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DYADIC-LIKE MAXIMAL OPERATORS ON WEIGHTED

SPACES
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Abstract. We provide some new estimates for Bellman type functions for the
dyadic maximal opeator Rn and of maximal operators on martingales related
to weighted spaces. Using a type of symmetrization principle, introduced for
the dyadic maximal operator in earlier works of the authors we introduce
certain conditions on the weight that imply estimate for the maximal operator
on the corresponding weighted space. Also using a well known estimate for the
maximal operator by a double maximal operators on di¤erent measures related
to the weight we give new estimates for the above Bellman type functions.
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1. Introduction

The dyadic maximal operator on Rn is de�ned by

(1.1) M d�(x) = sup

�
1

jSj

Z
S

j�(u)j du : x 2 S, S � Rn is a dyadic cube
�

for every � 2 L1loc(Rn) where the dyadic cubes are the cubes formed by the grids
2�NZn for N = 0; 1; 2; :::.
As it is well known it satis�es the following weak Lp inequality (for martingales

known as Doob�s inequality)

(1.2) kMd�kp �
p

p� 1 k�kp

for every p > 1 and every � 2 Lp(Rn) which is best possible (see [1], [2] for the
general martingales and [22] for dyadic ones).
An approach for studying more in depth the behavior of this maximal operator is

the introduction of the so called Bellman functions (see [10]) related to them which
re�ect certain deeper properties of them by localizing. Such functions related to
the Lp inequality (1.2) have been precisely evaluated in [4]. Actually de�ning for
any p > 1

(1.3) Bp(F; f) = sup
�
1

jQj

Z
Q

(M 0
d�)

p : AvQ(�
p) = F;AvQ(�) = f

�
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where Q is a �xed dyadic cube, R runs over all dyadic cubes containing Q, �
is nonnegative in Lp(Q) and the variables F; f satisfy 0 � f; fp � F which is
independent of the choice of Q (so we may take Q = [0; 1]n) and where the localized
maximal operatorM 0

d� is de�ned as in (1.1) with the dyadic cubes S being assumed
to be contained in the ambient dyadic cube Q. It has been shown in [4] that

(1.4) Bp(F; f) = F!p

�
fp

F

�p
where !p : [0; 1] ! [1; p

p�1 ] is the inverse function of Hp(z) = �(p� 1)zp + pzp�1.
Actually (see [4]) the more general approach of de�ning Bellman functions with
respect to the maximal operator on a nonatomic probability space (X;�) equipped
with a tree T (see Section 2) can be taken and the corresponding Bellman function
is always the same. The fact that the range of !p is [1;

p
p�1 ] shows in a sense the

extend that the constant in Doob�s inequality can be approached only by functions
whose integral is very small compared to its p-norm. For example for p = 2 we get
the following sharp improvement of Doob�s inequality

(1.5) kMT �k2 � k�k2 + (k�k
2
2 � k�k

2
1)
1=2 < 2 k�k2

which aside from the L2 norm of � involves also in a sharp way the variance of �.
Here we will be concerned with the behavior of these maximal operators on

weighted spaces. As it is well known for any positive locally integrable function w
on Q the estimate

(1.6)
Z
Q

(M 0
d�)

pw � C

Z
Q

�pw

holds for all � if and only if w is a dyadic Ap weight in the sense that

supfjIj�p (
Z
I

w)(

Z
I

w�
1

p�1 )p�1 : I dyadic subcube of Qg = [w]p < +1.

Also it is known that the best possible C is of the order of [w]p=(p�1)p , the exponent
being best possible. Related to this one may de�ne the following Bellman function
given a weight w

(1.7) Bp;w(F; f) = sup f
1

jQj

Z
Q

(M 0
d�)

pw : AvQ(�
pw) = F;AvQ(�) = fg

which is �nite only if w is in Ap and seek estimates for this in order to improve the
above estimate (1.6). One may add more variables to the above Bellman function
as the integrals of w and of w�1=(p�1) over Q but we will not treat those here.
The estimates here will be proved in the general setting of tree like families on
probability spaces and its related maximal operator, as will be described in the
next section.

�We will derive two types of estimates related to the above problems. In the �rst
we will use a related condition on some symmetrization of the weight to �nd the
exact form of a related to weights Bellman function and this is done in section 2.
Then in section 3 we obtain certain new estimates for the above Bellman function
related to Ap with respect to a tree, and to the corresponding maximal operator,
by using an estimate of the maximal operator via two applications of maximal
operators on the same tree but with di¤erent measures, and this is described in
section 3.
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There are several other problems in Harmonic Analysis where Bellman func-
tions naturally arise. Such problems (including the dyadic Carleson imbedding and
weighted inequalities) are described in [12] (see also [10], [11]) and also connec-
tions to Stochastic Optimal Control are provided, from which it follows that the
corresponding Bellman functions satisfy certain nonlinear second order PDE.
The exact computation of a Bellman function is a di¢ cult task which is connected

with the deeper structure of the corresponding Harmonic Analysis problem. Thus
far several Bellman functions have been computed (see [1], [2], [4], [14], [15], [18],
[19], [20]). L.Slavin and A.Stokolos [17] linked the Bellman function computation to
solving certain PDE�s of the Monge Ampere type, and in this way they obtained an
alternative proof of the Bellman functions relate to the dyadic maximal operator
in [4]. Also in [20] using the Monge-Ampere equation approach a more general
Bellman function than the one related to the dyadic Carleson imbedding Theorem
has be precisely evaluated thus generalizing the corresponding result in [4].

2. Trees, maximal operators and symmetrization

As in [4] we let (X;�) be a nonatomic probability space (i.e. �(X) = 1). Two
measurable subsets A, B of X will be called almost disjoint if �(A\B) = 0. Then
we give the following.

De�nition 1. A set T of measurable subsets of X will be called a tree if the
following conditions are satis�ed:
(i) X 2 T and for every I 2 T we have �(I) > 0.
(ii) For every I 2 T there corresponds a �nite subset C(I) � T containing at

least two elements such that:
(a) the elements of C(I) are pairwise almost disjoint subsets of I,
(b) I =

S
C(I).

(iii) T =
S
m�0 T(m) where T(0) = fXg and T(m+1) =

S
I2T(m)

C(I).
(iv) We have lim

m!1
sup

I2T(m)

�(I) = 0 and T di¤erentiates L1.

By removing the measure zero exceptional set E(T ) =
S
I2T

S
J1;J22C(I)
J1 6=J2

(J1\J2)

we may replace the almost disjointness above by disjointness.
Now given any tree T we de�ne the maximal operator associated to it as follows

(2.1) MT �(x) = sup

�
1

�(I)

Z
I

j�j d� : x 2 I 2 T
�

for every � 2 L1(X;�).
The above setting can be used not only for the dyadic maximal operator but

also for the maximal operator on martingales, hence many of the results here can
be viewed as generalizations and re�nements of the classical Doob�s inequality.
Also for any locally integrable positive function w on X, which will be called

weight, we denote � = w�
1

p�1 , and for any I 2 T we write w(I) =
R
I
wd�, �(I) =R

I
�d�. Now we give the following.

De�nition 2. A weight w on X will be called Ap with respect to T if the following
expression

[w]T ,p = [w]p = sup
I2T

w(I)�(I)p�1

�(I)p
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is �nite.

A way to study estimates for the above maximal operator is through the sym-
metrization of � as has been introduced in [5] and [13] and used in [8] to evaluate
Bellman functions related to Lorentz norms. In order to apply this in the context
of weights we introduce the following condition on a weight w on X.

De�nition 3. A weight w on X will be called A�p if for some equimeasurable rear-
rrangement w�� of w on (0; 1) (not necessarily decreasing) there exist two constants
c; a > 0 such that for every t in (0; 1] the following estimate holds

(2.2)
Z 1

t

w��(s)

sp
ds+ c � a

w��(t)

tp�1

and also

(2.3) lim
t!0+

tp
Z 1

t

w��(s)

sp
ds = 0

Note that by writing r(t) = w��(t)
tp�1 the �rst condition implies that r(t) > c

a > 0

for all t hence limt!0+
R 1
t
w��(s)
sp ds = +1 and so limt!0+ r(t) = 0. Hence we

conclude that there is a best possible pair (a; c) for each such weight, namely a =
supt r(t)

�1 R 1
t
r(t)
t dt and c = supt(ar(t) �

R 1
t
r(t)
t dt). We will refer to this pair as

the constants of the corresponding A�p weight w.

Example. Suppose that w��(t) = ktb with k; b 2 R. Then the above conditions
hold if and only if �1 < b < p � 1 which is exactly the range making w�� an Ap
weight on (0; 1). Moreover the corresponding constants c; a can be easily seen to
be a = 1

p�1�b ; c =
k

p�1�b .
Now we take into consideration the following theorem proved in [13] and [5].

Theorem 1. Let G : [0;+1) ! [0;+1) be non-decrasing, h : (0; 1] ! R+ be
any locally integrable function. Then for any nonatomic probability space (X;�),
equipped with any tree-like family T , for any non-increasing right continuous in-
tegrable function g : (0; 1] ! R+ and any k 2 (0; 1], the following equality holds
(where by  � we denote the decreasing equimeasurable rearrangement of  ):en

sup

(Z k

0

G[(MT �)
�(t)]h(t)dt : � measurable on X with �� = g

)
=

=

Z k

0

G

�
1

t

Z t

0

g(u)du

�
h(t)dt:

After this given an A�p weight w, we de�ne the following variant of the Bellman
function (1.7).

(2.4) B�p;w(F; f) = sup f
Z 1

0

((MT �)
�)pw�� :

Z 1

0

(��)pw�� = F;

Z
X

� = fg

where here by ��; (MT �)
� we denote the equimeasurable decreasing rearrange-

ment of � and MT � whereas by w�� we denote the equimeasurable rearrangement
of w that appears in the above de�nition. Note that in case w�� is decreasingR
X
((MT �)

�)pw�� is greater than or equal to
R
X
(MT �)

pw and
R 1
0
(��)pw�� is greater
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than or equal to
R
X
�pw and when w�� is increasing then the opposite relations hold.

Then we can prove the following.

Theorem 2. For the above function we have

B�p;w(F; f) = (p� 1)papF!p
�

cfp

(p� 1)p�1apF

�p
:

where c; a are the constants of the A�p weight w, the domain of this function being
all (F; f) such that cfp � (p� 1)p�1apF .

Proof. In view of the above mentioned result it su¢ ces to consider the expression
�w(g) =

R 1
0
(t�1

R t
0
g(u)du)pw��(t)dt when g runs over all nonnegative decreasing

right continuous functions on (0; 1] satisfying
R 1
0
g(t)dt = f and

R 1
0
g(t)pw��(t)dt =

F . We next de�ne the following function on (0; 1)

u(t) =

Z 1

t

w��(s)

sp
ds+ c

so that u0(t) = t�pw��(t). Considering �rst any bounded such function g we com-
pute by integration by partsZ 1

0

u(t)(

Z t

0

g(u)du)p�1g(t)dt =
1

p

Z 1

0

u(t)[(

Z t

0

g(u)du)p]0dt =

=
1

p
(

Z 1

0

g(u)du)pu(1) +
1

p

Z 1

0

(t�1
Z t

0

g(u)du)pw��(t) = c
fq

p
+
1

p
�(g)

the integration by parts term limt!0+ u(t)(
R t
0
g(u)du)p being zero because of condi-

tion (2.3) since g is assumed bounded. Now using Young�s inequality xy � xp
p +

yp
0

p0

(where p0 = p=(p�1)) in the �rst integral as follows, (� > 0 to be determined later)
combined with the condition u(t)tp�1

w��(t) � a from the above de�nition we getZ 1

0

u(t)(

Z t

0

g(u)du)p�1g(t)dt =

=

Z 1

0

(�g(t)w��(t)1=p)(
w��(t)1=p

�1=(p�1)t

Z t

0

g(u)du)p�1
u(t)tp�1

w��(t)
dt �

� a

p

Z 1

0

�pg(t)pw��(t)dt+
a

p0

Z 1

0

��p
0
(
1

t

Z t

0

g(u)du)pw��(t)dt =

=
a�p

p

Z 1

0

g(t)pw��(t)dt+ a
��p

0

p0

Z 1

0

(
1

t

Z t

0

g(u)du)pw��(t)dt = a
�p

p
F + a

��p
0

p0
�w(g).

Therefore we have by writing �p
0
= (p � 1)a(� + 1); � > 0 and using the above

inequalities we get that

(2.5) �w(g) � (1 +
1

�
)
(� + 1)p�1(p� 1)papF � (p� 1)cfp

(p� 1) :

Next, given an arbitrary g, the above estimate can be used for the truncations
gM = min(g;M) and F; f replaced by the corresponding quantities for gM and
then take M ! +1 and use monotone convergence to infer that (2.5) holds for
the general nonnegative decreasing right continuous function on (0; 1] satisfyingR 1
0
g(t)dt = f and

R 1
0
g(t)pw��(t)dt = F . Moreover since �w(g) > 0 the inequality
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(2.5) implies that (�+1)p�1(p�1)papF�(p�1)cfp > 0 for every � > 0 and so letting
� ! 0+ we conclude that (F; f) must satisfy the inequality cfp � (p � 1)p�1apF
given in the statement of the Theorem.
Writing A = (p � 1)papF and B = (p � 1)cfp it is easy to compute (see for

example [4] pg. 326) that the minimum possible value of the right hand side of
(2.5) is equal to A!p

�
B
A

�p
. This proves the inequality

(2.6) B�p;w(F; f) � (p� 1)papF!p
�

cfp

(p� 1)p�1apF

�p
:

Now we consider the continuous positive decreasing function

(2.7) g�(t) = f(1� �)t��

where 0 � � < 1, and any A�p weight w that is equimeasurable to

(2.8) w��(t) = ktb, k > 0;�1 < b < p� 1

Clearly
R 1
0
g�(t)dt = f and

R 1
0
g�(t)

pw��(t)dt = kfp(1��)p
1+b��p assuming that � < 1+b

p .

Next note that 1
t

R t
0
g�(u)du =

g�(t)
1�� for all t 2 (0; 1] and so we have �w(g�) =�

1
1��

�p R 1
0
g�(t)

pw��(t)dt. The condition
R 1
0
g�(t)

pw��(t)dt = F is then equivalent

to the following equation in �

(2.9)
(1� �)p
1 + b� �p =

F

kfq
.

To study this equation we write

(2.10) z =
p� 1� b
p� 1

1

1� �

and note that (2.9) is then equivalent to

(2.11) �(p� 1)zp + pzp�1 = kfp

( p�1
p�1�b )

p�1F

thus

(2.12) z = !p(
kfp

( p�1
p�1�b )

p�1F
)

and so using (2.10)

(2.13) �w(g�) = (
p� 1

p� 1� b )
pF!p(

kfp

( p�1
p�1�b )

p�1F
):

But now note that the constants c; a of the weight w are a = 1
p�1�b ; c =

k
p�1�b

and so

(2.14) �w(g�) = (p� 1)papF!p
�

cfp

(p� 1)p�1apF

�p
and moreover by varying k; b with �1 < b < p� 1 we can achieve all possible pairs
of constants c; a. This completes the proof. �
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3. Estimation via double maximal operators

Here we will use an inequality introduced by A. Lerner, see [3], for the nondyadic
case. We �x p > 1, let w be an Ap weight with respect to the tree T and we denote
for any I in T , w(I) =

R
I
wd�, � = w�

1
p�1 , �(I) =

R
I
�d�. Also by MT ;w we

denote the maximal operator with respect to the tree T but when X is equipped
by the measure w� instead of �, and similarly for MT ,�. Then the following holds.

Proposition 1. Let w be an Ap weight with respect to the tree T and T -constant
[w]p = supI2T

w(I)�(I)p�1

�(I)p Then for any � we have the following pointwise estimate

(MT �)
p�1 � [w]pMT ;w[(MT ,�(��

�1))p�1w�1]:

Proof. The proof follows from the following inequalities valid for any I 2 T .�
1

�(I)

Z
I

�d�

�p�1
=
w(I)�(I)p�1

�(I)p

 
�(I)

w(I)

�
1

�(I)

Z
I

���1�d�

�p�1!
�

� [w]p
1

w(I)

Z
I

MT ,�(��
�1)p�1w�1wd�

since MT ,�(��
�1)(x) � 1

�(I)

R
I
���1�d� for every x in I. �

As a �rst application of this �xing a tree T on a probability space (X;�) and
given an Ap weight w in the sense of De�nition 2, we de�ne the following general-
ization of the Bellman function (1.7), where p > 1

(3.1) BTp;w(F; f) = sup f
Z
X

(MT �)
pwd� :

Z
X

�pwd� = F;

Z
X

�d� = fg

and we have the following estimates

Theorem 3. For any tree T on a probability space (X;�) and any Ap weight w
and any � with

R
X
�pwd� = F;

R
X
�d� = f we haveZ
X

(MT �)
pwd� �

� [w]1=(p�1)p F!p

�
fp

�(X)p�1F

�p
!p0

0@ (
R
X
�p�1wd�)p

0

w(X)p0�1F!p

�
fp

�(X)p�1F

�p
1Ap0

(3.2)

In particular

(3.3) BTp;w(F; f) � pp
0
[w]1=(p�1)p F!p

�
fp

�(X)p�1F

�p
Proof. By applying estimate (1.12) after Theorem 1 in [4] for the exponent p0 = p

p�1
to the function � = (MT ,�(��

�1))p�1w�1 and with respect to the tree T but on
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the probability space (X; 1
w(X)wd�) (where as usual w(X) =

R
X
wd�) we get

1

[w]
1=(p�1)
p

Z
X

(MT �)
pwd� � w(X)

Z
X

(MT ;w�)
p0w

d�

w(X)
�

� w(X)

Z
X

�p
0
w d�
w(X) :!p0

 
(
R
X
�w d�

w(X) )
p0R

X
�p0w d�

w(X)

!p0
:(3.4)

Note that (as proved in [4]) the function x!p0

 
yp

0

x

!p0
is increasing in x and de-

creasing in y. Now we haveZ
X

�w d�
w(X) =

Z
X

(MT ,�(��
�1))p�1 d�

w(X) �
Z
X

(���1)p�1 d�
w(X) =

Z
X

�p�1w d�
w(X)

and using estimate (1.12) after Theorem 1 in [4] for the exponent p to the function
� = ���1 and with respect to the tree T but on the probability space (X; 1

�(X)�d�)

we get (since ��(p�1) = w)Z
X

�p
0
wd� =

Z
X

(MT ,�(��
�1))pw�p

0
:wd� =

Z
X

(MT ,�(��
�1))p�d� �

�(X)

Z
X

(���1)p� d�
�(X) :!p

 
(
R
X
���1� d�

�(X) )
pR

X
(���1)p� d�

�(X)

!p
=

=

Z
X

�pwd�:!p

�
(
R
X
�d�)p

�(X)p�1
R
X
�pwd�

�p
= F!p

�
fp

�(X)p�1F

�p
.(3.5)

Now combining the above estimates we get

1

[w]
1=(p�1)
p

Z
X

(MT �)
pwd� �

� F!p

�
fp

�(X)p�1F

�p
!p0

0@ (
R
X
�p�1wd�)p

0

w(X)p0�1F!p

�
fp

�(X)p�1F

�p
1Ap0

(3.6)

which proves (3.2). Since !p0(x) � p0

p0�1 = p the estimate (3.3) follows also. �

To get lower bounds for the Bellman function we invoke the following construc-
tion.
Fixing � with 0 < � < 1 and using Lemma 1 in [4], we �x now a tree T ,

for example the dyadic subintervals of [0; 1], and choose for every I 2 T a family
F(I) � T of pairwise almost disjoint subsets of I such that

(3.7)
X

J2F(I)

�(J) = (1� �)�(I).

Then we de�ne S = S� to be the smallest subset of T such that X 2 S and for
every I 2 S, F(I) � S. Next for every I 2 S we de�ne the set

(3.8) AI = I n
[

J2F(I)

J
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and note that �(AI) = ��(I) and I =
[
J2S
J�I

AJ for every I 2 S. Also since S =

S
m�0 S(m) where S(0) = fXg and S(m+1) =

S
I2S(m)

F(I), we can de�ne rank(I) =
r(I) for I 2 S to be the unique integer m such that I 2 S(m) and remark thatP

S3J�I
r(J)=r(I)+m

�(J) = (1� �)m�(I) for every I 2 S.

Next for any �;  > 0 we de�ne the function

(3.9)  =
X
I2S

�r(I)�AI

and we have for any I 2 S the following

(3.10)
1

�(I)

Z
I

 d� =
��

1� (1� �)
r(I).

Hence taking

(3.11) �� =
X
I2S

�1
r(I)
1 �AI

, w� =
X
I2S

�2
r(I)
2 �AI

we have for any I 2 S

(3.12)
w�(I)[w

� 1
p�1

� (I)]p�1

�(I)p
=

�p

[1� 2(1� �)][1� 
� 1
p�1

2 (1� �)]
thus w� is an Ap weight but with respect to the tree S� on (X;�) and with [w�]p
equal to the right hand side of the above relation. Moreover

(3.13) MS�� �
X
I2S

1

�(I)

Z
I

�ad��AI
=

�

1� (1� �)��.

However the values of such functions on each AI where r(I) = m is of the form

(3.14) m =
�

�(1� �)m
Z (1��)m

(1��)m+1

usdu

for some real numbers �; s > 0 and as it is proved in Lemma 3 of [8] these behave
like functions of the form �ts on (0; 1] as we approach the limit � ! 0+. Hence
by taking a sequence �m ! 0 considering the trees Tm = S�m on (X;�) and
using the construction for the lower bound in the proof of Theorem 2, choosing the
constants k; b (�1 < b < p � 1) appropriately in (2.8) according to the conditions
a = 1

p�1�b , c = ka, k
b+1 = z, 1

b+1 (
p�1
p�1�b )

p�1 = h from the restrictions below which

give p�1�b
p�1 = !p(

1
h ) we conclude the following.

Proposition 2. Given appropriate F; f; h; z there exists a sequence of trees Tm on
(X;�) and two sequences (�m) and (wm) of positive measurable functions on (X;�)
such that

R
X
�md� ! f ,

R
X
�pmwmd� ! F , each wm is an Ap weight with respect

to the tree Tm with [wm]p ! h and
R
X
wmd�! z such that

(3.15) lim
m!1

Z
X

(MTm�m)
pwmd� � F!p

�
zfp

hF

�p
!p(

1

h
)�p.

The above proposition implies a lower bound on the class of functions BTp;w(F; f)
when viewed over all trees T and corresponding Ap weights w.
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