DYADIC WEIGHTS ON $\mathbb{R}^{\boldsymbol{n}}$ AND REVERSE HÖLDER INEQUALITIES

ELEFTHERIOS N. NIKOLIDAKIS, ANTONIOS D. MELAS

Abstract

We prove that for any weight ϕ defined on $[0,1]^{n}$ that satisfies a reverse Hölder inequality with exponent $p>1$ and constant $c \geq 1$ upon all dyadic subcubes of $[0,1]^{n}$, it's non increasing rearrangement ϕ^{*}, satisfies a reverse Hölder inequality with the same exponent and constant not more than $2^{n} c-2^{n}+1$, upon all subintervals of $[0,1]$ of the form $[0, t], 0<t \leq 1$. This gives as a consequence, an interval $\left[p, p_{0}(p, c)\right)=I_{p, c}$, such that for any $q \in I_{p, c}$, we have that $\phi \in L^{q}$.

1. Introduction

The theory of Muckenhoupt's weights has been proved to be an important tool in analysis. One of the most important facts about these is their self improving property. A way to express this is through the so called reverse Hölder inequalities (see [2], [3] and [7]).

Here we will study such inequalities on a dyadic setting. We will say that the measurable function $g:[0,1] \rightarrow \mathbb{R}^{+}$satisfies the reverse Hölder inequality with exponent $p>1$ and constant $c \geq 1$ if the inequality

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} g^{p}(u) d u \leq c\left(\frac{1}{b-a} \int_{a}^{b} g(u) d u\right)^{p}, \tag{1.1}
\end{equation*}
$$

holds for every subinterval of $[0,1]$.
In [1] it is proved the following
Theorem A. Let g be a non-increasing function defined on $[0,1]$, which satisfies (1.1) on every interval $[a, b] \subseteq[0,1]$. Then if we define $p_{0}>p$ as the root of the equation

$$
\begin{equation*}
\frac{p_{0}-p}{p_{0}}\left(\frac{p_{0}}{p_{0}-1}\right)^{p} \cdot c=1, \tag{1.2}
\end{equation*}
$$

we have that $g \in L^{q}([0,1])$, for any $q \in\left[p, p_{0}\right)$. Additionally g satisfies for every q in the above range a reverse Hölder inequality for possibly another real constant c^{\prime}. Moreover the result is sharp, that is the value p_{0} cannot be increased.

[^0]MSC Number: 42B25

Now in [4] or [5] it is proved the following
Theorem B. If $\phi:[0,1] \rightarrow \mathbb{R}^{+}$is integrable satisfying (1.1) for every $[a, b] \subseteq[0,1]$, then it's non-increasing rearrangement ϕ^{*}, satisfies the same inequality with the same constant c.

Here by ϕ^{*} we denote the non-increasing rearrangement of ϕ, which is defined on $(0,1]$ by

$$
\phi^{*}(t)=\sup _{\substack{E \subset[0,1] \\|E|=t}}\left\{\inf _{x \in E}|\phi(x)|\right\}, \quad t \in(0,1] .
$$

This can be defined also as the unique left continuous, non-increasing function, equimeasurable to $|\phi|$, that is, for every $\lambda>0$ the following equality holds:

$$
|\{\phi>\lambda\}|=\left|\left\{\phi^{*}>\lambda\right\}\right|,
$$

where by $|\cdot|$ we mean the Lesbesgue measure on $[0,1]$.
An immediate consequence of Theorem B, is that Theorem A can be generalized by ignoring the assumption of the monotonicity of the function g.

Recently in [8] it is proved the following
Theorem C. Let $g:(0,1] \rightarrow \mathbb{R}^{+}$be non-increasing which satisfies (1.1) on every interval of the form $(0, t], 0<t \leq 1$. That is the following holds

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} g^{p}(u) d u \leq c \cdot\left(\frac{1}{t} \int_{0}^{t} g(u) d u\right)^{p} \tag{1.3}
\end{equation*}
$$

for every $t \in(0,1]$. Then if we define p_{0} by (1.2), we have that for any $q \in\left[p, p_{0}\right)$ the following inequality is true

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} g^{q}(u) d u \leq c^{\prime}\left(\frac{1}{t} \int_{0}^{t} g(u) d u\right)^{q} \tag{1.4}
\end{equation*}
$$

for every $t \in(0,1]$ and some constant $c^{\prime} \geq c$. Thus $g \in L^{q}((0,1])$ for any such q. Moreover the result is sharp, that is we cannot increase p_{0}.

A consequence of Theorem C is that under the assumption that g is non-increasing, the hypothesis that (1.1) is satisfied only on the intervals of the form $(0, t]$ is enough for one to realize the existence of a $p^{\prime}>p$ fir which $g \in L^{p^{\prime}}([0,1])$.

In several dimensions, as far as we know, there does not exists any similar result as Theorems A, B and C. All we know is the following, which can be seen in [3].
Theorem D. Let $Q_{0} \subseteq \mathbb{R}^{n}$ be a cube and $\phi: Q_{0} \rightarrow \mathbb{R}^{+}$measurable that satisfies

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q} \phi^{p} \leq c \cdot\left(\frac{1}{|Q|} \int_{Q} \phi\right)^{p} \tag{1.5}
\end{equation*}
$$

for fixed constants $p>1$ and $c \geq 1$ and every cube $Q \subseteq Q_{0}$. Then there exists $\varepsilon=\varepsilon(n, p, c)$ such that the following inequality holds;

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q} \phi^{q} \leq c^{\prime}\left(\frac{1}{|Q|} \int_{Q} \phi\right)^{q} \tag{1.6}
\end{equation*}
$$

for every $q \in[p, p+\varepsilon)$, any cube $Q \subseteq Q_{0}$ and some constant $c^{\prime}=c^{\prime}(q, p, n, c)$.
In several dimensions no estimate of the quantity ε, has been found. The purpose of this work is to study the multidimensional case in the dyadic setting. More precisely we consider a measurable function ϕ, defined on $[0,1]^{n}=Q_{0}$, which satisfies (1.5) for any Q, dyadic subcube of Q_{0}. These cubes can be realized by bisecting the sides of Q_{0}, then bisecting every side of a resulting dyadic cube and so on. We define by $\mathcal{T}_{2^{n}}$ the respective tree consisting of those mentioned dyadic subcubes of $[0,1]^{n}$. Then we will prove the following:

Theorem 1. Let $\phi: Q_{0}=[0,1]^{n} \rightarrow \mathbb{R}^{+}$be such that

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q} \phi^{p} \leq c \cdot\left(\frac{1}{|Q|} \int_{Q} \phi\right)^{p}, \tag{1.7}
\end{equation*}
$$

for any $Q \in \mathcal{T}_{2^{n}}$ and some fixed constants $p>1$ and $c \geq 1$. Then, if we set $h=\phi^{*}$ the non-increasing rearrangement of ϕ, the following inequality is true

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} h^{p}(u) d u \leq\left(2^{n} c-2^{n}+1\right)\left(\frac{1}{t} \int_{0}^{t} h(u) d u\right)^{p}, \quad \text { for any } \quad t \in[0,1] \tag{1.8}
\end{equation*}
$$

As a consequence $h=\phi^{*}$ satisfies the assumptions of Theorem C, which can be applied and produce an $\varepsilon_{1}=\varepsilon_{1}(n, p, c)>0$ such that h belongs to $L^{q}([0,1])$ for any $q \in\left[p, p+\varepsilon_{1}\right)$. Thus $\phi \in L^{q}\left([0,1]^{n}\right)$ for any such q. That is we can find an explicit value of ε_{1}. This is stated as Corollary 3.1 and is presented in the last section of this paper.

As a matter of fact we prove Theorem 1 in a much more general setting. More precisely we consider a non-atomic probability space (X, μ) equipped with a tree \mathcal{T}_{k}, that is a k-homogeneous tree for a fixed integer $k>1$, which plays the role of dyadic sets as in $[0,1]^{n}$ (see the definition of Section 2).

As we shall see later, Theorem 1 is independent of the shape of the dyadic sets and depends only on the homogeneity of the tree \mathcal{T}_{k}. Additionally we need to mention that the inequality (1.8) cannot necessarily be satisfied, under the assumptions of Theorem 1 , if one replaces the intervals $(0, t]$ by $(t, 1]$. That is ϕ^{*} is not necessarily a weight on $(0,1]$ satisfying a reverse Hölder inequality upon all subintervals of $[0,1]$ (see the related result in [5]).

Additionally we mention that in [6] the study of the dyadic A_{1}-weights appears, where one can find for any $c>1$ the best possible range $[1, p)$, for which the following holds: $\phi \in A_{1}^{d}(c) \Rightarrow \phi \in L^{q}$, for any $q \in[1, p)$. All last results that are connected with A_{1} dyadic weights ϕ and the behavior of ϕ^{*} as an A_{1}-weight on \mathbb{R}, can be seen in [9].

2. Preliminaries

Let (X, μ) be a non-atomic probability space. We give the notion of a k-homogeneous tree on X.

Definition 2.1. Let k be an integer such that $k>1$. A set \mathcal{T}_{k} will be called $a k$ homogeneous tree on X if the following hold
(i) $X \in \mathcal{T}_{k}$
(ii) For every $I \in \mathcal{T}_{k}$, there corresponds a subset $C(I) \subseteq \mathcal{T}_{k}$ consisting of k subsets of I such that
(a) the elements of $C(I)$ are pairwise disjoint
(b) $I=\bigcup C(I)$
(c) $\mu(J)=\frac{1}{k} \mu(I)$, for every $J \in C(I)$.

For example one can consider $X=[0,1]^{n}$, the unit cube of \mathbb{R}^{n}. Define as μ the Lebesque measure on this cube. Then the set \mathcal{T}_{k} of all dyadic subcubes of X is a tree of homogeneity $k=2^{n}$, with $C(Q)$ being the set of 2^{n}-subcubes of Q, obtained by bisecting the sides, of every $Q \in \mathcal{T}_{k}$, starting from $Q=X$.

Let now (X, μ) be as above and a tree \mathcal{T}_{k} on X as in Definition 2.1. From now on, we fix k and write $\mathcal{T}=\mathcal{T}_{k}$. For any $I \in \mathcal{T}, I \neq X$ we set I^{*} the smallest element of \mathcal{T} such that $I^{*} \supsetneq I$. That is I^{*} is the unique element of \mathcal{T} such that $I \in C\left(I^{*}\right)$. We call I^{*} the father of I in \mathcal{T}. Then $\mu\left(I^{*}\right)=k \mu(I)$.

Definition 2.2. For any (X, μ) and \mathcal{T} as above we define the dyadic maximal operator on X with respect to \mathcal{T}, noted as $\mathcal{M}_{\mathcal{T}}$, by

$$
\begin{equation*}
\mathcal{M}_{\mathcal{T}} \phi(X)=\sup \left\{\frac{1}{\mu(I)} \int_{I}|\phi| d \mu: x \in I \in \mathcal{T}\right\} \tag{2.1}
\end{equation*}
$$

for any $\phi \in L^{1}(X, \mu)$.
Remark 2.1. It is not difficult to see that the maximal operator defined by (2.1) satisfies a weak-type $(1,1)$ inequality, which is the following:

$$
\mu\left(\left\{\mathcal{M}_{\mathcal{T}} \phi>\lambda\right\}\right) \leq \frac{1}{\lambda} \int_{\left\{\mathcal{M}_{\mathcal{T}} \phi>\lambda\right\}} \phi d \mu, \quad \lambda>0 .
$$

It is not difficult to see that the above inequality is best possible for every $\lambda>0$, and is responsible for the fact that \mathcal{T} differentiates $L^{1}(X, \mu)$, that is the following holds: For every $\phi \in L^{1}(X, \mu), \lim _{\substack{x \in I \in \mathcal{T} \\ \mu(I) \rightarrow 0}} \frac{1}{\mu(I)} \int_{I} \phi d \mu=\phi(x)$, μ-almost everywhere on X. This can be seen in [4].

We will also need the following lemma which can be again seen in [4].
Lemma 2.1. Let ϕ be non-negative function defined on $E \cup \widehat{E} \subseteq X$ such that

$$
\begin{equation*}
\frac{1}{\mu(E)} \int_{E} \phi d \mu=\frac{1}{\mu(\widehat{E})} \int_{\widehat{E}} \phi d \mu \equiv A \tag{2.2}
\end{equation*}
$$

Additionally suppose that

$$
\begin{equation*}
\phi(x) \leq A, \quad \text { for every } \quad x \notin E \cap \widehat{E}, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(x) \leq \phi(y), \quad \text { for every } \quad X \in \widehat{E} \backslash E, \quad \text { and } \quad y \in E, \tag{2.4}
\end{equation*}
$$

Then, for every $p>1$ the following inequality holds

$$
\begin{equation*}
\frac{1}{\mu(E)} \int_{E} \phi^{p} d \mu \leq \frac{1}{\mu(\widehat{E})} \int_{\widehat{E}} \phi^{p} d \mu, \tag{2.5}
\end{equation*}
$$

3. Weights on (X, μ, \mathcal{T})

We proceed now to the
Proof of Theorem 1. We suppose that ϕ is non-negative defined on (X, μ) and satisfies a reverse Hölder inequality of the form

$$
\begin{equation*}
\frac{1}{\mu(I)} \int_{I} \phi^{p} d \mu \leq c \cdot\left(\frac{1}{\mu(I)} \int_{I} \phi d \mu\right)^{p} \tag{3.1}
\end{equation*}
$$

for every $I \in \mathcal{T}$, where c, p are fixed such that $p>1$ and $c \geq 1$. We will prove that for any $t \in(0,1]$ we have that

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t}\left[\phi^{*}(u)\right]^{p} d u \leq(k c-k+1)\left(\frac{1}{t} \int_{0}^{t} \phi^{*}(u) d u\right)^{p} \tag{3.2}
\end{equation*}
$$

where ϕ^{*} is the non-increasing rearrangement of ϕ, defined as in Remark ??, on $(0,1]$, and k is the homogeneity of \mathcal{T}. Fix a $t \in(0,1]$ and set

$$
A_{t}=\frac{1}{t} \int_{0}^{t} \phi^{*}(u) d u .
$$

Consider now the following subset of X defined by

$$
\begin{equation*}
E_{t}=\left\{x \in X: \mathcal{M}_{\mathcal{T}} \phi(x)>A_{t}\right\}, \tag{3.3}
\end{equation*}
$$

Then for any $x \in E_{t}$, there exists an element of \mathcal{T}, say I_{x}, such that

$$
\begin{equation*}
x \in I_{x} \quad \text { and } \quad \frac{1}{\mu\left(I_{x}\right)} \int_{I_{x}} \phi d \mu>A_{t} . \tag{3.4}
\end{equation*}
$$

For any such I_{x} we obviously have that $I_{x} \subseteq E_{t}$. We set $S_{\phi, t}=\left\{I_{x}: x \in E_{t}\right\}$. This is a family of elements of \mathcal{T} such that $\bigcup\left\{I: I \in S_{\phi, t}\right\}=E_{t}$. Consider now those $I \in S_{\phi, t}$ that are maximal with respect to the relation of \subseteq. We write this subfamily of $S_{\phi, t}$ as $S_{\phi, t}^{\prime}=\left\{I_{j}: j=1,2, \ldots\right\}$ which is possibly finite. Then $S_{\phi, t}^{\prime}$ is a disjoint family of elements of \mathcal{T}, because of the maximality of every I_{j} and the tree structure of \mathcal{T}. (see Definition 2.1).

Then by construction, this family still covers E_{t}, that is $E_{t}=\bigcup_{j=1}^{\infty} I_{j}$. For any $I_{j} \in S_{\phi, t}^{\prime}$ we have that $I_{j} \neq X$, because if $I_{j}=X$ for some j, we could have from (3.4) that

$$
\int_{0}^{1} \phi^{*}(u) d u=\int_{X} \phi d \mu=\frac{1}{\mu\left(I_{j}\right)} \int_{I_{j}} \phi d \mu>A_{t}=\frac{1}{t} \int_{0}^{t} \phi^{*}(u) d u,
$$

which is impossible, since ϕ^{*} is non-increasing on (0,1$]$. Thus, for every $I_{j} \in S_{\phi, t}^{\prime}$ we have that I_{j}^{*} is well defined, but may be common for any two or more elements of $S_{\phi, t}^{\prime}$. We may also have that $I_{j}^{*} \subseteq I_{i}^{*}$ for some $I_{j}, I_{i} \in S_{\phi, t}^{\prime}$.

We consider now the family

$$
L_{\phi, t}=\left\{I_{j}^{*}: j=1,2, \ldots\right\} \subseteq \mathcal{T}
$$

As we mentioned above, this is not necessarily a pairwise disjoint family. We choose a pairwise disjoint subcollection, by considering those I_{j}^{*} that are maximal, with respect to the relation \subseteq.

We denote this family as

$$
L_{\phi, t}^{\prime}=\left\{I_{j_{s}}^{*}: s=1,2, \ldots\right\}
$$

Then of course

$$
\bigcup J: J \in L_{\phi, t}=\bigcup J: J \in L_{\phi, t}^{\prime} .
$$

Since, each $I_{j} \in S_{\phi, t}^{\prime}$ is maximal we should have that

$$
\begin{equation*}
\frac{1}{\mu\left(I_{j_{s}}^{*}\right)} \int_{I_{j_{s}^{*}}^{*}} \phi d \mu \leq A_{t} \tag{3.5}
\end{equation*}
$$

Now note that every $I_{j_{s}}^{*}$ contains at least one element of $S_{\phi, t}^{\prime}$, such that $I \in C\left(I_{j_{s}}^{*}\right)$. (one such is $I_{j_{s}}$). Consider for any s the family of all those I such that $I^{*} \subseteq I_{j_{s}}^{*}$. We write it as

$$
S_{\phi, t, s}^{\prime}=\left\{I \in S_{\phi, t}^{\prime}: I^{*} \subseteq I_{j_{s}}^{*}\right\}
$$

For any $I \in S_{\phi, t, s}^{\prime}$ we have of course that

$$
\frac{1}{\mu(I)} \int_{I} \phi d \mu>A_{t}, \quad \text { so if we set } \quad K_{s}=\bigcup\left\{I: I \in S_{\phi, t, s}^{\prime}\right\} .
$$

We must have, because of the disjointness of the elements of family $S_{\phi, t}^{\prime}$, that

$$
\begin{equation*}
\frac{1}{\mu\left(K_{s}\right)} \int_{K_{s}} \phi d \mu>A_{t} . \tag{3.6}
\end{equation*}
$$

Additionally, $K_{s} \subseteq I_{j_{s}}^{*}$ and by (3.5) and the comments stated above we easily see that

$$
\begin{equation*}
\frac{1}{k} \mu\left(I_{j_{s}}^{*}\right) \leq \mu\left(K_{s}\right)<\mu\left(I_{j_{s}}^{*}\right) \tag{3.7}
\end{equation*}
$$

By (3.5) and (3.6) we can now choose (because μ is non-atomic) for any s, a measurable set $B_{s} \subseteq I_{j_{s}}^{*} \backslash K_{s}$, such that if we define $\Gamma_{s}=K_{s} \cup B_{s}$, then $\frac{1}{\mu\left(\Gamma_{s}\right)} \int_{\Gamma_{s}} \phi d \mu=A_{t}$.

We set now $E_{t}^{*}=\bigcup_{s} I_{j_{s}}^{*}$

$$
\Gamma=\bigcup_{s} \Gamma_{s}, \quad \Delta=\bigcup_{s} \Delta_{s}
$$

where $\Delta_{s}=I_{j_{s}}^{*} \backslash \Gamma_{s}$, for any $s=1,2, \ldots$.

Then by all the above, we have that

$$
\Gamma \cup \Delta=E_{t}^{*} \quad \text { and } \quad \frac{1}{\mu(\Gamma)} \int_{\Gamma} \phi d \mu=A_{t}
$$

which is true in view of the pairwise disjointness of $\left(I_{j_{s}}^{*}\right)_{s=1}^{\infty}$.
Define now the following function

$$
h:=(\phi / \Gamma)^{*}:(0, \mu(\Gamma)] \rightarrow \mathbb{R}^{+} .
$$

Then obviously

$$
\frac{1}{\mu(\Gamma)} \int_{0}^{\mu(\Gamma)} h(u) d u=\frac{1}{\mu(\Gamma)} \int_{\Gamma} \phi d \mu=A_{t}
$$

By the definition of h we have that $h(u) \leq \phi^{*}(u)$, for any $u \in(0, \mu(\Gamma)]$. Thus we conclude:

$$
\begin{equation*}
\frac{1}{\mu(\Gamma)} \int_{0}^{\mu(\Gamma)} \phi^{*}(u) d u \geq \frac{1}{\mu(\Gamma)} \int_{0}^{\mu(\Gamma)} h(u) d u=A_{t}=\frac{1}{t} \int_{0}^{t} \phi^{*}(u) d u \tag{3.8}
\end{equation*}
$$

From (3.8), we have that $\mu(\Gamma) \leq t$, since ϕ^{*} is non-increasing.
We now consider a set $E \subseteq X$ such that $(\phi / E)^{*}=\phi^{*} /(0, t]$, with $\mu(E)=t$ and for which $\left\{\phi>\phi^{*}(t)\right\} \subseteq E \subseteq\left\{\phi \geq \phi^{*}(t)\right\}$.

It's existence is guaranteed by the equimeasurability of ϕ and ϕ^{*}, and the fact that (X, μ) is non-atomic. Then, we see immediately that

$$
\frac{1}{\mu(E)} \int_{E} \phi d \mu=\frac{1}{t} \int_{0}^{t} \phi^{*}(u) d u=A_{t} .
$$

We are going now to construct a second set $\widehat{E} \subseteq X$. We first set $\widehat{E}_{1}=\Gamma$.
Let now $x \notin \widehat{E}_{1}$. Since $\Gamma \supseteq\left\{\mathcal{M}_{\mathcal{T}} \phi>A_{t}\right\}$, we must have that $\mathcal{M}_{\mathcal{T}} \phi(x) \leq A_{t}$. But since \mathcal{T} differentiates $L^{1}(X, \mu)$ we obviously have that for μ-almost every $y \in X$: $\phi(y) \leq \mathcal{M}_{\mathcal{T}} \phi(y)$. Then the set $\Omega=\left\{x \notin \widehat{E}_{1}: \phi(x)>\mathcal{M}_{\mathcal{T}} \phi(x)\right\}$ has μ-measure zero.

At last we set $\widehat{E}=\widehat{E}_{1} \cup \Omega=\Gamma \cup \Omega$. Then $\mu(\widehat{E})=\mu(\Gamma)$ and for every $x \notin \widehat{E}$ we have that $\phi(x) \leq \mathcal{M}_{\mathcal{T}} \phi(x) \leq A_{t}$.

Let now $x \notin E$. By the construction of E we immediately see that $\phi(x) \leq \phi^{*}(t) \leq$ $\frac{1}{t} \int_{0}^{t} \phi^{*}(u) d u=A_{t}$. Thus, if $x \notin E$ or $x \notin \widehat{E}$, we must have that $\phi(x) \leq A_{t}$, that is (2.3) of Lemma 2.1 is satisfied for these choices of E and \widehat{E}. Let now $x \in \widehat{E} \backslash E$ and $y \in E$. Then we obviously have by the above discussion that $\phi(x) \leq \phi^{*}(t) \leq \phi(y)$. That is $\phi(x) \leq \phi(y)$. Thus (2.4) is also satisfied. Also since $\widehat{E}=\Gamma \cup \Omega$, we obviously have $\frac{1}{\mu(\widehat{E})} \int_{\widehat{E}} \phi d \mu=A_{t}$, so as a consequence (2.2) is satisfied also.

Applying Lemma 2.1, we conclude that

$$
\frac{1}{\mu(E)} \int_{E} \phi^{p} d \mu \leq \frac{1}{\mu(\widehat{E})} \int_{\widehat{E}} \phi^{p} d \mu
$$

or by the definitions of E and \widehat{E} that

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t}\left[\phi^{*}(u)\right]^{p} d u \leq \frac{1}{\mu(\Gamma)} \int_{\Gamma} \phi^{p} d \mu \tag{3.9}
\end{equation*}
$$

Our aim is now to show that the right integral average in (3.9) is less or equal that $(k c-k+1)\left(A_{t}\right)^{p}$. We proceed to this as follows:

We set $\ell_{\Gamma}=\frac{1}{\mu(\Gamma)} \int_{\Gamma} \phi^{p} d \mu$. Then by the notation given above, we have that:

$$
\begin{align*}
\ell_{\Gamma} & =\frac{1}{\mu(\Gamma)}\left(\int_{E_{t}^{*}} \phi^{p} d \mu-\int_{\Delta} \phi^{p} d \mu\right) \\
& =\frac{1}{\mu(\Gamma)}\left(\sum_{s=1}^{\infty} \int_{I_{j_{s}}^{*}} \phi^{p} d \mu-\sum_{s=1}^{\infty} \int_{\Delta_{s}} \phi^{p} d \mu\right) \\
& =\frac{1}{\mu(\Gamma)} \sum_{s=1}^{\infty} p_{s}, \tag{3.10}
\end{align*}
$$

where the p_{s} are given by

$$
p_{s}=\int_{I_{j_{s}}^{*}} \phi^{p} d \mu-\int_{\Delta_{s}} \phi^{p} d \mu, \quad \text { for any } \quad s=1,2, \ldots
$$

We find now an effective lower bound for the quantity $\int_{\Delta_{s}} \phi^{p} d \mu$. By Hölder's inequality:

$$
\begin{equation*}
\int_{\Delta_{s}} \phi^{p} d \mu \geq \frac{1}{\mu\left(\Delta_{s}\right)^{p-1}}\left(\int_{\Delta_{s}} \phi d \mu\right)^{p} \tag{3.11}
\end{equation*}
$$

Since $\Delta_{s}=I_{j_{s}}^{*} \backslash \Gamma_{s},(3.11)$ can be written as

$$
\begin{equation*}
\int_{\Delta_{s}} \phi^{p} d \mu \geq \frac{\left(\int_{I_{j_{s}^{*}}^{*}} \phi d \mu-\int_{\Gamma_{s}} \phi d u\right)^{p}}{\left(\mu\left(I_{j_{s}}^{*}\right)-\mu\left(\Gamma_{s}\right)\right)^{p-1}}, \tag{3.12}
\end{equation*}
$$

We now use Hölder's inequality in the form

$$
\frac{\left(\lambda_{1}+\lambda_{2}\right)^{p}}{\left(\sigma_{1}+\sigma_{2}\right)^{p-1}} \leq \frac{\lambda_{1}^{p}}{\sigma_{1}^{p-1}}+\frac{\lambda_{2}^{p}}{\sigma_{2}^{p-1}}, \quad \text { for } \quad \lambda_{i} \geq 0 \quad \text { and } \quad \sigma_{i}>0
$$

which holds since $p>1$. Thus (3.12) gives

$$
\begin{equation*}
\int_{\Delta_{s}} \phi^{p} d \mu \geq \frac{1}{\mu\left(I_{j_{s}}^{*}\right)^{p-1}}\left(\int_{I_{j_{s}}^{*}} \phi d \mu\right)^{p}-\frac{1}{\mu\left(\Gamma_{s}\right)^{p-1}}\left(\int_{\Gamma_{s}} \phi d \mu\right)^{p} . \tag{3.13}
\end{equation*}
$$

Since $\frac{1}{\mu\left(\Gamma_{s}\right)} \int_{\Gamma_{s}} \phi d \mu=A_{t},(3.13)$ gives

$$
\int_{\Delta_{s}} \phi^{p} d \mu \geq \frac{1}{\mu\left(I_{j_{s}}^{*}\right)^{p-1}}\left(\int_{I_{j_{s}^{*}}^{*}} \phi d \mu\right)^{p}-\mu\left(\Gamma_{s}\right) \cdot\left(A_{t}\right)^{p},
$$

so we conclude, by the definition of p_{s}, that

$$
\begin{equation*}
p_{s} \leq \int_{I_{j_{s}}^{*}} \phi^{p} d \mu-\frac{1}{\mu\left(I_{j_{s}}^{*}\right)^{p-1}}\left(\int_{I_{j_{s}}^{*}} \phi d \mu\right)^{p}+\mu\left(\Gamma_{s}\right) \cdot\left(A_{t}\right)^{p}, \tag{3.14}
\end{equation*}
$$

Using now (3.1) for $I=I_{j_{s}}^{*}, s=1,2, \ldots$ we have as a consequence that:

$$
\begin{equation*}
p_{s} \leq(c-1) \frac{1}{\mu\left(I_{j_{s}}^{*}\right)^{p-1}}\left(\int_{I_{j_{s}}^{*}} \phi d \mu\right)^{p}+\mu\left(\Gamma_{s}\right)\left(A_{t}\right)^{p} . \tag{3.15}
\end{equation*}
$$

Summing now (3.15) for $s=1,2, \ldots$ we obtain in view of (3.10) that

$$
\begin{equation*}
\ell_{\Gamma} \leq \frac{1}{\mu(\Gamma)}\left[(c-1) \sum_{s=1}^{\infty} \frac{1}{\mu\left(I_{j_{s}}^{*}\right)^{p-1}}\left(\int_{I_{j_{s}^{*}}} \phi d \mu\right)^{p}+\left(\sum_{s=1}^{\infty} \mu\left(\Gamma_{s}\right)\right)\left(A_{t}\right)^{p}\right] . \tag{3.16}
\end{equation*}
$$

Now from $\frac{1}{\mu\left(I_{j_{s}}^{*}\right)} \int_{I_{j_{s}}^{*}} \phi d \mu \leq A_{t}$, we see that

$$
\begin{align*}
\ell_{\Gamma} & \leq \frac{1}{\mu(\Gamma)}\left[(c-1) \sum_{s=1}^{\infty} \mu\left(I_{j_{s}}^{*}\right) \cdot\left(A_{t}\right)^{p}+\mu(\Gamma) \cdot\left(A_{t}\right)^{p}\right] \\
& =\left[(c-1) \frac{\mu\left(E_{t}^{*}\right)}{\mu(\Gamma)}+1\right] \cdot\left(A_{t}\right)^{p}, \tag{3.17}
\end{align*}
$$

Since now $E_{t}^{*} \supseteq \Gamma \supseteq E_{t}$, by (3.7) we have that

$$
\mu\left(E_{t}^{*}\right) \leq k \mu\left(E_{t}\right) \leq k \mu(\Gamma) .
$$

Thus (3.17) gives

$$
\frac{1}{\mu(\Gamma)} \int_{\Gamma} \phi^{p} d \mu \leq[k(c-1)+1]\left(A_{t}\right)^{p} .
$$

Using now (3.9) and the last inequality we obtain the desired result.
Corollary 3.1. If ϕ satisfies (3.1) for every $I \in \mathcal{T}$, then $\phi \in L^{q}$, for any $q \in\left[p, p_{0}\right)$, where p_{0} is defined by $\frac{p_{0}-p}{p_{0}} \cdot\left(\frac{p_{0}}{p_{0}-1}\right)^{p} \cdot(k c-k+1)=1$.

Proof. Immediate from Theorem 1 and A.
Remark 3.1. All the above hold if we replace the condition (3.1), by the known Muckenhoupt condition of ϕ over the dyadic sets of X. Then the same proof as above gives that the Muckenhoupt condition should hold for ϕ^{*}, for the intervals of the form $(0, t]$, and for the constant $k c-k+1$. This is true since there exists analogous lemma as Lemma 2.1 for this case (as can be seen in [4]). Also the inequality that is used in order to produce (3.13) from (3.12) is true even for negative exponent $p<0$. We ommit the details.

References

[1] L. D. Appuzo and C. Spordone, Reverse Hölder inequalities. A sharp result. Rendiconti Math. 10, Ser VII, (1990), 357-366.
[2] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, (1974), 241-350.
[3] F. W. Gehring, The L^{p} integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, (1973) 265-277.
[4] A. A. Korenovskii, Mean oscillations and equimeasurable rearrangements of functions. Lecture Notes of the Unione Mathematica Italiana, (2000), Springer.
[5] A. A. Korenovskii, The exact continuation of a Reverse Hölder inequality and Muckenhaoupt's condition. Math. Notes 52, (1992), 1192-1201.
[6] A. D. Melas, A sharp L^{p} inequality for dyadic A_{1} weights in \mathbb{R}^{n}. Bull. London Math. Soc. 37, (2005), 919-926.
[7] B. Muckenhoupt, Weighted norm inequalities for the Hardy-Littlewood maximal function. Trans Amer. Math. Soc. 165, (1972), 207-226.
[8] E. N. Nikolidakis, A Hardy inequality and applications to reverse Hölder inequalities for weights on \mathbb{R}. Submitted, arxiv:1312.1991.
[9] E. N. Nikolidakis, Dyadic- A_{1} weights and equimeasurable rearrangements of functions. Submitted, arxiv:1207.7113.

Eleftherios N. Nikolidakis, Antonios D. Melas: National and Kapodistrian University of Athens, Department of Mathematics, Zografou, GR-157 84 E-mail addresses: lefteris@math.uoc.gr, amelas@math.uoa.gr

[^0]: This research has been co-financed by the European Union and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF), aristeia code: MAXBELLMAN 2760, research code:70/3/11913.

