar medium (Sambrook et al., 1989)
and LB medium containing 500 p.p.m. atrazine and
30 mg mlÿ1 chloramphenicol.

Enzyme activity

The kinetics of the puri®ed AtzA enzyme have been described
previously (deSouza et al., 1996). Enzyme velocity in killed
whole cells was determined by adding 10 ml of 20% (w/v)
killed cell suspension to 1 ml of 30 p.p.m. atrazine in 30 mM
Tris-HCl buffer at pH 7.5. The reaction was allowed to pro-
ceed at room temperature for < 1 h and stopped by adding
12 ml of 6 M HCl to 0.8 ml of the mixture. Tubes were centri-
fuged for 10 min at 10 000 g to remove cells from the suspen-
sion. Atrazine concentration was determined using a
modi®cation of the spectrophotometric method for determin-
ing triazine concentrations (Shao et al., 1995). Absorbance
at 270 nm (A270) was measured, and values were compared
with a standard curve generated using known concentrations
of atrazine. Enzyme activity tests were performed at ®ve tem-
peratures between 08C and 248C on three batches of cross-
linked enzyme 7, 8 and 9 months after cross-linking. The 7-
month-old cells were the same ones used in the ®eld remedia-
tion study, while the 8- and 9-month-old cells were from sepa-
rate 1 l batch reactions. Samples were stored: (i) frozen as a
20% suspension in neutralized cross-linking media; (ii) at
room temperature as a 20% suspension in neutralized
cross-linking media; (iii) at room temperature as a 20%

Q 2000 Blackwell Science Ltd, Environmental Microbiology, 2, 91±98

Fig. 4. Arrhenius plot of enzyme activity as a function of
temperature. Enzyme was introduced in the form of killed, cross-
linked, recombinant cells. Four of the data sets are laboratory data:
the same cells used in the ®eld study, stored for 7 months on the
bench top as a moist cell pellet (B) or stored in neutralized cross-
linking media (O), and cells stored on the bench top for 8 months
(X) or 9 months (´) in 30 mM phosphate buffer, pH 7.2. The ®fth
data set is from data from the ®eld remediation study (l).
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suspension in 30 mM phosphate buffer, pH 7.2; or (iv) as a
moistened cell pellet.

Spill site soil

The spill occurred in spring 1997 in South Dakota when a 950 l
tank of 0.5 kg lÿ1 atrazine suspension fell off a truck and burst
open. The spill was contained by excavating and covering
26 m3 of contaminated soil with 6 ml plastic sheeting. As
shown in Fig. 3, distribution of atrazine in the soil after 18
months of on-site storage was non-uniform. The silty-loam
soil, an Eakin±Ethan complex (USDA, 1995), had 3.6% (w/
w) organic matter, pH 7.4, and an electrical conductivity of
5.1 mmho cmÿ1 (1:1 slurry). Soil analysis was performed by
the Soils Testing Laboratory at the University of Minnesota.
The soil was very low in phosphorous, with a Bray's P-value
of 1 p.p.m. Total nitrogen was 0.68% (w/w) (6800 p.p.m.),
and was partly a result of the atrazine content itself, which
was estimated to add < 2400 p.p.m. nitrogen to the soil.

Microbial mechanism for atrazine degradation

Bench studies were performed on atrazine-contaminated soil
to assess the extent to which disappearance of atrazine in this
soil is the result of microbial action versus surface-catalysed
hydrolysis. A 300 g aliquot of the spill-contaminated soil was
sieved through a 2 mm screen, moistened to < 20% of dry
weight, and divided into six 250 ml sterile Erlenmeyer culture
¯asks. One set of triplicates was sterilized by autoclaving the
soil for 1 h per day at 1218C on each of three subsequent days,
after which the soil moisture level was restored to 20% using
sterile water. The other set of triplicates remained untreated.
Samples were incubated at 278C, and soil sterility was veri-
®ed at each sampling point using LB and minimal media
plate assays as described below. The sterile technique was
used to obtain aliquots for atrazine analysis, and atrazine
levels were determined by soil extraction and gas chromato-
graphy analysis as described below.

Biostimulation bench-top experiments

Bench studies were performed at 278C; 45 g aliquots of spill-
contaminated soil were incubated with various nutritional sup-
plements in sterile 250 ml Erlenmeyer ¯asks to assess the
extent to which soil amendments would stimulate microorgan-
isms present in the soil to metabolize atrazine (biostimula-
tion). Preliminary experiments screened the 13 potential
biostimulation agents shown in Table 1. Soil used in these
experiments was contaminated with atrazine from an acciden-
tal spill. Initial atrazine concentration in the soil aliquots was
determined individually, and ranged from 3400 p.p.m. to
6700 p.p.m.; the ef®cacy of the supplements was evaluated
by comparing the decline in atrazine after 19 days. This
experiment was followed by a statistically rigorous three-fac-
tor central composite experiment (Box et al., 1978). This
experimental method is a subset of factorial statistical designs
that, when coupled with multiple regression analysis to calcu-
late the response surface, allows quantitative optimization of
parameter levels to test simultaneously and rigorously the

effects of multiple experimental parameters on atrazine
degradation. The three variables were chosen for testing
based on the results of the preliminary experiments, com-
bined with previous results showing that pH affects atrazine
degradation rate (Mattan, 1998). Carbon as a 50:50 mixture
of dextrose±citrate was added to soil in the range of 0±
25 000 p.p.m. (0±1.16 g carbon per 45 g soil), phosphate
was added in the range of 0±600 p.p.m. as 12 mM sodium
phosphate buffer, and change in soil pH was attempted by
adjusting the pH of the added phosphate buffer in the range
6.5±8.5. Sixteen samples were augmented as shown in
Table 2. The experimental protocol was the same as the pre-
liminary experiment, with the following differences: soil was
homogenized so that the initial atrazine concentration in the
soil aliquots was uniform at 4500 p.p.m., and the incubation
period was reduced to 13 days. The results were analysed
for signi®cance using the MACANOVA statistical software pack-
age developed at the University of Minnesota.

Field study experimental protocol

Selection of ®eld-scale treatment protocols was guided by the
results of the initial laboratory-scale experiments. Four treat-
ment protocols were set up in triplicate, as shown in Table 3.
Treatments consisted of: (i) 0.75 m3 control plots containing
only moistened soil; (ii) 0.75 m3 biostimulation plots augmen-
ted with 300 p.p.m. phosphate in the form of triple superpho-
sphate fertilizer; (iii) 0.38 m3 bioaugmentation plots receiving
AtzA enzyme in the form of 0.5% (w/w) killed recombinant
E. coli cells; and (iv) 0.38 m3 plots receiving a combination
of phosphate plus cells. A Bobcat skid loader was used to
separate 7 m3 of the most highly contaminated portions of
soil from the total volume of 26 m3 contaminated with atrazine.
This portion was homogenized as well as possible using the
Bobcat skid loader to mix and combine repeatedly the soil
on a large tarpaulin. This same method was used to mix treat-
ments homogeneously into appropriate subportions of this
soil. Nine 0.75 m3 treatment bins (0.3 m ´ 1.2 m ´ 2.4 m), con-
structed from 1.3-cm-thick plywood lined with 6 ml polyethy-
lene, were designed to contain contaminated soil and
treatments fully.

Sampling

Individual samples consisted of 50 ml of soil taken from multi-
ple places from within each treatment plot. Samples were
obtained in triplicate from each treatment plot, resulting in
nine individual data points at each time point for each of the
four treatment protocols. Time points for sample acquisition
were time 0 (22 September 1998), 1 week (30 September
1998), 4 weeks (21 October 1998), 8.5 weeks (21 November
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Table 3. Treatments used in ®eld-scale bioremediation studies.

Treatment protocol

Control Moistened soil
Biostimulation 300 p.p.m. phosphorus (triple superphosphate)
Bioaugmentation 0.5% (w/w) killed cross-linked recombinant cells
Combination 300 p.p.m. phosphorus � 0.5% cells
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1998) and 12 weeks (16 December 1998). Samples were
immediately frozen on dry ice and shipped overnight to the
University of Minnesota for analysis. On receipt, samples
were stored at ÿ158C until analysis could be performed.

Analytical methods

Plate assays. Modi®ed R-minimal medium (Eaton and Rib-
bons, 1982; Selifonova et al., 1993) plates containing
500 p.p.m. atrazine as the sole nitrogen source were used
to determine whether atrazine-metabolizing microorganisms
were present in the spill-contaminated soil. These plates
were opaque with the suspension of small atrazine particles
in clear agar. A zone of clearing surrounding the colonies indi-
cated degradation of atrazine by bacteria (deSouza et al.,
1995). Plates used to grow recombinant strains contained
30 mg mlÿ1 chloramphenicol.
Atrazine extraction. Aliquots of soil weighing between 5 and
10 g were taken from the homogenized soil samples for atra-
zine analysis, and the remainder of the sample was refrozen
at ÿ158C. Atrazine concentration was assessed using a sim-
pli®ed procedure based on a methanol (MeOH) extraction
procedure for determining p.p.b. concentrations of atrazine
in soil (Koskinen et al., 1991). The soil aliquots were shaken
at 250 r.p.m. with 20 ml of water and 25 ml of dichloro-
methane (DCM) for a minimum of 2 h on a reciprocating sha-
ker. Tubes were centrifuged at 3000 r.p.m. for 15 min. The
DCM layer was pipetted into a glass vial and dried by adding
a small amount of anhydrous sodium sulphate. Between
20 ml and 50 ml of the DCM layer was added to 1 ml of
HPLC-grade DCM for gas chromatography. Final dilutions
for each sample were calculated individually. The accuracy
of the simpli®ed procedure was tested by comparing the atra-
zine extracted from homogenized soil samples using the
MeOH extraction procedure (Koskinen et al., 1991) with
that extracted from the same samples using the simpli®ed
procedure (n�72). At high atrazine concentrations (greater
than 1400 p.p.m.), the two extraction techniques produced
statistically similar results (P-value�0.9).
Gas chromatography. Gas chromatography was performed
using a Hewlett-Packard 6890 GC system equipped with a
¯ame ionization detector and interfaced to an HP 79994A
Chemstation. The HP capillary column used was 30 m long,
320 mm in diameter and contained a 0.25 mm ®lm of 5% phe-
nyl methyl siloxane. Temperature was ramped over the
15 min run period from 508C to 3008C. Injection volume was
2 ml. The chromatograph was operated in a constant pressure
mode at 1295 mmHg (25 psi), with constant gas composition
of 30 ml minÿ1 hydrogen, 350 ml minÿ1 air and 25 ml minÿ1

make-up gas, which was either ultrapure helium or nitrogen.
Calibration standards were run with each set of samples. Atra-
zine retention time was 9.1 min with ultrapure He make-up gas
or 8.9 min with N2 make-up gas.
Soil temperature. The soil temperature at 10 cm depth was
obtained from the Chamberlain-National Weather Service
reporting station number a391619, elevation 445 km, latitude
43.738 N and longitude 99.328 W. This weather station is less
than 65 km from the spill site, elevation 490 km.
Statistical analysis. Data were tested for statistical signi®-
cance using the analysis of variance package included in
Microsoft Excel 98.
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