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EXISTENCE OF SELF-SIMILAR PROFILE FOR A KINETIC
ANNIHILATION MODEL REVISITED

VERONIQUE BAGLAND & BERTRAND LODS

ABSTRACT. We show the existence of a self-similar solution for a modified Boltzmann equation
describing probabilistic ballistic annihilation. Such a model describes a system of hard spheres
such that, whenever two particles meet, they either annihilate with probability a € (0, 1) or they
undergo an elastic collision with probability 1 — a. For such a model, the number of particles,
the linear momentum and the kinetic energy are not conserved. We show that, for o smaller
than some explicit threshold value a;, a self-similar solution exists.
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2 VERONIQUE BAGLAND & BERTRAND LODS

1. INTRODUCTION

In the physics literature, various kinetic models have been proposed in the recent years in
order to test the relevance of non-equilibrium statistical mechanics for systems of reacting parti-
cles. Such models are very challenging in particular for the derivation of suitable hydrodynamic
models because of the lack of collisional invariants. We investigate in the present paper a recent
model, introduced in [11, 13, 14, 21, 29, 33| to describe the so-called probabilistic ballistic
annihilation. Such a model describes a system of (elastic) hard spheres that interact in the
following way: particles move freely (ballistically) between collisions while, whenever two parti-
cles meet, they either annihilate with probability a € (0,1) (and both the interacting particles
disappear from the system), or they undergo an elastic collision with probability 1 — «. For
such a model, not only the kinetic energy is not conserved during binary encounters, but also
the number of particles and the linear momentum. Notice that, originally only pure annihilation
has been considered |11, 21] (corresponding to a = 1). Later on, a more elaborate model has
been built which allows to recover the classical Boltzmann equation for hard spheres in the limit
a = 0. Notice that such a Boltzmann equation for ballistic annihilation in the special (and
unphysical) case of Maxwellian molecules has already been studied in the mid-80’s [31, 30] and
was referred to as Boltzmann equation with removal.

The present paper is the first mathematical investigation of the physical model of probabilistic
ballistic annihilation for the physical relevant hard spheres interactions, with the noticeable
exception of the results of [23] which prove the validity of the spatially homogeneous Boltzmann
equation for pure annihilation (i.e. whenever o = 1). We shall in particular prove the existence of
special self-similar profile for the associated equation. Before entering into details of our results,
let us introduce more precisely the model we aim to investigate.

1.1. The Boltzmann equation for ballistic annihilation. In a kinetic framework, the beha-
vior of a system of hard spheres which annihilate with probability o € (0,1) or collide elastically
with probability 1 — a can be described (in a spatially homogeneous situation) by the so-called
velocity distribution f(¢,v) which represents the probability density of particles with velocity
v € R? (d > 2) at time ¢ > 0. The time-evolution of the one-particle distribution function f(t,v),
v € R?, t > 0 satisfies the following

O f(t,v) = (1= a)Q(f, f)(t,v) — aQ_(f, [)(t,v) = B(f, f)(t,v) (1.1)
where Q is the quadratic Boltzmann collision operator defined by the bilinear symmetrized form
1
A9, f)v) = 5 / B(v =i, 0) (gf + 9 fi — 9o f — gfs) dvsdo,
RdxSd—1

where we have used the shorthands f = f(v), f/ = f(V)), g« = g(v«) and ¢, = g(v}) with
post-collisional velocities v" and v, parametrized by

, vt v v — v ;o vt vl v — vy
v = o v, = - o

2 2 ’ ¥ 2 2

and the collision kernel is given by

B(v —vs,0) = (v — vi|)b(cos 0)

, oe st

V—Ux
v’

where cosf = < 0> . Typically, for the model we have in mind, we shall deal with

O(|v = vuf) = o — .l
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and constant b(-) corresponding to hard spheres interactions which is the model usually consid-
ered in the physics literature [19, 24, 33]. We shall also consider more general kernel, typically,
we shall assume that

D(Jv —vi]) = v — vi|? v € (0,1] (1.2)
and

1
16 o1 @it = 592 /1 b(E)(1 — £2)@I2dt < oo

where [S972| is the area of (d — 2)-dimensional unit sphere. Without loss of generality, we will
assume in all the paper that

1611 (ga-1y = 1.

Notice that, for constant angular cross-section, this amounts to choose b(-) = 1/|S?"!|. A very
special model is the one of so-called Maxwellian molecules which corresponds to v = 0. The
model of Maxwellian molecules has been studied mathematically in [30, 31] and we will discuss
this very special case in Appendix B.

The above collision operator Q(f, f) splits as Q(f, f) = Q+(f, f) — Q_(f, f) where the gain
part Q4 is given by

QAN = [ Bl vuo)fif doudo

while the loss part Q_ is defined as

O (1NW = FOLNW.  with L@ = [ Bo—o.0).dede

One has
B(f7f) = (1_a)Q(f7f)_aQ—(fvf):(l_a)Q-i-(faf)_Q—(faf)

Formally, if f(¢,v) denotes a nonnegative solution to (1.1) then, no macroscopic quantities are
conserved. For instance, the number density

n(t) = f(t,v)dv
R4
and the kinetic energy
E(t) :/ lv|? f(t,v)dv
Rd

are continuously decreasing since, multiplying (1.1) by 1 or |v|? and integrating with respect to
v, one formally obtains

d
Snlt) = —a | Q-(f, f)(t.v)dv <0
dt R4
while

d

G0 =—a [ pPe (£t vl <o

t R4

It is clear therefore that (1.1) does not admit any nontrivial steady solution and, still formally,

f(t,v) = 0ast— oo.
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1.2. Scaling solutions. Physicists expect that solutions to (1.1) should approach for large times
a self-similar solution fg to (1.1) of the form

fu(t,v) = A(t) Yu (B(t)v) (1.3)
for some suitable scaled functions A(¢),3(t) = 0 with A(0) = 5(0) = 1 and some nonnegative
function ¢ = ¥y (§) such that

v 20 and [ €)1+ 1) dg < . (1.4

The first step in the proof of the above statement is actually the existence of the profile ¢y and
this is the aim of the present paper.
Using the scaling properties of the Boltzmann collision operators Q, one checks easily that

B(fu, fu)(t,v) = N2(0)8~ ) (0B, vu)(B(t)v) Vo e RY
Then, fr(t,v) is a solution to (1.1) if and only if ¥ (&) is a solution to the rescaled problem

\ d+y : d+vy—1
O Leut©) + MO8 e Tein(€) = Bom,v)©)
where the dot symbol stands for the time derivative. Since ¥ g does not depend on time ¢, there
exist some constants A and B such that
UL IGO0

A= A2(t) ()

(1.5)

Thereby, ¥y is a solution to

Ay (&) +BE - Veyu(§) = B(Wm, vu)(&). (1.6)

Actually, one sees easily that the coefficients A and B depend on the profile ¥p. Indeed,
integrating first (1.6) with respect to ¢ and then multiplying (1.6) by |¢|? and integrating again
with respect to § one sees that (1.4) implies that

A:_O‘/Rd< d+2 dief )ng,wm(f)df

2 Jro \ Jpa 0r(6) e Joa¥m (€ 6.2 d&.
" 1 €
B=-2 < - ) ] .
Lo~ Tovme ) & n vnens
Let us note that A and B have no sign. However,
0<dB-A=——— | O (Y, vn)€)d,

/ (&) de. TR
Rd

and
«o

A =
R
Rd
Solving (1.5), one obtains the expressions of 5 and A. Namely, since A\(0) = 3(0) =1,

Bt) =1+ ((d+7)B—A))@sa
M) =1+ (([d+)B—A))TEE 30
where we notice that (d ++)B — A > 0.

0<(d+2)B- 17O (Ym,bm)(€) dE.
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We now observe that, with no loss of generality, one may assume that

/ br(©)de=1  and / en(©) P e = 2. (17)
Rd

Q wl&

Indeed, if 15 denotes a solution to (1.6) satisfying (1.7) then, for any 8 = (31, 32) € (0,00)2,

the function ¥y 3 defined by

V(&) = P (;i?) Yy <\/ ;lg; §>

is a solution to (1.6) with mass 51 and energy (3. Assuming (1.7) and introducing
ny(t) = fu(t,v)dv, Egx(t) = / [v|? frr (t, v)d,
Rd R
one obtains
__dB-A
na(t) = (4 ((d+7)B — A) 1) @A
g _ (d+2)B-A (1.8)
Egt) =50+ ((d+~v)B—-A)t) @iB-A t>=0
The main objective of the present work is to prove the existence of a self-similar
profile ¥y satisfying (1.6), (1.7). Notice that the existence of such a self-similar profile
was taken for granted in several works in the physics community [19, 24, 33| but no rigorous

justification was available up to now. Our work aims to fill this blank, giving in turn the first
rigorous mathematical ground justifying the analysis performed in the op. cit.

1.3. Notations. Let us introduce the notations we shall use in the sequel. Throughout the
paper we shall use the notation (-) = 1/1+ |- |2. We denote, for any n € R, the Banach space

Ll(]Rd) {f R? — R measurable ; ||f||L1 = / |f(0)| (v)Tdv < —|—oo} .

More generally we define the weighted Lebesgue space Lh(R?) (p € [1,+oc), n € R) by the
norm

Il = | [, P wmas] REEPTP
o)

while || f[[Lee = ess — sup,egalf(v)[(v)" for p = oc.
We shall also use weighted Sobolev spaces H;(Rd) (s € R, p € R). When s € N, they are

defined by the norm
1/2

If ey = D 9172
[4]<s
where for £ € N, 9° = (92 . afj and |[¢| = {1 + ...+ {4. Then, the definition is extended to real

positive values of s by interpolation. For negative value of s, one can define H?* n(Rd) as the dual
space of H;S(Rd), ie.

11, =son { | [ 0 ato)ae

We also define the space C([0,T],w — L*(R%)) of continuous functions from [0,7] to the space
L'(R?%) where the latter is endowed with its weak topology.

Mol <1} ¥o<0. nek
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1.4. Strategy and main results. To prove the existence of a steady state vy, solution to
(1.6), we shall use a dynamical approach as in [7, 9, 16, 17, 25]. It then amounts to finding a
steady state to the annihilation equation

Opp(t,€) + Ay (8) ¥(1,6) + By () § - Vb (1, €) = B4, ¥)(, §) (1.9)
supplemented with some nonnegative initial condition
where 1) satisfies

9 d
[ow@de=1, [ w©ePds=3, (111)
R4 R4
while
Au) =5 [ (d+2-27) @ @),
R4
and
By(t) = —5- | (d=20¢P) Q- ()¢, )de.
Rd

Notice that (1.9) has to be seen only as a somewhat artificial generalization of (1.6): we do
not claim that (1.9) can be derived from (1.1) nor that a solution ¢ to (1.9) is associated to a
self-similar solution to (1.1). Again, the introduction of the new equation (1.9) is motivated only
by the fact that any steady state of (1.9) is a solution to (1.6).

We now describe the content of this paper. As explained above, the existence of the profile
1 is obtained by finding a steady state to the annihilation equation (1.9). As in previous works
[7, 9, 16, 17, 25], the proof relies on the application of a suitable version of Tykhonov fixed point
theorem (we refer to |7, Appendix A] for a complete proof of it):

Theorem 1.1 (Dynamic proof of stationary states). Let Y be a locally convex topological
vector space and Z a nonempty convex and compact subset of Y. If (St)i>0 is a continuous
semi-group on Z such that Z is invariant under the action of S (that is Sz € Z for any z € Z
and t > 0), then there exists zo € Z which is stationary under the action of S (that is Syzo = 2o
for any t >0).

In a more explicit way, our strategy is therefore to identify a topological vector space ) and
a convex subset Z C Y such that

(1) for any ¢y € Z there is a global solution 1) € C(]0,00),Y) to (1.9) that satisfies (1.10);
(2) the solution 1) is unique in Y and for any 1y € Z, one has ¥(t) € Z for any ¢t > 0;

(3) the set Z is compactly embedded into Y,

(4) solutions to (1.9) have to depend continuously on the initial datum.

According to the above program, a crucial step in the above strategy is therefore to investigate
the well-posedness of the Cauchy problem (1.9)-(1.10) and next section is devoted to this point.
The notion of solutions we consider here is as follows.

Definition 1.2. Given a nonnegative initial datum g satisfying (1.11) and given T > 0, a
nonnegative function v : [0,T] x R = R is said to be a solution to the annihilation equation

(1.9) if
¢ € C([0,T]; w— L' (R)) N L=(0,T; Ly(RY)) N L'(0,T; Ly, (RY))
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and satisfies (1.9) in the weak form:
t
[ o0 + [ ds[ay(s) - dBuo)] [ o€ v(s,0) ¢
R4 0 Ré

= [[asButs) [ vts ¢ Vel + [ oepmalers+ [ as [ dmw,w)(s,g)@(&()ldi)
for any o € CL(R?) and any t € (0,T).

Notice that the assumption ¢ € L'(0, T} LéJﬂ (R9)) is needed in order to both the quantities
A (t) and By (t) to be well defined.

Let us point out the similarities and the differences between (1.9) and the well-known Boltz-
mann equation. First, it follows from the definition of the coefficients A, and By, that the mass
and the energy of solutions to (1.9) are conserved. However, there is no reason for the momen-
tum to be preserved. Even if we assume that the initial datum has vanishing momentum we
are unable to prove that this propagates with time. It is also not clear whether there exists an
entropy for (1.9). Let us note on the other hand that since the coefficients A, and By involve
moments of order 2+~ of 1, a crucial step will be to prove, via suitable a priori estimates, that
high-order moments of solutions are uniformly bounded, ensuring a good control of both A, and
B,. At different stages of this paper, this lack of a priori estimates and this necessary control
of Ay and By complicate the analysis with respect to the Boltzmann equation. It also leads
us to formulate some assumptions, some of which we hope to be able to get rid of in a future
work. Let us now describe precisely what are the practical consequences of the aforementioned
differences. Since we are interested in the physically relevant model of hard spheres interactions,
the cross section involved in the collision operator is unbounded. Consequently, the existence
of a solution to (1.9) is obtained by applying a fixed point argument to a truncated equation
and then passing to the limit. Such an approach is reminiscent from the well-posedness theory
of the Boltzmann equation [27] and relies on suitable a priori estimates and stability result. In
particular, such a stability result allows to prove in a unique step the above points (1) and (4)
of the above program. We thereby prove the following theorem in Section 2.

Theorem 1.3. Let p > 1. Let ¢y € L§+V(Rd) N LP(RY) be a nonnegative distribution function
satisfying (1.11). Then, there exists a nonnegative solution

¥ € C([0,00);w — LN(R?)) N Lige((0,00), Ly 49, (RY)) N Li,((0, 00), Ly (RY))
to (1.9) such that (0, ) = 1o and

d
[ueod=1 [ vaoepa=5 w0
Rd Rd
Furthermore, if we assume that p = 2 and that g also satisfies
Y0 € Lgaiqron®Y) N L%¥+K(Rd) N H§+ diyin (R7) (1.13)

for some k > 0, such a solution is unique.

Notice that, with respect to classical existence results on Boltzmann equation (see e.g. [27]),
we need here to impose an additional LP-integrability condition on the initial datum y. Such
an assumption is needed in order to control the nonlinear drift term in (1.9) and especially to
get bounds on the moments of order 2 + v arising in the definition of Ay(t) and By (), these
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bounds need to be uniform with respect to the truncation. Moreover, as far as the uniqueness
is concerned, we need additional regularity assumptions of Sobolev type in order to control the
drift term in the equation satisfied by the difference of two solutions.

The previous result allows to identify the space ) in the above Theorem 1.1 as J) = L!(R%)
endowed with its weak topology and gives the existence of a semi-group for (1.9) and the next
step is to finding a subset Z which is left invariant under the action of this semi-group and is
a compact subset of J. Since Z has to be a weakly compact subset of L'(R?), it is natural
in view of Dunford-Pettis criterion to look for a subspace involving higher-order moments of
the solution (t) together with additional integrability conditions. We are therefore first lead to
prove uniform in time moment estimates for the solution v (¢). More precisely, the main result
of Section 3 is the following

Theorem 1.4. Let p > 1. Let ¢y € L§+V(Rd) N LP(RY) be a nonnegative distribution function

satisfying (1.11). Let then ¥ € C([0,00);w — LY(RY)) N LS ((0, o0), L%JW(Rd)) be a nonnegative

solution to (1.9)-(1.10). Then, there exists g € (0,1] such that for 0 < o < a, the solution v
satisfies

sup [ 0.9l < max{ [ (@) 606,37}

t=20

for some eaplicit constant M depending only on «, vy, b(-) and d.

Remark 1.5. The parameter ag appearing in the above theorem is fully explicit. In the particular
case of true hard spheres in dimension d = 3, i.e. for constant collision kernel b(-) = 1/4m and
v =1, one has ay = % We refer to Proposition 3.4 & Remark 3.5 for more details.

The proof of the above result relies on a careful study of the moment system associated to
the solution () to (1.9)-(1.10). Since we are dealing with hard spheres interactions, such a
system is not closed but a sharp version of Povzner-type inequalities allows to control higher-
order moments in terms of lower-order ones. The restriction on the parameter o € (0, ) arises
naturally in the proof of the uniform in time bound of the moment of order 24 (see Proposition
3.4).

At the end of Section 3 we establish a lower bound for L(v¢) where L denotes the operator in
the definition of Q_, namely

DO = [ D(t6)€ -6l > male?,  VEeR £20,  (114)

for some positive constant i > 0 depending on v,d, a, b(-) and on [p4 1ho(€)|¢]7d€. Note that
this bound will be essential in Section 4 and that we need here to assume that g is an ¢sotropic
function. Isotropy is indeed propagated by (1.9). For the Boltzmann equation, this assumption
is useless since such a bound may be obtained thanks to the entropy for elastic collisions (see
[28, Proposition 2.3]) or thanks to the Jensen inequality and vanishing momentum for inelastic
collisions and 7 = 1 (see [26, Eq. (2.7)]). This naturally leads us to Section 4 where we deal
with propagation of higher-order Lebesgue norms and where we obtain the following:

Theorem 1.6. Let 1) € L%%/(Rd) be a nonnegative distribution function satisfying (1.11). We
assume furthermore that 1g is an isotropic function, that is

bo(§) =o(lé])  VEER™ (1.15)
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Then, there is some explicit @ € (0,1] such that, for 0 < a < @ there exists some explicit
* € (1,00] such that, for any p € (1,p%),

Yo € LP(RY) = S;lg\lwt)\lm < max {{|¢ol|zr, Cp(vho) }

for some explicit constant Cp(1g) > 0 depending only on o, vy, b(-), p, the dimension d and
Jra o(§)|€]7dE. Here above, ¢ € C([0,00);w — Ll(Rd))ﬂLfg’C((O,oo) L%JH/(Rd)) is a nonnegative
solution to (1.9)-(1.10).

Remark 1.7. Just as in Theorem 1.4, the parameter a is explicit: for true hard spheres in

dimension d = 3 one has o = l In this case, the parameter p}, = 32 if 1/5 < a < @ while
p* =00 if a < 1/5. See Remarks 3.11, 4.1 & 4.2 for details.

The proof of the above result comes from a careful study of the equation for higher-order
Lebesgue norms of the solution (¢) combined with the above bound (1.14) where we only
consider zsotropic initial datum. Here again, one notices a restriction on the parameter o €
(0, @) for the conclusion to hold. The fact that the constant Cp(1)9) depends on the initial datum
1o through (the inverse of) its moment [z, ¥0(£)|£]7d€ is no major restriction since we will be
able to prove the propagation of lower bound for such a moment along the solution to (1.9) (see
Sections 3 and 4 for details).

It remains now to show that weighted Sobolev bounds also propagate uniformly with time.
We are able to do it only for physical case of hard-spheres interactions, i.e. whenever v = 1.

Theorem 1.8. Assume v = 1. Let 1)y € L2+y( 4) be a nonnegative function satisfying (1.15)
and
o € Ly a(x) (RT) N L9+d (Rd) n Hd+7+~ (R)

or some k > 0 where (k) = max w—{—ﬁ,lo—}—d—{—Qﬁ . Let
q 2

¥ € C([0,00);w — LHR)) N L5 ((0,00), Ly 4, (RY))

denote the nonnegative solution to (1.9)-(1.10). Then, there is some explicit oy € (0, min{ag, a}]
such that, for 0 < a < aq

sup [60)1 15, < max{ ol
t=0 5 tK

9+d

2,H(¢o)} (1.16)

and

sup [V (t)lzz,,,, <m {HV%HL

d+7+

CSob(lbo)} : (1.17)

where Cy (1) depends on the bound in Theorem 1./, HwOHLl( : and the bound in Theorem 1.6
q(k
(with p = 2) whereas Csob(1o) depends on the same bounds and on the one in (1.16)

d+T7+k

Section 5 is devoted to the proof of the above Theorem. The proofs of (1.16) and (1.17) rely
on (1.14) and on some well-known regularity properties of Q. We wish to emphasise the fact
that the restriction v = 1 is coming from the propagation of (weighted) Sobolev norms. Namely,
while local in time propagation of weighted Sobolev norms is true for any v € (0, 1] (see Lemma
2.10), we are able to prove uniform in time estimates only for v = 1. Notice that, for v € (0, 1),
the main obstacle is coming from the loss term Q_.

Combining the four above results with Theorem 1.1 we obtain our main result, proven in
Section 6:
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Theorem 1.9. Assume~y = 1. For any o € (0, 1) there exists a radially symmetric nonnegative
Yy € LA(RY) N L2(RY) satisfying (1.6) and (1.7).

The proof of the above result is rather straightforward in view of the previously obtained
results.

Open problems and perspectives are addressed in Section 7. As previously mentioned, one of
them consists in showing that solutions to (1.1) approach for large times a self-similar solution
frr to (1.1) of the form (1.3). The first step was the existence of the profile ¥z, which has been
obtained in Section 6. Besides, one is also interested in the well-posedness of (1.1) and, following
the same arguments as in the proof of Theorem 1.3 the existence of a solution to (1.1) may be
easily obtained. More precisely, we have

Theorem 1.10. Let f) € L2+y( 4 be a nonnegative distribution function. Then, there exists
a umque nonnegatwe solution f € C([0,00); L3(R?)) N LL ((0,00), L%+,Y(Rd)) to (1.1) such that
fo and

/ flt,v)dv < / fo(v) dw, /Rd ft,v) [v*dv < /Rd fo(v) |v]? dv vt > 0. (1.18)

We give the main lines for the proof of this Theorem in Appendix A. Finally, the particular
case of Maxwellian molecules is discussed in the Appendix B.

2. CAUCHY PROBLEM

This section is devoted to the proof of Theorem 1.3. To this aim, we first consider a truncated
equation.

2.1. Truncated equation. In this section, we only assume that ¢ € WL°(R?) N L1 " s(RY)
(for some § > 0) is a fired nonnegative distribution function that does not necessarily satisfy the
above (1.11) and we truncate the collision kernel B. Thereby, for n € N, we consider here the
well-posedness of the following equation

(L, €) + Ay (1) p(t,€) + By (1) € - Vip(t,€) = B" (4, ¥)(t, £), (2.1)
where the collision operator B" (1, )) is given by

for which the collision operator Q" is defined as above with a collision kernel B,, given by

Bn(§ — &k, 0) = @ (/€ — &il)bn(cos 0)

with

bn(2) = Lyjz<1-1/n3b(2) and  ®@,(r) = (min{r,n})”, € (0,1].
Finally,

noe o« d+2 d|¢|? n

10=-5 [ (i om - proorre) S o
and

a 1 €12 >
Bi0 =5 [ ( Q" () (1, £)d&.
=5 f\ vt ey~ Fuvie)epas ) <00
We notice here that the definitions of Aj(t) and Bjj(¢) match the definitions of Ay (t) and By(?)

given in the introduction with Q™ replacing Q_ when 1)y is assumed to satisfy (1.11). The main
result of this section is the following well-posedness theorem:
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Theorem 2.1. Let § > 0 and let 1y € WH(RY) N L3 (R?) be a nonnegative distribution

function. Then, for any n > 1, there exists a nonnegative solution ¢ = 1), € C([0,00); L*(R%))
to the truncated problem (2. 1) such that ¥, (0,-) = 1o and

Loontoae= [ waerde [ unto)letac= [ wle)letac  vizo

The proof of this result follows classical paths already employed for the classical space homo-
geneous Boltzmann equation but is made much more technical because of the contribution of
some nonlinear drift-term. Let 7" > 0 and

h € C([0,T]; L' (RY)) 0 L¥((0,T); L (R, [¢[*** d))
be fixed. We consider the auxiliary equation:

OU(t,&) +AR(E)P(t, &) +Bp(t) € - Verb(t, &) + Ln(h)(t, &) ¥(¢, ¢
= (1 —a) Q4 (h, h)(E,5), (2.3)
¥(0,§)  =o(§).
Here, A} and B} are defined as Aj} and B} with Q" (h, h) replacing Q" (¢, ) and

LaW) = [ Buls = €00 h(t.€)dsedo = [bulisgesy [ all€ = €D BEE)dE

We solve this equation using the characteristic method: notice that, by assumption on h, the
mapping ¢t — BJ(t) is continuous on [0, 7] and, for any & € R?, the characteristic equation

S X(155,6) = BR() X(1:5,6), X(si5.6) =€, (24

gets a unique global solution given by

Xp(t:5,6) = Eexp </t B (r) dT) .

Then, the Cauchy problem (2.3) admits a unique solution given by
t
B8 = 01 (0.6) + 020 = o (Xu 0t exp (= [ 1AF() + Lu(h) (r Xalrit, )] a

F(1-a) /0 exp (— / [AZ(r) + Ln(h) (7, X (75 £,6))] df> Q" (1) (5, Xp(s:£,€)) ds. (2.5)

For any 7' > 0 and any M, M»,¢,Cs > 0 (to be fixed later on), we define H = Hr s, Mo 0,05
as the set of all nonnegative h € C([0, T]; L' (R%)) such that

sup / Bt,€)de <My, sup / ht,€) € de < M,
te[0,T] JR4 te[0,T] JR4
and
sup [ W€ IFTAE<Ch sup [h(Dllwrs <L
te[0,7] /R4 t€[0,7)

Define then the mapping

T : H — C([0,T); L*(R%))
which, to any h € H, associates the solution » = T (h) to (2.3) given by (2.5) (notice that,
clearly, it would be more correct to write 7, instead of T since n has been fixed). We look for
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parameters T, M1, Mo, Cs and ¢ that ensure 7 to map H into itself. To do so, we shall use the
following lemma whose proof is omitted and relies only on the very simple estimate:

Q" (, R)(t,€) = h(t, &) Ln(R)(t:€) < (0 Myllbullr oy ) h(L€) e € [0,T]
valid for any h € H.

Lemma 2.2. Define, for any n € N and any M; > 0,

oznVM1||anL1(Sd—1)

Jra o(€) 1617 dg

(%
Hn = Mn(Ml) = m n’yMluanLl(Sd—l) and VUp = Vn(Ml =

For any fixed h € H and any (t,€) € [0,T] x R? the following hold

(i) 0 < dB(t) — AR() = i [ | @0 ) (.)€ <
(ii) —t2 M,y .

2
(iii) 2201 < AR(1).

(iv) 0 < (d+ 2)BI(t) — AMt) = - wo(?) i /R IE[2Q" (h, h)(t, €) A€ < oM.

N
o9
>3
=
N

s
5

Control of the density. By a simple change of variables, one checks easily that the solution
P(t, &) given by (2.5) fulfills

/Rd P(t,§)dE = /Rd Yo(€) exp </Ot [ABY(1) — AR(7) — Lyn(R) (1, X4 (7;0,€))] dT) d¢
+(1—-a) /Ot ds /Rd exp (/t [dB} (1) — A}(7) — Lp(h) (1, Xp(7,5,8))] d7-> Q" (h, h)(s, €) de.

s

It comes then from the above Lemma 2.2 that
t
L #0946 < ol exp (b M)+ (=) [ exp (6= 9) e M) ds || QL0 R)s.) s
0 R

11—« t
< oller exp (e M) + i M lzs | exp (¢ = ) My) d,
0

where we also used that [pq Q' (h, h)(s,£)dE = [pa Q™ (h, h)(s,&)dE. We deduce from this that

a (exp (T pp, My) — 1)) Vh e H.

(2.6)
Control of the moments. We now focus on the control of moments of order r with r > 2 to
the solution 1 given by (2.5). Arguing as above,

sup [ 00,96 < alls (exp (7 e 1)+

t€[0,T]

oo ac= [ an@ler e ([ 0+ 0Bi) - Aj) ~ Luln) (r. X7 0.9)] ar )

+(1- a)/o ds /Rd exp </S [(r+d)BR(r) — AR(T) — Lp(h) (7, Xi(T, 5,£))] d7'>
Q% (h, h)(s,€) €] dE.
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Using again Lemma 2.2, we get

T UnT r
[ e ler de < exo (1 Gun b1+ 57 00)) [ ol el e

t

(1) [ exp (6= ) (M o+ Z5700)) [ QLR €) I d€ s

0 Ré
Now, the change of variables (£,&,) — (£, &) together with the fact that |¢/| < |€] + |&|, yields
[ armne.okra < | Ba(€ — £,0) hls, ) hls, &) € dor de de,
Rd RdxRd JSd—1
< 27 ||bn||L1(Sd—1)/ h(s,€) h(s, &) ([§]" + &) A€ d&,
Rd x R4

< 2707 byl prga-1y My /R h(s,€) €] dE.

Hence,

[ o016t de < exp (1 un My + B700)) [ nle) el e
R4

=2 2 ol [ e (6= ) M+ Z5000)) ds [ hts. Ol e

In particular, choosing successwely r =2 and r = 2+ J one gets that

sup [ 0(0,6) €A < exp (T (o My + v, M) [ (€)1 e

te[0,7] /R4
l-a ,U'nMQ
4 T (uy, M nMs)) — 1 2.
+ 4 |[vbol| 11 o My + v, M, (exp (T (p My + v M2)) — 1) (2.7)
and
sup [ (8.6 |6+ de < exp (T (un My + 252 v M) / Gol€) €29 de
te[0,7] /R4
11—« 0522+5,u,n ( 24946 )
+ e T (pp M1+ ——— v, Ms)) — 1 2.8
ol o T gy (P (T My 255 ) —1) (29
for any h € H.

Control of the W norm. Our assumption on the collision kernel of the operator Q" allows
us to apply [28, Theorem 2.1] with k = 1 = 0 and sin?(6,/2) = 1/(2n) to get directly

1Q% (h m) [z < 2027 [Ibgll prga-ry 1Bl Lo (1 pee-
Then, the change of variable o — —o yields
V QL (h,h) = QL(Vh,h) + QL (h, Vh) = 2 Q% (h, Vh)
and, applying again [28, Theorem 2.1]:
IV QL (R k)| Lo < 20| Q% (R, V) |[poe < 4n' 7 |[by L ga-ry [Pl L1 [ VA Lo

Consequently
1Q% (hy ) llwioo < 40" [[bnl| 1 a1y [lhll 1 [|Allwr.oe-
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In the same way, since %CI)”(T) < yn?"~1 < 1, one checks easily that
i
1Zn (), )lwroe < 207 bl go-n) IR | < 2= ol VE€[0,T],h e H.

Recall now the expression of the solution ¢ = ! + 1?2 given in (2.5). It is easy to see that, for
any t € [0,T]

I t A3 ) Il +oxo (- [ (AL + BJ(r))dr ) [Vetol=

t t t
ool e (= [ apmar) [ep (= [ Bieas) IVeLatt) o l=dr
0 0 T
so that, using again Lemma 2.2:

pn(d+ 3)
2

2 n(d+2 t n
+ aunHzpoHLl lltbo]| oo exp <MM1t> / exp (%Ml(t — T)> dr
0

10 (6) i < exp( M, t) ol
2

i.e.

4 n(d+3
le(t)le,oo § max <17 %) exp <%M1 t> HwOHWLOO YVt € [O,T]

In the same way,

iy [ (43 .
162 Olhysoe < (1= pmax(t, 2258 [oxp (“GEnn0 - 9)) 103 ()6

1
Aol )8n onll 1 ga1y € [ (Mz\ﬁt) — 1] .

< (1 — a) max(1,

ath fin(d + 3) 2
Consequently,

4 n(d+3

sup [|9(t)]|pie < max <1, %) exp <MM1 T) 1o || ypri.00

t€[0,7) alMy 2 (2.9)
Al[tollpr ) 1 — a8nlhl fin(d + 3) '

1 — =M T ) —1].
—i—max( T aMy a M(d+3) P 2 !

Now, from (2.6), (2.7), (2.8) and (2.9), one sees that, choosing for instance My = 4|¢o||11,

My =4 d =4 204 (=2 oo
2= [ w©Pds Co=d [ wl©)lEFTAE =2 ol
and
2 . log 2 1 a(4+90) 1 a My
T mm{<4+6>’ (e aame) e (i)

log2 |log(1 — 1 2
og2 [logl-a)l 1 () a*@+3)Y]
d+3 4 d+3 4n(1—a)
we get that ¢ € H, i.e. with the above choice of the parameters M, My, Cs, ¢, T, one has
T (H) C H (notice that with this choice, p,, M7 = v, My3). Moreover, one can prove the following:
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Proposition 2.3. The mapping T : H — C([0,T], L' (R?)) is continuous for the topology
induced by C([0,T], L' (R%)). More precisely, for any Ry > 0 and Ry > 0, there exist some
constants K > 0 (independent of Ry and Rs), K' (independent of Ry) and Cr, r, > 0 such that,
for any hy,he € H,

K K’
sup [ T(h1)(t) = T(h2)(®)ll 1 < Cry,r, sup [ha(t) — ha(t)l 11 + B R
t€[0,T)] t€[0,T] 2

(2.10)

Moreover, T(H) is a relatively compact subset of C([0,T], L3 (R%)).
In the proof of the above Proposition, we shall use the following result which is very classical:

Lemma 2.4. Let hy, hy € C([0,T], L3(R?)). Then,
[Ln(h1)(t,-) = L (h2)(t, )l e < Mlonl[p1(ga-1)[[@nllLoe 21 (8) = ha(®) ]l VE> 0.
Consequently, the following hold for anyt > 0 :

allballprga—1) [ Pall

2 - (th(t)HL; + \|h2(t)||L5>

1 1
X [ (t) = ha(t)l Ly <fRd¢o ) €17 d€ H¢OHL1>7

By, () — Bh, (0)] <

and

allbnl| 1 gi-1)[|Pn o

A7, () = A7, ()] < 5 (11 ®)llzy + 2®)]13)

d d+2
X [|h1(t) = ha(t)| s (fR Yo(€) ]2 de Hl/}oHU)

Moreover, fort < s

X (t55.€) ~ X (65,6 < €] exp (5 241 5= 0) | [ (B, (1)~ B, (1) ar).

Proof of Proposition 2.5. Given hi,ho € H, we set for simplicity X; = X3, A = Aj. and
B} =By, for i € {1,2}. We then deduce from (2.5) that

[T (R1) () = T (h2) ()|l < Ty + To + Tz + Ta + T, (2.11)
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where
T = /Rd o (X1(0;t,€)) — 1o (X2(0;t,€))|
exp (— [ AT + Lt a0 )
exp <_ /0 [A?(T) + Ln(hl) (T7 X1 (T; t, é“))] dT)

T = /R o (Xa(0;1,6))

—op (= [ A0) + L) (. Xalrs ) d ) g

G = [ 198 ) (5 X2 (550,€0) = O ) (5 X1 5:8,6)

exp (- / IAT(P) + La() (r. X (71 1,€)) dT> de ds
G [ 198 ) (560 (550,€0) = O ) (5 Xalsi,6)

exp (- / [AT(T) + La() (. X (711, €)) dT> de ds

Ts = /O [ Qs o) (5. Xo(5:1.9)) exp<— / [A%)+Ln<h1><T,X1<T;t,£>>1dT>

—exp (— /: [A5(T) + Ly (he) (1, Xa(73t,£))] dT) d¢ds.

Let us estimate these five terms separately. Let Ry > 0. First, since ¢og € WH*°(R?) and Ly, (h1)
is nonnegative, it follows from Lemma 2.2 that

B < Mol (PG [ 60,9 - (st 6 g
|€|<Ry
t
e o (X0(054,€)) + o (Xa(0:£,€))) exp (— / A’f(T)dT> €2 de.
R1 R4 0

Now, by a simple change of variable, the use of Lemma 2.4 and Lemma 2.2 leads to

RilJr 1

<
jl X d—|—1

t
S5 1o e exp( /0 (B} (r) — BY(r) dr

2 o (d+2)
+ R_% H¢OHL5 exp <%M1T+

T pr, (d+ 3) M

)

vp (d+2)
2

M2T> .

We then deduce from Lemma 2.4 the existence of some constants C1 g, > 0 and K; > 0
(independent of R;) such that

J1 < Crgy sup ||ha(t) = ha(8)l g +

=L (2.12)
te[0,7) > R}
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Let us turn our attention to Jo. One deduces from the mean value theorem and Lemma 2.2 that
Mn (d + 2) ¢ n n
J2 < exp 5 M T ) Yo (X2(05¢,€)) |AT(T) — Ag(7)|dT
R 0
t
[ 1alln) (7 X0(73,€)) = Lalha) (7. Xa (73, €))
0

+ |Ln<h2><T,X1<T;t,s>>—Ln<h2><T,X2<T;t,£>>|dT> de. (2.13)
0

But, for j € {1,2}, a change of variables leads to

t

Ln(hz) (T, Xj(T; t,f)) = anHLl(Sd—l) exp <—d/ B?(s)ds)

[ @55t € = €1) Rl X (i €.
Thus, since ho € WH°(R?) and since, for any Aj, Ay, > 0,
[Pn(Ar7) = Pu(Aam)| < [A] = A7,
we obtain, in virtue of Lemma 2.4,

|Ln(h2) (1, X1(738,€)) — Lu(h2) (1, X2(73t,§))|

< d bl ga-ry [@nllzo ol 1 e 8> M1 T 55 MaT

[ Bi6s) By, (s))ds

(d+1) L .
Hlbwl i @l [hallwsoe €3 207 [ B7(5) B, ()] [ ledlae,
T |€x|<R1
1 dun
gz [bnlusosy [Ballie €80T [ (ha(r, X (it ) + ha(r Xarit, €)) [ e,
1

(d+7) pn
7 ol gane = 0T

[ 81~ Bye)ds| [ 1€ &P halr, Xalrit, )i

A change of variables and Lemma 2.4 then lead to the existence of some constants Cyp g, > 0 and
K; > 0 (independent of R;) such that

| Ln(h2) (1, X1(751,€)) = Lu(ha) (1, X2(73¢, )| < (§)"Crr, sup th(t)—hz(t)HL;Jer- (2.14)

t€[0,T] R_%

Gathering (2.13), (2.14) and Lemma 2.4, we deduce that there exist some constants Cy g, > 0
and Ky > 0 (independent of R;) such that

J2 < Cor, sup |[|ha(t) — ho(t)] L1 + —5- (2.15)
te[0,7 Rl

Performing the same manipulations for [J5, one may show that there exist some constants Cs r, >
0 and K5 > 0 (independent of R;) such that

J5 < Cs.ry sup |[ha(t) = ha(t)lry +

=5 (2.16)
te[0,7) > R}
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Then,
t
n (d+2)
Ji < 6# 2 MIT/ /d ‘Qﬁ(h% h2) (87X1(8; tvf)) - Qﬁ(h% h2) (stZ(s; taf))‘ d¢ ds,
0 JR

and, changing variables, we get, for j € {1,2},

t
Q% o) (s, (51, €0) = exp (= [ By(e)as) [ [ bnfeost) 2,506 - €
(s, X(551,€) (s, X (51, €0))do

Thus, proceeding as for L, (hg), one may prove that there exist some constants Cyq g, > 0 and
K4 > 0 (independent of R;) such that

K
Ji < Cur, sup [[ha(t) = ha(t)] 1y + 55 - (2.17)
t€(0,T] 2 RT
For the last integral, we have
5 < e“anT// Q% (s — ha, ) (5,)] + | QL (e by — ha)(s,€)] d€ s
< C3 sup |hi(t) = ha(t)| 1 (2.18)

t€[0,7)
for some constant C'3 > 0. Finally, gathering (2.11), (2.12), (2.15), (2.16), (2.17), (2.18) and,
noticing that, for Ry > 0,
1 (8) = ha(®)ll 3 < (L + B A1 () — ha(®)lls + =5 (||h1< ey, + b0,

this completes the proof of (2.10). Let us now prove the compactness of 7 (#). Recall that,
according to Riesz-Fréchet-Kolmogorov Theorem, the embedding

L s(RHY nWhe(R?Y) ¢ Ly(RY)

is compact. Moreover, L}(R?) is continuously embedded into (H m(Rd))/ for m > d/2. On the
other hand,

T(H) is a bounded subset of L™ ((0, T); Ly, s(RY) N Wl’oo(]Rd)>
and, setting 0, T (H) = {0 ; v» = T(h), h € H}, one has
OyT(H) is a bounded subset of L"((0,T); (H™(R%))'),

with » > 1. As a consequence, one can apply [32, Corollary 4| to conclude that T(H) is a
relatively compact subset of C([0, T]; L1(R?)). O

We are in position to conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. The proof is split into two parts: the first one consists in proving the
well-posedness of the Cauchy problem (2.1) on the time interval [0,7] (where 7" > 0 has been
defined hereabove) through Schauder fized point theorem. The second part consists in extending
this solution to a global solution.

Local existence: Since H is a closed bounded (nonempty) subset of C([0, T]; L (R%)) and since T is
a continuous and compact application from H to H, Schauder fixed point theorem ensures the ex-
istence of some fixed point 1! of T, i.e. there exists ¢! € C([0,T]; L3(R))NL>((0,T); L}, s(R4)N
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WHoo(R?)) solution to (2.1).

Global existence: Integrating the equation (2.1) over RY, we get

d 1 _ nl o1 > < 1 )

— €)d d d¢ — 1] .

3 [reoa= S ([ orwenwea) ([ vieeds - vl
Since / 1(0,€) dé = ||l 1, we see that the density of ¢! is conserved:

R4

/zzﬂ(t,g)ds:/ bo(€)de Ve [0.T).
R R

In the same way, multiplying (2.1) by |£|? and integrating over R? yields

d 1 2 qe ( 2 An (ol 1 ><f]Rd PL(t,€) €7 dE )
i Lreolta=al [ i erwt v e d) (HTs T 1)

Since / P1(0,€) €2 dE = / Yo (&) [€]? d€, the energy of 1! (t, &) is conserved:
R4 Rd

/ G 1€ €2 de = / Bo©) P e Ve [0,T].
Rd R4

Thus, ¢! (T,.) has the same mass and energy as . Since the time T only depends on these
values, by a standard continuation argument, we construct a global solution v to (2.1). O

2.2. Uniform estimates. In order to prove Theorem 1.3, we now need to get rid of the bound
in W1°°(R9) for the initial condition and to pass to the limit as n — +oo.

Let p > 1. Let 99 € Ly ij(Rd) N LP(R?) be a nonnegative distribution function satisfying
(1.11). There exists a sequence of nonnegative functions (¢Y%),en in W1 (R%) N L%+,Y(Rd) that

converges to 1o in L}(R?) and that satisfies, for any n € N,

[dgllcr < llollr and  [lgl[ze < [ldol -
Moreover, if 19 € L}(R%) with s > 2 then one may also assume that

/ R () €]* de < 25 Vbl + 20" / () JE]* de. (2.19)
Rd Rd

We infer from the above properties of (¢ )nen and from (1.11) that there exists some Ny € N
such that for n > Ny,

d
< [ b@a<t  aa S< [ wp@Pasa (2:20)
R4 Rd

For each n € N, we denote by v, a solution to (2.1) with initial condition . Notice that, for
any given T' > 0 and any n € N, the solution %, constructed as a "mild solution" is also a weak
solution, i.e., the following holds for any ¢ € C}(R?) and any t > 0:

/ (1, ©)0(€)dE + / ds[A7, () — dBY, (3)] / 0(€) (s, ) A
R4 0

:/OtdsB”n(s)Adwn(s,f)f-V5g(§)d§+/ (©)ug (€ d§+/ ds/ n(Pn, ¥n) (s, ) 0(€)dS.
(2.21)
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Our purpose is to show that (¢, )nen is converging in C(|0,T],w — L'(R%)) for any T' > 0.
However, this requires uniform estimates on ,. So, we now tackle this question and show
uniform bounds for moments of 1,,. The underlying difficulty comes from the two terms A
and B:Zn which already involve moments of order 2 + -« and thereby prevent us from performing
direct estimates. In all the sequel, we shall simply set

A, (t) =AY, (1), B,.(t) = By, (1), neN, t>0.
We begin with proving that both A, and B, are bounded in L\ (0,00). Here again we first

loc
need to show uniform LP-estimates, which is the aim of the following lemma.

Lemma 2.5. There exist some integer N1 = Ny and some constant C' > 0 depending only on «,
p, d and 7y such that, for all n > Ny,

[on (e < e eolle, = 0. (2.22)

Proof. For n € N,,, we multiply (2.1) by pv,(t,£)P~! and integrate over R, An integration by
parts then leads to

Clnly = (@Ba(t) ~ pAD) [n ()],

+ (- ap [ O W )0 bt g

~ ap [ Q) (L Ut . (223)
First, since p > 1, we have, for n > Nj,
B0 =) = 5 [ (Tt ) @) ag
< aldlp=1)+20) [ Q" n)(t.6)ds. (2.24)
But, since v € (0, 1],
B (€~ &ul) < Je — & < e + el (2.25)

Consequently,

[ @ (6. < 2bullisansy [ I 0 dE <2 Plireny (L), (226)

Thereby, we obtain a bound for the first term in the right-hand side of (2.23). We now need
to estimate the two remaining integrals. We first notice that, due to the symmetry, we can
reduce the domain of integration with respect to o to those o that satisfy (£ — &, o) > 0, which
corresponds to 6 € [0,7/2]. This amounts to taking b, (z) = 1{0<x<1_1/n}5(:c) in the collision
operator @ where

b(z) = b(z) + b(—x).
Then, for some fixed 6y € [arccos(1 — 1/n), 7 /2|, we split by, as b, = by, . + by, where

bn,c(x) = 1{0<x<00590}5(:€) and bn,T(x) = 1{Coseo<x<1—1/n}5(x)'
It is important to point out that b, . and consequently the norm |[|by, c||f1(ge-1y do not depend

on n but only on 6y. This splitting leads to the corresponding decomposition of the collision
operators:

=00+ 9y and Q" = Q"+ QM. (2.27)
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We first consider Q""" and Q™". We have

9 W)t €) € d > 0. (228)

Then, for the integral involving Q"", the change of variables (§,&.) — (£/,&,) yields

[ Q)66 €
= L L L € 0.6 0t € o8 ), (1 — ) dor

Now, we have
Nnp—1 1 P p— 1 AV
and (see [1, Section 3, Proof of Lemma 1] or [15, Eq. (2.7)])

/Rd i1 wn(ta fl)p 1{cos«90<cos€<171/n} E(COS 9)(@”(‘5 - S*D do d¢

0o _ s d—2 0
_ g2 b (le=&l ) s 20) o
5 [ gy 2 0 (s ) Sy P a0
Then, thanks to the inequalities

Bp(lE—£.]) < Bu(lE)+E[  and <1>n(

we get

I3 —/\&\) SATTD(E-&]),  YO<A<1, (2.29)

/ Q" (W, ) (1, €) (.71 dE
0o

< 872 b(cos 0)(1 + (cos(0/2))~47) sin?~2(6) do

arccos(1—1/n)

<[ o er @b ds+ 1+ ) a0l ). 230)
Let us now consider Qi’c and Q™°. We proceed as in the proof of [15, Proposition 2.4]. Since

P (€ — &) = Pn([€]) — 647, (2.31)
we deduce that

Q60 (0.9 (6,7 > S ncllrsimny [ (b7 @€ a6
R Rd

— bnclliga-1y (L+d) [[¥n@)l7 - (2.32)
On the other hand,

/Q (Y, Yn) (8, €) Yn(t, P71 AE = J1 + Ja, (2.33)

where

Iy = / / Ut €) n(t,€)) Ligrery Yn (1 €7 by o(cos )@, ([€ — £.) do de de.,
R2d Jgd—1

Jy = / / Pn(t,€) Pn(t, 1) Ligrory (L, €07 Ly o(cos )y, (J€ — £.]) do d€ d,,
RQd Sd—l
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with > 0. Performing the same calculations as in the proof of [15, Proposition 2.4] and using
the same notations, we prove easily (using again (2.29)) that the following hold for any u; > 0
and any po > 0:

< st/ (1= 2 ) i bl ([ 067 @D e+ 1+ ) O )

1,
+ ];M’f Honellpi gy (477 +d) [ga(®)f, (2.34)

and
1 d d
2 < in(00/2) 7 (1= 2 ) 1 ol (5 [ one.7 @6 6 + 5 10

+

!
L nalisssos ([ alt. P @ullEDde + (14 Dm0, ) - 239
b R4

It remains now to choose the parameters 6y, w1, po and 7 so that all the terms involving
Ja ¥n(t, )P @ (|€]) A€ that appear in the gain term can be absorbed by the one appearing
in the estimate of the loss term. Precisely, we first choose 6y small enough such that

0o
Sl / b(cos 0)(1 + (cos(0/2))~47) sin?"2(0) dh < allbn,cll g1 ga-1y
0

for some a > 0 to be determined later (recall that |[b,c|/11(se-1) only depends on ). Then, we
choose 1 big enough and po small enough such that

(0 Dicos(r/) i <ap  and 7 < ap.
Finally, we choose r big enough such that
. deny 1 d
(b~ 1)(sin(80/2) 5 % < ap.
Let N1 € N, be such that N; > max ﬁ’%} Gathering (2.24), (2.26), (2.27), (2.28),
(2.30), (2.32), (2.33), (2.34) and (2.35) we conclude that, for n > Ny,

d 8(1 — —
Ol < C=FEZE ooy [ on P @alll) e + Cln(OI

for some positive constant C' that only depends on «, b(-), p, d, pu1, r and . Taking then

_ 1
a—mweget

d
O+ Bl gansy [ ont. € ®a€1) 6 < Cllin@)

Recalling again that ||b, || £1(se-1) does not depend on n, the Gronwall Lemma and the inequality
|1V r < ||Yol|ze then imply that (2.22) holds. O

We now deduce from these LP-estimates the following lemma, which implies that A,, and B,

are uniformly bounded in L (0, 0).

Lemma 2.6. Let T > 0. There exists some constant C depending only on «, d, v, p, T and
lollLe such that, for n > Ny,

T
/ / Ut €) JE12 B, (1€]) dE dt < C. (2.36)
0 Rd
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Proof. Let n > Nj. For s € (0,2), we multiply (2.1) by |¢|* and integrate over R?. Integrations
by parts then lead to

" « -8 s|€?
Do = Cvrm / (2 p ) 9

2 Wil | To 006 6P dES
P (£,€) Gn (b, £) Bu(€ — &) KT(£,£.) dE dE,
~ / Qﬁ(zpn,wn)(t,s)rsvdfs, (2.37)

where we set Y (¢ / U (t,€) [€]° d€ and

K26 = [ Teommerosymbloosd) (€1 +IE11 =gt = &) do
By [27, Lemma 2.2 (ii)], one can write KJ'(§, &) = G2(&, &) — H (€, &) with
HY(§6) <0 and  [GY(&&)| Serlgf? 6],

for some constant ¢; depending only on b(+), s and d. Integrating the previous inequality between
0 and T', we get

" as 2 n n
Ot e \§*r2ds*/ (/ d Q<¢n7¢n><f7€>d£)lfs<7>dr

YT+ Bl i) / / / D€ = ED) [E1° (7. €) thn (7, £,) dé A&, dr

/ / / D€ = &) 1172 16"/ (7, €) (7, £2) d de,

since s < 2 and 0 < o < 1. We then deduce from (2.20), (2.25) and (2.31) that

2o [ ([ anteh gt ac) vomar <5 [ vevemar

T
+52"(T)+an|!u(gd1>/ (Yo (7) + Y (r) YJ(7)) dr

+a / s/2+’y 572 (T) dr.

Taking s = 2 — 7 and using that for any v € (0,2), Y, (1) < YJ'(7) + Y3(7) < 1 +d we get
T
/0 < | @l 1Pvn(r) d§> Ve (ryar <,

for some constant C' depending only on b(+), a, d, v and T. Now, for R > 0 and p > 1,

Y2nf"/(7—) Z RQ?PY (% - ¢n(7—a£) dg) )
EI<R

and, by the Holder inequality,

sd—1| pd p/(p—1) gd-1| gd p/(p—1)
(T, €) d€ < (ﬁ) ()l < (Q) 7 1ol

<R d d
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Thus, (2.36) follows for R small enough. O
We are now in a position to prove that moments of v,, remain bounded uniformly in n > Nj.

Lemma 2.7. Let T > 0 and s > 2. Assume that ||1o||1 < oo. Then, there exists some constant
C depending only on b(:), o, d, v, p, s, T, |[tollr and [[¢ollp1 such that, for n > Ny,

s / Unlt,€) € dE<C an / / Ut €) B (€]) [€° de dt < (2.38)

Proof. Let s > 2 and n > Nj. Our proof follows the same lines as the proof of |27, Lemma 4.2].
We use here the same notations as in the proof of Lemma 2.6. As previously, (2.37) holds. Now,
by [22, Lemma 11|, we have

K (8,60 < e ([E777 18] + [€118777) — ca(n) €)%,
for some constant ¢; depending only on s and d and
_9 ™
ca(n) =27° ST |Sd2|/ 1{|cos|<1—1/n} (min{cos 6,1 — cos §})* b(cos #)d.
0

Thus, by (2.20), (2.25), (2.29), (2.31) and the above estimate, (2.37) yields

d

2
SV < Z bl Y0 ( / 1€ @allg]) n(t,€) dg) + 5 lball s gony Y () ¥7(2)

b oo / / Ut €) o (t.62) (E] + €7 |67 |6 dé de.

t=aet) / / nt,€) (1) (Bu[€]) — €7) JE]* de dé,
Consequently,
d n C2 s
Sy + L=0)al / Gt €) @, (1)) JE]*
9 bnl|p1(gd-1y +
<2 blgr e V2 ( / 2 ) vt 0 ) + LD gy
+o (Y)Y (1) + YL, (1) Y, (1)

but, for each n > 2,

2
Hence, since YJ*  (t) < Y'(t) + 1, setting

_9 ™
0<c22) <ca(n) <eg®:=27° e ]Sd_Ql/ (min{cos 8,1 — cos 0})® b(cos #)db.
0

(S anHLl(Sd—l) + Cgo + 461)(1 + d)
2

2
(®) = =7 Ibullaqoansy [ 161 @) n(t, ) a6 +

we obtain

Svew+ S 0. @€ 68 e < 10 Y20+ (@4 1)

Then, (2.38) follows easily from the Gronwall Lemma, (2.19) and Lemma 2.6. O
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=

Remark 2.8. Applying the above to s = 2+ v and using (2.25) one gets that

sup | Q" (4, ) (1,€) [€]°dE < C (2.39)

te[0,7] /R4
for any n > Ny and any T > 0 where C' > 0 is as in Lemma 2.7.

From the above Lemmas 2.7 and 2.5 and the Dunford-Pettis Theorem, the set {¢,,(¢), n > Ny }
is weakly relatively compact in L'(R?) for any ¢ € [0,7]. One can be more precise:

Proposition 2.9. For any T > 0, the sequence (¥ )n>n, is relatively compact in C([0,T];w —
LY(R%)).

Proof. We follow here closely an approach already used in [20, 5]. Let T > 0. Due to [35,
Theorem 1.3.2|, since we already noticed that {¢,(t), n > Ny } is weakly relatively compact in
LY(R?) for any t € [0, 77, it suffices to check that

the family (¢ )nsn; @ [0,T] = LY(R?) is weakly equicontinuous. (2.40)
Let A € L™®(R?). There exists a sequence of functions (A\z) in C}(R?) such that

Ae(r) — A()  ae. in RY  and sup [[Ag||lne < ||| Lo (2.41)

k—o0

=

We fix n € (0,1). From (2.22), we deduce the existence of some real w(n) > 0 such that, for any
measurable subset F of RY,

meas(F) < w(n) = sup sup /Q/Jn t,&)d (2.42)
n>N1 te[0,T]

Moreover, Egorov theorem and (2.41) imply the existence of a measurable subset £, of B(0,1/7)
such that

meas (E,) < w(n) and lim sup Ak (€) — A(§)| = 0.
R0 €eB(0,1/n)\ By

Consequently, for all t € (0,T"), h € (—=t,T —t) and R € (0,1/n], we have

[+ 10 = wneln@ g < | [ lonte+ n6 - vt o1l o

‘/|§|<R[wn(t + h7§) - wn(ta 5)] [)‘(5) - )\k(g)] d§

+ / Wt + Do €) + (1)) [AE)] + Me(E)] d.
|€|>R

Thus, by the definition of w(n), £, and Ay, we deduce from (2.38) that

'/ Wt + By €) — thn(£,€)] A d£‘ ‘/ Wt + By €) — thn(£,€)] A€ ds'

4| M| 700 C
120 swp () = AE)] + 4N g+ = O

(2.43)
£€B(0.R)\E, R?
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Let us now consider the first integral in the right-hand side of (2.43). We infer from (2.1) that
G | (MO = (@Bu(t) ~ An(e) [ 69Nl
) / Un(t. )€ VIO A+ [ B (W) (1. M(O) 6.
R4 Rd

Now, by (2.20), (2.38) and inequalities (2.26), (2.29) and (2.39), we have

0< dBn(t) - An(t) - m R Qz(wnawn)(taf) d¢ <4 HbHLl(Sdfl) (1 + d)?
.00 < 5 [ (W * e S0 w60

5 2C
< g Ibllpygey (U4 d) + == [Ibll i (sa1y

and

[ B0 ) OMO e < Il [ (L )(06) + Q) (16)
< 4kl 1Bl ga-1y (1 + ).
Consequently,

'/Rd“”"(’f +5h,6) = ¥ (L, €)] Ak(€) dg‘

5 20
< B Al (18] 1 ga1y (1 + d) (8 +2(1+d)+ 7) .

With the above estimate, we let h — 0 in (2.43) and obtain that

[ ule+ 1,6 = (.00 A6 e

limsup sup sup
h—0 n=Nite(0,T)

4| M| C
<20 sup (€~ A+ 4 N+ AL C
§€B(0,R)\Ey
We now pass to the successive limits k& — 400, n — 0 and R — +o0o and deduce that (2.40)
holds. Therefore, the proof of Proposition 2.9 is complete. O

2.3. Well-posedness for the rescaled equation. We are now in position to prove that the
rescaled equation (1.9) is well-posed. Indeed, according to Proposition 2.9, up to a subsequence,
the sequence (v )nen converges in C([0,T];w — LY(R?)) towards some limit v = (t,£) €
C([0,T);w — L*(R9)). One notices that, according to Lemma 2.7 and Fatou’s Lemma,

T
sup | ([T <O and /Odt Adw<t,§>\§!2+2”ds<c

te[0,7] JR4
ie.
W € L(0,T; Ly, (RT) N LY(0,T; Ly o, (RY)).

The above estimates, together with Lemma 2.7, the convergences of (¢{)nen and (¥ )nen
enable us to pass to the limit in (2.21) as in [6, p. 860-861]. We finally get that ¢ is indeed a
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solution to the annihilation equation (1.9) in the sense of Definition 1.2. Notice moreover that,
for any T > 0, the following holds

T
Jm [ B0 By dr =0,
lim sup [|Q(n, ¥n)(t) = Qu(,0)(B)],, =0 VO<s<2
n Oote[O7T} S

Let us now tackle the problem of uniqueness. We take p = 2 and assume that (1.13) holds.
Then, weighted Sobolev norms propagate on finite time intervals. More precisely, one has

Lemma 2.10. Let k > 0. Let 9y € L§+V(Rd) be a monnegative function satisfying (1.13). If

z GhLOO(O,T; LéJW(]Rd)) N LY0,T; L%+27(Rd)) denotes a solution to (1.9) with initial condition
o then

sup [[¢(6)]p2,, < oo (2.44)
t€[0,T] 4k
while
T
sup [[¢(t)ll  <oo  and / WOl dt<oo  (245)
te[0,7) 34 IHYHe 0 8t L

Proof. For given k > 0, we multiply (1.9) by 2¢(t,€)(€)%* and integrate over R?. Then, one
obtains, after an integration by parts,

%Ilw(t)llii + (244 () — (d + 2k)By (1)) [0 (D)]72 + 2kBy (0)llv (D72

—201-a) [ QUM ~2 [ 0 (UM (246)

First, since
€ =& = (6)7 —2(&)7, (2.47)
we deduce that

0@t 0t 9©* e > 1y~ 2100l w1

On the other hand, we have

sup |Ay(t)| < Cr and sup |By(t)| < Cr (2.48)
te[0,T] t€[0,T7]

for some constant Cp > 0. Finally, proceeding as in the proof of Lemma 2.5 (see also [15]), we
deduce that for any £ > 0, there exists C; > 0 that depends on supcp 1) ||1/)(25)||L%k+ such that
’ v

[, 0e )t 00t 9© e <Ol + ColuOIR

Gathering the above estimates with € = 1, we get that there exists some constant C' > 0
depending on ||1,Z)0||L%Ich such that
il

d
POz + 204|¢(t)\|%§w2 < Clo@ize,

whence (2.44) for k = 24 + k.



28 VERONIQUE BAGLAND & BERTRAND LODS

Let us now consider the Hi-norm. Let j € {1,...,d}. We set G;(t,€&) = 9;9(t,€). Then, G;
satisfies

Gj(t,6) + (Ap(t) + By (1) G;(t,6) + By (1) € - VeG;(t,§) = 9;B(4, ) (1, €). (2.49)

For given ¢ > 0, we multiply this equation by 2G;(t,€)(£)?? and integrate over R?. Then, one
obtains, after an integration by parts and using (2. 47)

SGH Ol + Au(0) + (2 - d = 20)By(0) 1G5 (1) + 20BuOIG, 01,
2(1-0a) [ 8,040 0)( G (O~ 26,01
4Oy GO ~2 [ 0 (.6t OG (k. e)e . (250

Let us assume now that ¢ > /2. One has

[ 1000 )t 116 (.01 €214 < 10,04 (D) Dzz_, IGsOlzz,_,

One can extend [8, Theorem 2.7] (see also [4, Theorem 2.5]) to any v € (0,1] and use the
Lrlnax{2q+3/2iv+n7q+,y/2} and Lq+3/2 /24 bounds to get, for any € > 0, the existence of some
positive constants C(e,q) > 0 and C(q) > 0 such that

10; @+ (W )2, < |!Q+(1/1,1/1)(t)HH;_% < Cie q) +eCalg ZHG HL2

/2

Moreover, using Cauchy-Schwarz inequality we obtain,

/R QG5 Gy @M < w2, GOz IG5 Oy
SO PATEHOT

d+k
2

for some positive constant C, ,, > 0. We have v + dif <3+v9+ dif. Thus, for ¢ =3 + w,
summing (2.50) over all j € {1,...,d}, we get, thanks to (2.48) and the above estimates,

dthG M . +2ZHG Wi

+K

d
O NGO ,, ., +Ced) )26y 1650 gl

d+k
j=1 Y+ 5

whence (2.45). O
One then has the following stability result:

Proposition 2.11. Let T > 0 and let 1, ¢ € C([0, T];w— L')NL>(0,T; Ly, )N L'(0,T; Ly, 5.,)
be two solutions to (1.9) with initial data 1o, po satisfying (1.11) and (1.13). Then, there exists
Cr > 0 such that

[0() =@y, < Yo —wollzy, exp(Cr) vt [0,T].



ON BALLISTIC ANNIHILATION 29

Proof. Since ¢, € L*(0,T; Ly, ), one has

i (1840, 1A (1)] By (1), B, (1)) < Cr < oo

Then, setting F(t,€) = ¢(t,&) — ¢(t, &), multiplying by H(t,€) = sign(F(t,£))(1 + [£[*) the
equation satisfied by F and integrating over R?, we get, for ¢t € [0, T]

d
T /Rd [F(t, 6|1+ [[*7) dé < K7 /Rd [F(LOI(L + €2 de +T) ,(6) + T2, (1) + I3, (1)

where K1 > 0,
Zho(0) = (Aglt) ~ Au(0) | ot OB
+(Bo(t) = Bu(t) [ (€ Violt. ) H(t.)d,

while
T30 = —a [ (Q-(5.) = Q- () H(t. )
and
T30 = (1= ) [ (0(0) = Qi) H(t, )0
Thanks to Cauchy-Schwarz inequality, we have, for & > 0,
T}, (1) < 1A (0) — Ay IOl y, +IBo(®) ~ Byl [V0(0) 13,
<IAH(0) = Ay(Ol IOy, +C [Bolt) =~ Bu®)l (0]

+ g
where Cy; := [54(€) 74 7"d¢ < co. Thus,

T (1) / F(4,6)|(1+¢*7) de,

where A € L1(0,7T) by (2.45). Now,
(Q-(, ) = Q- (p,9))(t,€) = F(t, ) L(P)(t, &) + (¢, E)L(F)(t,€)

from which we deduce that

73,0 < —a [ IFGOILIEO + ) A6+ o0y, IFOl

24y

Finally, proceeding as in [27, Theorem 4.1|, we get
T3 () < ([l cy + lle@IL)IF @)y
1 e
5 | e EPIPEOI + vt € 6.

where

K& &) = /Sd_l(lé’lm + G 6T — 1€*T)b(cos ) do.
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We then deduce from Lemma 3.1 derived in the next Section and [12, Lemma 2| that

KE6) < oreg (R + 1622 — [P — [6F7) = (1= 01, ISP + (1 + 014 3) 62
< oy (14 1)) (PGS + IEPIGR) + (L + o1 )6,

where 0,/ is defined subsequently by (3.5). Thus, using the estimate |£ — &7 < [€]7 4 |&.]7,
we obtain

T30 <C [ P10+ ds

for some constant C' > 0. We finally deduce from the above estimates that there exists some
function A € L*(0,T) such that

%/Rd [P (L €I(1+ [g*) dg < A1) /Rd IF(t,6)|(1+ €[> de vte[0,T]

which gives the result. O

3. MOMENT ESTIMATES

We now prove uniform in time estimates of higher-order moments of the solution to (1.9)
yielding to a proof of Theorem 1.4. We fix a nonnegative initial distribution )y satisfying (1.11)
and such that

o € Ly, (RY) N LP(RY)

for some p > 1. Let then ¥ € C([0,00);w — LY(R%)) N L2 ((0, o0), L%JW(Rd)) be a nonnegative

solution to (1.9)-(1.10). We define, for any k > 0, the following moment of order 2k:

Mo = [ veolta ko

Using (1.9), one easily gets that Mj(t) satisfies the following identity

d

G = = (Aul0) — @+ 20By(0) Mu(0) + [ BOLOEOIEPHE t>0.
Rd

Let us define
a) = [ O wu)td  and b= [ O (k.6 e

so that
Ay(t) = —%(d +2)ay(t) +aby(t)  and  By(t) = —%a¢(t) + %bw(t).

Then, Mj(t) satisfies

GO + alk = Dag M (0) = 25Dy (M0 + [ BW)(EOIEPHaE ()

In order to estimate in a precise way the last integral involving B(v,1), we shall resort to
Povzner’s estimates as derived in [12].
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3.1. Povzner-type inequalities. For any convex function ® : R — R, one has

| B eieii = [ veoueele-aPwe s (32)

where
1
Wale.6) =3 [ [0- 208 + (1 - () - 2l - e ) peosyao. (33)

Clearly

Wa(€,6) = (1 - a)0a(6,€.) — 5 (2(IEP) + B(1&.[)
with

1 112 /2
Gol6.6) =5 [ [R0€) + B stcos)io
Sd-1

where we recall that we assumed ||b]|;1ge-1y = 1. The following lemma allows to estimate

Ga (&, &) for any convex function P.

Lemma 3.1. Let ® : R — R be conver. Then,

Ga (€ &) < %/Sdl [(ﬁ (E#> + @ (E#> }b(ﬁ -o)do (3.4)

where, for any fived &, &, we set

_ £+

U 5

u=¢-¢&, E=[P+&175  U=U/U, a=u/lul.

Proof. We give a very short proof of the lemma, referring to [12] for the general strategy. For
any fixed £, &, with the above notations one has cosf = @ - ¢ and

1+ MU - 1—\U -
EP =200 while [gf =B
2 2
U
where A = QM < 1. Since @ is convex, one can prove as in [12]| that, for any fixed z,y > 0,

the mapping ¢ — ®(x + ty) + ®(z — ty) is nondecreasing and, because A < 1, we have

B(1¢) + o) = @ @%) o (E%>

140 1-0 .
<¢<E#>+¢<E#>.

Since b(-) is nonnegative, this gives (3.4) after integration. O
With the special choice ®(x) = x*, k > 1, one has the following estimate

Lemma 3.2. For any k > 1, one has

[ B 046 654 < ~(1 = Bule)) My () + S
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with

5.0 = 5u(@) 3 (5 ) (3430 My + 2150) 2. 50)

+ (1 = Brl)) My (t) My (t)

where [2H] denote the integer part of B, By (a) = (1 — a)oy, and

. k . k
1 . 1-7.
on= sup / 1+U-0 + 1-U-o b(ii - o)do. (3.5)
U,aesd-1 /841 2 2

Proof. One applies the above estimate (3.4) with the convex function ®(x) = 2* to get

1
Ga(§,60) < Son B
where E = || + |¢.]2. One gets therefore

Wa(€, &) < —% (1= Be(@)) (1P + &) + éma)[ (1€ + 162)* = 1€l — l&x*]

where (1 — Si(a)) > 0. Consequently,
[ B9l as <~ - aa)) [ voleas [ vigle - ez,
R Rd Rd
+@ /R UL EIE — &I [(16 + I6P)” — 16P* — l6*]dede.. (3.6)

|2 and uses the estimate

One then applies [12, Lemma 2| with = = |£|? and y = |¢,

1€ = &7 < 1€ + 16
to get

/ B, ) (1,€) [€*dE < —(1 - Bi(a)) / B(1.6) €[ de / Bt EIE — E1de,
R4 R4 R4

[544]
+ Bi(a) > ( f > (M 2(t) Mi—j(t) + M;(t) My_jyya(t)) -
j=1

To estimate the nonpositive term, one notices that
€= &I7 = 1§ = 1&]7
and gets
[ vl [ (e ee — €d > Mg (0 - Milt) My (1)
This clearly yields the conclusion. g

Remark 3.3. It is easy to check that o1 = ||bl| 1 (ga-1y = 1 and that the mapping k > 1+ o > 0
18 strictly decreasing.
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3.2. Uniform estimates. Thanks to the above lemma, we can derive uniform in time estimates
of Mj,(t) for k =14 . Precisely, one has the following:

Proposition 3.4. Let
1- 01+7

o) = ———~ — —
1+3 - 0142

€ (0,1]

where oy, is defined by (3.5) for any k > 1. Then, if 0 < a < «qg, there exists a constant M
depending only on «, 7, b(:) and d such that any solution ¥(t) to (1.9) satisfies

sup M3 (1) < max { M, 3 (0), 77 }.

t=0
Proof. Let us fix k > 1. Since ay(t) > 0, one gets from (3.1):

d

TM(0) < 2ED (M0 + [ Bl w)(1.€) .

Now, we recall that
bo(t) = [ 1= 60U S lEPde.

so that, since |£ — &7 < |€]Y + |€«|7, one has

d d

by (t) < Myy3(t) + Mz () Mi(t) < Myyz (1) + 5(1+35)

where we recall that M (t) = M;(0) = 4 for any ¢ > 0. We get therefore
d 200k d
M) < ZEEMy 3 (OM(0) + ak(1+ DM + [ Bl o). e

Now, one estimates the last integral thanks to Lemma 3.2 and get

SML(E) + (1= Bu(0) Mg () < Sk(0) + ZSEM (M) + ak(l + SM(D). (37)

Using now Holder’s inequality, one has, for k > 1+ %,

2\ 2F—2 2hty—2 2 s v
Mk+%(t) > <E> (Mk(t)) 2k—2 and M1+%(t) < <E> Mk(t))2k72

where we used again that M;(t) = %l for any ¢ > 0. With these estimates, (3.7) becomes

~

G0+ cana () QRO <S04 ak(r DIRG, 6

with
Cakd=1—Br(a) —ak =1— o+ alor — k).

Notice that
1 — o
k — o

Caed > 0 — 0<a< ) (3.9)
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Taking now k = 1+ 7 in the above inequality (3.8) and using the explicit expression of S} | 1 (t)
we find

M0+ ez (3) M3 @02 <@ (1) (Mhz 0050+ 30300)

g
Since v < 1 and M (t) = g for any ¢ > 0, it is clear that My (t) and M, (t) are uniformly bounded

by 1+ % so that there are two positive constants Cy,C7 > 0 depending only on «, v, b(:) and d
such that

d 2
&Ml-i-%(t) + Ca1+1.d (3) M1+%(75)2 SCoMyy(t)+Cr VE=0.
Therefore, using (3.9) and some comparison principle, we get the conclusion. O

Remark 3.5. The parameter ag depends only on v, d and the collision kernel b(-). In particular,

in dimension d = 3, for constant collision kernel b(-) = o (recall that ||b]| 1 (ga-1y = 1) and with
™

4 2
= 1 h = — d = —.
0% ; one has o3 : and og -

Notice that the above result allows actually to deal with higher-order moments:

Corollary 3.6. With the notations of the above proposition, if 0 < a < «qg then any solution
Y(t) to (1.9) satisfies for any k > 143

M (0) < 0o = sup Mj(t) < oc. (3.10)
=0
Proof. The strategy follows classical arguments already used in [12], the crucial point being that,
for k > 1+ 7, the first term in the expression of Sy (t) :

[
510 = 5u(@) 3 (5 ) (043030 My + 2150) 2y (0)
j=1

+ (1 = Be(a)) My () My (1)
involves only moments of order less than max{k — 1+ 3, [EH] + 1} < max{k — 1, [E] + 1}
since v < 1.

First observe that mass is conserved and thus, using classical interpolation, it suffices to prove
the result for any k& > 1 + 4 such that 2k € N. We proceed by induction. Since v € (0,1], the
first step consists in checking that the result holds for k = 3/2. We shall come back to this point
later on. Let & > 3/2 such that 2k € N. Let us assume that for any j satisfying 2j € N and
1 <j <k—1/2, there exists K; > 0 such that M;(t) < K; for any ¢ > 0. Note that for such a
k, then max{k — %, [%] +3}=k- % Consequently, the induction hypothesis together with
the fact that M 1 (t) is uniformly bounded imply that

Sk(t) <Ci + AkMk(t)
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with Ay = (1 — B(a))(1 + ) and

(544
k
Cr = Bile) 1 ( j > (Kj+g Ky—j + K kaj+g) :
J:
Then, from (3.7):
d d 2a k
T Me(®) + (1= Bi(a)) Myy 3 (1) < G+ A+ ak(1+ 5) | Mi(t) + —— Moy o () M (2).

Now, from Theorem 3.4, as soon as a € (0, ), sup;> M1+:21(t) < oo and the above identity
becomes

%Mk( £) + (1= Br(e)) My 3 (t) < Ci + By Mi(t)

for some explicit constant By > 0. From Jensen’s inequality, one has
s
My 2 (t) > (Mi(1)' 5

from which the above differential inequality yields the conclusion.

It only remains to check that (3.10) holds for &k = 3/2. If v = 1, it directly follows from
Theorem 3.4. Otherwise, we have max{k — %, 2] + 2} = max{1,[3] + 2} = 1 + % and we
deduce from Theorem 3.4 and usual interpolations that

S3/a(t) < C3/9 + AgjaMs)s(t),

for some constants U35 > 0 and Az > 0, which leads, following the same lines as above, to the
desired result. O

3.3. Lower bounds. We shall now use Lemma 3.1 to derive suitable lower bounds for the
moments of (¢, &):

Lemma 3.7. For any v € (0,1], there exists o € (0,1) such that, for any a € (0, ) any
solution (t, &) to (1.9) satisfies

/ Bt E)IEAE > C, / AL (3.11)
]Rd ]Rd

for some explicit constant C, > 0 depending only on «,~,d and b(-). Moreover, one has the
following propagation of lower bounds

Bi(a) -1

(o) +1

i) Assume that v =1 and, given 0 < o < @y, let 0 < k() < <5

>d If My (0) >

D= (o=

k() then M1( ) = k(a) for any t > 0.

ii) Assume that v € (0, 1) and let jo € N be such that ky = —7 <1 and ko + 3 > 1. Given
0 <a<ay let (kj(a))j=1,..j, be some positive constants su h that

Bion () — ﬁ d £t B (@) =
ki (o) < 27 — and -2 ki« ,
JO( ) 1021((1) <2> % O[ J+1( )
forj=1,...,jo—1. If the initial datum g is such that M, (0) > kj(a) foranyj=1,...,jo
2

theninf@oM%()/ kj(a) forany j=1,...,jo.
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Proof. We first prove (3.11). We estimate the moment Mj(t) for k < 1 applying the above
Lemma 3.1 to the convex function ®(x) = —2*. We obtain easily that

- [ Beweo i< -2 [ v ool - 60 (68 +1eP) e,
+5 [ v ouee - el (6P +16*) deds.

where, as in Lemma 3.2, fi(a) = (1 — ) with g given by

N k N k

1 . 1-U-

Ok = Ssup / 14U + 1-U0 b(a - o)do VO < k < 1.
U,aesd—1 /8§41 2 2

Using the fact that k —1 < 0, a,(t) > 0 and by(t) > 0, we deduce from (3.1) that
1
2

0
—Mk / Y(t,E)Th(€, £)dEdE,

where
Te(&,6) = Brl@g — &I (167 + 1&%)" — e &l (Jg™ + &™)
Since 7 € (0,1, one bas €]~ 6| €I =617 <P + 6wl

(€2 + 1) > 16 =l | vk e (0,1).

As a consequence,

Te(€:62) = Bule) (&1 = 1&7) (167 = 6™ ) = (g +1e) (16 + 1)

= (Be(0) = 1) (&P + 1672 = (Be(a) + 1) (6 + 1] [¢*)
yielding the following inequality, for any 0 < k < 1:

d

SM(1) > (Bula) = 1) M3 (8) — (B(a) + 1) My (6) My (1) (3.12)

We are now in position to resume the argument of [18, Lemma 2| to get (3.11). We recall here
the main steps in order to explicit the parameter «, (and, for v = 1, the constant C,). Assume
first that v = 1, using then (3.12) with k = %, we get

330> (3360 1) 350 - (350 1) 10

Since M;(t) = M;(0) = d/2 for any ¢t > 0, we see that, if B%(a) — 1> 0 then

M

=

, J Bi(a) -1
(t) > min M%(O), —2——— M;(0) vt > 0. (3.13)

Since moreover Mj(0) > M1 (0)? we obtain

Mi(t) > CaM1(0) V0 <a<a,:= ;
1
2
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where C,, = 1 (notice that 0 < a < a, <= f1(a) > 1). In other words, for any
2

0 < a< a,

/ || (t, £)dE > Ca/ €0 (£)dE Wt > 0.
R4 Rd

For v < 1, one argues by induction as in [18, Lemma 2| iterating the above argument with k = £

for j =1,...,jo where jp € N is such that kg = % < 1and kg + 3 > 1. Then, from (3.12) with
k = ko, we get

d

&Mko (t) > (/Bk‘o (a) - 1) Mko-ﬁ-%(t) - (/Bko(a) + 1) M% (t)Mko (t)
A simple use of Jensen’s inequality shows that

d d\ Fot3 o

M0 G@ -1 ()= Gl + ) b ()T
from which we deduce, as above, that

1
a) — 1\ +55
0

if Bk, () > 1. Now, one can repeat the argument exactly with k; = ko — %, ko = k1 — % and so

on. Notice that, if B, (o) > 1, then fi(a) > 1 for any k < k. In particular, we get (3.11) for
Org—1 .
anyO<a<W—.a*.
Let us now prove the second part of the lemma, regarding the propagation of lower bounds.
The proof in the case v = 1 is a direct consequence of (3.13). For 0 < v < 1, the proof

1
uses arguments similar to those used in the proof of (3.11). Precisely, since My (t) < Mjy ()7
2

according to Jensen’s inequality, one deduces from Eq. (3.12) that

d 14y ‘ .
TMu() > (Ba(@) = 1) Mosn () = (Bg (@) +1) Ma(®) 7, forany j=1....jo.
According to Jensen’s inequality one also has
d (jogl)w
(Jo+1D
Mgenn () = Mi(t) ™7 = <§> vt >0
2

and, by a simple decreasing induction argument, one checks that if M;,(0) > &;(c) holds for
2

any j = 1,...,jo, then inf;>g M%(t) > k(o) will hold for any j =1,..., jo. O

Remark 3.8. With the notations of Lemma 3.7, we define the set Cy(a) (0 < o < o) as follows:
(i) If v =1 then Ci(c) is the set of nonnegative P(§) such that [pq ¥ (€)|E]dE > K(a).
(ii) If v € (0,1) let jo € N be such that ko = 45X < 1 and ko + 3 > 1. Then, Cy(«) is defined
as the set of nonnegative (&) such that [5 V()| dE = kj(a) for any §=1,..., jo.
The second part of Lemma 3.7 can be reformulated as follows: given v € (0,1] and 0 < o < v, if

the initial datum o € C, () then the associated solution (t) to (1.9) is such that ¥(t) € C,(«)
for anyt > 0.
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The above lower bounds have several important consequences when dealing with isotropic
functions. Precisely, one has the following result, already stated in [22, Lemma 10| in dimension
d=3:

Lemma 3.9. Assume that f(£) = f(|€|) = 0 is an isotropic integrable function and let k(r) >0
be a nondecreasing mapping on [0,00). Then, for any & € R,

s -ens > 5 [ ek (VEPFIEP) .

Proof. We give an elementary proof of this result. Using spherical coordinates, with & = ow
and £ =70, 7,0 >0, w,0 € S¥ ! one has

| fere—ehds = [T e [k (VP 2o w) e
= /Ooo ?(Q)Qdildg /Sdl k (\/Q2 +7r2—2ropo- w) dw

where §%71 = {w eStl.ow< O} . Then, for any w € S71, since k(-) is nondecreasing,

k(\/g2+r2—2rga-w> 2]@(@)

and

[ feore—ehds > [ ook (VETR)do [, do

si-1
which, turning back to the original variables yields the conclusion, the factor % coming from the

integration over the half-sphere S¢1. U

Thanks to the above lemma, one can complement Lemma 3.7 for isotropic solutions. We first
recall that, if ¥o(&) = 1o(|€]) is an isotropic function, then the solution 1 to (1.9) with initial
condition 1)y is isotropic for any ¢ > 0. Indeed, for any rotation matrix R € SO(d), defining "
by (t,€) = ¢(t, R - €) for any (t,£) € (0,00) x R, we have

Q- (0, 9)(t,€) = Q- ()t R-€),  Qr($,9)(t,€) = Qs (4, 9)(t, R - E),

for any (t,£) € (0,00) x R Consequently, one checks easily that 1) is a solution to (1.9) with

initial condition 7)y. By uniqueness, we deduce that ¢ = ¢. Thus, ¢ is an isotropic function.
This leads to

Lemma 3.10. Assume that 1o(&) = ¥o(|€]) is a nonnegative isotropic initial datum satisfying
(1.11) and (1.13). For any v € (0,1], there exists o, € (0,1) such that, for any o € (0, ) the
solution 1(t, &) to (1.9) satisfies

[ veelie-eride. > male’, veeRd, 130

for some positive constant p, > 0 depending on b(+), v,d,« and on the initial datum 1.

Proof. Applying Lemma 3.9 with the function k(x) = 7 we get that

[ vtede—erde >3 [ vwe) (6 + e ds.
R4 Rd
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X
2

Moreover, for any v € (0,1], there exists ¢, > 0 such that (|£* +[&]?)2 > ¢y (|€]7 + |&]7) for

any &, &, € R Then,

[utes-arae =% (e + [ vieeras).
Rd Rd

Now, according to Lemma 3.7, whenever a € (0, cw) there exists C,, such that

/ b(tEEdE, > Co / b€ e, t30.
]Rd ]Rd

Consequently,
[ vl - erae > Guin{1.Co [ unelerias fa+ie)  veert, t>o
Rd Rd

Now, since there exists ., > 0 such that (1 + [£]7) > &, (1 + |£|2)% for any & € R%, we finally

obtain the conclusion with p, = “5* min (1, Ca Jga ¢0(£*)|£*|Vd£*) . O
Remark 3.11. The parameter o, is exactly the one of Lemma 5.7. Precisely,
-1
o, = Okg
Ok

where kg = jOTV < 1 with jo € N such that kg < 1 and ko +

3 = 1. In particular, fory =1, ko = %
and, in dimension d = 3 and hard spheres interactions b(-) =

1 1
1=, one sees that oy = 7.

4. LP-ESTIMATES

We are now interested in uniform in time propagation of LP-norms for the solution to (1.9)
and we prove Theorem 1.6. As in the previous section, we fix a nonnegative initial distribution
1o satisfying (1.11) and (1.13) and such that

Yo € L., (RY) N IP(RY)

for some fired p > 1 and we let then ¢ € C(]0,00);w — L'(R%)) N Lﬁfc(((),oo),Lé_w(Rd)) be a

nonnegative solution to (1.9) with ¢(0,-) = ¢y. We assume in this section that 1y is an
isotropic function, that is (1.15) holds. For a given p > 1, multiplying (1.9) by pu(t,&)P~1
and integrating over ]Rd, we get

SIOIE, + (AL — By () [0,

—p(1-a) / Q. (1, )(t, )w(t, P~ dE — p / Q_ (v, ) (t, )w(t, g (A1)
Rd Rd
—: (1 — a)pGp(sb(t)) — pLyp(o(t))
where we set
G ((1)) = / Q. (46, )1, €t €7 e,
Rd

and

L(0) = [ Q- u)(t. it ds.



40 VERONIQUE BAGLAND & BERTRAND LODS

The estimates for G,(¢(t)) are well-known [28, 2| and, for € > 0, there exists some (explicit)
6 € (0,1) and C; > 0 such that

S (60) < CIBONL WORE + IOl ISOIE
Gp(0(0) < CoWOIE +2 (145 ) IO (12

Now, all the strategy consists in finding conditions on o and p > 1 ensuring that

= (pAy(t) — dBy (1)) [V (D)7, — PLp (¥ (1))
can absorb the leading order term (1 — a)p (1 + %) @)%, . One has
X
P

(A (1) — dBy(t) = —5 (dlp — 1) +2p) ay(t) + a(p — Dby(t)
and, since by, (t) > 0, it is enough to estimate
Kp = % (d(p — 1) +2p) ay () [ ()17 — PLp((2))-

Compounding |[4(¢)||7, and ay(t) into a unique integral, we get

a0 [0, = [ 16 = €Ml 0(0, 6. )w(e, 2 ddsde..

One has |§ — &|7 < |z = &7 4 |z — &]” so that
au) 1001, < [ | |2 = €00t €0t 2P d=dede,
+ [ = 6P Uit gl pddde,

ie.
a1, <2 [ 12— E7o(t. (e, 2P dzds = 2Ly (0(0).
One sees then that K, < —n,L,(¢(t)) with n, =p —2ap — ad(p — 1) and
np > 0 <= plad+2a — 1) < ad.

One can distinguish between two cases:

(i) if o < d+2
i) if a > then n, > 0 if and only if p < p* where pf =
d+2 Tp a «
and only if 0 < a < %

then one has 1, > ad > 0 for any p > 1;

ad+2a 7. Notice that pj, > 1 if

In other words, for any a < %, there exists p}, > 1 such that
Kp < =npllp(v(t)) with 7, >0 Vp € (1,p7)- (4.3)
Putting together (4.1), (4.2) and (4.3) we get, for o < 3 and p € (1,p%):

IO, < C.1 = o+ - ap 1+ 5 ) (01, = mLy((0),
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It remains now to compare L, (¢(t)) to [[¢)(t)[}, . This is the only point where we shall invoke
X

P
our assumption (1.15). Precisely, from (1.15) and Lemma 3.10, if a € (0, aw) there exists g > 0
depending on g such that

| Je-eruens > mer  vezo,  veeR!
Therefore,

Ly($(t) = pa Ad¢(t,£)p<£>”d£ = pallb @Iy - (4.4)

Then, for any fixed 0 < a < min(%,a*) and fixed p € (1,p%), one can choose € > 0 such that
e(l-a)p(1+ %) = L2 0 get the following

d
P OILe < Kllv(?)

0  Tlp K
7 = “Hw()HLw

P

for some positive constant K > 0. This implies clearly that

1
2K \ v
sup [|¢(t)[|zr < maX{HT/JoHLp, < ) } :
t>0 NpHa

1

This proves Theorem 1.6 with Cp(1)g) = (%) " Notice that, as announced, Cp(10g) depends

on the initial datum g only through u, and so only through the moment M 1 (0).

Remark 4.1. One sees from the above proof that & = mln(é, o) where oy is the parameter of
Lemma 3.10 (see also Remark 3.11).

Remark 4.2. The constant Cp(tpo) depends on the initial datum 1y only through the inverse
of the moment Mw fRd Yo(€)|€|7dE. In particular, with the notations of Lemma 3.7 and

Remark 3.8, one sees that, given v € (0,1] and 0 < a < @ then for any p € (1,pk),
sup [ (#)llze < max {lvollr, Cp}

for some constant Cy, > 0 depending only on o, v, b(-) and the dimension d provided 1y € C,(cv)
satisfies the assumption of Theorem 1.6.

5. WEIGHTED SOBOLEV ESTIMATES

We now set v = 1 and prove Theorem 1.8. The proof is very similar to that of (2.44) and
(2.45) except that we need here to prove uniform in time bounds. The restriction v = 1 comes
from the fact that the best control of the loss term Q_ is available only for v = 1, see (5.2).

Multiplying (1.9) by 2¢(t,£)(€)?* and integrating over R?, we get (2.46). Now, according to
[2, Corollary 2.2, for any € € (0,1), there exists C. > 0 such that

/ Q- (¥ W)V (O™ < Cellbl, ) I + el ®lly W

d—1

According to (3.10), since 1 € L}i(dd_f)) L one has

sup [|1(t)| 1 <
0

d(d 3)
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and, in turns, sup; Hi/}(t)HL}C < 00. On the other hand, we have

sup |Ay(t)| < C  and  sup|By(t)| < C,
£>0 t>0

for some constant C' > 0. Thus, bounding the L%_l norm by the L% one, (2.46) together with
Lemma 3.10 lead to

d
Z IOz + 2uallY@®ll2

2

< Ol +2C: WOl +2e M (0]},

for some constants C' > 0 and M > 0 (depending on k). Now, choosing € such that 2e M < pq,
we get the existence of some positive constants C7 > 0 and Cy > 0 (still depending on k) such
that

d
S + nal b2 < eI, + Callve) 15

+2
Now, one uses the fact that, for any R > 0,

@172 < (1+ B w072 + B Hw(@)I7

k+1/2

and, since sup;sq || (t)||z2 < oo by Theorem 1.6, one can choose R > 0 large enough so that
C1 R~ = 14/2 to obtain

d s 1+1/d
PO + ST | < Cs+ Callp®l

Taking k = %54 + k, one obtains (1.16) since 1 + 1/d < 2.

Let us now prove (1.17). For the solution (t,£&) to (1.9), we set G;(t,§) = 0;9(t,§) for
Jj € {1,...,d}. Then, G; satisfies (2.49). For given ¢ > 1/2, we multiply this equation by
2Gj(t,€)(€)* and integrate over R?. Then, after an integration by parts and using Lemma 3.10),
one obtains

SN0 + ApD) + (2~ d—20)By(0) G503 + 2By IGH 01
21-0) [ 9,0 )G (.)€ e
~ 2G| 2 [ Q-GG ke ()
Clearly, one has

/Rd 105 Q- (¥, )(£,€)] 1G(t, ) (6)*1dE < [10;Q4 (4, ¥)(t ez 1G5 Oz

at3
<N+ )l NGz -
9—3 9T 3
Now, using [8, Theorem 2.7|, for any € > 0, there exists C. > 0 such that
19+ )l | < Cell¥@l] ssa 0Oz |+
=3 Hy 14w 2atgte

€H¢(t)HL;+1H¢(t)HL2 +2e[lv @)l ZHG ”L21'
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3—d
Since d > 3, one estimates the Hq+1+n norm by the L2+1+R norm and, using (1.16) together with
(3.10), our assumptions on the initial datum implies that

sup [0()l 2, <oo and sup ()l | <o
t>0 q ~ t>0

20+ 5+~

Therefore, for any € > 0, there exists C1(g,q) > 0 and Cs(q) > 0 such that

1Q+ (2, )l | < Cile,q) +2Calg ZHG Oz,

1
2

One estimates the last integral in (5.1) as in the proof of [8, Theorem 2.8]; namely, an integration
by parts yields

100600 = v(t.9)| [ it &)l - 6148 < vl OO = w9 (52)

Then, Cauchy-Schwarz inequality yields

[, 0-(.61t. 65,9 < 1013 16503 < €4 1650y

for some positive Cy > 0 where we used the uniform bounds on the Lg—norm of ¥ (t) provided by
(1.16). Recall that

2 (d+2-2¢)by(t)

2A,(t) + (2= d = 20) By(t) = =5 (d — 20+ 6)ay(t) + = (

while 2¢By,(t) = —aqay(t) + a2q by (t). Since ¢ < 1+ £, one may neglect all the terms involving
by (t) to obtain the bound from below:

(2A,(t) + (2 = d = 29) By (1) |G ()17 + 20Bu (D) 1G5 O)I132
> =5 (d+6)ay®) GOl +aqan(®) (16O — 160132 )
> - 2¢E<d+6> 1G53

using the fact that a,(t) < v/d for any ¢ > 0 (following the arguments of [8, Lemma 2.1]). Thus,
(5.1) reads

d o
aHGj(t)H%g - 5\@ (d+6) ]Gy (75)||%g + 200G (1)]]7 )

a+3
21 = )Cile NGOl | +eCa) 1G22, ZIIG @l +20qHGj(t)||Lg
2

where Cy, C1(e,q) and Cy(q) are positive constants independent of a and ¢. Define, for any
k > 0, the semi-norm
1/2

d
@l = >l
k j=1
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Setting o := min {6, Qg, } and summing over all j € {1,...,d}, we get

%“W >||01 + @<d+6><a1 LGOI

Ho+d

4pa
Vd(d+6)

2cleq2||a Olzz , +<Cala ZHG le + 20, ZHG ()ll.2

2015QZHG ez +d€Cz(Q)H1/f(t)H%1 +2\/50qllw(t)|!ﬁl-

Jj=1 Hq-ﬁ-% q

Using Young’s inequality, for any ¢* > 0 one gets

SO + 5L+ o~
<5 i) +a G O+ 228D ave u)),.

For any fixed o < a1, one can choose first € > 0 small enough and then §* > 0 small enough so

that (26" Ci(e,q) +de Ca(q)) = @(d +6)(a1 — @) to get

d Vd
— (@121 + = (d+6) (a1 —a)[p(®)]2: < 2VdCyl|e(t)] o1 + C
dt H 4 1 H
a a+3 a
which yields easily the conclusion taking ¢ = W%.

6. EXISTENCE OF SELF-SIMILAR PROFILE

We now proceed to the proof of the main result of this paper, that is the proof of Theorem 1.9.
As already announced, the existence of a stationary solution to (1.9) relies on the application of
Theorem 1.1 to the evolution semi-group (S;)>0 governing (1.9). Let us now fix a < ay. For any
nonnegative 19 € Li(R?) N L2(R?) satisfying (1.13), let 1(t) = S;1b denote the unique solution
to (1.9) with initial state 1(0) = vy constructed by Theorem 1.3. Thanks to the uniform bounds
on the Li(RY) and L?(R%) norms provided by Proposition 3.4 and Theorem 1.6 respectively
combined with the propagation of lower bounds for M 1 (t) (see Lemma 3.7, Remarks 3.8 & 4.2)

and the weighted Sobolev estimates of Theorem 1.8, the nonempty convex subset
_ d
z={o<ue i®), ve =) veer [ vioe=1 [ v©Pa=g
Rd R4
[ v©lePae <, ol < v [ w©leae <
R4 Rd

lg,, < Mi Vol <M ad [ o> K}

9+d 7+d+

with q(k) = max {W +x,10+d+ 25}, is stable by the semi-group provided M7, My, M3,

My, Mjs are big enough and K is small enough. This set is compact in J = L'(RY) endowed
with the weak topology by Dunford-Pettis Theorem. Let us now justify that for all ¢ > 0, &
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is continuous on Z. By [35, Corollary 1.2.2], it is sufficient to check that for all ¢ > 0, &; is
sequentially continuous on Z. Fix ¢y € Z. Let (¢§)nen be a sequence from Z that converges to
1o in Y. For any n € N, we then denote by 1" the solution to (1.9) with initial condition .
Let T > 0. Proceeding as in the proof of Proposition 2.9, it is clear that the sequence (" )nen
is relatively compact in C([0,7],w — L'(R%)). Thus, there exists a subsequence (1, )x which
converges to some 1 € C([0,T],w — L'(R?)). Passing to the limit in (1.12), we deduce that 1
is the solution to (1.9) with initial condition 1. Since ()"),en admits a unique limit point,
this sequence is convergent, which proves the sequential continuity of S; at v for any ¢ € [0, 7.
Then, Theorem 1.1 shows that, for any o < «, there exists a nonnegative stationary solution
to (1.9) in Li(R?) N L2(R?) with unit mass and energy equal to 2.

Remark 6.1. Notice that, unfortunately, we are able to construct only radially symmetric so-
lutions to (1.6). Clearly, this relies on the restriction (1.15) for the control of LP norms. At
first sight, it may seem possible to construct solutions to (1.6) with zero bulk velocity but it is
not known whether this property is preserved by the semi-group (St)i=o0. Since the property of
being radially symmetric is preserved by (St)i=0, we have to restrict our choice to that class of
self-similar solutions.

Remark 6.2. In the special case of hard spheres interactions in dimension d = 3, i.e. whenever

B(§ — &yo) = %, one has according to Remarks 3.5, 5.11 and 4.1 that cg = %, a = %.

Therefore, a1 < i.

7. CONCLUSION AND PERSPECTIVES

We derived in the present paper the existence of a self-similar profile ¢ associated to the
probabilistic ballistic annihilation equation (1.1). Such a self-similar profile is actually the steady
state of the rescaled equation (1.9) and the existence of such a steady state was taken for granted
in various papers in the physics literature [19, 24, 33]. Our paper thus provides a rigorous
justification of some of the starting point of the analysis of the op. cit.. The self-similar profile
1y we constructed is isotropic, i.e.

() =vn(é]), E(eR?

and the existence is proven only in a given (explicit) range of the probability parameter o.
Namely, we proved the existence of ¢ f only whenever the probability parameter « lies in some
interval (0, ay) with some explicit @y > 0. Even if the parameter oy > 0 is certainly not optimal,
this restriction arises naturally from our method of proof; in particular, it seems difficult to prove
uniform in time estimates of the higher-order moments for all range of parameters a € (0,1).
However, our restriction on the initial datum (isotropy, LP-integrability) and on the probability
parameter « leaves several questions open. Let us list a few of them that can be seen as possible
perspectives for future works.

7.1. Uniqueness. A first natural question that should be addressed is of course the uniqueness
of the self-similar profile 5. Clearly, since our existence result is based upon a compactness
argument (via Tykhonov fixed point Theorem 1.1) it does not provide any clue for uniqueness.
We believe that, as it is the case for the Boltzmann equation with inelastic hard spheres |26, 10],
a perturbation argument is likely to be adapted here. Such an approach consists in taking profit
of the knowledge of the stationary solution in the "pure collisional limit" o = 0 (for which the
steady state is clearly a uniquely determined Maxwellian distribution) and to prove quantitative
estimates of the convergence of stationary solution as the parameter a goes to 0. It is likely
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that such a uniqueness result would require a good knowledge of some quantitative a posteriori
estimates for the self-similar profile .

7.2. A posteriori estimates for ¢. Typically, we may wonder what are the thickness of the
tail of ¥ r; more precisely, one should try to find explicit » > 0, a > 0 - possibly independent of
the parameter « - such that

/Rd Y (&) exp(al¢]|)dE < oo.

Besides such integral upper bound, one also may wonder if good L°°-bounds can be derived for
Y (at least in the limit v — 0), i.e. is it possible to derive universal explicit functions M (&)
and M (&) such that

M(E) <pu() <M(E)  VEeR? and any a € (0,@).

7.3. Intermediate asymptotics. A fundamental problem, related to the original probability
annihilation equation (1.1), is to understand the role of the self-similar profile ¥y (if unique).
Indeed, we know that solutions to (1.1) are vanishing as t — oo

Jim f(t,0) =0

and physicists expect that the self-similar profile should play the role of an intermediate asymp-
totic in the following sense. One expects to find suitable explicit scaling functions a(-),b(:) a
rescaled density ¢ = 1(7,§) and a rescaled time 7(t) which are such that, if f is a solution to
(1.1) in the form

f(tv) = a(t)p(r(t), b(t)v)
then the rescaled density v is such that

Y(1,8) — Y () as T — 00.

The convergence, in rescaled variables, to a unique self-similar profile is a well-known feature
of kinetic equation exhibiting a lack of collisional invariants. In particular, for granular flows
described by inelastic hard-spheres, such a self-similar profile (known as the homogeneous cooling
state) is known to attract all the solutions to the associated Boltzmann equation yielding a proof
of the so-called Ernst-Brito conjecture (see [26] for a proof and a complete discussion on this
topic).

A related question is also the exact decay of the macroscopic quantities associated to solutions
f(t,v) to (1.1): it has already been observed that the number density

n(t) = f(t,v)dv
R4
and the kinetic energy
B = [ ftolPd
R4

are continuously decreasing if a € (0,1) and converge to zero as t — co. To determine the precise
rate of convergence to zero for such quantities is a physically relevant problem. Notice that for
the particular solution fx(t,v) (constructed in (1.3) through the self-similar profile) the density
ny(t) and energy Fp(t) satisfy

ny(t) Bg(t) ~ Ct™2 ast — 0o

for some C' > 0 in the case of true-hard spheres (i.e. whenever v = 1) as can easily be deduced
from (1.8). One may wonder if such a decay is universal, i.e. does any solution f(¢,v) to (1.1) is
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such that n(t) E(t) behaves as t~2 for large times ? Partial answers, based upon heuristic and
dimensional arguments, are provided by physicists [29] and it would be interesting to provide a
rigorous justification of these results. Exploiting again the analogy with the Boltzmann descrip-
tion of granular flows, expliciting the decay rate of the number density and the kinetic energy
would be the analogue of the so-called Haff’s law for inelastic hard-spheres (see |25, 3]).

7.4. Improvement of our result: the special role of entropy. Besides the above cited fun-
damental questions, we may also discuss some possible improvements of the results we obtained
in the present paper. First, one may try to extend the range of parameters « for which our
result holds. Notice that, since we strongly believe that the self-similar profile ¥y is unique in
some peculiar regime (at least whenever o ~ 0), getting rid of the isotropic assumption on ¥ g
is not particularly relevant. However, in both Theorems 1.3 and Theorem 1.9, the hypothesis of
LP-integrability does not have a clear physical meaning. It would be interesting to investigate
if such an assumption can be relaxed: for instance, it would be more satisfactory to prove the
well-posedness result Theorem 1.3 under the sole assumption that the initial datum is of finite
entropy. Unfortunately, we did not succeed in proving that the flow solution associated to (1.9)
propagates suitable bounds of the entropy functional.

APPENDIX A. WELL-POSEDNESS FOR THE BOLTZMANN EQUATION WITH BALLISTIC
ANNIHILATION

In this appendix, we only give the main lines of the proof of Theorem 1.10. Indeed, the proof
of Theorem 1.10 may be easily adapted from that of Theorem 1.3.

Let us denote by fo a nonnegative distribution function from W1>°(R%) N L} JW(Rd). Let
n € N. We consider first the well-posedness of the following truncated equation

atf(t,’l)) :Bn(fa f)(t,’l)) (Al)
where the collision operator B"(f, f) is given by (2.2). Let T' > 0 and
he ([0, T]; LY (RY) N L((0, T); L' (RY, [o**7 dv))

be fixed. We introduce the auxiliary equation:

atf(tvv) + Ln(h)(t,?}) f(t,?}) = (1 - a) Qi(hv h)(t,?}), (A 2)
f(0,v) = fo(v). '

Here, as in Section 2,
L,(h)(t,v) = / Bp(v = vs,0) h(t, vi) dve do = [|byl| 1 (ga1) / D, (|v — vi]) h(t, vi) dvy.
RdxSd—1 R4

The Cauchy problem (A.2) admits a unique solution given by
¢
s = saes (- [ Lawmoar)
t ¢
+ (1- a)/ exp <—/ L, (h)(T,v) d7'> Q" (h, h)(s,v)ds. (A.3)
0 s
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For any T > 0 and any M, M, L,C, > 0 (to be fixed later on), we define H = Hr vy Mo, L,Cy
as the set of all nonnegative h € C([0, T]; L' (R%)) such that

sup / h(t,v)dv < My, sup / h(t,v) [v]* dv < Mo,
t€[0,7] J R te[0,7] JR4
and
sup / h(t,v) |v|**7 dv < O, sup [[A(t)||w1e < L.
te[0,T] JR? t€[0,7]

Define then the mapping
T : H— C(0,T]; L' (R%))

which, to any h € H, associates the solution f = T (h) to (A.2) given by (A.3). We look for
parameters T', My, My, C,, and L that ensures 7 to map H into itself.

Control of the density. One checks easily that the solution f(¢,v) given by (A.3) fulfills
sup ft,v)dv < || follpr + (1 — ) n? ||bal L1 (ga-1) MET, Yh € H. (A.4)
te[0,7] /R4
Control of the moments. Arguing as above and as in Section 2, we get

sup ft,v) jv]Pdv < / fo(v) [v]*dv+4(1 —a)n” [bnl 1 (ga-1y My M T, (A.5)
te[0,7] /R4 R4

sup ft,v) o dv < / fo(w) o> dv + 2277 (1 — a)n” [bn 1 (ga-1y M1 Cy T, (A.6)
t€[0,7] /R4 Rd

for any h € H.

Control of the W norm. Here again as in Section 2, we obtain,

sup £ () lwree < [ follwree (14207 |[bn | L1 (ga-1y) M1 T)
te[0,T] (A.7)
+2(1 = @) n 7 |ba|| prga-1y My LT (2 407 [|by | 1 (ga-1) M1 T).

Now, from (A.4)-(A.7), one sees that, choosing for instance M; = 2|| fol| 1,

M, = Q/Rd fo(w) Jv]* dg, Cy = 2/Rd fo(&) 1€ dg, L =4 follw1.

and
1

T =
16 ”anLI(Sd—l) My ni+
we get that f € H, i.e. with the above choice of the parameters M, Ms,C.,,L,T, one has

T(H) C H. On the other hand, given hj, hy € H, one deduces from (A.2) and Lemma 2.4 that
there exists some constant C' > 0 such that

sup [ T(h1)(t) = T(h2)(#)|ly < C sup [[ha1(t) = ha(t)]l ;- (A.8)
te[0,7) t€[0,7]

min{1, 277 n},

Moreover, T (H) is a relatively compact subset of C([0,T], L4(R%)). Thus, the Schauder fixed
point theorem ensures the existence of some fixed point f! of T, i.e. there exists f! € C([0, T]; Li(R%))N
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L>=((0,T); Ls, (R N W12°(R)) solution to (A.1). Integrating equation (A.1) against 1 and

Ity
|v|? over RY, we get
d 1 d 1 2
I Rdf (tv)dv <0 and - Rdf (t,v) [v]* dv < 0.

Consequently, f! satisfies (1.18) and ||f*(T,.)||z2 < || follz1- Since the time T only depends on
the inverse of || fo||z1, by a standard continuation argument, we construct a global solution f to
(A.1). Uniqueness clearly follows from (A.8).

In order to prove Theorem 1.10, we now need to get rid of the bound in W (R%) for the initial
condition and to pass to the limit as n — +o0. Let fy € L%-Fv (R%) be a nonnegative distribution
function. There exists a sequence of nonnegative functions (f§)nen in WH*(R%) N L1 JW(Rd)

that converges to fo in L3(R?) and that satisfies, for any n € N,

1 < Mol and [ )P do <2 foln 247 [ o) o dv. (49

We infer from the above properties of (f})nen that there exists some Ny € N such that for
nz= N07

1 n
3 ol < [ 530 av < ol (A.10)
R4
and

1
3 [ A bPavs [ g Pa<e [ ok (A1)

For each n € N, we denote by f,, the solution to (A.1) with initial condition f§. Our purpose
is to show that (f,)nen is a Cauchy sequence in C([0,T]; L3 (R%)) for any T > 0. However, this
requires uniform estimates on f,. So, we now show uniform bounds for moments of f,.

Lemma A.1. LetT > 0 and s > 2. Assume that | fol[11 < oo. Then, there exists some constant
C depending only on «, d, 7y, s, T, b(:) and || fol 11 such that, for n > No,

T
sup falt,v) wPdv < C  and / | ()| 2 / fu(t,0) @ (o)) |v|®dodt < C. (A.12)
t€]0,7] J R4 0 R

Proof. Let s > 2 and n > Ny. Our proof follows the same lines as the proof of Lemma 2.7. As
previously, we have

Yy 11—«

) = /R [ 100) ) @l = vu]) K2 (0,0) v,

— a/Rd Q" (fr, fn)(t,v) |v]° du,

where Y]'(t) = [ga fn(t,v)|v]* dv. Now, arguing as in the proof of Lemma 2.7, we obtain

v+ S0 0l [ o) (e fof v
< 2y () + e (Y0 V) + I (0 Vi ().
Finally,
G700+ S22 L 0l [ Al (el o o < Co¥20) + 201 ol
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where C3 = (c3° + 4c1)||follg;- Then, (A.12) follows easily from the Gronwall Lemma and
(AL9). O

Observe that the second inequality of (2.38) has to be modified in that case. Since the mass
of the solution is decreasing, we do not recover, as previously, that moments of order 2 4 ~ are
integrable. This is the reason why we assume here that the initial condition lies in L3 4~- Thanks
to Lemma A.1l, it then follows that moments of order 2 + ~ are uniformly bounded. We are
thus in a position to prove that (fy,)nen is a Cauchy sequence in C([0, T]; Li(R?)) for any T > 0.
We omit the proof since it follows exactly the same lines as the proof [27, Theorem 4.1|. Then
denoting by f € C([0,T]; L (R%)) the limit of the sequence (f,)nen, it is easy to check that f is
a weak solution to (1.1). Performing the same calculations as in the proof of Proposition 2.11

(with the L% norm instead of the L% +y norm), we prove the uniqueness of such a solution.

APPENDIX B. THE CASE OF MAXWELLIAN MOLECULES KERNEL

We discuss in this appendix the particular case of Maxwellian molecules. Notice that the
Boltzmann equation for ballistic annihilation associated to Maxwellian molecules has been al-
ready studied in the mid-80’s [31, 30|, and was referred to as Boltzmann equation with removal.
Consider as above, the equation

O f(t,v) = (1= a)Q(f, [)(t,v) —aQ_(f, f)(t,v) =B(f, f)t,0),  f(0,0) = fo(v) (B.1)

where Q is the quadratic Boltzmann collision operator associated to the Maxwellian collision
kernel

B(v —vs,0) = b(cos )
For any solution f(t,v) to (B.1), we denote

n(t) = f(t,v)do, n(t)u(t) :/ vf(t,v)dv,
R4

and

Since, for Maxwellian molecules

Q- (f, /)t 0) = |[bll L1 (ga-1) f(t,0) /Rd ft, v )dvie = bl 1. ga-1yn(8) f(t,0)

one sees easily that the evolution of the density n(t) is given by

d

&n(t) = —un’(t),  Vt>=0, (B.2)
with 1 = a[[b]| g1 ge-1). Thus
n(t) = # vt > 0. (B.3)
In the same way,
S = —an’0u@),  ad  SOOM) = —an’(H) (B

from which we deduce that

u(t) = u(0) and O(t) = 6(0) vt > 0.
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One sees therefore that, for the special case of Maxwellian molecules, the evolution of the mo-
ments of f(t,v) are explicit. Another striking property, very peculiar to Maxwellian molecules,
has been noticed in [30]: if one defines

1— t 1-—
s(t) = a / n(r)dr = @ log(1+ ungt), t>0,
o Jo Hno
then, the change of unknown
t
pit0) = "otsy,0) 120 (B.5)

no
shows that, f(¢,v) is a solution to (B.1) if and only if g(s,v) is a solution to the classical
Boltzmann equation

dsg(s,v) = Q(g,9)(s,v) (s>0)  with  g(0,v) = fo(v). (B.6)
Moreover, one has

/Rd g(s,v)dv =ng = /Rd g(0,v)dv, / vg(s,v)dv = nou(0)

]Rd
and

/ lv —u(0)|?g(s,v)dv = dng©(0) Vs > 0.
R4

In other words, the ballistic annihilation equation (B.1) is equivalent to the classical Boltzmann
equation with Maxwellian molecules interactions. The mathematical theory of Eq. (B.6) is by
now completely understood (see e.g. [34]) and it is well known that (under suitable conditions
on the initial distribution fo) the solution g(s,v) to (B.6) converges (in suitable L!'-norm) as
s — oo to the Maxwellian distribution

B no ox v —u(0)P v e RY
/\A(U)_(zwe(o))d/2 p( 20(0) ) cR

with an explicit rate (we do not wish to explicit the minimal assumption on fy nor the precise
convergence result and rather refer the reader to [34] for details). Turning back to the original
variable, this proves that

f(t,v)—wj\/l(v) —0 as 1t — 00.
no

The long-time behavior of the solution to (B.1) is therefore completely described by the evolu-
tion of the density n(t) given by (B.3) and the moments of the initial datum fyp (through the
Maxwellian M). This gives a complete picture of the asymptotic behavior of (B.1) and answers
the problem stated in Section 7.3 for the special case of Maxwellian molecules.
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