
LOCAL LOWER NORM ESTIMATES FOR DYADIC MAXIMAL
OPERATORS AND RELATED BELLMAN FUNCTIONS
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Abstract. We provide lower Lq and weak Lq-bounds for the localized dyadic
maximal operator on Rn, when the local L1 and the local Lp norm of the
function are given. We actually do that in the more general context of homo-
geneous tree-like families in probability spaces.
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1. Introduction

The dyadic maximal operator on Rn is a useful tool in analysis and is de�ned by

(1.1) M d�(x) = sup

�
1

jQj

Z
Q

j�(u)j du : x 2 Q, Q � Rn is a dyadic cube
�

for every � 2 L1loc(Rn) where the dyadic cubes are the cubes formed by the grids
2�NZn for N = 0; 1; 2; :::.
Localizing the above operator on a unit cube Q0 (that is considering only sucubes

of Q0 in the above supremum) leads to an operator that can be generalized in the
context of a (X;�) be a nonatomic probability space (X;�) equipped with a tree
like family (see also [4]). The precise de�nition follows:

De�nition 1. (a) A set T of measurable subsets of X will be called an N -homogeneous
tree-like family (where N > 1 is an integer) if the following conditions are satis�ed:
(i) X 2 T and for every I 2 T there corresponds a �nite subset C(I) �

T containing N elements each having measure equal to N�1�(I) such that the
elements of C(I) are pairwise disjoint subsets of I and I =

S
C(I).

(ii) T =
S
m�0 T(m) where T(0) = fXg and T(m+1) =

S
I2T(m)

C(I)
(iii) The family T di¤erentiates L1(X;�).
(b) Given an N -homogeneous tree-like family T on X the corresponding maximal

operator MT is de�ned for any  2 L1(X;�) by

MT  (x) = sup

�
1

�(I)

Z
I

j j d� : x 2 I 2 T
�
.

The dyadic maximal operator localized to X = [0; 1]n is contained in the above
de�nition, with N = 2n.
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Sharp upper estimates for such (as well as in the much more general case where
the homogeneity of the tree is not assumed) operators have been provided by the
evaluation of corresponding Bellman functions in various cases (see [1], [2], [3], [5],
[6], [11], [12], [14], [15], [16], [10]).
In [4] corresponding sharp lower Lp-bounds have been found for this operator,

when the L1 and the Lp norms of the function are �xed, and this was done by
proving that given any p > 1 and positive real numbers f; F with fp � F we have

inff
Z
X

(MT �)
pd� : � � 0 measurable,

Z
X

�d� = f ,
Z
X

�pd� = Fg =

= fp +
Np � 1
Np �N (F � f

p):(1.2)

The purpose of this paper is to study further lower bonds for these operators
where the Lp-norm size condition of MT � is replaced by other size conditions such
as Lp-integral on subsets of �xed measure, weak Lq where q > p type size conditions
and strong Lq with q di¤erent from p, thus providing more information on the lower
bounds for such operators.
In this direction we �rst de�ne the following Bellman type function

DTp (F; f; �) = inf f sup
�(E)=�

Z
E

(MT �)
pd� : � � 0 measurable withZ

X

�d� = f ,
Z
X

�pd� = Fg.(1.3)

the inner supremum taken over all measurable subsets E of X having measure �,
where � 2 (0; 1], and the positive numbers F; f are such that fp � F . Then we will
prove the following

Theorem 1. For any N -homogeneous tree-like family T any p > 1 any F; f with
fp � F and any � 2 (0; 1] we have
(1.4)

DTp (F; f; �) = minf�up +
Np � 1
Np �N (F � u

p�1f) : f � u � min((F
f
)1=(p�1);

f

�
)g

and writing c(N; p) = p�1
p

Np�1
Np�N < 1,

DTp (F; f; �) =(1.5)

=

8><>:
�fp + Np�1

Np�N (F � f
p) if c(N; p) � � � 1

Np�1
Np�N (F � c(N; p)

p�1 fp

p�p�1 ) if c(N; p)( f
p

F )
1=(p�1) � � � c(N; p)

�(Ff )
p=(p�1) if 0 < � � c(N; p)( f

p

F )
1=(p�1).

From the above theorem one obtains lower bounds for the following equivalent
norm on weak Lq when q > p:

k kq;1 = sup
0<�(E)

�(E)�
1
p+

1
q

�Z
E

j jp d�
�1=p

Corollary 1. Given q > p > 1 and F; f > 0 with fp � F we have for any
measurable � � 0 on X with

R
X
�d� = f ,

R
X
�pd� = F the following:
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i) If q�1q�p
fp

F < 1

kMT �kq;1 � max[c(N; p)1=q (q � p)
(q�p)=q(p�1)

(q � 1)(q�1)=q(p�1) (
F

q�1
p�1

f
q�p
p�1

)1=q; (fp+
Np � 1
Np �N (F�f

p))1=p].

ii) If q�1q�p
fp

F � 1

kMT �kq;1 � max[c(N; p)1=q( p

p� 1)
1=p(F � fp

p
)1=p; (fp +

Np � 1
Np �N (F � f

p))1=p].

Proof. Clearly (kMT �kq;1)p � supf��1+
p
qDTp (F; f; �) : 0 < � � 1g. Computing

the derivative of this function of � in each of the ranges described in (1.5) it is easy
to see that it is: a) increasing in 0 < � � c(N; p)( f

p

F )
1=(p�1), b) doesn�t have interior

local maximum in c(N; p) � � � 1 and c) in c(N; p)( f
p

F )
1=(p�1) � � � c(N; p) it has

an interior local maximum at �0 = (
q�1
q�p

fp

F )
1=(p�1)c(N; p) if q�1q�p

fp

F < 1 (note that
q�1
q�p > 1) and is increasing there otherwise (hence is maximized at c(N; p)). Thus

the supremum is attained either at � = �0 or c(N; p) (depending on
q�1
q�p

fp

F ) or at
� = 1. Introducing these values in (1.5) completes the proof. �

Next we examine the strong Lq norms considering the following Bellman type
function

BTp;q(F; f) = inff
Z
X

(MT �)
qd� : � � 0 measurable,

Z
X

�d� = f ,
Z
X

�pd� = Fg.

The case p = q has been treated in [4]. Here we prove �rst that:

Proposition 1. For any N -homogeneous tree-like family T any p > 1 any q < p
and any F; f with fp � F we have

(1.6) BTp;q(F; f) = fq.

Proof. It su¢ ces to take a large integer m and an I 2 T(m) (thus of measure N�m)
choose a function � on I such that

R
I
�d� = fN�m,

R
I
�pd� = F � fp(1 � N�m)

and
R
I
�qd� is su¢ ciently small (depending on m). For example one may take a

function of the form � = a�C for C � I and a > 0. Next taking � = ��I + f�XnI
we conclude that � satis�es

R
X
�d� = f ,

R
X
�pd� = F and MT � = f on XnI

whereas
R
I
(MT �)

qd� � cq
R
I
�q will be small. Then m!1 proves (1.6). �

Thus the interesting case is when q > p and in this case we will prove the
following

Theorem 2. For any N -homogeneous tree-like family T any p > 1 any q > p and
any F; f with fp � F we have

(1.7) BTp;q(F; f) � fq +
Nq � 1
Nq �N (

F
q�1
p�1

f
q�p
p�1

� fq)

and we have equality when (F=fp)1=(p�1) is a power of N , that is if m is a nonneg-
ative integer then

(1.8) BTp;q(Nm(p�1)fp; f) = fq[1 +
Nq � 1
Nq �N (N

m(q�1) � 1)].

In section 2 we prove Theorem 1 and in section 3 we prove Theorem 2.
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2. Proof of Theorem 1

To prove Theorem 1 we �x a measurable � � 0 with
R
X
�d� = f ,

R
X
�pd� = F

and a � 2 (0; 1) and then �nd u � f such that

(2.1) �1 = �(fMT � > ug) � � � �(fMT � � ug) � f

u

(thus u � f
� ) and it is easy to see that

(2.2) sup
�(E)=�

Z
E

(MT �)
pd� =

Z
fMT �>ug

(MT �)
pd�+ (�� �1)up.

Next we obviously have fMT � > ug =
[
j

Ij for a certain family fIjg of pairwise

disjoint elements of T maximal under 1
�(Ij)

R
Ij
� > u.

By writing

(2.3) �j = �(Ij), �j =
1

�(Ij)

Z
Ij

�, �j =
Z
Ij

�p

considering the trees T (Ij) = fI 2 T : I � Ijg on the probability spaces (Ij ; 1�j �)
and applying (1.2) to them we get for each j

(2.4)
1

�j

Z
Ij

(MT �)
pd� � 1

�j

Z
Ij

(MT (Ij)�)
pd� � Np � 1

Np �N
aj
�j
� N � 1
Np �N �pj :

Hence adding these inequalities we get with A =
P
j

�j , B =
P
j

�j�j and noting

that
P
j

�j = �1, the followingZ
fMT �>ug

(MT �)
pd� � Np � 1

Np �N
P
j

�j �
N � 1
Np �N

P
j

�j�
p
j =

= �1u
p +

Np � 1
Np �N (A�Bu

p�1)�

�
P
j

�j(u
p � Np � 1

Np �N �ju
p�1 +

N � 1
Np �N �pj ) �

� �1u
p +

Np � 1
Np �N (A�Bu

p�1)(2.5)

the last inequality follows since the maximality of Ij�s imply that u < �j � Nu and
then the convexity of the function h(t) = 1� Np�1

Np�N t+
N�1
Np�N t

p combined with the

fact that h(1) = h(N) = 0 give up � Np�1
Np�N �ju

p�1 + N�1
Np�N �

p
j � 0 for each j.

Next note that A =
R
fMT �>ug �

pd�, B =
R
fMT �>ug �d�, so Holder�s inequality

gives Bp � �p�11 A and also note that � �MT � � u on D = XnfMT � > ug which
gives combined with

(2.6) F �A =
Z
D

�p � up�1
Z
D

� = up�1(f �B).

The inequalities u < �j � Nu on the other hand give that B = �1xu where
1 < x � N and so A � ��p+11 Bp = �1x

pup which combined with (2.6) gives

(2.7) A � max(F � up�1(f � �1xu); �1xpup)
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and so since x > 1 Z
fMT �>ug

(MT �)
pd� �

� �1u
p +

Np � 1
Np �N (max(F � u

p�1(f � �1xu); �1xpup)� �1xup) =

= �1u
p +

Np � 1
Np �N max(F � up�1f; �1(xp � x)up) �

� �1u
p +

Np � 1
Np �N max(F � up�1f; 0).(2.8)

Now this combined with (2.2) gives

sup
�(E)=�

Z
E

(MT �)
pd� � �up +

Np � 1
Np �N max(F � up�1f; 0) �

� minf�up + Np � 1
Np �N (F � u

p�1f) : f � u � (F
f
)1=(p�1) and u � f

�
g.(2.9)

Conversely given F; f; � as above we let u0 2 [f;min((Ff )
1=(p�1); f� )] minimize

the quantity �up + Np�1
Np�N (F � u

p�1f) in the above inequality and using Lemma 1
and the proof of Proposition 1 in [4] we can �nd pairwise disjoint elements fIjg of
T and measurable functions �j � 0 on each Ij such that

X
j

�(Ij) = �,
1

�(Ij)

Z
Ij

�j = u0,
Z
Ij

�pj = �j � �(Ij)u
p
0

with X
j

�j = F � up�10 f + �up�10 � �up�10

and such that for each j

1

�(Ij)

Z
Ij

(MT (Ij)�j)
pd� = up0 +

Np � 1
Np �N (

�j
�(Ij)

� up0).

Now let Y = Xn
S
j

Ij and choose a measurable P � Y such that �(P ) =
f � �u0
u0

2

[0; 1� �] by the conditions in (2.9) and de�ne the measurable function

(2.10) � = u0�P +
X
j

�j�Ij .

Since
R
Y
� = f � �u0 and

R
Y
�p = up�10 f � �up0 = F �

P
j �j we easily obtain

that
R
X
�d� = f ,

R
X
�pd� = F . However since � � u0 on Y and 1

�(Ij)

R
Ij
� = u0

we conclude that MT � = MT (Ij)�j on each Ij and that fMT � > u0g �
S
j

Ij �
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fMT � � u0g hence

sup
�(E)=�

Z
E

(MT �)
pd� =

ZS
j

Ij

(MT �)
pd� =

=
X
j

�(Ij)[u
p
0 +

Np � 1
Np �N (

�j
�(Ij)

� up0)] =

= �up0 +
Np � 1
Np �N (F � u

p�1
0 f).(2.11)

To prove (1.5) we �rst note that c(N; p) < 1 since Np � 1 > p(N � 1). Next
by de�ning g(u) = �up + Np�1

Np�N (F � up�1f) we observe that g0(u) = 0 i¤ u =

c(N; p) f� and that g(t
1=(p�1)) is convex on t > 0. Hence to �nd the minimum

of g(u) in [f;min((Ff )
1=(p�1); f� )] it su¢ ces to examine the relative position of the

values f; (Ff )
1=(p�1); f� and c(N; p) f� . Thus when c(N; p)

f
� � f that is � � c(N; p)

the minimum is attained for u = f , when f < c(N; p) f� � (Ff )
1=(p�1) that is

c(N; p)( f
p

F )
1=(p�1) � � � c(N; p) the minimum is attained at u = c(N; p) f� and

when 0 < � < c(N; p)( f
p

F )
1=(p�1) the minimum is attained for u = (Ff )

1=(p�1).
Substituting the corresponding values of u in g we obtain (1.5). This completes the
proof of Theorem 1.

3. Proof of Theorem 2

Here we will prove Theorem 2 where q > p > 1. For the lower bound we follow a
classical Bellman type argument. Assuming that T is a N -homogeneous tree de�ne
the following function

BTp;q(F; f; L) = sup f
Z
X

max(MT �;L)
qd� : � � 0 measurable withZ

X

�d� = f ,
Z
X

�pd� = Fg.(3.1)

whenever F; f; L are positive real numbers with f � L and fp � F .
Then we will prove the following from which (1.7) easily follows (by taking L =

f).

Lemma 1. We have

(3.2) BTp;q(F; f; L) � Lq +
Nq � 1
Nq �N (

F
q�1
p�1

f
q�p
p�1

� Lq�1f)+

where x+ = max(x; 0).

Proof. Write r =
q � 1
p� 1 > 1. We �rst consider a nonnegative T -step function at

levelm, � � 0 that is a �nite linear combination of the functions �I where I 2 T(m),
such that

R
X
�d� = f and

R
X
�pd� = F and prove (3.2) by induction on m, the

case m = 0 being trivial.
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We have X =
NS
i=1

Ji where each Ji is in T(1) and has measure 1=N and we write

Fi =
1

�(Ji)

Z
Ji

�p, fi =
1

�(Ji)

Z
Ji

�.

Note that the restriction of � on each Ji is a T (Ji)-step function at level m � 1.
Also in the case fi > L we have max(MT �;L) = MT (Ji)� on Ji and in the case
fi � L we have max(MT �;L) = max(MT (Ji)�;L) on Ji. hence by the induction
hypothesis we have

N

Z
X

max(MT �;L)
qd� =

=

0@X
fi�L

Z
X

max(MT (Ji)�;L)
q d�

�(Ji)
+
X
fi>L

Z
X

(MT (Ji)�)
q d�

�(Ji)

1A �

�
X
fi�L

(Lq +
Nq � 1
Nq �N (

F ri
fr�1i

� Lq�1fi)+) +
X
fi>L

(fqi +
Nq � 1
Nq �N (

F ri
fr�1i

� fqi )).

Next we observe that when fi > L we also have fi � Nf � NL, thus by the
convexity of the function h(t) = 1� Np�1

Np�N t+
N�1
Np�N t

p since h(1) = h(N) = 0 and
since L < fi � (Fi=fi)1=(p�1) we have

fqi +
Nq � 1
Nq �N (

F ri
fr�1i

� fqi ) � Lq +
Nq � 1
Nq �N (

F ri
fr�1i

� Lq�1fi)+.

Therefore using the inequality (a1 + :::+ aN )+ � a+1 + :::+ a
+
N we getZ

X

max(MT �;L)
qd� � 1

N

NX
i=1

(Lq +
Nq � 1
Nq �N (

F ri
fr�1i

� Lq�1fi)+) �

� Lq +
Nq � 1
Nq �N (

1

N

NX
i=1

F ri
fr�1i

� Lq�1f)+

since Nf = f1 + :::+ fN . Now using Holder�s inequality for r > 1 we have

1

N

NX
i=1

F ri
fr�1i

� 1

N

(
PN

i=1 Fi)
r

(
PN

i=1 fi)
r�1

=
F r

fr�1

and this completes the induction.
For the general case, given � � 0measurable satisfying

R
X
�d� = f and

R
X
�pd� =

F we de�ne �m as follows

�m =
X

I2T(m)

AvI(�)�I

and we note that

(3.3) MT �m =
X

I2T(m)

maxfAvJ(�) : I � J 2 T g�I

since AvJ(�) = AvJ(�m) whenever I � J 2 T , I 2 T(m). Also

(3.4)
Z
X

�md� =

Z
X

�d� = f , Fm =
Z
X

�pmd� �
Z
X

�pd� = F
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for all m and MT �m converges monotonically to MT �. Also since each �m is a T -
step function for everym the inequality (3.2) holds for each �m with Fm in the place
of F . On the other hand we have �pm � (MT �)

p everywhere and �pm ! �p almost
everywhere by property (iv) in De�nition 1. Hence by dominated convergence we
conclude that Fm =

R
X
�pmd�!

R
X
�pd� = F and so using monotone convergence

for MT �m we easily get (3.2) for �. �

Now in the case where f = 1 and F = Nm(p�1) we let X = I0 � I1 � :::Is �
Is+1 � ::: � Im be a chain such that Is 2 T(s) for all s (and so �(Is) = N�s) and
consider the function

(3.5) � = Nm�Im

which clearly satis�es
R
X
�d� = f and

R
X
�pd� = F and as it is easy to see that

(3.6) MT � = Nm�Im +N
m�1�Im�1nIm + ::::+N�I1jI0 + �I0jI1

we get with r =
q � 1
p� 1Z

X

(MT �)
qd� = N (q�1)m + (1� 1

N
)(N (q�1)(m�1) + :::+Nq�1 + 1) =

= N (q�1)m + (1� 1

N
)
N (q�1)m � 1
Nq�1 � 1 =

= 1 +
Nq � 1
Nq �N (F

r � 1).(3.7)

Therefore by homogeneity we conclude that (1.7) is an equality when (F=fp)1=(p�1)

is a power of N and this proves (1.8).
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