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Abstract

Large, explosive, caldera-forming eruptions are amongst the most destructive phenom-

ena on the planet, but the processes that allow the large bodies of crystal-poor silicic

magma that feed them to assemble in the shallow crust are still poorly understood. Of

particular interest is the timescales over which these reservoirs exist prior to eruption.

Long storage times—up to 105 y—have previously been estimated using the repose

times between eruptions and radiometric dating of crystals found within the erupt-

ive products. However, more recent work modelling diffusion within single crystals

has been used to argue that the reservoirs that feed even the largest eruptions are

assembled over much shorter periods—101–102 y.

In order to address this question, I studied the >10 km3, 22-ka, dacitic Cape Riva

eruption of Santorini, Greece. Over the ∼18 ky preceding the Cape Riva eruption a

series of dacitic lava dome and coulées were erupted, and these lavas are interspersed

with occasional dacitic pumice fall deposits (the Therasia dome complex). These da-

cites have similar major element contents to the dacite that was erupted during the

Cape Riva eruption, and have previously been described as “precursory leaks” from

the growing Cape Riva magma reservoir. However, the Cape Riva magma is depleted

in incompatible elements (such as K, Zr, La, Ce) relative to the Therasia magma, as

are the plagioclase crystals in the respective magmas. This difference cannot be ex-

plained using shallow processes such as fractional crystallisation or crustal assimilation,

which suggests that the Cape Riva and Therasia magmas are separate batches. Fur-

thermore, there is evidence that the Therasia dacites were not fed from a long-lived,
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melt-dominated reservoir. There are non-systematic variations in melt composition,

plagioclase rim compositions, and plagioclase textures throughout the sequence. In

addition, high-temperature residence times of plagioclase and orthopyroxene crystals

from the Therasia dacites estimated using diffusion chronometry are 101–102 y. This is

short compared to the average time between eruptions (∼1,500 y), which suggests the

crystals in each lava grew only shortly before eruption. The different incompatible ele-

ment contents of the Cape Riva and Therasia magmas and plagioclase crystals suggest

that a new batch of incompatible-depleted silicic magma arrived in the shallow volcanic

plumbing system shortly before the Cape Riva eruption. This influx must have taken

place after the last Therasia eruption, which 40Ar/39Ar dates show occurred less than

2,800± 1,400 years before the Cape Riva eruption.

The rims of the plagioclase crystals found in the Cape Riva dacite are in equilibrium

with a rhyodacite, with a similar composition to the Cape Riva glass. However, the

major and trace element zoning patterns of the crystals record variations in the melt

composition during their growth. The compositions at the centre of most crystals

are the same as the rims; however, these crystals are often partially resorbed and

overgrown by more calcic plagioclase. The plagioclase then grades normally back to rim

compositions. This cycle is repeated up to three times. The tight relationships between

the anorthite, Sr and Ti contents of the different zones suggests that the composition

of the plagioclase crystals correlates with the composition of the melt from which they

grew. The different plagioclase compositions correspond to dacitic and rhyodacitic

melt compositions. The orthopyroxene crystals reveal a similar sequence, although

they only record one cycle. These zoning patterns are interpreted to document the

assembly of the Cape Riva reservoir in the shallow crust through the amalgamation of

multiple batches of compositionally diverse magma. Models of magnesium diffusion in

plagioclase and Fe–Mg interdiffusion in orthopyroxene suggest that this amalgamation

took place within 101–102 y of the Cape Riva eruption.
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Résumé

Les grandes éruptions calderiques sont parmi les phénomènes les plus destructeurs de la

Terre, mais les processus à l’origine des grands réservoirs de magma siliceux et pauvre

en cristaux qui alimentent ces éruptions ne sont pas bien compris. Le temps de stockage

de ces réservoirs dans la croûte supérieure a un intérêt particulier. De longs temps de

stockage—jusqu’à 105 ans—ont été estimés en utilisant les temps de repos entre les

éruptions et les âges radiométriques des cristaux qui se trouvent dans les produits

éruptifs. Par contre, des travaux récents sur la diffusion dans des cristaux suggèrent

que les réservoirs qui alimentent même les plus grandes éruptions peuvent se mettre en

place pendant une période beaucoup plus courte—101–102 ans.

Afin de répondre à cette question, j’ai étudié l’éruption dacitique de Cape Riva de

Santorin, Grèce (>10 km3, 22 ka). Pendant les ∼18.000 ans précédant cette éruption,

une série de dômes et de coulées dacitiques a été émise, alternant avec des dépôts de

ponce dacitique (le complexe de dômes de Therasia). Ces dacites ont des compositions

similaires à celle qui a été émise pendant l’éruption de Cape Riva, et ont été décrites

précédemment comme des « fuites » provenant du réservoir de Cape Riva pendant sa

croissance. Cependant, le magma de Cape Riva est appauvri en éléments incompatibles

(tels que K, Zr, La, Ce) par rapport au magma de Therasia, une différence qui apparaît

également dans les cristaux de plagioclase. Cette différence ne peut pas être expliquée

par des processus peu profonds, tels que la cristallisation fractionnée ou l’assimilation

de la croûte, ce qui suggère que les magmas de Cape Riva et Therasia ont des ori-

gines différentes. En outre, il existe des arguments tendant à montrer que les dacites
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de Therasia n’ont pas été alimentées par un réservoir majoritairement liquide ayant

eu une longue durée de vie. Il y a des variations non systématiques dans la composi-

tion du magma, les compostions des bords ainsi que les caractéristiques des cristaux

de plagioclase tout au long de la séquence. De plus, les temps de résidence à haute

température des cristaux de plagioclase et d’orthopyroxène estimés par des modèles de

diffusion sont 101–102 ans. Ces temps sont courts par rapport au temps moyen entre

éruptions (∼1.500 ans), ce qui suggère que les cristaux observés dans chaque coulée ne

se sont formés que peu de temps avant l’éruption. Les différentes teneurs en éléments

incompatibles indiquent qu’un nouveau magma s’est mis en place dans le système vol-

canique superficiel peu de temps avant l’éruption de Cape Riva. Cet apport de magma

a eu lieu après la dernière éruption de Therasia, qui s’est produite <2.800± 1.400 ans

avant l’éruption de Cape Riva selon les âges 40Ar/39Ar.

Les périphéries des cristaux de plagioclase présents dans la dacite de Cape Riva sont

en équilibre avec une rhyodacite, avec une composition similaire à celui du verre de

l’éruption. Cependant, les zonations dans les éléments majeurs et traces enregistrent

des changements dans la composition du liquide magmatique pendant la croissance

des cristaux. La composition du centre de la plupart des cristaux de plagioclase est la

même que celle des bords ; toutefois ces cristaux sont souvent partiellement résorbés, et

la croissance a repris avec du plagioclase plus calcique. Ces cycles se répètent jusqu’à

trois fois. La relation étroite entre la teneur en anorthite, Sr et Ti des différentes zones

suggère que la composition des plagioclases est corrélé avec la composition du liquide,

allant de liquides dacitiques à rhyodacitiques. Des cristaux d’orthopyroxène révèlent

une séquence similaire. Les motifs de zonation sont interprétés comme un témoin de

la formation du réservoir de Cape Riva dans la croûte supérieure par le mélange de

plusieurs magmas ayant des compositions diverses. Des modèles de diffusion de Mg

dans le plagioclase et de Fe–Mg dans l’orthopyroxène suggèrent que ce mélange a eu

lieu 101–102 ans avant l’éruption.
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Introduction

Silicic eruptions can be highly explosive, and can erupt over 1,000 km3 of magma (Ma-

son et al., 2004; Miller and Wark, 2008). The magma that feeds these eruptions is

generally believed to be stored in a single, large body of magma prior to eruption

(Bachmann and Bergantz, 2008a; Hildreth, 1981; Smith, 1979). There is, however,

considerable debate over the form these magma bodies take, the processes that pro-

duce them, and importantly, the timescales over which they are active. On the one

hand, individual volcanoes can remain active for up to several million years, and there

is a loose relationship between repose time and eruption size (Reid, 2008). This sug-

gests that magma may accumulate over long periods before being erupted, up to a

million years in extreme cases. However, there is increasing evidence that large, melt-

dominated bodies of eruptible magma are ephemeral, and may exist for less than a few

centuries before their eruption (e.g. Allan et al., 2013; Druitt et al., 2012; Sutton et al.,

2000; Wilson and Charlier, 2009).

There is often a distinction made between crystal-rich and crystal-poor ignimbrites,

and the processes that bring about their eruption (Bachmann and Bergantz, 2004; Hil-

dreth, 1981). Crystal-rich ignimbrites are believed to be re-mobilised crystal mushes,

that can be stored for long periods in the crust in a partially crystalline state. The

assembly of large bodies of melt-dominated, crystal-poor silicic magmas, on the other

hand, requires that the melt is segregated from its crystals prior to eruption. Un-

derstanding the processes that assemble large reservoirs of eruptible magma and the

timescales over which they occur is of crucial importance for monitoring restless caldera

1



2 Introduction

systems.

Thesis objectives

In this thesis I explore the formation of large bodies of crystal-poor silicic magma in

the shallow crust. In particular, I focus on the following three questions:

1. How are large, shallow crustal bodies of volatile-rich, crystal-poor magma as-

sembled?

2. How and where do the crystals in these eruptions form, and what do the zoning

patterns of the crystals record?

3. What are the associated timescales of these processes?

Approach and thesis outline

I chose to focus on the 22-ka, caldera-forming Cape Riva eruption of Santorini, Greece.

Santorini currently is the most active volcano in the Aegean, and has a history of large,

explosive eruptions. One of the advantages of the Cape Riva eruption is that in was

preceded by about 17 ky of dacitic extrusion, the lavas from which are exposed in the

cliffs of the caldera. This allows us to track the evolution of the magma reservoir in

the build-up to a large silicic eruption. This study aims to integrate the results from

multiple different techniques used on the same sequence, in order to build up a more

complete picture of the assembly of a crystal poor magma reservoir in the shallow

crust.

Chapter 1 is a review of the literature relating to the storage of large, silicic bodies

of eruptible magma. It looks at evidence gathered from silicic plutons; radiometric

residence times of crystals with high closure temperatures, such as zircon; effusive

eruptions of magma chemically similar to the magma erupted during the climactic
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events, often interpreted to be “precursory leaks” from a growing magma reservoir;

and numerical models of magma chamber stability.

The geological setting of the study is presented in Chapter 2. This includes the

wider tectonic context of the Hellenic Arc, as well as the volcanic history of Santorini.

Particular attention is paid to the history since ∼67 ka, which includes the Cape Riva

and Therasia eruptions.

Chapter 3 looks at diffusion chronometry, a technique I use extensively in this

thesis. I discuss the theory behind it, as well as the practical considerations required

to apply it to magmatic systems. I review the experimental determinations of the

diffusion coefficients that I use later in this thesis, and provide an overview of previous

studies that have used diffusion chronometry to investigate volcanic systems.

I then go on, in Chapter 4, to present the results of my field study. In particular,

I present the detailed stratigraphy of the Therasia dome complex. This is combined

with 40Ar/39Ar dates provided by Dr Stéphane Scaillet (Institut des Sciences de la

Terre d’Orléans), in order to provide a tight chronological framework in which to place

the results of the following work.

Chapter 5 describes the chemistry and mineralogy of the Therasia lavas and the

products of the Cape Riva eruption. Whole rock analyses are supplemented with

analyses of groundmass separates. The groundmass represents the liquid portion of the

magma immediately before eruption. Major element compositions and textural features

of the different minerals present are also discussed. Combined with the stratigraphy

from Chapter 4, this allows me to track the evolution of the volcanic plumbing system

at Santorini through time.

Chapter 6 looks in more detail at the zoning patterns of the plagioclase pheno-

crysts in the Therasia and Cape Riva dacites. Plagioclases are imaged using the scan-

ning electron microscope (SEM), and major elements are measured by electron micro-

probe. Trace elements are measured using the laser ablation ion coupled plasma mas

spectrometer (LA ICP-MS). Melt compositions are deduced from the concentrations of
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slowly diffusing elements, which allows zoning patterns to be matched up to magmatic

processes. The timing of these processes is the estimated by modelling the diffusion

of Mg. This timescale is compared to those found from the fieldwork and 40Ar/39Ar

dates presented in Chapter 4.

Orthopyroxene phenocrysts are studied in detail in Chapter 7, in a similar fashion

to the plagioclase crystals in Chapter 6. Back-scattered electron (BSE) images of the

orthopyroxenes from the Cape Riva eruption were made using the SEM and semi-

quantitative maps of the Mg, Fe, Ca and Al distributions are made on the electron

microprobe. The zoning patterns of the different elements are used to deduce the

crystals’ histories, and these are compared to the histories inferred for the plagioclase

phenocrysts in Chapter 6. Mg–Fe diffusion is modelled to estimate timescales, and

these are compared to those found for the plagioclases in Chapter 6 and from the
40Ar/39Ar dates and fieldwork in Chapter 4.

All these results are then summarised in Chapter 8, and an integrated model for

the evolution of the plumbing system of Santorini during the build-up to the Cape Riva

is proposed.



Chapter 1

Large, silicic magma reservoirs

1.1 Introduction

Petrological studies of the deposits from large, explosive eruptions show that silicic

magma is usually stored in the shallow crust immediately prior to eruption, generally at

less than∼15 km depth (e.g. Arce et al., 2012; Cadoux et al., 2014; Gertisser et al., 2012;

Hildreth and Wilson, 2007; Liu et al., 2005; Scaillet and Evans, 1999). However, the

magma is not necessarily produced at these depths. Silicic magma could be produced

in the lower crustal hot zones by fractional crystallisation and partial melting of the

lower crust, before being transferred to shallow crustal storage reservoirs (Allan et al.,

2013; Andújar et al., 2010; Annen et al., 2006; Cadoux et al., 2014; Solano et al., 2012).

Investigations into the processes and timescales of the assembly of large, silicic

magma reservoirs have principally followed three main avenues: the study of plutons,

the study of the products of large silicic eruptions, and theoretical modelling of the

thermal and mechanical properties of magma reservoirs. Recent discussions of the

timescales of large, silicic magma bodies have been given by Costa (2008) and Reid

(2008), although in the intervening years many additional studies have been published.

The timescales revealed vary from 101 to 106 yr, with a lot of variation caused by the

different magmatic processes that different techniques relate to. The following section

5
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focuses on the timescales related to the assembly of a large, eruptible body of silicic

magma in the shallow crust.

1.2 Terminology

There are many terms in igneous petrology that mean subtly different things to different

people. For clarity, I have defined below the sense in which I use the terms in bold

throughout this thesis.

Magma may be stored in a variety of different forms, either as completely crystal-

free melt or as a rigid framework of crystals with a small amount of melt in the pores,

or anywhere between these two endmembers. The viscosity of silicic magma increases

dramatically if it contains more than 40–60 vol% crystals (Lejeune and Richet, 1995),

making it difficult for crystal-rich magmas to convect or erupt. A single body of magma

may have different properties in different volumes: for example, a liquid-dominated cap

above a crystal-rich mush. It is therefore important to distinguishmagma reservoirs,

bodies of eruptible magma, from the wider plumbing system of the volcano, which in-

cludes any crystalline mush or plutons as well as any magma reservoirs present beneath

the volcano.

When looking at the crystals found in these magmas, the rim is defined as the

outermost part of the crystal to have grown within the magma chamber. These are

distinguished from the thin (typically 10–102 µm overgrowths that grew during the as-

cent to the surface and eruption of the magma, and which are compositionally identical

to the groundmass microlites.

Phenocrysts (sensu stricto) are those crystals which grew from the magma in

which they are found. These should be differentiated from antecrysts, crystals that

grew in a different, but but genetically related, magma and xenocrysts, crystals that

grew from an unrelated melt. However, in practice it is often difficult to discriminate

between true phenocrysts and antecrysts, as they often have very similar chemistry
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and appearance. Individual crystals also often have complex histories, and can be

transferred between different magmas before their eruption. In this study, the term

“Phenocryst”, therefore, is defined as any crystal with rims that are in chemical

equilibrium with their host melt. This definition includes any antecrysts that grew from

a compositionally similar melt to their host, as well as crystals that have a xenocrystic

core, as long as the rims are in equilibrium with their host melt.

1.3 Evidence of storage timescales of silicic

magma from plutons

We cannot directly observe the plumbing systems of active volcanoes. Plutons, how-

ever, can sometimes be matched to contemporaneously erupted tuffs, suggesting that

they represent the exhumed plumbing systems of extinct volcanoes (e.g. Barth et al.,

2012; Lipman, 2007; Zimmerer and McIntosh, 2012, 2013). Plutons can, therefore, be

used to gain insight into the processes that occur prior to large, silicic eruptions.

Early work often assumed that individual plutons were emplaced in single events

(e.g. Bowen, 1915; Daly, 1914), however recent work is changing this view. Large age

ranges, up to 12 My, are reported for the crystallisation of individual plutons (Barth

et al., 2012; Bolhar et al., 2010; Coleman et al., 2004; Davis et al., 2011; Glazner et al.,

2004; Lipman, 2007; Miller et al., 2007). It is unlikely that magma could remain molten

in the shallow crust for this length of time, which suggests that the construction of

large plutons requires repeated injections of magma. This is supported by field evidence

and analogue modelling that suggests that plutons are constructed by the incremental

stacking of sills (Brown et al., 2000; Coleman et al., 2004; Menand, 2008; Wiebe, 1993;

Wiebe and Collins, 1998). Detailed work on the San Juan Volcanic Region, Colorado,

shows intrusion rates of between 10−4–10−2 km3 y (Lipman, 2007). These intrusion

rates are of a similar magnitude to the long-term eruptive rates for other large silicic

provinces (Mason et al., 2004).
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These long durations reflect, however, the lifetime of the overall volcanic system.

The low intrusion rates are time-averaged rates, and do not necessarily reflect the

transient intrusion rate during the construction of large magma reservoirs.

1.4 Radiometric crystal residence times

Magmatic residence times are often estimated by dating crystals radiometrically. Ra-

diometric dating relies on comparing the ratio of parent to daughter isotopes. At high

temperatures, diffusion can act to reset this ratio. Below a certain temperature, re-

ferred to as the closure temperature Tc, diffusion is slow enough that it does not affect

the calculated age. Radiometric ages are, therefore, the time since the crystal temper-

ature dropped below the its closure value. A commonly used equation to estimate the

closure temperature is that formulated by Dodson (1973):

E

RTc

= ln
(
−AD0RT

2
c

x2
cEs

)
(1.1)

where R is the molar gas constant, A is a constant relating to the shape of the crystal

and the decay of the parent isotope, xc is the characteristic distance over which diffusion

acts, s is the cooling rate, and E andD0 are, respectively, the activation energy and pre-

exponential factor from the Arrhenius equation for the diffusion coefficient (discussed

in more detail in Chapter 3):

D = D0 exp
(
− E

RT

)
(1.2)

Different radiometric systems have diverse closure temperatures, and therefore will

give varying ages. The radiometric clock in systems with low closure temperatures will

only start after eruption. This contrasts with systems with higher closure temperat-

ures, which will give ages that reflect crystallisation rather than eruption. Comparing

eruption ages to crystallisation ages gives an estimate of the residence time of the
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crystals. K–Ar in feldspars and micas can be used to estimate eruption ages, as they

have low closure temperatures; Rb–Sr in feldspar and U–Pb in zircon have higher clos-

ure temperatures, and are suitable for evaluating crystallisation ages (Cherniak and

Watson, 1992, 2001; Foland, 1994; Giletti and Casserly, 1994; Grove and Harrison,

1996).

Some of the earliest attempts to estimate residence times of crystals in large silicic

magma reservoirs focused on Long Valley, and the >600 km3, ∼770 ka Bishop Tuff

eruption (Hildreth, 1979, 1981). Rb–Sr isochrons from the pre-caldera Glass Mountain

rhyolites gave ages of up to 360 ky older than K–Ar ages (Davies and Halliday, 1998;

Davies et al., 1994; Halliday et al., 1989). Rb–Sr isochrons were also used to suggest

the sanidine crystals in the Bishop Tuff itself started growing 300–500 ky before their

eruption (Christensen and DePaolo, 1993). Ar–Ar isochrons from glass inclusions in

quartz crystals suggested even longer residence times (up to 1.1My; van den Bogaard

and Schirnick, 1995), although this apparent age has since been attributed to excess
40Ar in the melt inclusions (Winick et al., 2001).

An issue arises, however, with interpreting apparent isochrons as crystallisation

ages. True isochrons are produced by the radioactive decay of the parent isotope in a

closed system, but mixing between magmas with different isotopic ratios can produce

similar variations in isotopic ratios. If mixing lines are interpreted as isochrons, then

spurious ages are calculated. In addition to Rb and Sr isotopes, Wolff and Ramos

(2003) looked at Pb isotope ratios in the Otowi member of the Bandelier Tuff, Valles

Caldera, New Mexico (1.6Ma, ∼350 km3). The range of 206Pb/204Pb ratios observed

in the sanidine crystals cannot be produced by radioactive decay on a geologically

reasonable timescale, and therefore must instead indicate that mixing occurred. This

suggests that apparent Rb-Sr isochrons in the Bandelier Tuff are also due to mixing,

rather than radioactive decay. If this is also true of the Bishop Tuff, then the apparent

ages from Rb–Sr isochrons would be not reflect the residence times of the Bishop

magma.
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More recently, secondary high resolution ion mass spectrometry (SHRIMP) has

allowed multiple ages to be determined from different zones of single crystals. Zircon

is commonly used, as its high U content makes it an ideal target for U–Pb dating.

Although dating single crystals leads to less precise ages than dating bulk separates, the

extra petrological context that can be gained makes single crystal (and especially single

zone) ages less ambiguous. U–Pb ages indicate that zircon crystallisation began in the

Bishop Tuff less than 80 ky before eruption, which is much later than the estimates

for sanidine crystallisation using Rb–Sr isochrons (Chamberlain et al., 2014; Reid and

Coath, 2000; Simon and Reid, 2005). This suggests that the apparent Rb–Sr isochrons

are caused by open system processes, rather than reflecting the residence time of the

Bishop magma.

In general, residence times of accessory minerals from large silicic eruptions are of

the order of 104–105 years (e.g. Brown and Fletcher, 1999; Folkes et al., 2011; Vazquez

and Reid, 2004; Wilson and Charlier, 2009; Wotzlaw et al., 2013). These crystal res-

idence times only relate to the amount of time that the zircons have been stored in

the crust, however, as opposed to the amount of time that the zircons were stored in

an eruptible body of magma. The zircons could be stored in a rigid crystal mush for

much of their life, for example, in which case the time over which an eruptible body of

magma exists is much shorter than the residence times of the crystals within it.

1.5 Crystal mushes

The crystal mush model was first proposed to explain the apparent longevity of the

Bishop Tuff magma chamber (Mahood, 1990; Sparks et al., 1990), and has more recently

been used to explain the high crystallinity of crystal-rich ignimbrites (the monoton-

ous ignimbrites of Hildreth, 1981; e.g. Bachmann and Bergantz, 2008b). Latent heat

buffering could keep magmas above their solidus but with low melt fractions for long

periods with little heat input (Huber et al., 2009). High crystal contents will also pre-
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vent convection, which would slow the loss of heat from the magma reservoir to the

surrounding crust (Koyaguchi and Kaneko, 1999, 2000).

Some of the longest zircon residence times are, in fact, found in crystal-rich ignim-

brites. For example, zircons up to 440 ky older than the age of the eruption are found in

the Cerro Galán ignimbrite, and up to 600 ky older than the age of the eruption in the

Fish Canyon Tuff (Bachmann et al., 2007b; Folkes et al., 2011; Wotzlaw et al., 2013).

These ignimbrites appear to have spent large periods of time close to their solidus, and

show signs of being rejuvenated only shortly before eruption. High Yb/Dy ratios in

some of the zircons found in the Fish Canyon Tuff suggest that during their growth

the crystallinity of the magma reached 75–80% (Wotzlaw et al., 2013). Many of the

crystals in the Fish Canyon Tuff show resorption textures or reverse zoning, suggesting

a late-stage heating event reduced the crystallinity to ∼45% (Bachmann et al., 2002).

A similar story is found in the crystal-rich Kos Plateau Tuff (25–35% crystals),

where a highly crystalline intrusion was remelted before eruption. The Kos Plateau

Tuff contains crystal-rich pumices alongside highly crystalline granitic clasts. These

granitic clasts have a range of textures; some are holocrystalline but most show varying

degrees of remelting (Keller, 1969). The chemical and mineralogical similarities for all

the clasts suggests that they have a shared origin. Zircons from both the granitic clasts

and the crystal rich pumices have the similar, continuous age spectra (from 340 ka to

eruption age, 160 ka, with one older zircon dated at ∼500 ka), which show both the

granite and the pumice crystallised over the same period (Bachmann et al., 2007a).

Partially resorbed crystals in the pumice and the textures of the granite clast show

that the entire reservoir was reheated shortly before eruption.

Evidence for the prolonged storage of magma in a crystal mush is not restricted

to crystal-rich ignimbrites; many crystal-poor silicic eruptions also exhibit features

suggestive of storage in a crystal mush. For example, at Tarawera volcano, within the

Okatania Volcanic Centre (New Zealand), 30 km3 of rhyolitic magma has been erupted

in four episodes over the last 22 ky. Zircons from these deposits have residence times
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of over ∼100 ky, and often show discontinuous growth histories with hiatuses of up to

∼40 ky (Storm et al., 2011). Some zircons have high U and Th, suggesting that they

grew during periods of high crystallinity. There are also zircons that have different

ages on different crystal faces, and some that have crystal faces significantly older than

the eruption age. These zircons could represent crystals that were partially or wholly

enclosed as inclusions in other minerals but were released shortly before eruption.

Even relatively small-volume silicic eruptions can contain zircons with long resid-

ence times. Claiborne et al. (2010) sampled different units spanning the entire known

eruptive history of Mount St. Helens and consistently found that the oldest zircons

were at least 150 ky older than their eruption ages. Zircons from the Devils Kitchen

record residence times of up to ∼200 ky, and some have high Th and U that require

crystallinities of over 95% (Miller and Wooden, 2004). Crystalline mushes appear to

be common features of silicic volcanoes.

1.6 “Precursory leaks”

Before many large, explosive silicic eruptions there are often series of smaller, usu-

ally effusive eruptions of magma that has a similar composition to the magma from

the climactic event. These smaller eruptions are frequently interpreted as leaks from

a growing body of melt-dominated, eruptible magma (e.g. Bacon, 1985; Bacon and

Druitt, 1988; Druitt, 1985; Metz and Mahood, 1991). The diffuse vent patterns that

many of these “leaks” have has been used to argue that locally the stress field is dom-

inated by the presence of a magma chamber rather than regional tectonics (Bacon,

1985). Regardless of the genetic relationship that any particular set of precursory

leaks have with their climactic event, their close temporal and spacial relationships

means that they should provide information on the evolution of the plumbing system

in the build-up to a large, explosive eruption.
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Figure 1.1: Simplified geological map of Long Valley, after Hildreth and Wilson (2007).
The Bishop Tuff vent labelled on the map is that inferred for the first phase of the
eruption from isopach maps

1.6.1 Glass Mountain and the Bishop Tuff, Long Valley,

California

A classic example of a series of precursory leaks is the Glass Mountain rhyolites, which

were erupted before the Bishop Tuff eruption of Long Valley, California (Figure 1.1).

Between 2.1Ma and the eruption of the Bishop Tuff 0.77My ago, >50 km3 of rhyolite
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erupted as a series of domes and intercalated pyroclastic units (Metz and Mahood,

1985, 1991). It was the preservation of Rb–Sr isochrons in lavas erupted over up to

700 ky that first led to the suggestion that a long-lived melt reservoir existed under

Long Valley in the run up to the Bishop Tuff eruption (Davies and Halliday, 1998;

Davies et al., 1994; Halliday et al., 1989).

It was also noted that the younger lavas from Glass Mountain have a restricted range

of chemical compositions and of Sr, Nd and Pb isotopic ratios. These chemical and

isotopic compositions are similar to those of the Bishop Tuff rhyolite, which implies that

the younger Glass Mountain rhyolites were tapping the growing Bishop Tuff magma

reservoir (Halliday et al., 1989; Hildreth, 2004; Hildreth and Wilson, 2007; Metz and

Mahood, 1985, 1991). The older Glass Mountain rhyolites, however, have a greater

range of trace element and isotopic compositions.

The model that Hildreth and Wilson (2007) proposed for the growth of the Bishop

Tuff magma chamber is shown in Figure 1.2. In this model, much of the plumbing

system beneath Long Valley consisted of crystalline mush. During the early Glass

Mountain phase, there was not a single, integrated magma reservoir. Instead, each

eruption tapped a discrete lens of crystal-poor melt from within the mushy zone. Dif-

ferent magma reservoirs for each eruption would explain the chemical variability of

the older Glass Mountain rhyolites. Mafic magma ascending from depth would have

supplied heat, but the dense recharge magmas would have been trapped beneath the

growing mush body. Fractional crystallisation of these mafic magmas would have pro-

duced rhyolitic melt, which could have segregated and risen in to the upper, more

crystal-poor portions of the plumbing system. Starting at about 1.1Ma, however,

these lenses began to coalesce into a single, large body of melt. A unified melt reser-

voir would lead to less chemical variation between the products of eruptions, and was

eventually expelled during the Bishop Tuff eruption.

Despite the chemical similarities between the Glass Mountain rhyolites and the

Bishop Tuff, the zircons found in the Bishop Tuff are different to those found in both
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Figure 1.2: Conceptual schematic illustrations of mush model of rhyolite melt extraction
from plutonic crystal mush of intermediate to silicic hybrid composition, from Hildreth
and Wilson (2007). Scaled roughly to late Glass Mountain (below) and mature Bishop
(above) evolutionary stages. Phenocryst contents of zoned mobile magma are propor-
tional to stipple density: xp, crystal-poor (0–6%); xm, intermediate crystal content; xr,
crystal-rich (12–25%; mush = 25–55%).
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the early and late Glass Mountain rhyolites. The Glass Mountain zircons can be distin-

guished from the Bishop Tuff zircons both texturally, and in terms of their U–Pb ages

(Chamberlain et al., 2014; Reid and Coath, 2000; Simon and Reid, 2005). If the Glass

Mountain rhyolites tapped the same reservoir as the Bishop Tuff, then earlier crystals

must have been completely resorbed before the Bishop Tuff zircons first started crys-

tallising (∼850 ka). There is also uncertainty in dating the end of the Glass Mountain

eruptive activity. The K–Ar age for the youngest Glass Mountain dome (YA) de-

termined by Metz and Mahood (1985) is 790± 20 ka, close to the 767.4± 2.2 ka Ar–Ar

eruption age of the Bishop Tuff (Rivera et al., 2011). However, Chamberlain et al.

(2014) found that the youngest zircons from this dome dated from 862± 23 ka, which

they suggested meant that Glass Mountain activity ceased before the large Bishop Tuff

magma reservoir began to form.

1.6.2 Mount Mazama, Crater Lake, Oregon

Another well-studied series of precursory leaks occurs at Crater Lake, Oregon. An

andesitic to dacitic stratovolcano, Mount Mazama, was constructed at the present loc-

ation of Crater lake between 420 and 35 ka (Bacon and Lanphere, 2006). Then, starting

at about 27 ka, rhyodacite started to be erupted from diffuse vents across the edifice

(Figure 1.3). This activity culminated with the eruption of ∼50 km3 of rhyodacite at

∼7.7 ka, and the collapse of Mount Mazama to form the present-day caldera. The sim-

ilar chemistry and petrology of the pre-climactic and climactic rhyolites suggests that

they were erupted from the same magma reservoir (Bacon and Druitt, 1988; Druitt

and Bacon, 1989).

An early pre-climactic rhyodacite lava, erupted ∼27 ka, was studied by Bacon and

Lowenstern (2005). Comparison of the plagioclases with those found in the plutonic

granodiorite blocks found in the climactic deposit shows that at least 80% of the plagio-

clases in this dome were recycled from the plutonic rocks that underlay Mount Mazama

(Bacon et al., 1989). Other crystals in the pre-climactic rhyodacite are also probably
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Figure 1.3: Simplified geologic map of Crater Lake, Oregon, after Bacon and Lanphere
(2006)

derived from the granodiorite blocks, including zircon. The zircon ages from both

the pre-climactic rhyodacite and the granodiorite blocks show that they crystallised

between ∼20 ka and ≥300 ka, and record pulses of growth 50–70, ∼110 and ∼200 ka

which coincide with periods of dacitic volcanism (Bacon and Lowenstern, 2005; Bacon

et al., 2000).

The model that emerges for the climactic reservoir at Crater Lake is similar to

that proposed for the Bishop Tuff. The climactic reservoir is inferred to have started

growing shortly before the first eruption of rhyodacitic magma at Mount Mazama, at

∼27 ka (Bacon and Druitt, 1988; Druitt and Bacon, 1989). The growth of a long-

lived, melt-dominated magma reservoir at Mount Mazama coincided with a pulse of

increased mafic volcanism that affected the whole region and that would have supplied

increased melt and heat to Mount Mazama (Bacon and Lowenstern, 2005). Prolonged

magmatic activity prior to this had built up a large volume of plutonic mush. This

plutonic material started to defrost and liberate crystals, including plagioclase and

zircon into the rhyodacite (Bacon and Lowenstern, 2005). Zircon is undersaturated in
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the pre-climactic rhyodacite, and the survival of zircons in this magma suggest that

they could only have been incorporated a few tens of years before eruption. The magma

reservoir continued to grow, mainly through fractional crystallisation of mafic magma

supplied from depth, but incorporating up to 25% partial melt from plutonic rocks

(Bacon and Druitt, 1988; Bacon and Lowenstern, 2005; Druitt and Bacon, 1989). The

climactic rhyodacite lacks zircon, despite containing the partially molten granodiorite

blocks that are inferred to have supplied zircon to the pre-climactic rhyodacites. This

implies that the residence time of the climactic rhyolite was long enough to resorb the

zircons released from the plutonic mush (Bacon and Lowenstern, 2005).

1.6.3 The Oruanui eruption, Taupo Volcano, New Zealand

The 26.5 ka Oruanui eruption from Taupo Volcano, New Zealand, discharged ∼530 km3

of crystal-poor (8–13% crystallinity) rhyolite (Lowe et al., 2008; Sutton et al., 1995;

Wilson, 2001). In the ∼20 ky that preceded the Oruanui eruption, several small volume

(<1.5 km3) magmatic and phreatomagmatic explosive rhyolitic eruptions occurred,

along with the emplacement of rhyolitic domes from widespread vents. Many of these,

including the ∼45 ka Tihoi and ∼30 ka Okaia eruptions, are chemically very similar to

the Oruanui rhyolite (the “Oruanui-type” of Sutton et al., 1995).

However, when the ages of the zircons from the different units are examined, the

Oruanui is found to lack some of the zircons found in the Tihoi and Okaia eruptions. All

three eruption deposits have zircon population with a peak at 86–95 ka, alongside and

another, younger population with a peak age that varies between eruptions (Charlier

et al., 2005; Wilson and Charlier, 2009). The lack of Tihoi and Okaia zircons in the

Oruanui cannot be explained by dissolution, because if that was the case then the older

population should also have been resorbed. The Tihoi and Okaia cannot be leaks from

the growing Oruanui magma reservoir. The similar ages of the older zircons in all of

the Oruanui-type rhyolites does, however suggest a genetic link between them. The

different eruptions probably represent different batches of melt that were extracted
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from the same long-lived deep crystal mush (along with the 86–95 ka zircons), and

then stored separately in the shallow crust in a holding reservoir for a shorter period

of time before their eruption (Charlier et al., 2005; Wilson and Charlier, 2009).

There is also evidence that many post Oruanui rhyolite and dacite eruptions have

short residence times in a shallow holding reservoir. Sutton et al. (1995, 2000) found

sudden jumps in chemical and isotopic compositions between different groups of erup-

tions, which they interpreted as the arrival of a new batch of magma into the shallow

reservoir. The time gaps between different magma batches range from 600 to 6 000

years, with the 1.77 ka, 15–35 km3 eruption Y inferred to have resided in its holding

reservoir for less than ∼1,000 years.

1.7 Diffusion chronometry

When there is disequilibrium between a crystal and its host melt, or between two

different zones of the same crystal, the crystal will try to re-equilibrate by diffusion.

This will set up compositional gradients within the crystal. The rate at which diffusion

occurs is strongly dependent on temperature, therefore when the crystal cools these

compositional gradients can become “frozen in”. We can measure these compositional

gradients, and model to diffusion in order to estimate the high-temperature residence

times of the crystals after disequilibrium was established. The practical details of this

technique are discussed in detail in the next section; here I discuss how the results

of diffusion chronometry studies impact our understanding of the longevity of large,

silicic magma reservoirs.

An early study by Hervig and Dunbar (1992) found zoning in Sr concentrations in

two sanidine crystals, one from the Bishop Tuff and one from the Bandelier Tuff. They

argued that the zoning was caused by pre-eruptive mixing between different rhyolites,

and used diffusion modelling to estimate high-temperature residence times of ∼104

years for the two crystals in their respective reservoirs after the mixing event. Sr
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diffusion in another sanidine crystal modelled by Anderson et al. (2000) and Morgan

and Blake (2005) gave a high-temperature residence time of 114–136 ky at 800 °C.

These timescales are similar to the duration of zircon crystallisation in the Bishop Tuff

estimated by radiometric dating (∼80 ky). However, more recent work has suggested

shorter high-temperature residence times for crystals in the Bishop Tuff. Wark et al.

(2007) used Ti diffusion in quartz, and found that the growth of the rims occurred less

than ∼100 years before eruption. Gualda et al. (2012b) used Ti diffusion and melt

inclusion faceting in quartz crystals, and calculated that all the quartz crystals they

studied had residence times of less than 10,000 years: typically 500–3,000 years.

If we assume that the longer residence times calculated by radiometric dating are a

better reflection of the true residence times of the magma, then there are two possible

explanations for the shorter diffusion timescales. The first is that the diffusion models

are not measuring the residence times of the whole crystal. This is clearly the case for

the quartz crystals of Wark et al., which actually date the growth of the rims. These

rims are richer in Ti, and similar rims are also seen in the Bishop Tuff zircons. The

high-Ti rims are more common and thicker in the middle- and late-erupted pumice

interpreted to have come from deep in the magma reservoir. This all suggests that the

high-Ti rims grew as a hotter magma invaded the Bishop Tuff reservoir from below

(Chamberlain et al., 2014; Roberge et al., 2013; Wark et al., 2007). The diffusion results

of Wark et al., therefore, tell us that this magma arrived less than 100 y before the

Bishop Tuff eruption, but they do not tell us how long the quartz resided in the Bishop

Tuff magma reservoir before that. Similar Ti-rich rims are found on quartz crystals from

the ∼1,000 km3 Whakamaru eruption in the Taupo Volcanic Zone and the ∼2,000 km3

Younger Toba Tuff in Sumatra, as well as in other, smaller (10–120 km3) ignimbrite

eruptions from the Taupo Volcanic zone (Matthews et al., 2012a,b; Saunders et al.,

2010; Smith et al., 2010). Diffusion modelling of Ti across the boundaries of these rims

gives similarly short ages, less than a few hundred years. Slightly longer timescales

of 1,000–7,000 y are found for Ti-rich rims on quartz crystals from the Bandelier Tuff
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(Wilcock et al., 2012).

The other way that short diffusion timescales can be consistent with long radiomet-

ric residence times is if the crystals spent significant time at low temperature. Because

the rate of diffusion is strongly dependent on the temperature, crystals can sit at low

temperatures for long periods without diffusion significantly modifying their zoning

profiles. For example, plagioclase crystals from two andesitic eruptions of Mount Hood

were found to have a minimum residence time of 21,000 y, based on U–Th and Th–Ra

ages (Eppich et al., 2012). When these same crystals are dated using Sr diffusion at

750 °C, they have apparent ages of only 140–2,800 y (Cooper and Kent, 2014). These

apparent ages drop to only a few decades at 900 °C. The only way the two different

residence times are consistent is if plagioclase crystals spent at least 88% of their time

(and probably much more) at low temperature. Although this result is for an andesitic

eruption, there are no studies that have directly compared radiometric and diffusion

based residence times for the same minerals in a silicic system. However, similar ar-

guments should apply to silicic systems. If the Bishop Tuff magma was stored as a

low-temperature mush for most of its lifetime, then it would explain both the apparent

long residence times of the zircons and the apparent short residence times of the quartz

crystals. The up to 80 ky U–Pb residence times of the zircons would date their crys-

tallisation, as the Bishop Tuff magma reservoir was forming, while the <10 ky diffusive

residence times of the quartz would measure only the time spent at high temperature.

Magma mixing is a common way of creating disequilibrium between crystals and

their melt, therefore most diffusion chronometry studies estimate the timing of these

mixing events. Often the mixing events are interpreted as late-stage recharge, which

triggered the eruption. These recharge events are estimated to have occurred within

a few decades of eruption, often as short as a few months before (e.g. Coombs et al.,

2000; Costa and Chakraborty, 2004; Costa et al., 2009; Gioncada et al., 2005; Martí

et al., 2013; Martin et al., 2008; Morgan et al., 2006; Nakamura, 1995; Ruprecht and

Cooper, 2012; Saito et al., 2010). Sometimes, however, these mixing events can include
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the addition of a significant proportion of the magma that is eventually erupted at the

surface. For example, Druitt et al. (2012) found that prior to the Minoan eruption of

Santorini a dacitic and rhyolitic magma mixed to produce a hybrid rhyodacite, and

that the injected dacite must have made up at least 15% of the ∼60 km3 that was

erupted. Diffusion modelling of Mg in plagioclase demonstrated that this mixing must

have started a few decades before the eruption, and continued up to at least a few

months before eruption. This implies recharge rates of >5× 10−2 km3 y−1

The zoning patterns of phenocrysts in the Oruanui are also thought to record a

large influx of magma into the shallow magma reservoir shortly before eruption (Allan

et al., 2013). The amphibole crystals from the Oruanui are interpreted to record a

drop in pressure during their growth. Coexisting orthopyroxene crystals underwent a

period of dissolution, followed by renewed growth. This is consistent with a transfer

from a deep source region to a shallow holding chamber. Modelling Fe–Mg diffusion

in the orthopyroxenes suggests that this transfer happened less than 3,000 y before

erpution, with most of the crystals recording timescales of less than 1,000 y. This is

consistent with the the zircon age spectra discussed above, which demonstrate that

the Oruanui could not have resided in the shallow crust during the Okaia eruption,

∼3,000 y earlier (Charlier et al., 2005; Wilson, 2001). These ages give accumulation

rates of >0.33 km3 y−1, possibly reaching >1 km3 y−1.

Not all chemical disequilibrium is interpreted as resulting from mixing between

different magmas. Disequilibrium in oxygen isotopes, either between crystals and the

melt or between different minerals, is often thought to be produced by assimilation

or remelting of hydrothermally altered plutonic rocks. Zonation in oxygen isotopes

in zircons from the Ammonia Tanks Tuff gives crystal residence times of ∼104 years

(Bindeman and Valley, 2003), while in zircons from Yellowstone, residence times of

∼103 are found (Bindeman and Valley, 2001). Disequilibrium between oxygen isotope

ratios in quartz and feldspars from the Bandelier Tuff and Cerro Toledo rhyolite could

not be maintained without diffusive re-equilibration for more than 102–103 y (Wolff
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et al., 2002). Individual quartz crystals from the Bishop Tuff often show large variations

in d18O that could not have persisted for more than 102–104 years (Bindeman and

Valley, 2002). In this interpretation, the diffusion models do not reveal the total

residence time of the crystals in the crust, but rather their residence in the magma at

high temperature after the assimilation or remelting of the pluton.

In summary, crystal residence times estimated from diffusion modelling are shorter

than those measured using radiometric dating. However, these two techniques often

measure different things. Radiometric ages of minerals with high closure temperatures,

such as zircon, give residence times of these crystals. These radiometric ages are

generally unaffected by the thermal histories of the crystals. In the other hand, diffusion

chronometry only measures the residence of the crystals at high-temperature. Diffusion

models also do not measure the total time between the growth of a crystal and its

eruption. Instead, the diffusion clock is initiated when the crystals are placed in an

environment where they are in disequilibrium with their melt, or an environment where

they grow rims that are not in equilibrium with their cores. Typical magmatic processes

that can create this disequilibrium include magma mixing, crustal assimilation, heating

or changing the pressure.

1.8 Modelling magma chamber stability

Various attempts have been made to integrate the evidence for magma reservoir longev-

ity discussed above with theoretical models. These models generally assume that large

magma reservoirs are constructed incrementally, by the repeated injection of hot, fresh

magma. Producing a large magma reservoir requires preventing both the freezing of

the magma before it has the chance to erupt, and the eruption of the magma before the

chamber has a chance to grow large. A key parameter determining the fate of magma

chambers is the magma supply rate. If the supply rate is below a certain threshold,

then each intrusion freezes before the next one arrives (Gelman et al., 2013; Schöpa and
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Annen, 2013). However, too high a supply rate is likely to lead to high overpressure

and trigger eruption (Caricchi et al., 2014; Karlstrom et al., 2010).

Annen (2009) modelled the evolution of a pluton as the intrusion of a series of

sills at 5 to 15 km depth in the continental crust. She found that in order to pro-

duce a growing reservoir of liquid-dominated magma, sill accretion rates need to be

above 10−2 my−1 and magma fluxes needed to exceed 10−2 km3 y−1. Schöpa and Annen

(2013) refined this model, to show that high transitory fluxes also could produce large,

shallow-crustal magma chambers, although this transitory flux still has to be higher

than 10−2 km3 y−1. When Gelman et al. (2013) included the effects of a non-linear

crystallisation–temperature relationship and temperature-dependent thermal conduct-

ivity they found that liquid-dominated magma reservoirs larger than 500 km3 could be

maintained in the shallow crust at injection rates as low as 5× 10−3 km3 y−1.

On the other hand, high magma flux into the reservoir will lead to high overpres-

sures, which increases the chance of dyke propagation and eruption (Rubin, 1995). The

viscosity of the country rock into which the magma reservoir is emplaced has an effect

on the overpressure that is produced by magmatic input. More ductile country rock

can relax faster, dissipating overpressure and making eruption less likely (Jellinek and

DePaolo, 2003; Karlstrom et al., 2010). Warmer crust is less viscous than colder crust,

which has two consequences. Firstly, deeper magma reservoirs tend to be more stable

than shallow reservoirs. Secondly, a period of thermal preparation, through repeated

magmatic intrusion, is probably necessary before large magma reservoirs can develop

in the shallow crust. Warmer crust will also make the injected magma less likely to

freeze before it has the chance to be erupted. Magmatic injection is also less likely to

trigger the eruption of large magma reservoirs (Gregg et al., 2013). The eruption of

large magma reservoirs may be triggered by buoyancy, or may be triggered tectonically

(Allan et al., 2012; Caricchi et al., 2014).
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1.9 Possible mechanisms for rapid generation of

large silicic melt reservoirs in the shallow crust

If silicic magmas spend much of their time stored in crystal mushes, and these crystal

mushes are too viscous to erupt, then some process is needed to reactivate the magma

and allow its eruption. Two broad mechanisms have been proposed: rejuvenation and

remelting of the mush, or segregation of melt into crystal-poor magma reservoirs.

Crystal-rich ignimbrites are thought to be remobilised crystal mushes. Their crys-

tals often record long residence times (e.g. up to 600 ky in the Fish Canyon Tuff;

Bachmann et al., 2007b), often show evidence of growth in a highly crystalline state

(e.g. Wotzlaw et al., 2013), and often have resorption textures and reverse zoning typ-

ical of late-stage reheating (e.g. Bachmann et al., 2002). The remobilisation of a mush

could be triggered by the influx of hotter magma, that is typically assumed to be mafic

(e.g. Bachmann et al., 2002), although examples of recharge by silicic magma have

also been found (e.g. Eichelberger and Izbekov, 2000; Smith et al., 2004). This would

underplate the mush, and heat would then be transferred upwards into the overlying

crystal mush. Conduction of heat would be slow, but heat could also be advected by

volatiles released by the crystallising mafic magma (“gas sparging”; Bachmann and

Bergantz, 2006). Other mechanisms have been suggested to remobilise magma mushes

more rapidly, such as “unzipping” by convection (Burgisser and Bergantz, 2011) or

by melt-induced over-pressurisation (Huber et al., 2011). The presence of gas bubbles

would also reduce the viscosity of the magma, and might aid remobilisation of the

mush (Pistone et al., 2013). Once the magma is remobilised, it can be homogenised by

convection prior to eruption (Huber et al., 2012).

Mush remobilisation has been suggested as the trigger for several recent, well con-

strained eruptions. These include andesitic eruptions such as Soufrière Hills, Montser-

rat and Eyjafjallajökull, Iceland, as well as the dacitic 1991 eruption of Pinatubo, the

Philippines. At Soufrière Hills, long radiometric residence times coupled with short
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diffusive residence times suggest long-term storage of magmas in a cool crystal mush

(Zellmer et al., 2003), and thermal models of a mushy storage region can be compared

to seismic velocity anomalies measured in surveys of the volcano (Annen et al., 2014;

Paulatto et al., 2012). At Eyjafjallajökull, geodetic and seismic monitoring, as well as

high temporal resolution sampling of the eruptive products of the 2010 summit erup-

tion revealed it was triggered when ascending basalt intersected a partially crystalline

intrusion left over from previous eruptions (Sigmarsson et al., 2011; Sigmundsson et al.,

2010). Similarly, geophysical monitoring and comparison of the products of the pre-

climactic extrusive eruptions with those of the Plinian phase of the 1991 Pinatubo

eruption suggest it was also a rejuvenated mush (Pallister et al., 1992).

Melt segregation is the other mechanism that can produce large bodies of eruptible

magma in the shallow crust, and it is generally though to be responsible for the form-

ation of large bodies of crystal-poor silicic magma. The rate at which silicic melt can

separate from crystals is limited by its high viscosity (Bachmann and Bergantz, 2008a;

McKenzie, 1985). Possible processes include gravitational separation through hindered

settling of individual crystals, or compaction of a porous crystal network (Figure 1.4;

Bachmann and Bergantz, 2004). Melt migration driven by shear or gas filter pressing

may generate small, local segregations (Brown and Solar, 1998; Pistone et al., 2013;

Sisson and Bacon, 1999; Stevenson, 1989) that are subsequently concentrated into large

melt lenses. This melt then accumulates at a particular crustal level—either in situ

within the mush (e.g. Bachmann and Bergantz, 2004), or at higher levels in the plumb-

ing system (e.g. Allan et al., 2013). Fast transfer of silicic magma from deep mush

zone to shallow crustal magma chambers may also be triggered by tectonic stresses

(Rowland et al., 2010).

These two mechanisms are not mutually exclusive. Indeed, sometimes crystal-poor

rhyolite caps are erupted alongside more crystal-rich mush zones. The Ammonia Tanks

Tuff is chemically zoned from trachyandesite to high-silica rhyolite (59 to 78wt% SiO2;

Deering et al., 2011). The rhyolite end-member is crystal poor (<10 vol%), and is
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Figure 1.4: Schematic illustration of the evolution of a mushy magma reservoir and
the extraction of silicic melt through hindered settling, from Bachmann and Bergantz
(2008a). (A) Low-crystallinity stage (<45 vol% crystals): most crystals are kept in sus-
pension by convection currents. (B) Medium-crystallinity stage (∼45-60 vol% crystals):
the absence of convection and the high permeability provide a favourable window for
crystal-melt separation through hindered settling. (C) High-crystallinity stage (>60 vol%
crystals): the permeability is too low for high-viscosity melt to be extracted efficiently
by compaction.

thought to represent the liquid extracted from a crystallising trachydacite magma. The

trachyandesite is thought to represent the cumulate, although the relatively low crystal

content (15–25 vol%) requires it to have been reheated before eruption. Abundant

glomerocrysts suggest that the trachyandesite once contained a touching framework of

crystals, while partially resorbed crystals support the idea that the trachyandesite was

reheated. At La Pacana, in Chile, there is also evidence for the eruption of both an

evolved cap and the residual mush, although in two separate eruptions (Lindsay et al.,

2001). The Toconao ignimbrite is crystal poor and rhyolitic (76–77wt% SiO2), and it

is overlain by the dacitic Atana ignimbrite (66–70wt% SiO2). The Atana ignimbrite

is crystal-rich (30–40% crystals), and the interstitial glass in the Atana pumices has a
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similar composition to the Toconao pumices. This suggests that the Toconao ignimbrite

segregated from an underlying body of Atana-like magma, which was itself evacuated

in the Atana eruption.
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Geological setting

2.1 Regional Tectonics of the Aegean and the

Hellenic subduction zone

Santorini is part of the Hellenic volcanic arc, stretching between Greece and Turkey

through the Aegean (Figure 2.1). The cause of the volcanism is the subduction of Ionian

oceanic lithosphere. The subducted slab dips at a shallow angle of about 10–20° from

the Mediterranean Ridge towards the north, as shown by seismic tomography and

the focal mechanisms of the earthquakes between the slab and the overriding Aegean

lithosphere (Papazachos and Nolet, 1997; Pearce et al., 2012; Piromallo and Morelli,

2003; Shaw and Jackson, 2010). The steeper faults at the Hellenic Trench form part

of the accretionary wedge. There is a well defined Benioff zone, which shows that the

upper surface of the descending slab lies about 110 km beneath Santorini (Papazachos

et al., 2000).

The current dynamics of the collision between Africa and Eurasia in the Eastern

Mediterranean is somewhat complex. It is usually described using a series of rigid

blocks, or micro-plates (Jackson, 1994; McKenzie, 1970; Nyst and Thatcher, 2004),

however the fact that some deformation occurs within these blocks shows that this

model is not strictly valid (Benetatos et al., 2004; Floyd et al., 2010). Deformation in

29
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Hellenic Volcanic Arc

Figure 2.1: Map of the southern Aegean Sea. Volcanoes of the Hellenic arc are shown in
red. Major faults compiled from Jackson (1994), Jolivet and Brun (2010) and Kokkalas
and Aydin (2013).

the Aegean is principally driven by two forces: the westwards extrusion of Anatolia

along the North Anatolian Fault (McKenzie, 1972), and the southward retreat of the

subduction zone by slab roll-back (Le Pichon and Angelier, 1979). Although Africa is

currently only converging with Eurasia at about 5mm/yr, slab roll-back means that

there is 35mm/yr of convergence at the Hellenic trench (Nocquet, 2012; Reilinger et al.,

2010, 2006).

Figure 2.2 shows the velocity field for the eastern Mediterranean calculated by

Nocquet (2012) using GPS measurements. This motion leads to deformation along

three dominant trends (Benetatos et al., 2004): (1) north-south extension of the Aegean

caused by slab roll-back; (2) trench-parallel extension close to the subduction zone,

due to the curvature of the trench; (3) right-lateral strike-slip motion, due to the

motion of Anatolia and the Aegean relative to the Eurasian plate. The principal faults
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Figure 2.2: (A) Velocity field in a Eurasia fixed reference frame. (B) Kinematics sketch.
Dashed double-arrow lines show integrated relative motion over a given area. Thin black
arrows are velocities at selected locations. Taken from Nocquet (2012).
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accommodating this deformation are shown in Figure 2.1. Large earthquakes can occur

on these faults, such as the 1956 Ms 7.4 Amorgos earthquake that devastated much of

Santorini (Okal et al., 2009; Papadopoulos and Pavlides, 1992).

The locations of the volcanoes of the Hellenic arc are controlled by the tectonic

structure of the Aegean, lying on lines of weakness in the Aegean crust (Papazachos

and Panagiotopoulos, 1993). Milos, Santorini and Nisyros all lie within pull-apart

basin along major strike-slip faults (Kokkalas and Aydin, 2013). These same faults are

interpreted to have played an important role in controlling the location of plutons from

the Middle Miocene, by provided an easy path for their emplacement. The tectonic

control on the spatial distribution of volcanoes is further shown by the way most

vents on Santorini fall along two lines: the Coloumbo line in the north of Thera, and

the Kameni line that runs through the Kameni islands in the centre of the caldera

(discussed in more detail below)

The extension of the Aegean started ∼36–25Ma, and slowed after a tectonic reor-

ganisation that took place in the Pliocene (Jackson, 1994; Jolivet and Faccenna, 2000;

Walcott and White, 1998). There was another, short pulse of extension that occurred

along the Hellenic Arc between 5.0-4.4Ma, which lead to rapid subsidence of 900m at

Milos, and similar subsidence at Aegina (van Hinsbergen et al., 2004). The continental

crust of the Aegean has been thinned from about 50 km to 20–30 km as a result of

this extension, and is now roughly 25 km thick under Santorini (Figure 2.3; Karagianni

et al., 2005; Tirel et al., 2004).

The rocks revealed by this extension record two metamorphic events. There is a

first stage of high-pressure–low-temperature metamorphism, related to convergence at

the subduction zone. This is followed by a stage of low-pressure–high-temperature

metamorphism, as the lithosphere is stretched due to slab roll-back (Avigad and Gar-

funkel, 1991; Jolivet et al., 2013; Lister et al., 1984; Trotet et al., 2001). The age of

these two metamorphic events gets younger as you travel south through the Aegean,

as a result of the progressive retreat of the subduction zone. In the Cycladic isles
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Figure 2.3: Crustal thickness in
km from gravity measurements,
isolines every 0.5 km, taken from
Tirel et al. (2004).

just north of Santorini, the high-pressure–low-temperature metamorphism took place

during the Eocene. The low-pressure–high-temperature metamorphism here occurred

during the Oligocene and the Miocene. The metamorphic rocks in the Cycladic isles

can reach into the blueschist and eclogite facies, as well as containing granites from

crustal melting.

2.2 Volcanism along the Hellenic Arc

Volcanic activity in the Aegean started in the Oligocene, and occurred in two main

phases with volumetrically smaller volcanism in between (Fytikas et al., 1984). The

first phase ran from the Oligocene until the Middle Miocene, and the second began in

the Middle Pliocene and continues today. Volcanism has migrated to the south with

time, due to the retreat of the subduction zone (Jolivet and Brun, 2010; Jolivet et al.,
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2013).

The type of volcanism along the Hellenic arc varies. The western volcanoes are

dominantly andesitic to rhyolitic dome swarms, while central and eastern volcanoes

are composites, often with large calderas. This, along with lower Eu/Eu* values for

western volcanoes, suggests that shallow magma chambers play a larger role in the

evolution of the western volcanoes (Innocenti et al., 1981). Crustal thickness ranges

from 34 km under the western end of the arc to 24 km under the eastern end (Tirel

et al., 2004), showing extension has been greater in the east. This may go some way

to explaining these differences (Innocenti et al., 1981). Below are descriptions of the

volcanoes that make up the currently active volcanic arc. Their locations are shown

on Figure 2.1.

2.2.1 Crommyonia

Crommyonia is the westernmost volcano of the Hellenic arc, and is one of the oldest

volcanic centres in the Hellenic arc, active between 3.9–2.7Ma (Fytikas et al., 1984).

The volcanic rocks consist of scattered dacitic flows and domes, and is far less volu-

minous than the volcanoes further east along the arc (Pe-Piper and Hatzipanagiotou,

1997). Their geochemistry falls within the volcanic arc field. Currently there is still

low-level geothermal activity taking place around Sousaki, with water temperatures at

depth only 50-80 °C (D’Alessandro et al., 2006). There is diffuse and focused CO2 flux,

at a rate of about 0.63 kg s−1.

2.2.2 Aegina

Aegina was active contemporaneously with Crommyonia, between 4.4Ma and 2.1Ma

(Pe-Piper et al., 1983). With the possible exception of the earliest, hydrothermally

altered volcanic rocks there is no evidence for submarine volcanism. The volcanic

rocks mostly form endogenous domes and lava flows, and can be split into at least four

differentiation series, ranging from basaltic andesite to rhyodacite (Pe, 1973).
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2.2.3 Methana

Methana is a basaltic to rhyodacitic lava dome complex (Simkin and Baker, 2014).

The older part of the volcano has been dated with K-Ar at 900–550 ka, and the most

recent confirmed eruption was a lava flow and explosive activity in 258±18B.C.E.

There are currently only low levels of unrest, in the shape of thermal springs and

CO2 emissions. The low temperature of the thermal springs (less than 40 °C) and geo-

chemical modelling of the fluid compositions suggests only a cool geothermal reservoir

at about 150 °C, with a contribution of 23% from arc-type magmatic water (Dotsika

et al., 2010). The CO2 output is also an order of magnitude lower than other volcanoes

in the Hellenic such as Santorini and Nisyros, at 0.03 kg s−1 (D’Alessandro et al., 2008).

δ13C values suggest that 90% of this CO2 is from the decomposition of limestone, and

although the isotopic composition of the He emitted indicates that up to 40% of it

comes from a mantle source, it is clear that there is little current magmatic activity

under Methana.

2.2.4 Milos

Milos and some of the surrounding small islands are a collection of stratovolcanoes

(Simkin and Baker, 2014). Four main cycles of activity were recognised by Fytikas et al.

(1986), starting about 3My ago (Stewart and McPhie, 2006). Initial submarine and

subaerial volcanism was dominantly andesitic and basaltic, but more recent subaerial

volcanism is more evolved and, is predominantly rhyolitic.

The earliest sequence mainly contains products of submarine eruptions, includ-

ing pyroclastic flows and submarine tuffs with subordinate pillow lavas and breccias

(Fytikas et al., 1986; Stewart and McPhie, 2006). The second cycle was subaerial,

producing domes and flows with small explosive episodes producing local pyroclastic

flows. After about 2Ma activity shifted eastwards, and produced a submarine pyro-

clastic sequence associated with rhyolitic domes. The final cycle was concentrated in

two centres, one on the north and one on the south of Milos. In both centres this final
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phase is characterised by eruptions that begin phreaticly, then are phreatomagmatic

and finally end end with the extrusion of lavas. The youngest known magmatic activity

took place about 90 ky ago, however phreatic activity has continued since then. The

last known phreatic explosion produced a lahar which destroyed a town or harbour on

the island, and has been dated with 14C at between 80–205C.E (Traineau and Dalaba-

kis, 1989). There is currently a hydrothermal system on the island, releasing fluids at

temperatures of up to 115 °C (Valsami-Jones et al., 2005).

Early erupted products are found to be compatible with a model of deep frac-

tionation, while modelling the more recent, more evolved products suggests a large

plagioclase contribution to the fractionation Fytikas et al. (1986). This suggests the

more recent eruptions were fed from shallow magma chambers.

2.2.5 Kos-Yali-Nisyros

Kos, Yali and Nisyros sit on the eastern end of the Hellenic Arc. Although they form

distinct centres, they have similar geochemistry and mineralogy suggesting they form a

single petrogenetic system (Pe-Piper and Moulton, 2008). While most of the island of

Kos is non-volcanic, there are the remains of at least two calderas (Simkin and Baker,

2014). The older of the two is younger than the Zini lava dome, which has been dated

at 1.0–0.55Ma. The younger is associated with the 160 ka Kos Plateau Tuff. Both

Nisyros and Yali are younger than, and situated in or on the edge of, the 160 ka Kos

Plateau Tuff caldera, and none of the products of the Kos Plateau Tuff have been found

on them (Allen and Cas, 1998). The caldera may be as wide as 20 km, and stretch

from present-day Kos across to Nisyros, with Yali sitting at its centre.

The earliest volcanism on Kos were rhyolitic domes (Pe-Piper and Moulton, 2008).

This was followed by the growth of an andesitic stratocone, which was destroyed by

the Kos Plateau Tuff, and whose existence is known only form fragments found in

the deposits of that eruption. The distribution of products from for the Kos Plateau

Tuff eruption suggests it was erupted from a vent near the present location of Yali
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(Allen et al., 1999). It was one of the largest eruption to take place in the Hellenic

arc during the Quaternary, erupting a minimum of 90 km3 of magma (Allen and Cas,

1998). Ignimbrite deposits form this eruption have been found 40 km away on the

islands and peninsulas of Turkey surrounding Kos. The eruption commenced in a

phreatoplinian style, and changed to a ‘dry’ style as it progressed. U–Pb and U–Th

ages, along with isotopic data, on zircon crystals suggest that the magma was stored

for a period of ∼200 ky with little crustal contamination, perhaps as a crustal mush

(Bachmann et al., 2007a; Keller, 1969). Recent activity on Kos itself is restricted to

fumerolic fields (Simkin and Baker, 2014).

Yali is a collection of rhyolitic obsidian domes and pumice deposits. While no

historical eruptions are known from Yali, rhyolitic pumice deposits overlie pottery and

Neolithic obsidian artefacts dated at about 30-35 ka. This would make these pumice

deposits the youngest magmatic products from the Kos-Yali-Nisyros system (Buettner

et al., 2005).

Nisyros, on the south-east edge of the possible Kos Plateau Tuff caldera, is a stra-

tovolcano. It was constructed during the last 150 ky, with recent phreatic eruptions

in 1422, 1871-1873 and 1888C.E. and continuing intense hydrothermal activity. It

has its own small, 3–4 km caldera which has been dated by different authors at either

<24 ka or >44 ka (Simkin and Baker, 2014). As with most volcanoes of the Hellenic

arc, activity started below the sea, before building up a subaerial edifice (Di Paola,

1974). The early pillow lavas and hyaloclastites, along with early subaerial lava flows,

are basaltic andesite. The transition from submarine to subaerial is gradual, with al-

ternating hyaloclastites and lavas (Francalanci et al., 1995). The subaerial pre-caldera

sequence continues with andesitic to rhyolitic lavas flows and domes, and several major

explosive events, with at least one erupting 2-3 km3 and a column heigh of 15-20 km

(Limburg and Varekamp, 1991). This lead to the formation of an earlier, now-buried

caldera. The present caldera is associated with a a pumice fall, surge and flow sequence,

erupting 6-7 km3 of magma.
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Post-caldera activity on Nisyros is fairly homogeneous. Much of the caldera has

been filled up with large, dacitic lava domes of similar composition (Di Paola, 1974).

There are no pyroclastic deposits. The locations of the recent domes and hydrothermal

craters are strongly controlled by by north-east–south-west striking oblique-slip faults

(Caliro et al., 2004). These faults are a response to east-west extension. There is an act-

ive hydrothermal system at present, with isotopic chemistry suggesting that fumerolic

gases containing a mantle-derived component (Brombach et al., 2003). Temperatures

of up to 340 °C were recorded in geothermal wells at a depth of 1,800m. Between

1995-2000 a period of inflation and increased seismicity was observed (Sachpazi et al.,

2002), which Lagios et al. (2005) found could not be explained sufficiently using only

the tectonic faults found on the island. Their preferred model used two inflating Mogi

point sources which they interpreted as magma chambers, one under the western edge

of Nisyros, and the other close to Yali.

2.3 The local tectonic setting of Santorini

Santorini is located in the middle of a north-east–south-west trending chain of volcanoes

(Figure 2.4). To the south-west lie the Christiana islands. Deposits on Santorini and

Anafi have been correlated with a large, explosive eruption from the Christiana islands

(Keller et al., 2012). The volcanic activity on the Christiana islands is thought to

predate most of the activity on Santorini.

To the north-east lies a chain of 19 submarine volcanoes (Nomikou et al., 2013a,

2012b, 2013b). The largest of these, Coloumbo, has a small caldera, formed during

an eruption that took place in 1650C.E. Most of the remaining cones in the chain are

covered in sediment, and show no signs of recent volcanic activity.

The 1650C.E. eruption of Coloumbo was rhyolitic, large, and was accompanied by a

tsunami and the release of toxic gasses that killed many of the inhabitants of Santorini

and their livestock (Cantner et al., 2014; Dominey-Howes et al., 2000; Fouqué, 1879;
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Figure 2.4: Bathymetry of the Christiana–Santorini–Coloumbo volcanic zone, from
Nomikou et al. (2013a). Faults drawn from Sakellariou et al. (2010) and Feuillet (2013)

Nomikou et al., 2012a; Ulvrová et al., 2013). It is currently more hydrothermally

active than Santorini. Hydrothermal vents up of to 220 °C can be found in the crater

of Coloumbo, compared to vent temperatures of 15-17 °C found in Santorini’s caldera

(Carey et al., 2013; Kilias et al., 2013; Sigurdsson et al., 2006). There is a 3 km wide

column of micro-seismicity extends from the surface to about 15 km depth beneath the

north-eastern flank of the volcano (Dimitriadis et al., 2009). Dimitriadis et al. (2010)

imaged a low seismic velocity zone possibly connecting Santorini with Coloumbo at

depth.

Santorini lies at end of the Santorini–Amorgos rupture zone, a region of oblique



40 Chapter 2. Geological setting

extensional faulting (Feuillet, 2013; Sakellariou et al., 2010). It corresponds to a vertical

region of increased earthquake activity trending north-east, from Santorini through and

Coloumbo to Amorgos (Bohnhoff et al., 2006). This zone is 30-40 km wide, and extends

to a depth of 45 km. The Santorini Amorgos rupture zone is probably a pull-apart

basins, and part of a larger strike-slip system (Kokkalas and Aydin, 2013).

The oblique extension is accommodated on north-east–south-west trending faults.

These faults control the location of volcanic vents, which fall along two tectonic “lines”:

the Coloumbo line and the Kameni line (Figure 2.4). In the north of Santorini, many of

the dykes that fed the Peristeria volcano (see below) are orientated north-east–south-

west, parallel to the Coloumbo line (Heiken and McCoy, 1984). To the north-east the

Coloumbo line is seen to continue, in the orientation of the offshore volcanic cones. To

the south, the vents of the Kameni Isles fall along a roughly parallel line: the Kameni

line (Nomikou et al., 2014; Pyle and Elliott, 2006).

2.4 The volcanic history of Santorini

A simplified map of the geology of Santorini is shown in Figure 2.5, and its eruptive

history is summarised in Table 2.1. In this section I will briefly discuss the early

volcanism, before looking at the sequence from 67 ka up to the 22 ka Cape Riva eruption

in more detail. It is this period that the rest of this thesis is chiefly concerned with.

I finish by presenting the most recent volcanism on Santorini. The chemistry and

petrology is covered in more detail in the next section.

2.4.1 Early activity: Akrotiri and Peristeria centres

(650–340 ka)

Before volcanism commenced on Santorini, an island already existed, consisting of the

schists and marbles that make up the south-east of the present-day island (Figure 2.5).

The earliest volcanism on the island dates back 650–550 ky (Druitt et al., 1999), and
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Figure 2.5: Sketch geological map of Santorini, adapted from Druitt et al. (1999).

is confined to the Akrotiri peninsula in the south of the island (Figure 2.5). The

early activity consists predominantly of dacitic-rhyodacitic submarine domes, coulées,

and hyloclastite aprons. These are intercalated with the products of more explosive

submarine eruptions and marine sediments containing benthic and planktonic forams.

Towards the end of activity on the Akrotiri peninsula some eruptions were probably

subaerial.

The stratigraphical relationships between the various units are complex, and in

places faulted. The presence of unambiguous marine sediments at elevations of over

100m above the present sea level show that they have been uplifted. Two separate fault
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blocks exist on the peninsula. The Akrotiri volcanics are geochemically distinct from

the main volcanic series that followed, and are the only volcanic rocks from Santorini

that have been found to contain significant amounts of amphibole. The silicic members

are richer in Ba and Sr and poorer in K, Rb, and Zr compared to the Thera volcanics.

Activity started in the north of the island with the Peristeria stratovolcano (530–

430 ka), that makes up Mt. Micro Profitas Ilias. It has been split into three sequences:

a core of andesitic lavas, tuffs and hyloclastites; massive silicic andesite lava flows; and

a succession of thin andesitic and basaltic lavas with subordinate dacites. About 50

dykes are revealed in the caldera cliff, the majority of which trend north to north-west.

In total, the subaerial volume was at least 2 km3.

Towards the end of the construction of Peristeria cinder and spatter cones were

formed at three centres on the Akrotiri peninsula. These have been dated using K–Ar

and Ar–Ar methods at between 450–340 ka, and lie above the early Akrotiri centres

but beneath the Thera pyroclastics.

2.4.2 Thera pyroclastics (<360 ka)

The current sequence of explosive volcanism started 360 ky ago, and consists of at

least twelve plinian eruptions. These have been split into two cycles, and in each cycle

there is a general trend towards more silicic compositions. Both cycles end with a

pair of large dacitic to rhyolitic eruptions; Lower Pumice 1 and 2 in the first cycle and

the Cape Riva and Minoan eruption in the second. Lower Pumice 2, Cape Riva and

Minoan eruptions are associated with caldera collapse. Vents for the Thera pyroclastics

are concentrated in the northern half of Santorini, and most lie (or are inferred to lie)

on either the Kameni or Coloumbo lines. In between the plinian eruptions there are

numerous effusive and smaller explosive eruptions.
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First eruptive cycle (360–180 ka)

The first eruptive cycle consisted of five large, explosive eruptions and numerous smaller

effusive and explosive events. Cape Therma 1, 2 and 3 were all dominantly intermediate

in composition. Cape Therma 1 is and andesitic ignimbrite, up to 60m thick. Cape

Therma 2 is a rhyodacitic pumice fall deposit. Cape Therma 3 is andesitic, with

pyroclastic flow deposits overlying a stratified pumice fall, rich in obsidian fragments.

Between Cape Therma 2 and 3 several rhyodacitic lava flows are preserved in the

caldera cliffs.

The first cycle came to an end with the Lower Pumice 1 and 2 eruptions. Both

were rhyodacitic, and Lower Pumice 2 resulted in the earliest known caldera collapse

on Santorini. Lower Pumice 1 commenced with a Plinian phase, leaving deposits up to

5m thick, whose isopachs are consistent with a vent somewhere near the present-day

Kameni isles. Bomb sags are common at the top of this Plinian deposit, implying a

strong ballistic component to the second phase of the eruption. This second phase

deposited a coarse-grained lithic lag breccia up to 14m thick. This phase is composi-

tionally zoned, with the vesicular component changing from rhyodacite at the bottom

to andesite at the top. Lenses of welded and non-welded ignimbrite occur in places

under the breccia.

Lower Pumice 2 is separated from Lower Pumice 1 by only a single palaeosol. Ini-

tial Plinian deposits are up to 25m thick, consisting of an initial thin, white basal

unit overlain by an inversely graded main fall unit. Deposits are uniformly rhyoda-

citic, except for this Plinian deposit which also contains a small amount of of basaltic

to andesitic scoria. Isopach maps suggest a vent near the present-day Kameni isles.

Phreatomagmatic explosions the produced a series of dune cross-bedded surge deposits

followed by a thick, massive and poorly sorted pumiceous deposit.
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Second eruptive cycle (180–3.6 ka)

After the eruption of Lower Pumice 2, effusive activity began to fill the caldera. The

Simandiri shield is exposed near sea-level in the cliffs of Therasia, just to the north of

Manolas. At the base are stratified phreatomagmatic tuffs and conglomerates. These

are overlain by thin basaltic lavas and thick andesitic domes and coulées. These dip

west, away from the present caldera. This was followed by the Middle Tuff sequence,

four of which discharged several km3 of magma.

The Cape Thera Tuff lies at the same stratigraphic height as the Simandiri lavas,

separated from Lower Pumice 2 below by a palaeosol up to 13m thick. This probably

represents a period of hundreds to thousands of years of only minor activity following

the collapse of the first caldera. The Cape Therma Tuff consists of a thin pumice fall,

up to 85 cm thick, and an ignimbrite deposit.

After the Cape Thera eruption, 5m of minor pyroclastics and palaeosols are pre-

served. Above this lies the Middle Pumice deposits, which begin with a Plinian pumice

fall deposit, which is densely welded beneath Fira. Isopachs, and the location of the

welded deposit imply a vent to the west of Fira. Above the pumice fall deposit lie lithic

lag breccias, and the top of the pumice fall contains deep impact sags, demonstrating a

violent ballistic event at the onset of pyroclastic flow production. The eruption ended

with a second Plinian phase, from the same vent as the first.

Up to 9m of minor pyroclastics and palaeosols lie between the Middle Pumice

deposits and the Vourvoulos deposits. At the base of this eruption’s deposits lie a

scoria fall, which may correlate with the two cinder cones by Kokkino Vouno that

erupted at about the same time. The Vourvoulos deposits only reach a maximum of a

few metres, but they are widespread. They consist of a pumice fall deposit, followed

by cross-bedded surge deposits and an ignimbrite.

Above the Vourvoulos deposits lies the deposits from the Upper Scoria 1 eruption.

This commenced with a black scoria fall, within which lies a pair of ash beds. The

ash beds are less than a metre thick, and contain accretionary lapilli and climbing-
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ripples, suggesting a phreatomagmatic base surge origin. An isopach map for the

scoria fall, along with the flow directions recorded by the base surge units, imply a vent

near the present-day Kameni isles. Above the scoria deposits is a distinctive spatter

agglomerate, formed by a pyroclastic flow containing rags of fluid andesite. Lithic

clasts are also common. A caldera was present after the Upper Scoria 1 eruption (the

Skaros caldera, Figure 2.6a), but its formation cannot be connected unambiguously to

the eruption itself.

2.4.3 The build-up to the Cape Riva eruption (67–22 ka)

Skaros shield (67–54 ka)

A period of effusive volcanism filled up the caldera with a series of mainly basaltic and

andesic lavas— the Skaros shield (Figure 2.6b). A lava flow at sea-level has an Ar–Ar

age of 67± 9 ka (Druitt et al., 1999). The Skaros sequence has been described in detail

by Huijsmans (1985) and Huijsmans and Barton (1989). It consists mainly of basaltic

and andesitic lavas; all the flows have less than 64wt% SiO2 and most have less than

55wt%. The most silicic lavas are at the base of the sequence, erupted shortly after

the Upper Scoria 1 eruption. Interspersed between the lavas are the occasional deposits

from explosive eruptions, and these have higher SiO2 than the lavas above and below.

Huijsmans and Barton described several cycles of volcanism, starting with a sili-

cic eruption and with subsequent eruptions having progressively lower SiO2 contents.

These trends were repeated in other elements, for example there are increases in MgO

and CaO and decreases in Na2O and K2O with stratigraphic height within each cycle.

They explained this as repeated tapping of a zoned magma reservoir, each eruption

reaching a deeper and more mafic level. Before each cycle the system begins to stag-

nate, building up a silicic cap. Before dacite can be produced, however, an explosive

eruption occurs.
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Figure 2.6: Morphological evolution of Santorini between 70 and 21 ka, after Druitt
et al. (1999). The dashed line is the present-day outline of the islands. Contours are at
100-m intervals. (a) The volcano after collapse of the Skaros caldera, which happened
some time before the first Skaros lava was erupted at 67±9 ka. (b) The maximum extent
of the Skaros shield, which culminated with the 54 ± 3 ka Upper Scoria 2 eruption. (c)
The maximum extent of Therasia dome complex at ∼25 ka. (d) The island shortly after
the ∼22 ka Cape Riva eruption
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Upper Scoria 2 eruption (54 ka)

The cycles of partial stagnation then eruption continue until the Upper Scoria 2 erup-

tion. Upper Scoria 2 is a dominantly andesitic explosive eruption, that deposited sev-

eral km3 of magma over much of Santorini. Its distinctive red colour and widespread

distribution make it an excellent stratigraphic marker. It also represents a change in

behaviour for the volcanic system.

Shortly before—perhaps immediately before—a small dacitic pumice fall is depos-

ited from a vent near the Kameni isles. While the volume represented by this pumice

fall is much smaller than the andesite erupted during the Upper Scoria 2 eruption

this is the first time dacite was erupted since Upper Scoria 1. Afterwards, during the

Therasia Sequence, dacite becomes the dominant composition. Upper Scoria 2 can

therefore be thought of as the last failed stagnation, where an initial build-up of silicic

magma is interrupted by an eruption. Its position at the peak of the TiO2 variation

diagram rules out large-scale mixing, however the Sr isotopic signature of some of the

crystals shows that they have been incorporated from a previous magma batch (Martin

et al., 2010). The main phase of the eruption began with the emplacement of andesitic

pyroclastic surge deposits. This was followed by scoria flows, with spatter rags similar

to the ones found in the Upper Scoria 1 deposits.

Mellors and Sparks (1991) reported two 14C dates of 38.9+2.2
−1.8 and 36.9+1.9

−1.4 ka, while

Druitt et al. (1999) present a K–Ar age of 79± 8 and a more precise, Ar–Ar age of

54± 3 ka. The Ar–Ar age is the only one that is consistent with both the ages of Skaros

lavas and the Megalo Vouno cinder cone which predate Upper Scoria 2 (Druitt et al.,

1999), and the youngest Therasia lava which postdates it. As the dates of Mellors and

Sparks are at the limit of conventional 14C dating, the Ar–Ar date of 54 ka is assumed

to be the most accurate.
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Therasia dome complex (54–22 ka)

The Therasia dome complex is a series of mainly dacitic domes and coulées that covered

the summit and western flank of the Skaros shield (Figure 2.6c). Interspersed between

the lavas are several pumice fall deposits and soils. The sequence is capped by a crystal-

rich andesite, here named the upper Therasia andesite. The lavas are well-exposed in

the cliffs of the western side of the present-day caldera, on Therasia, and lavas are

also found at Oia and Fira on Thera (Figure 2.5). The well-exposed stratigraphy of

the Therasia dome complex makes it an ideal opportunity to study the changes in the

plumbing system of a volcano in the build-up to a caldera-forming eruption.

The Therasia dacites are chemically and petrologically similar to the Cape Riva

dacite, which led Druitt (1985) to propose that they were “precursory leaks” from the

growing Cape Riva magma reservoir (see Chapter 1). In this thesis, however, I shall

argue that the Therasia dacites are not precursory leaks, and are a distinct batch of

magma.

2.4.4 Cape Riva eruption (22 ka)

While the exact amount of magma erupted during the Cape Riva is unknown, it is at

least several km3, and is associated with a caldera collapse (Figure 2.6d). It has been

correlated with the Y-2 ash layer in Mediterranean sediments, and is found as far away

as the Marmara Sea (Figure 2.7).

The eruption has been split into four phases (Figure 2.8). It commenced with the

mainly dacitic Plinian phase Cape Riva A , that left pumice fall deposits up to 7m

thick (corrected for compaction; Druitt, 1985). The Plinian deposits also contain ∼5%

andesitic scoria, that is not found in the later phases. This andesite is also a hybrid,

with a similar SiO2 content to the upper Therasia andesite. The deposits of phase A

are found only in the north of Santorini, around Cape Riva and Oia (Figure 2.5), and

the deposits on Cape Riva are densely welded. This suggests that the vent for the first

phase of the Cape Riva eruption was located nearby.
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Figure 2.7: Distribution of the Cape Riva ash in marine and lake-bed sediment cores.
Data from Asku et al. (2008), Federman and Carey (1980), Keller et al. (1978), Margari
et al. (2007), St Seymour et al. (2004), Wulf et al. (2002).

The second phase (Cape Riva B) of the eruption produced welded ignimbrite de-

posits which underlie lithic lag breccias. These breccias grade laterally and vertically

into non-welded and pumiceous ignimbrites. Deposits from phase B are widely distrib-

uted around Santorini, and form veneers up to 4m thick that drape the pre-existing

topography. The deposits from phase B are particularly thick to the east of Akrotiri

where they fill a pre-existing channel and reach up to 12m in thickness.

Cape Riva C was the most voluminous phase, and the deposits are the thickest

(reaching up to 25m) and most widespread of the Cape Riva deposits found on San-

torini. The most conspicuous deposits of this phase are the coarse co-ignimbrite lithic

lag breccias, interpreted to have formed by strong gas fluidisation and the segrega-

tion of large and dense blocks from the flows (Druitt and Sparks, 1982). There is

little systematic spacial variation in the grain size of the breccias across Santorini, and

lithic blocks 1–2m in diameter are common wherever the lag breccia is found. These



2.4. The volcanic history of Santorini 51

Figure 2.8: Schematic section
through the Cape Riva deposits,
from Druitt (1985). PF: pumice fall;
WI: welded ignimbrite; I: non-welded
ignimbrite; LB: lithic breccias. Letters
refer to the different phases of the
eruption, discussed in the text.

lag breccias grade horizontally and vertically into pumiceous ignimbrite, and repeated

flow units are often seen. The large increase in the lithic content of these deposits

probably signals the onset of caldera collapse Druitt (1985).

The deposits from final phase of the eruption, Cape Riva D, is similar in appearance

to Cape Riva B. They consist of surface-draping veneers of welded ignimbrite up to

2m thick, that outcrop on the north of Thera.

2.4.5 Post-Cape Riva activity

The Cape Riva eruption was accompanied by caldera collapse, as demonstrated by the

existence of a water-filled caldera prior to the Minoan eruption (Druitt and Francav-

iglia, 1992; Eriksen et al., 1990; Friedrich et al., 1988). There are few volcanic deposits

found dating from the period between the Cape Riva and the Minoan, with the not-

able exception of a basaltic scoria fall (Vaggelli et al., 2009; Vespa et al., 2006). The

existence of an andesitic to rhyodacitic cone in the caldera can be inferred from the
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presence of blocks of lava in the deposits of the Minoan eruption (Druitt, 2014).

Minoan eruption (3.6 ka)

The Minoan eruption has been dated at 1600–1627B.C.E. (Friedrich et al., 2006; Man-

ning et al., 2006). Although it has previously been suggested that this eruption was

responsible for the collapse of the Minoan civilisation on Crete (hence the name),

current evidence suggests that the Minoan civilisation lasted for over a generation af-

terwards. It was, however, responsible for the destruction of the flourishing trading

port of Akrotiri on the island (Cioni et al., 2000). Deposits at Palaikastro suggest that

a 9m high tsunami reached Crete (Bruins et al., 2008)

This eruption produced 30-60 km3 of magmatic products, with deposits up to 60m

thick on the island and ash from the eruption is found across the eastern Mediterranean

(Asku et al., 2008; Federman and Carey, 1980; Keller et al., 1978). The products are

dominantly rhyodacitic, apart from subordinate andesitic scoria found in the first,

Plinian phase of the eruption. This activity was interrupted by the access of sea-water

into the vent. This lead to violent phreatomagmatic explosions, and base surge deposits

with dune cross-bedding and impact sags. Interstratified within the base surges are

pumice fall deposits, showing Plinian fallout continued during this time. Massive tuffs

above the surge deposits are interpreted to have been deposited by hot (≤300 °C) debris

flows and low temperature pyroclastic flows. The final phase of the eruption involved

hot (300–350 °C) pyroclastic flows spreading across the whole island, leaving deposits

up to 40m thick (Druitt et al., 1999).

The Minoan eruption is associated with caldera collapse, and is responsible for most

of the islands present distinctive topography.

Post-Minoan activity (<3.6 ka)

Since the Minoan eruption, the volcano has returned to constructive volcanism. His-

torical documentation of eruptions in the centre of the Minoan caldera date back to
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197B.C.E, when an island first broke the surface. Since then a series of eruptions have

produced the ∼10 km3 of lava that make up the present-day Kameni islands, along with

small explosive eruptions (Fouqué, 1879; Nomikou et al., 2014; Pyle and Elliott, 2006).

The 20th century has seen eruptions in 1925-6, 1928, 1939-41 and 1950. These produced

small plumes and thick lava flows. Chemically, the dacitic lavas have remained very

similar over the 2,200 years of flows exposed today (Barton and Huijsmans, 1986). Nu-

merous mafic enclaves showing that recharge is ongoing (Holness et al., 2005; Martin,

2005; Martin et al., 2006).

2.5 Chemistry and petrology

2.5.1 Major and trace element chemistry

The variations of major element concentrations as a function of SiO2 content is shown

in Figure 2.9, and the variations of selected trace elements is shown in Figure 2.10. The

field for all of the Thera volcanics is shown in grey, and the products of the eruptions

since 67 ka are plotted as individual points. Also shown is the field of Peristeria lavas,

for comparison. Not shown are the early centres of the Akrotiri peninsula, as these

form a chemically and petrologically distinct series.

Most of the elements fall along fairly tight fractional crystallisation trends. Some

of these trends are strongly curved. For example, TiO2 behaves incompatibly in San-

torini magmas up to about 55–60wt% SiO2. In more evolved melts Fe–Ti oxides start

to crystallise, lowering the amount of TiO2 in the residual melt. This leads to the

curved trend seen in Figure 2.9. Strongly compatible trace elements, such as Cr and

Ni (Figure 2.10a,b), become rapidly depleted with small amounts of fractional crystal-

lisation. Magmas formed by mixing will tend to plot between the two arms of these

curved trends. This can be seen clearly on Figure 2.9f for Cape Riva, Therasia and

Minoan andesites with about 60wt% SiO2. Magma mixing in the Cape Riva and

Therasia andesites is discussed in more detail in Chapter 5.
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Figure 2.9: Variation diagrams for major elements in Santorini magmas. Kameni lava,
Skaros and Peristeria data from Huijsmans (1985); Kameni enclave data from Martin
(2005); Therasia data from this work; all other data from Druitt et al. (1999). FeOT is
the total FeO and Fe2O3 plotted as FeO.

The Peristeria volcanics follow the same trends as the later Thera volcanics, for the

most part. They do have slightly higher incompatible element concentrations; this is

part of a long-term trend on Santorini towards more depleted compositions, discussed

below. A major distinguishing feature, however, is the high Sr content of some of the

Peristeria basalts and andesites compared to later basalts and andesites (Figure 2.10c).
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2.5.2 Isotopic variation

The 87Sr/86Sr and 143Nd/144Nd variations of Santorini pumices are shown in Fig-

ure 2.11. Pumices from Santorini are seen to form a trend away from the mantle

correlation line, towards more radiogenic compositions. This is consistent with con-

tamination by upper crustal rocks. The degree of contamination is found to correlate
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Figure 2.11: 87Sr/86Sr and 143Nd/144Nd variation for Santorini pumices and Aegean
basement, after Druitt et al. (1999)

with SiO2 content, suggesting the contamination occurs during fractional crystallisa-

tion (Druitt et al., 1999). Assimilation and fractional crystallisation (AFC) models

suggest the ratio of mass assimilated to mass crystallised is between 0.1–0.2.

Figure 2.12 shows the variation in 87Sr/86Sr and 143Nd/144Nd ratios with strati-

graphic height. It shows that there is no simple trend in the isotopic composition

of Santorini magmas with time. 87Sr/86Sr ratio first decreases with time, up until

the Upper Scoria 1 eruption. It then increases, up until the Minoan eruption. The
143Nd/144Nd ratio shows a mirror image of the 87Sr/86Sr variations. Martin et al. (2010)

show that there are isotopic variations even within the products of a single eruption.

2.5.3 Decrease in incompatibles with time

Since volcanism commenced in the north of the island, there has been a progressive

decrease in the concentration of incompatible trace elements such as K, Nb, Rb and Zr
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Figure 2.12: 87Sr/86Sr and 143Nd/144Nd variation with stratigraphic height for San-
torini pumices and lavas, after Druitt et al. (1999). Pumices in red, lavas in blue.
Min: Minoan, CR: Cape Riva, Th: Therasia, US1/2: Upper Scoria 1/2, v: Vourvoulos,
MP: Middle Pumice, CTA: Cape Thera, LP1/2: Lower Pumice 1/2, CT1/2/3: Cape
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(Figure 2.13). There have been several different explanations proposed to account for

this observation. Druitt et al. (1999) attributed these decreases as a result of growing

isolation of the magma chamber from the crust due to an increasing amount of plutonic

rocks intruded under Santorini. This would decrease the amount of assimilation and

hence lower the concentration of incompatibles in the most evolved erupted magmas.

However, there is no evidence for a decrease in the 87Sr/86Sr ratio with time at Santorini

(Figure 2.12). Isotopic signatures fluctuate with time, and some young melts are

amongst the most radiogenic in the history of the volcano (Martin et al., 2010; Vaggelli

et al., 2009).

Incompatible trace element contents and isotopic signatures at Santorini are de-

coupled, ruling out a simple common origin. A more likely explanation for the observed

trends lies in the nature of the mantle sources of the parental basalts feeding the vol-
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canic system. Recent studies have found that multiple basalt series with differing trace

element and isotopic ratios are contemporaneously active in the volcanic plumbing sys-

tem (Bailey et al., 2009; Vaggelli et al., 2009). The different trace element contents of

these series requires their mantle source underwent varying degrees of metasomatism

by sediment-derived fluids or melts. Variations in Nd suggest the involvement of small

amounts of sedimentary melts, as it is fluid-immobile (Bailey et al., 2009; Vaggelli et al.,

2009). Aqueous fluids may also play a role in controlling the trace element chemistry,

as has been proposed for the Kameni Isles (Zellmer et al., 2000).

Another possible explanation for the variation in incompatible element concentra-

tions with time is varaitions in the degree of partial melting. Incompatible elements

are the first elements to go into any melt, and are therefore enriched at small melt frac-

tions. An increase in the melt fraction of the mantle source would lead to a decrease
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in incompatible element concentrations. This could explain the progressive depletion

in incompatibles on Santorini, while the variations in isotopic ratios would be due to

changes in AFC processes in shallow magma reservoirs or sediment contamination from

the descending slab (Francalanci et al., 2005).
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Chapter 3

Diffusion chronometry

3.1 Introduction

Diffusion dating is becoming an increasingly exploited way of accessing the timescales of

magmatic processes. Because of the different speeds at which various elements diffuse

in crystals, events lasting from hours (e.g. Coogan et al., 2005) to millions of years

(e.g. Faryad and Chakraborty, 2005) can be timed. Unlike radiometric dating, this

technique is not restricted to young rocks. Because diffusion slows to an effective stop

at low temperatures, the timescales recorded by diffusion profiles can be calculated long

after the event (e.g. the cooling rate of chondrules in meteorites during the formation

of the solar system; Béjina et al., 2009).

Another advantage of diffusion chronometry is the way it can be carried out on single

crystals, in situ, using well-established micro-sampling techniques. Diffusion profiles

can be measured using secondary ion mass spectrometry (SIMS), the electron probe

or laser ablation mass spectrometry (LA ICP MS). In some cases two dimensional

images of crystals can be used, such as from backscattered electron images (BSE)

for Mg-Fe inter-diffusion in olivine (Martin et al., 2008; Morgan et al., 2006, 2004) or

cathodoluminescence images for Ti diffusion in quartz (Girard and Stix, 2010; Saunders

et al., 2010; Smith et al., 2010). This allows petrological information to be combined

61
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with the timescales recovered, and allows timescales from many crystals in the same

sample to be recovered individually.

This chapter discusses the theory behind diffusion chronometry. I also review the

data on the different diffusion coefficients, and the factors that influence them. I focus

in this chapter mainly on plagioclase and orthopyroxene, as these are the minerals I use

later in this thesis. However, various other minerals have also been used to estimate the

timescales of magmatic and volcanic processes. These include olivine, clinopyroxene,

magnetite, quartz and alkali feldspars (e.g. Costa and Chakraborty, 2004; Girard and

Stix, 2010; Morgan et al., 2006, 2004; Nakamura, 1995). Diffusion chronometry is also

regularly applied to metamorphic systems (e.g. Ague and Baxter, 2007; Faryad and

Chakraborty, 2005).

3.2 Diffusion theory

3.2.1 Basic Theory

Diffusion occurs in crystalline solids due to the random jumps of individual atoms,

either to nearby vacancies or to interstitial sites. Diffusion normally occurs in all

directions with equal probability, leading to no overall change in composition. However,

if there is some driving force making jumps in a particular direction more energetically

favourable, such as a chemical potential gradient, it will lead to a flow of atoms in that

direction. The flux of those atoms per unit area, J , can be written as a function of the

chemical potential µ:

J = −L∂µ
∂x

(3.1)

where L is the phenomenological constant for the element or isotope of interest.

Chemical potentials are not easy to measure. However, for ideal solutions or diluted

components the concentration gradient, ∂C/∂x, can be used instead (Costa et al.,

2008). Elemental concentrations can be measured directly, unlike chemical potential,
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and hence most diffusion chronometry studies model concentrations. Replacing the

chemical potential gradient by the concentration gradient, and the phenomenological

constant L with the diffusion coefficient D, leads to Fick’s first law:

J = −D∂C
∂x

(3.2)

We can then look at the case of one dimensional flow through an infinitesimally

small volume dx.dy.dz. The flow of atoms into this volume by diffusion is J (x) .dy.dz

and the flow out of this volume is J (x+ dx) .dy.dz. The rate of change of the number

of atoms ∂N/∂t in this volume over an infinitesimally small time dt is, therefore:

∂N

∂t
= J (x) .dy.dz − J (x+ dx) .dy.dz

= −∂J
∂x
.dx.dy.dz (3.3)

Dividing through by the volume in order to give concentration, we get:

∂C (x, t)
∂t

= −∂J
∂x

(3.4)

Equation 3.2 can then be substituted in for J , to give (Fick, 1855):

∂C (x, t)
∂t

= ∂D

∂x

∂C (x, t)
∂x

+D
∂2C (x, t)
∂x2 (3.5)

If D is independent of x this can be simplified to Fick’s second law:

∂C (x, t)
∂t

= D
∂2C (x, t)
∂x2 (3.6)

This equation can be solved analytically for simple systems. One of these is diffusion

in an infinite slab, which is a useful approximation to diffusion in the centre of a large,

flat crystal face. In this case, diffusion is mostly parallel to the crystal face, and can
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Figure 3.1: The evolution of an initial step function in an infinite slab by diffusion
(Equation 3.7).

be modelled in one dimension. Starting with an initial step function, the following

equation satisfies Fick’s second law (Lasaga, 1998):

C (x, t) = C left + C left − Cright

2

[
1 + erf

(
x√
tD

)]
(3.7)

where C left and Cright are the initial concentration the left and the right of the step

function, respectively; x is the distance, centred on the initial step function; t is the

time; and erf (u) is the error function, shown below:

erf(u) = 2√
π

∫ u

0
e−k2dk (3.8)

where k is a dummy variable.

3.2.2 Trace element diffusion in plagioclase

Modelling trace element diffusion in plagioclase is not as simple as the analytical solu-

tion above. The partition coefficients of many trace elements are strongly dependent on

plagioclase composition (Bindeman et al., 1998; Blundy and Wood, 1991), which means

that concentration cannot be used directly as a proxy for chemical potential (Costa

et al., 2003; Zellmer et al., 1999, 2003). The diffusion coefficients of trace elements are

also often strongly dependent on plagioclase composition (e.g. Giletti and Casserly,
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1994; Van Orman et al., 2014), which means the simplification shown in Equation 3.6

cannot be applied either.

Costa et al. (2003) formulated an equation for the diffusion of a trace element i in

plagioclase starting from Equation 3.1 above:

Ji = −Li
∂µi

∂x
(3.9)

The chemical potential can be expanded to give:

µi = µ0
i +RT lnCi +RT ln γi (3.10)

where µ0
i is the standard-state potential of i, R is the molar gas constant

(8.31 JK−1 mol−1), T is the temperature in kelvin, Ci is the concentration of i in units

of mass per unit mass and γi is the activity coefficient for i.

The activity coefficient for element i in plagioclase in equilibrium with a given liquid

can be estimated using the expressions of Blundy and Wood (1991) and Bindeman et al.

(1998) that relate trace element partitioning to the composition of the host plagioclase:

RT ln Cxl
i

C liq
i

= AXAn +B (3.11)

where Cxl
i and C liq

i are the concentration of i in the plagioclase crystal and liquid,

respectively; XAn is the molar fraction of anorthite in the plagioclase; and A and B

are experimentally determined constants. At equilibrium, the chemical potential of i

in the crystals is by definition equal to that of the liquid, which gives us the following

relationship:

µ0,xl
i +RT lnCxl

i +RT ln γxli = µ0,liq
i +RT lnC liq

i +RT ln γliqi

RT ln Cxl
i

C liq
i

= µ0,liq
i − µ0,xl

i +RT ln γliqi −RT ln γxli (3.12)
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This can be substituted into Equation 3.11 to get:

RT ln γxli = µ0,liq
i − µ0,xl

i +RT ln γliqi − AXAn −B (3.13)

which can be combined with the equation for chemical potential (Equation 3.10), and

substituted into the equation for flux (Equation 3.9) to give:

Ji = −Li
∂

∂x

(
RT lnCi + µ0,liq

i +RT ln γliqi − AXAn −B
)

(3.14)

Differentiating and cancelling out the terms that do not vary with distance we are left

with:

Ji = −RTLi

Ci

∂Ci

∂x
+ LiA

∂XAn

∂x
(3.15)

Finally, the change in concentration due to time can be calculated using the rela-

tionship:

∂Ci

∂t
= −∂Ji

∂x
= ∂

∂x

(
RTLi

Ci

∂Ci

∂x
− LiA

∂XAn

∂x

)

= ∂

∂x

(
Di
∂Ci

∂x
−DiCi

A

RT

∂XAn

∂x

)
(3.16)

3.3 Application to magmatic systems

Figure 3.2 shows an example of how diffusion can modify the initial concentration of a

crystal. In Figure 3.2a a crystal grows in equilibrium with its melt. The concentration

of some element in the crystal along the profile marked with a blue line is shown in

Figure 3.2b. The environment that this crystal resides in then changes (Figure 3.2c).

This could occur in several different ways. The resident magma could evolve by frac-

tional crystallisation, for example, changing its composition. A recharge magma could

underplate the magma reservoir, raising the temperature, or it could enter the reservoir

and entrain crystals. Other processes could also occur; what is required for diffusion
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Figure 3.2: A schematic example of the progressive modification of the zoning patterns
of a crystal by diffusion. (a) A crystal grows in equilibrium with its melt. (b) The
concentration of some element along the profile shown by the thick blue line across the
crystal in (a). (c) This crystal is transferred to a new melt, where it is no longer in
equilibrium. (d) The evolution of the compositional profile with time.

chronometry to work is that this processes places the crystal out of equilibrium with its

surroundings. In our schematic example, the crystal is transferred to a melt with lower

trace element concentrations. Figure 3.2d shows how the composition of the crystal

will evolve with time, as the crystal tries to re-equilibrate. In this example, the element

shown in Figure 3.2d diffuses out of the crystal until its concentration is in equilibrium

with the new melt.

The rate of diffusion is strongly dependent on the temperature. When the crystal

is erupted, it cools rapidly and its composition becomes “frozen in”. If the crystal is

erupted before it completely re-equilibrates, then compositional profiles intermediate

between the initial and equilibrium profiles can be preserved. We can use these profiles

to estimate how much diffusion has taken place. If we know the rate at which diffusion

occurs, then we can then calculate timescales from these profiles.
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Below is a a more detailed discussion of the practical issues that need to be con-

sidered in order to extract timescales from diffusive gradients recorded in crystals.

3.3.1 Initial conditions

In order to model diffusion in a crystal, we first need a starting point. The example

shown in Figure 3.2 is obviously very simple, and modelling real crystals can be much

more complicated. Common initial conditions that are assumed include:

Homogeneous crystals

The simplest assumption that can be made for the initial conditions of a crystal is to

presume that it was initially homogeneous. If the crystal grew in a stable environment,

where storage conditions did not vary significantly during growth, then it would be

homogeneous. However, diffusion can also produce homogeneous crystals. If diffusion

is allowed to proceed for long enough, it will erase any zoning patterns that formed

during crystal growth. This means that unzoned crystals that are in equilibrium with

their host melts could be young (they grew from their host melt), or could be old (they

re-equilibrated with their host melt). If a process such as recharge occurs repeatedly,

the crystals may only record the last of these events. Diffusion can erase all trace of

earlier episodes.

Unzoned crystals in equilibrium with their surroundings will not change their com-

position, and therefore cannot be used to estimate residence times. In order to set up

compositional gradients, some processes must occur to set up disequilibrium between

the crystal and its environment. Common processes include magma mixing, crustal

assimilation and magma ascent (e.g. Bindeman and Valley, 2003; Charlier et al., 2012;

Demouchy et al., 2006; Klügel, 1998; Martin et al., 2008; Pan and Batiza, 2002; Wolff

et al., 2002). The range of processes that have previously been studied by diffusion

chronometry is discussed in more detail in Section 3.5 below. Once disequilibrium is

established, diffusion will begin. The timescales calculated in these diffusion models
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will be estimates of the time that these crystals resided at high temperatures after

whatever event created the disequilibrium.

Even if we can assume that the crystals were initially homogeneous, we still need to

estimate their original composition. If diffusion is arrested early enough, the centre of

the crystals will still preserve their original composition. Flat plateaus in the centres of

compositional profiles are evidence that this is the case, and the plateau composition

can be used as the initial composition of the entire crystal. Where the initial compos-

itions cannot be estimated directly from the profiles, for example where diffusion has

progressed to the point where the entire crystal has been affected, the most extreme

possible variation between the initial and equilibrium composition can be chosen. This

will give the maximum time that those crystals could have resided at high temperature

(Zellmer et al., 1999, 2011). Rather than use the maximum possible variation in their

crystals as the initial conditions, Zellmer et al. (2012) used the maximum observed

variation. This gave residence times relative to the youngest crystal, that they argued

had only resided in the magma for a short period based on independent evidence.

Sharp zone boundaries

Zones of different compositions can grown in crystals as a response to changing storage

conditions, and these zones will not be in equilibrium with each other. Diffusion will act

to smooth these zones. In diffusion chronometry, it is often assumed that the boundaries

between these zones was initially sharp, and that any gradient is due diffusion. Models

of diffusion between two zones will estimate the time that that crystal has resided at

high temperature after the growth of the outer zone.

Like for homogeneous crystals above, if diffusion is arrested early enough then the

original compositions of the two zones will be preserved far from the zone boundary.

These compositions can then be used in analytical models with an initial step function

for one-dimensional profiles (Figure 3.1), as well as simple two- and three-dimensional

shapes. More complicated shapes can be modelled numerically.
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In practice, the boundaries between two zones will be sharp if the storage conditions

change fast compared to crystal growth, or if new storage conditions first trigger a

period of partial dissolution before growth recommences. If the storage conditions

change slowly, then the composition of the crystals will change gradually. This will

lead to a compositional gradient rather than a sharp zone boundary. It is often difficult

to tell the difference between gradients created by crystal growth from those created by

diffusion. Growth gradients can sometimes be distinguished from diffusive gradients

by their shape (Costa et al., 2008), or different isotopes of the same element can

also sometimes be used to distinguish growth from diffusion (Sio et al., 2013). Some

components, such as NaSi–CaAl in plagioclase and Al in orthopyroxene, diffuse so

slowly that their concentrations are unlikely to have been modified over the lifetimes of

the crystals (Section 3.4). Their zoning patterns can therefore be used to reconstruct

the initial zoning patterns of elements that diffuse more quickly (e.g. Allan et al., 2013).

However, even if it is not possible to rule out growth as the cause of compositional

gradients, diffusion models can still give useful information. Assuming that the zone

boundary was initially a step function will give maximum residence times.

Comparison with slowly diffusing elements

As well as using the qualitative zoning patterns of slowly diffusing elements to es-

timate the initial zoning patterns of fast-diffusing elements, some studies have used

the concentrations of slowly diffusing elements to quantitatively calculate the initial

concentrations of fast-diffusing elements.

Druitt et al. (2012) used the slower diffusion of Sr in plagioclase relative to Mg to

recreate the original Mg concentrations of plagioclase crystals from Santorini. Sr and

Mg are correlated with each other in whole rock data from Santorini, so they should also

be correlated in plagioclase crystals. The initial Mg concentrations of the plagioclase

crystals could then be estimated using their Sr concentrations, assuming that Sr had

not diffused significantly, and any difference in the measured Mg concentrations was
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then assumed to be due to diffusion of Mg.

Morgan and Blake (2005) started with the assumption that two different elements

with different diffusion coefficients, such as Ba and Sr in feldspar, are often correlated

in a crystal as it grows. This would occur if their liquid/crystal partition coefficients

remain in a constant ratio, and if the concentration of the elements in the melt is not

altered by magma mixing. If the diffusivities of the two elements are different, and

neither element is in equilibrium across the crystal, then diffusion will act to reduce

the correlation between them. Morgan and Blake (2005) fixed the profile of the fast-

diffusing element, and modelled the diffusion of the slowly diffusing element. They

showed that the time their models required to bring the composition of the back into

correlation of the fast-diffusing element was simply related to the residence time of the

crystals at high temperature.

Fractional crystallisation models

Where there is enough information on the magmatic system, then petrologic models

can be employed to estimate the initial compositions of the crystals. For example,

Zellmer et al. (2003) modelled crystallisation at Montserrat to estimate the initial Sr

concentrations of their plagioclase. They found that crystallisation would increase the

Sr concentration in the melt, but they argued that changes in the plagioclase/liquid

partition coefficient would roughly cancel out this increase in the Sr concentrations of

the plagioclase crystals. Zellmer et al. (2003) therefore used an initially uniform Sr

concentration, and diffusion was then driven by the chemical potential gradient set

up by the differing anorthite content of the adjacent plagioclase zones. Cooper and

Kent (2014) also studied Sr diffusion in plagioclase. They used the rhyolite-MELTS

fractional crystallisation model of Gualda et al. (2012a) in order to estimate the initial

Sr concentration of their crystals.
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3.3.2 Boundary conditions

The boundary conditions are the conditions at the edge of the system under study,

usually the crystal face. Boundary conditions are said to be either “open” or “closed”,

depending on whether material can diffuse across them. This makes little difference to

the form of the diffusion profile, but does affect the timescale calculated. Using a closed

boundary when an open boundary should have been used can lead to underestimates

of the timescale of more than one order of magnitude (Costa et al., 2008).

Closed boundaries can be applied if the crystal is surrounded by another phase

in which either the diffusion of the element in question is much slower or it does not

partition significantly into. In this case the external mineral quickly either becomes

depleted or builds up an excess close to the boundary in the element in question,

depending on which way diffusion across the boundary occurs. The greater the excess

or depletion, the greater the reduction in diffusion across the boundary.

Diffusion of most elements in silicic melts, however, is generally much faster than in

crystals (Zhang et al., 2010). This means that any element that diffuses out of a crystal

into the melt can rapidly be transported away into and mixed into the rest of the melt.

Similarly, any element that gets depleted close to the crystal/melt interface can swiftly

be replaced. In some circumstances this can lead to fixed boundary conditions, for

example if the melt volume in the chamber is large compared to the total volume of

the crystals. However, if the melt volume is limited, diffusion into or out of the crystal

can significantly change the concentrations in the melt. The melt composition can also

change for other reasons, for example by fractional crystallisation or mafic recharge.

3.3.3 Picking a diffusion coefficient

Diffusion coefficients are measured experimentally using a variety of different tech-

niques, reviewed recently by Cherniak et al. (2010). These methods usually involve

placing a mineral grain or powder into a reservoir either enriched in the element in

question or with an isotopic tracer, annealing the mineral under know conditions, and
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then measuring how much diffusion has taken place. This is repeated under different

experimental conditions to see how the diffusion coefficient varies, allowing empirical

relationships between the diffusion coefficient and different variables to be formulated.

A few studies use natural samples. These match two (or more) elements, one with

known diffusion coefficients and one without. By comparing the compositional profiles

of the two elements, the unknown diffusion coefficient can be calculated (e.g. Klügel,

2001; Qian et al., 2010).

In order to calculate timescales from diffusion profiles, it is important to pick a diffu-

sion coefficient that is applicable to the system you are studying. Below is a discussion

of how different factors can affect diffusion coefficients; the diffusion coefficients of the

systems modelled in this thesis are reviewed in Section 3.4. All diffusion coefficients

presented in the text are in m2 s−1.

Temperature

In order for an atom to jump from one site in the crystal lattice to an adjacent one, as

is required for diffusion to occur, it must overcome an energy barrier Q (Jmol−1). This

leads to an Arrhenius equation linking diffusivity D exponentially to temperature T :

D = D0 exp
(−Q
RT

)
(3.17)

where D0 is a constant. Most diffusion experiments span a range of temperatures, and

the results are usually presented as fits to an Arrhenius equation.

Arrhenius plots (plots of log(D) against 1/T ) should form a straight line, with a

gradient proportional to Q. However, at higher temperatures different mechanisms

of diffusion can become active, leading to different activation energies (Chakraborty,

2008). These show up as kinks in an Arrhenius plot. For this reason, extrapolation

outside the range of temperatures covered by experimental work is highly uncertain.

The effects of other parameters, such as those discussed below, are incorporated into
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D0.

Anisotropy

Crystallographic direction can have a strong influence on diffusivity, with diffusion

along fast directions up to an order of magnitude faster than along slow directions (e.g.

Cherniak and Watson, 1994, 2012; Mackwell and Kohlstedt, 1990). However, even

when the crystal structure of a mineral is anisotropic, such as feldspar, diffusion can

still be isotropic (e.g. Behrens et al., 1990). The anisotropy of the systems modelled

in this thesis are discussed below.

If the crystallographic orientation of a given sample is known, then the anisotropy of

the system can be incorporated into diffusion models. If the orientation of the crystals

being modelled is not known, the effects of anisotropy can be assessed by measuring

diffusion profiles along different crystallographic directions.

Composition

The composition of a mineral can have an effect on the prevalence of defects in the

crystal structure, and as diffusion often occurs via defects this can affect the diffusion

coefficient. For example, in Fe-rich minerals such as pyroxene and olivine, the molar

fraction of Fe (XFe) plays a large role in the formation of vacancies. When removing

an atom from the crystalline structure to create a vacancy, charge balance must be

maintained. Fe in the structure can change its valency from Fe2+ to Fe3+, and this can

balance the effective charge of a vacancy. This means that vacancy creation is more

energetically favourable in Fe-rich compositions, increasing the diffusion rate for any

element that diffuses through vacancies (Dohmen and Chakraborty, 2007; Ganguly and

Tazzoli, 1994; Jaoul and Raterron, 1994).

Similar effects can be seen in plagioclase. Diffusion for elements such as Mg, K, Sr

and Pb is fastest for Na-rich plagioclase and slowest for Ca-rich (Giletti and Casserly,

1994; Giletti and Shanahan, 1997; Van Orman et al., 2014). Again it is suggested
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that this is due to the fact that the enthalpy of formation of vacancies depends on

the composition, and is lower for the removal of Na+ than Ca2+. Vacancies would,

therefore, be more common in more Na rich crystals, increasing the diffusion rate for

those elements that diffuse through a vacancies. Elements that diffuse by jumping

between interstitial sites rather than between vacancies, such as Li, do not show a

compositional dependence on their diffusion coefficients because the number of available

interstitial sites is unaffected by the composition (Giletti and Shanahan, 1997).

The effect of composition on the diffusion coefficient takes the form:

D0 ∝ exp (αXi) (3.18)

where α is a constant and Xi is either the molar fraction of Fe or anorthite, depending

on the mineral. The specific compositional dependence of the systems studied in this

thesis are presented in the next section.

Oxygen fugacity

Oxygen fugacity is found to have a strong influence on diffusion in Fe-rich minerals such

as pyroxene and olivine. Diffusion is faster at higher oxygen fugacities, and this is again

thought to be due to vacancies (Buening and Buseck, 1973; Dimanov and Wiedenbeck,

2006; Dohmen et al., 2007; Hermeling and Schmalzried, 1984). The more oxidising the

conditions, the more Fe3+ there will be in the olivine, and hence the greater densities

of vacancies.

Little work has been done on the effect of oxygen fugacity on diffusion in plagioclase.

Cherniak (2003) found that Si diffusion in anorthite was slightly slower under reducing

conditions (NNO buffer) than in samples annealed in air, but Giletti and Casserly

(1994) found that Sr diffusion was within experimental error the same for annealing in

air and with a graphite buffer.

The relationship between the diffusion coefficient is usually modelled using the
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following relationship:

D0 ∝ (fO2)m (3.19)

where the exponent, m is based either on experimental data or on theoretical modelling

of the physics of diffusion.

Water or hydrogen fugacity

A lot of the work on the effect of water fugacity on diffusion rates has been done

in olivine, where it has important implications for diffusion-controlled deformation

processes. The presence of small amounts of water is found to greatly increase the

rates of Si, O and Fe–Mg diffusion in olivine (Costa and Chakraborty, 2008; Hier-

Majumder et al., 2005; Wang et al., 2004). A similar effect is seen for Al–Si and O

diffusion in feldspars (Farver and Yund, 1990; Graham and Elphick, 1990), as well as

NaSi–CaAl interdiffusion in plagioclase (discussed below). The suggested mechanism

for this effect is again through the creation of vacancies. H+ can be accommodated in

interstitial sites, providing charge balance for vacancies.

The form of water fugacity dependence is the same as for oxygen fugacity:

D0 ∝ (fH2O)n (3.20)

Pressure

Pressure also affects the diffusivity of elements. Pressure dependence is usually incor-

porated into the equation for the diffusion coefficient using an activation volume, V ∗, in

an analogous way to the activation energy, Q. This leads to the following relationship:

D0 ∝ exp
(
PV ∗

RT

)
(3.21)

Diffusion experiments are often carried out at atmospheric pressure. Where high-

pressure work has been done, it is often done on elements involved in diffusion creep
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in minerals that are found in the mantle (e.g. Béjina et al., 2003). Activation volumes

generally lie between 10−5 and 10−6 m3 mol−1, which is too small to have a large impact

on diffusion coefficients at the pressures found in upper-crustal magma reservoirs (e.g.

Béjina et al., 2003, and references therein). However, Yund and Snow (1989) found

NaSi–CaAl diffusion in plagioclase could be significantly affected at upper-crustal pres-

sures. The pressure dependence of individual diffusion coefficients, where that data

exists, is discussed below.

Summary

A complete equation for the diffusion coefficient of an element, taking into account all

the variables discussed above, takes the form:

D = D0 exp
(
αXi + −Q+ PV ∗

RT

)
× (fO2)m × (fH2O)n (3.22)

However, most diffusion coefficients have not been studied in enough detail to fully

quantify the relationships between all these different parameters. These diffusion coef-

ficients will only be valid under the experimental conditions at which they were de-

termined, and care must be taken in extrapolating them to other conditions.

3.4 Diffusion coefficients used in this thesis

Recent reviews of the experimental data on diffusion coefficients in plagioclase and orth-

opyroxene have been written by Cherniak (2010) and Cherniak and Dimanov (2010),

respectively. Below is a summary of the data for the elements I have used in this thesis.
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Figure 3.3: Diffusion coefficients for Mg in plagioclase. References: LW98 (solid lines):
LaTourrette and Wasserburg (1998); F13 (dotted line): Faak et al. (2013), silica satur-
ated; VO14 (dashed lines): Van Orman et al. (2014).

3.4.1 Plagioclase

Magnesium

Three studies have systematically investigated the diffusion coefficient of Mg in plagio-

clase, and these are shown in Figure 3.3. LaTourrette and Wasserburg (1998) carried

out their experiments in crystals of An95 at high temperature, while Faak et al. (2013)

used plagioclase crystals of An50 to An67, and Van Orman et al. (2014) used plagioclase

crystals with compositions between An23 and An93.

All three studies report similar activation energies: LaTourrette and Wasserburg

(1998) give 254 ± 43 and 278 ± 43 kJmol−1 for diffusion parallel to the b and c axes,

respectively; Faak et al. (2013) give 321 kJmol−1; and Van Orman et al. (2014) give

287 ± 10 kJmol−1. Both LaTourrette and Wasserburg (1998) and Van Orman et al.

(2014) find slight anisotropy for Mg diffusion, with diffusion parallel to the c axis
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up to 2–3 times as fast as diffusion parallel to the b axis. Van Orman et al. (2014)

find a large compositional (i.e. XAn) dependence, similar to that reported for Sr, Pb,

Ba, Nd and Ca (Behrens et al., 1990; Cherniak, 1995, 2002a,b; Cherniak and Watson,

1994; LaTourrette and Wasserburg, 1998). However, Faak et al. (2013) do not find

this compositional dependence over the range of plagioclase compositions that they

studied (An50−67). Faak et al. (2013) report a dependence on the activity of silica,

with Dplag
Mg ∝ (aSiO2)2.6.

In this thesis I choose to use the data of Van Orman et al. (2014), as their ex-

periments cover the largest range of temperatures and plagioclase compositions. Im-

portantly, their temperature range includes the temperatures of Santorini dacites and

rhyodacites (Chapter 5), therefore extrapolation to lower temperatures is not required.

Their complete equation for the diffusion of Mg as a function of temperature and

plagioclase composition is:

Dplag
Mg = exp

[
(−6.06± 1.10)− (7.96± 0.42)XAn −

287, 000± 10, 000
RT

]
(3.23)

Strontium

Three major studies have systematically looked at Sr diffusion in plagioclase, and these

are shown in Figure 3.4. Not shown are the results of LaTourrette and Wasserburg

(1998), who also compared Sr diffusion to Mg diffusion in An95. They did not get

enough data on Sr diffusion to calculate an Arrhenius relationship, but found it to

be a factor of 100 slower than Mg diffusion at the same temperature (consistent with

the data of Giletti and Casserly (1994) and Cherniak and Watson (1992) shown in

Figure 3.4).

All three studies found that Sr has similar activation energies to Mg. Giletti and

Casserly (1994) found an activation energy of 276 kJmol−1 fit all their data, regardless

of composition; Cherniak and Watson (1994) present activation energies of 273 ± 13,

265 ± 8, and 268 ± 8 kJmol−1 for An23, An43, and An67, respectively; and Cherniak
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Figure 3.4: Diffusion coefficients for Sr in plagioclase. References: CW92 (dotted line):
Cherniak and Watson (1992); CW94 (solid line): Cherniak and Watson (1994); GC94
(dashed line); Giletti and Casserly (1994).

and Watson (1992) present a slightly higher value of 330± 23 kJmol−1 for An93.

Both Giletti and Casserly (1994) and Cherniak and Watson (1994) found that the

diffusion rate increases with a decrease in the anorthite content of the plagioclase.

There is good agreement on the diffusion coefficient of Sr in An95 and An65, however,

Giletti and Casserly (1994) find higher diffusion coefficients than Cherniak and Watson

(1994) in more sodic plagioclase (Figure 3.4).

The complete function for the diffusion coefficient of Sr calculated by Giletti and

Casserly (1994) is:

Dplag
Sr = exp

(
−18.8 + 9.4XAb + 276, 000

RT

)
(3.24)

where XAb is the molar fraction of albite.

Cherniak and Watson (1994) found that diffusion normal to (010) was about 0.7 log
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units slower that normal to (001), but that this anisotropy was less pronounced in their

more sodic samples. Giletti and Casserly (1994) compared their data to that of Giletti

(1991), and found that Sr diffusion in albite (An0.6) was isotropic, unaffected by oxygen

and water fugacity, and unaffected by pressure up to at least 100MPa.

Potassium

The diffusion of K in plagioclase was measured by Giletti and Shanahan (1997), and

their results are shown in Figure 3.5. Giletti and Shanahan (1997) compared their

results for K diffusion in albite (An0.6) to those of Kasper (1975), reported in Brady

(1995), and found that their results were slower than Kasper (1975)’s by about an order

of magnitude. The bulk diffusion method used by Kasper (1975) tends to overestimate

diffusion coefficients; calculating diffusion coefficients from compositional profiles, as

was done by Giletti and Shanahan (1997), should be more accurate.

In An67, the diffusion coefficient of K is similar to that of Mg found by Van Orman

et al. (2014). Like Mg and Sr, K diffusion is faster in more sodic plagioclase. However,

the compositional dependence of K diffusion is not as strong as that found for Mg by

Van Orman et al. (2014), or as strong as that found for Sr by Giletti and Casserly

(1994). Giletti and Shanahan (1997) report no dependence on water pressure between

0.004 and 100MPa.

The Arrhenius relationships for K diffusion Giletti and Shanahan (1997) found for

K are, for An67:

Dplag
K = 10−5.5±3.8 exp

(−278, 000± 82, 000
RT

)
(3.25)

and, for An27:

Dplag
K = 10−5.2±2.5 exp

(−264, 000± 53, 000
RT

)
(3.26)

Lanthanum

The diffusion coefficient of four REE (La, Nd, Dy and Yb) in plagioclase were measured

by Cherniak (2002b), and the results for La are shown in Figure 3.5. The Arrhenius



82 Chapter 3. Diffusion chronometry

K
NaSisCaAl
La

GS97

An/]6

An°7

An67

LY9°
oTwtxrH°Og

Y86ro/]°wtxrH°Og

An7/s9/

An7/s9/

An/s°6

An/s°6

G84rodryg

An7/s9/

BJ95roxH°Or=r/]5g

An°sT8

C/°

An67

6//7//8//9//T///TT//T°//T3//T4//T5//

6 7 8 9 T/ TT T°
s°3

s°°

s°T

s°/

sT9

sT8

sT7

sT6

sT5

sT4

Lo
g[

D
om

° ssT
g]

T/m///,TroKsTg

Tro°Cg

Figure 3.5: Diffusion coefficients for K (purple), NaSi–CaAl (orange) and La (green)
in plagioclase. References: BJ95 (dotted line): Baschek and Johannes (1995); C02 (solid
green line): Cherniak (2002b); GS97 (solid purple lines): Giletti and Shanahan (1997);
G84 (dot-dashed line): Grove et al. (1984); LY92 (solid orange lines): Liu and Yund
(1992); Y86 (dashed line): Yund (1986).

relationship for La calculated by Cherniak (2002b) is:

Dplag
La = 1.1× 10−2 exp

(−464, 000
RT

)
(3.27)

The diffusion coefficients for the four REE measured by Cherniak (2002b) are almost

identical in An67. Cherniak (2002b) also measured the diffusion coefficient of Nd in

An23 and An93, and found that Nd diffused faster in more sodic plagioclase. This is

consistent with the results for Mg, Sr and K discussed above, and it is likely that La

will also diffuse more quickly in more sodic plagioclase.
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NaSi–CaAl interdiffusion

The experimental data for NaSi–CaAl interdiffusion is also shown in Figure 3.5. Most

of the experiments on NaSi–CaAl interdiffusion use the homogenisation of exsolution

lamellae in plagioclase, which is assumed to occur by diffusion. The diffusion coefficient

may vary across the lamellae, for example due to compositional differences; this method

calculates the average diffusion coefficient.

There is a large range of diffusion coefficients for NaSi–CaAl interdiffusion; this is

partly down to the different experimental conditions. Grove et al. (1984) found the

slowest diffusion coefficients, in An70−90 annealed in air at atmospheric pressure. Their

Arrhenius relationship is:

Dplag
NaSi–CaAl = 1.01× 10−3 exp

(−516, 000
RT

)
(3.28)

Yund (1986) carried out experiments in An0−26. One experiment annealed in air

gave a maximum diffusion coefficient consistent with the experiments of Grove et al.

(1984) in An70−90. However, in Yund (1986)’s experiments at 1.5GPa with 0.2wt%

water added, NaSi–CaAl interdiffusion was several orders of magnitude faster. The

Arrhenius relationship they presented for their wet data is:

Dplag
NaSi–CaAl = 1.8+10.8

−1.5 × 10−3 exp
(−406, 000± 20, 000

RT

)
(3.29)

Liu and Yund (1992) carried out similar experiments to Yund (1986), with An0−26

and An70−90 at 1.5GPa wit 1wt% water. All of these experiments give similar diffusion

coefficients for NaSi–CaAl interdiffusion, which suggests that there is little dependence

on plagioclase composition. Liu and Yund (1992) did find a discontinuity in their

data for An70−90 between 975 and 1000 °C, which they attributed to a change in the

microstructure of the lamellae between these temperatures.

The effects of hydrogen fugacity and confining pressure on NaSi–CaAl interdiffusion
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were investigated by Yund and Snow (1989). The hydrogen fugacity was varied by us-

ing three different buffers: wüstite–magnetite (WM), magnetite–haematite (MH), and

Mn3O4–Mn2O3 (MO). Yund and Snow (1989) concluded that while hydrogen fugacity

does effect Dplag
NaSi–CaAl, the range of hydrogen fugacities found in igneous rocks will not

change Dplag
NaSi–CaAl by more than about a factor of 2.

The effect of confining pressure found by Yund and Snow (1989) is much greater. At

a constant hydrogen fugacity, Dplag
NaSi–CaAl increases by a factor of about 18 between 0.1

and 500MPa. The rate of change of Dplag
NaSi–CaAl with pressure decreases above 500MPa:

between 500 and 1,500MPa Dplag
NaSi–CaAl only increases by a factor of about 3.

The effect of water on NaSi–CaAl interdiffusion was also studied by Baschek and

Johannes (1995), who used different N2–H2O fluids to vary XH2O between 0 and 0.5.

They found that DNaSi–CaAl increased by a factor of 2.2 with a 0.1 increase in XH2O.

Their diffusion coefficients were faster than those found by Yund (1986), Yund and

Snow (1989) and Liu and Yund (1992), a difference Baschek and Johannes (1995)

attributed to differences in the vapour phase present.

3.4.2 Orthopyroxene

Fe–Mg

The available experimental data for Fe-Mg and Al diffusion in orthopyroxene are shown

in Figure 3.6.

Ganguly and Tazzoli (1994) used crystal ordering processes to calculate the average

diffusion coefficient for Fe–Mg in orthopyroxene along the b and c directions. Their

theoretical work suggested that diffusion should be fastest along the c direction and

slowest parallel to the a direction. The diffusion coefficient along the c direction that

they calculated is:

Dopx
Fe–Mg = exp

(
−6.77− 5.99XMg −

240, 000
RT

)
(3.30)
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Figure 3.6: Diffusion coefficients of Fe–Mg (pink) and Al (green) in orthopyroxene. Fe–
Mg data: GT94: original data of Ganguly and Tazzoli (1994) calculated for orthopyroxene
with XFe=0.1 and XFe=0.5 IW buffer shown with solid lines, dashed lines are re-
calculated for the FMQ buffer as discussed in the text; H06: ter Heege et al. (2006);
K01: Klügel (2001). Al data: SB91: the minimum diffusion coefficient of Smith and
Barron (1991); N05: Nakagawa et al. (2005).

Klügel (2001) found zoned olivine and orthopyroxene crystals in a harzburgite xen-

olith. They used the well-constrained diffusion coefficient of Fe–Mg in olivine to calcu-

late the diffusion coefficient of 3 × 10−19 m2 s−1 for Fe–Mg diffusion in orthopyroxene

at 1,130 °C. This is consistent with the data of Ganguly and Tazzoli (1994) extrapol-

ated to high temperatures, and similar to the diffusion coefficient of (Fe,Mn)–Mg in

clinopyroxene (Dimanov and Sautter, 2000; Müller et al., 2013). A small amount of

data is presented in the abstract of ter Heege et al. (2006), and their diffusion coeffi-

cients are consistent with those of Ganguly and Tazzoli (1994) and Klügel (2001).

The diffusion coefficient calculated by Ganguly and Tazzoli (1994) was calibrated

at the IW oxygen buffer, which is significantly more reduced than most magmatic

systems (Frost, 1991). This can be corrected using the relationship D ∝ (fO2)m.
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Data on Fe–Mg ordering processes in orthopyroxene suggest that the exponent should

be between 1/5.5 and 1/6.5 (m ≈ 0.17; Stimpfl et al., 2005). This is similar to the

exponent estimated for (Fe,Mn)–Mg diffusion in clinopyroxene (0.22± 0.02; Dimanov

and Wiedenbeck, 2006). Ter Heege et al. (2006) state that in their experiments Dopx
Fe–Mg

increases by a factor of ∼4 when oxygen fugacity increases from 10−12 to 10−16 bar; this

gives an exponent of ∼0.15. The diffusion coefficient of Ganguly and Tazzoli (1994)

can be corrected for oxygen fugacity to give the following equation, which is used

throughout this thesis:

Dopx
Fe–Mg = exp

(
−6.77− 5.99XMg −

240, 000
RT

)
×
(

fO2 (sample)
fO2 (IW buffer)

) 1
6

(3.31)

where fO2 (sample) is the oxygen fugacity of the sample for which we want to calculate

Dopx
Fe–Mg, and fO2 (IW buffer) is the oxygen fugacity of the IW buffer at the temperature

and pressure of interest.

Aluminium

Very little experimental work has been done on the diffusion coefficient of Al in ortho-

pyroxene, but the available constraints are shown in Figure 3.6. A minimum diffusion

coefficient of 6× 10−25 m2 s−1 was calculated by Smith and Barron (1991) using zoned

orthopyroxene and garnet crystals in mantle xenoliths. Nakagawa et al. (2005) present

(in abstract form) the results from high-temperature experiments that are consistent

with the minimum diffusion coefficient of Smith and Barron (1991), and calculate the

following equation for diffusion parallel to the c axis:

Dopx
Al = 0.621+5.35

−0.576 exp
(501, 000± 35, 000

RT

)
(3.32)

Nakagawa et al. (2005) also find that diffusion parallel to the a axis is about one order

of magnitude slower than that parallel to the c axis.
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3.5 Previous studies

The following discussion is not meant as an exhaustive review of all diffusion chrono-

metry studies done to date, but instead is intended as an introduction to the range of

magmatic processes that have been studied using this technique.

3.5.1 Magmatic recharge

Magma mixing is often thought to have triggered eruptions, and diffusion chronometry

has been used to estimate the time between mixing and eruption. This has been done

for many different types of eruptions, including: mid-ocean ridge basalts (Pan and

Batiza, 2002; Zellmer et al., 2012, 2011), flood basalts (Ramos et al., 2005), arc basalts

(Kahl et al., 2011; Parkinson et al., 2007; Saito et al., 2010), effusive andesitic eruptions

(Coombs et al., 2000; Davidson et al., 2001), explosive andesitic eruptions (Andrews

et al., 2008), effusive silicic eruptions (Costa and Chakraborty, 2004; Martin et al.,

2008; Nakamura, 1995), explosive silicic eruptions (Druitt et al., 2012; Finney et al.,

2008; Martí et al., 2013; Morgan et al., 2006; Ruprecht and Cooper, 2012; Tomiya

and Takahashi, 2005). The composition and volume of the magma intruded varies

between studies, but they all suggest that a recharge event occurred anywhere from

a few days to a few decades before eruption. Diffusion chronometry suggests that

even the largest eruptions—such as the Bishop Tuff, Bandelier Tuff, Cerro Galán

ignimbrite, and Whakamaru eruption—can be triggered by magmatic recharge less

than a few thousand years, and possibly just a few years, before eruption (Boyce and

Hervig, 2008; Gualda et al., 2012b; Hervig and Dunbar, 1992; Saunders et al., 2010;

Wark et al., 2007; Wilcock et al., 2012).

3.5.2 Mush rejuvenation

While most of the studies above assume that the recharge magma is intruded in to

a melt-dominated reservoirs, other studies have looked at the remobilisation of crys-
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tal mushes by magmatic recharge. For mafic magmas, the estimated times between

intrusion and eruption are only a few days to a few years (Costa et al., 2009; Suzuki

et al., 2013). In andesitic systems, the times found are decades to centuries (Cooper

and Kent, 2014; Zellmer et al., 1999, 2003). Longer remobilisation times are found for

large silicic systems, of a few centuries to a few thousand years (Girard and Stix, 2010;

Smith et al., 2010). However, even in these systems, the final, triggering input can

occur within a few decades of eruption (Matthews et al., 2012a,b).

3.5.3 Vapour fluxing

As well as the input of fresh magma, the input of vapour can be timed by diffusion

chronometry. Plagioclase phenocrysts from the 2004 dome-forming eruption of Mount

St. Helens are enriched in Li relative to plagioclase in gabbroic inclusions in the same

lava. Kent et al. (2007) assumed that the Li enrichment in the phenocrysts was due

to the transfer of a Li-rich vapour phase into the magma reservoir before eruption.

The lower Li content in the gabbroic inclusions would be due to their larger size, and

the longer time it would take for them to re-equilibrate diffusively. Kent et al. (2007)

calculated that the gabbroic inclusions would not be able to preserve their low Li

contents for more than about a year. Kent et al. (2007) also found Li concentration

gradients in the plagioclase phenocrysts, with Li contents decreasing towards the rim.

They explained this through late-stage degassing of the magma, and diffusion models

of the Li gradients suggest that this degassing occurred at most one or two weeks before

eruption.

3.5.4 Crustal assimilation

Crystals will inherit their isotopic ratios from their host melt during growth. If the

isotopic ratio of the melt subsequently changes, then diffusion will act to re-equilibrate

the crystals’ isotopic ratios. Diffusion chronometry can be used to time the input of

magma from different sources, based upon different isotopic ratios. The low spatial
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resolution of techniques capable of determining isotopic ratios does somewhat limit the

precision of the timescales estimates that are possible using this method, however.

Several studies have found that crystals record an input of low 87Sr/86Sr magmas at

most a few thousand years (and down to only a few years) before eruption (Davidson

et al., 2001; Ramos et al., 2005). The low 87Sr/86Sr magmas are interpreted to be

primitive recharge magmas intruded into a crustally contaminated magma reservoir.

While the 87Sr/86Sr variations of the crystals reveal that crustal contamination is im-

plicated in the generation of these magmas, the timescales estimated from diffusion

chronometry relate only to the timescales of mafic recharge.

Bindeman and Valley (2001, 2003) found that the cores of some zircon and quartz

crystals in rhyolites from Yellowstone and the Southwestern Nevada Volcanic Field

had higher δ18O than their host melt. The lower δ18O of the host melt is thought

to result from the melting of hydrothermally altered plutonic rocks. The high δ18O

quartz and zircon crystals are interpreted to have remained unaltered in the pluton,

before being incorporated into the melt. Once in the melt, they began to exchange

O isotopes diffusively. The gradients in O isotopes at the edge of the crystals were

modelled to show that these crystals were incorporated into the melt only 103–104 y

before eruption. Slightly shorter timescales of crustal assimilation were found in the

Bandelier Tuff by Wolff et al. (2002), who used the fact that quartz and feldspar would

equilibrate diffusively at different speeds. Wolff et al. (2002) estimated assimilation

occurred ∼102 y before the eruption of the Bandelier Tuff.

O isotopes have also been used to time crustal assimilation in basaltic systems.

Bindeman et al. (2006) found that olivine and plagioclase crystal from the Laki fissure

eruption recorded assimilation of altered basaltic hyloclastites. Diffusion modelling

estimated that this occurred less than a few thousand years before eruption.
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3.5.5 Magma ascent

Mantle xenoliths have been used to calculate magma ascent rates via diffusion chrono-

metry. Klügel (1998) studied a series of fractures in peridotite xenoliths in a basanite

lava from La Palma in the Canary Islands. Fe–Mg gradients extend from the fracture

surfaces into the xenoliths, and these are interpreted to be the result of diffusion. The

timescales estimated by the modelling of these diffusive gradients fall into two popu-

lations. The older population has ages of between 6 and 83 y, and this is thought to

represent the time during which the xenoliths were incorporated into their host melt

at depth, transported to a shallow magma reservoir, and then stored before eruption.

The younger population has ages of less than a few days; Klügel (1998) suggested that

this is the time it took for the xenoliths to be transported from the shallow magma

reservoir to the surface. Ruprecht and Plank (2013) also looked at the rise of melts

from the mantle, by modelling Ni diffusion in olivine crystals from an andesitic eruption

of Irazú volcano, Costa Rica. They found that olivine crystals from primitive mantle

melts had magmatic residence times of a few months to a few years, suggesting that

those mantle melts ascended only a short time before eruption.

Other studies have shown even faster ascent rates from the mantle all the way to

the surface. Kelley and Wartho (2000) used Ar diffusion in phlogopite grains in mantle

xenoliths to estimate rise times of a few hours to a few days. Demouchy et al. (2006)

used hydrogen gradients in olivine crystals from peridotite xenoliths to estimate ascent

times of a few hours for the Pali-Aike alkali basalt in Chile. Fe–Mg gradients in olivine

crystals found in lherzolite xenoliths from the Hangay dome in Mongolia were modelled

by Harris et al. (2009), who found rise times of about four days.

Many orthopyroxene crystals from the rhyolitic Oruanui eruption have internal re-

sorption surfaces that Allan et al. (2013) suggest was caused by decompression. Allan

et al. (2013) interpret this as recording the transfer of the Oruanui magma from a

deep source mush to a shallower holding reservoir. Diffusion models across these re-

sorption surfaces give the residence times of these crystals after orthopyroxene growth



3.5. Previous studies 91

recommenced in the shallow reservoir. Allan et al. (2013) found that these residence

times were less than 1,600 y, and most of the crystals had residence times of less than

500 y. The final ascent of the Oruanui magma from the shallow holding reservoir to

the surface has also been estimated, by Charlier et al. (2012), using Li gradients in

quartz and feldspar crystals. Li diffusion was driven by a change in partitioning be-

haviour during decompression. Because Li diffuses rapidly in quartz and feldspar at

magmatic temperatures, ascent times of only 125 to 720 s (equivalent to ascent speeds

of 4–21m s−1) could be recorded by the Li gradients.
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Chapter 4

Fieldwork and age constraints

4.1 Introduction

The Therasia dome complex is ∼2 km3 of mainly dacitic domes and coulées that un-

derlies the explosive 22-ka Cape Riva eruption (Druitt, 1985; Druitt et al., 1999). The

caldera collapse that accompanied the Cape Riva eruption cut the Therasia dome com-

plex, and exposed a series of lava flows that should record the build-up to a Plinian

eruption. Previous studies have noted the similarity in the chemistry and petrology

of the Therasia dacites with the dacite erupted during the Cape Riva eruption. This

led to the suggestion that the Therasia dacites were leaks from a growing Cape Riva

magma chamber, similar to models proposed for Mt Mazama at Crater Lake (Oregon)

and Glass Mountain in Long Valley (California) (Bacon, 1985; Bacon and Druitt, 1988;

Druitt, 1985; Druitt and Bacon, 1989; Hildreth and Wilson, 2007).

In order to investigate the processes involved in the build-up to the Cape Riva

eruption, and the timescales associated with those processes, it is first important to

establish the stratigraphy of the lavas. The stratigraphy provides a framework which

allows us to see how the chemistry and petrology of the system evolves with time

(Chapter 5).

93
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4.2 Methods

Lavas of the Therasia dome complex cropping out in the caldera cliffs were photo-

graphed from a boat, and the photos were merged using computer software and inter-

preted to produce synthetic sections detailing the relationships and lateral extents of

individual lavas. Correlations were checked by on-land observations, and stratigraphic

relationships were mapped out. Pumice layers and palaeosols between the lavas were

also mapped.

Lavas from four key stratigraphic levels were dated by Dr Stépahane Scaillet using

the 40Ar/39Ar technique (Fabbro et al., 2013). The groundmass of each sample was

separated, hand-picked, and cleaned in an ultrasonic bath of dilute nitric acid prior

to irradiation in the Cd-lined fast neutron slot b1 of the Osiris reactor (CEA, Saclay)

with sanidine ACR (1.206 ± 0.002Ma, Renne et al., 2011, 2010). Upon receipt from

the nuclear reactor, the samples were analysed by multiple laser fusion using a high-

sensitivity MM5400 mass spectrometer operated in pulse-counting mode following the

experimental and correction procedures of Scaillet et al. (2011, 2008). More than 25

individual ages were extracted from each sample via a two-step fusion of ∼10mg of

groundmass replicates (see procedural details in Scaillet et al., 2011).

4.3 Results

4.3.1 Field and stratigraphic relationships

Photographs and sketches of the Therasia cliffs are shown in Figure 4.1 and of the cliffs

at Oia and Fira in Figure 4.2. Schematic diagrams summarising the architecture of

the lavas are shown in Figure 4.3 with individual lavas numbered for reference, and

Figure 4.4 shows the locations of the pumice falls and soil horizons between the lava

flows. Lavas of the Therasia dome complex overlie Upper Scoria 2, separated by a

palaeosol. They make up much of the present-day cliffs of Therasia (flows 1–24), and
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one lava crops out at the top of the caldera wall north of Fira town (flow 25). Thin

lava flows occupying the same stratigraphic position (between Upper Scoria and Cape

Riva) occur beneath the town of Oia (flow 26; Andesite of Oia of Druitt et al., 1999).

The lava succession on Therasia consists of many individual lava flows, coulées and

domes (termed flows for short). Individual flows range in thickness up to 60m (Fig-

ure 4.5a,b); thin flows tend to be dark grey and glassy, whereas thicker ones are pale

grey and de-vitrified. Many exhibit flow banding that is most evident in the thicker, de-

vitrified flows. The greatest accumulated thicknesses occur near Cape Tripiti (∼150m)

and Mount Viglos (∼200m), where, at each location, nine flows are stacked. Correl-

ations of individual flows between the Tripiti and Viglos sections is difficult, as only

two flows (3 and 4) are continuous between them. Flows 1 and 24 are compositionally

very similar, and are probably the same flow. This is also true of flows 11 and 22.

Most of the lava flows on Therasia are dacitic to rhyodacitic, with two exceptions.

First, the basal flows 1 and 24 are andesitic, and we refer to them jointly as the lower

Therasia andesite. Second, the topmost flow on Mount Viglos (flow 22) is also andesitic,

and we refer to this (and the compositionally similar flow 11) as the upper Therasia

andesite. Enclaves of quenched basaltic magma with crenulated margins occur in some

of the lowest lavas (flows 1 and 3; Figure 4.5c) and towards the top of the succession

(flows 22 and 25); rare gabbroic enclaves also occur. The chemistry of the different

units is discussed in more detail in Chapter 5. The widespread distribution of the

Therasia lavas show that they were fed from vents extending from the summit to the

western flank of the Skaros shield. The feeder dyke of flow 3 is preserved at Cape

Tripiti (Figure 4.1b, c). The dyke is oriented NE-SW, parallel to the main dyke trend

in northern Thera and the alignment of the recent vents on the Kameni Islands (Druitt

et al., 1999; Heiken and McCoy, 1984).

At least five dacitic pumice fall units and a phreatomagmatic tuff occur intercalated

within the Therasia succession (Figure 4.4). The pyroclastic units are concentrated

towards the top of the succession (younger than flow 7 at Tripiti and younger than
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Figure 4.1: Photos of the cliffs of Therasia, and the sketches drawn from them. Inset is
a map of Therasia, showing where the photos of the cliffs were taken from. CR = Cape
Riva, CTP = Cape Tripiti Pumice, US2 = Upper Scoria 2, MP = Middle Pumice
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Figure 4.2: Photos of the cliffs at (a) Oia and (b) Fira, and the sketches drawn from
them. Inset is a map of the north of Thera, showing where the photos of the cliffs were
taken from. Min = Minoan, CR = Cape Riva, Sk = Skaros, US2 = Upper Scoria 2
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Figure 4.5: Photos of the Therasia dome complex. (a) A thick dacitic dome above
the lower Therasia andesite. (b) The upper Therasia andesite on top of Mt Viglos
(c) A basaltic enclave in a dacitic flow (flow 3) (d) The Cape Tripiti pumice fall and an
overlying phreatomagmatic tuff (Pumice fall B) above lava flow 3 on the south coast of
Therasia. (e) Pumice fall D (f) The thick, orange soil between Upper Scoria 2 and the
lower Therasia andesite
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flow 20 at Viglos; Figure 4.4), showing an increasing tendency for explosive activity

with time during eruption of the Therasia dome complex. A single pumice fall deposit

crops out between flows 24 and 27 below Manolas.

The most prominent fall deposit is up to a metre thick and widespread in the cliffs

of southern Therasia (Figure 4.5d), but thickens considerably into paleotopography

along the southern side of Therasia. It occurs stratigraphically between lava flows 7

and 8, is well sorted, and contains sparsely phyric grey to beige pumices. It is the

product of a Plinian not recognised in previous studies. I named this unit the Cape

Tripiti pumice fall deposit.

Pumice fall B consists of thinly laminated surge deposits overlain by a pumice

fall containing angular shards of obsidian, characteristic of phreatomagmatic activity.

Pumice fall C is a well sorted, grey pumice fall, overlain in places by a laminated surge

deposit and then an ashy layer containing accretionary lapilli. Pumice fall C is only

exposed on the southern cliffs of the island, and is always above every lava. The Cape

Riva lies above. Pumice fall D has two magmatic components: a pale pumice, which

has blackened thermally in some of the larger pumices, and a red pumice. There were

also banded pumices, showing mixing continued up until eruption. In the exposure

at Cape Tripiti there was a breadcrust bomb ∼1m in diameter, although most of the

pumices were ∼ 101 cm at most (Figure 4.5e). Pumice fall E is only found beneath

Manolas; it consists of well sorted, light-coloured pumice.

Palaeosols occur at several levels in the Therasia succession. A thick one separates

the entire Therasia succession from Upper Scoria 2 (Figure 4.5f). Another separates

the lower Therasia andesite from overlying dacitic flows, showing that eruption of the

lower Therasia andesite was both preceded, and followed, by significant time breaks.

Local palaeosols also occur between some of the pyroclastic layers.

The andesite of Oia is both underlain and overlain by thick palaeosols. Long periods

therefore separated its eruption from both the preceding Upper Scoria 2 eruption and

the subsequent Cape Riva eruption. Four thin pumice fall layers (5–25 cm thick) occur
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within the palaeosol overlying the lava (sequence M11 of Vespa et al., 2006); they may

correlate with the pumice layers intercalated within the lavas on Therasia, but this has

not been checked chemically.

Products of the Cape Riva eruption are observed to overlie all lavas of the Therasia

dome complex. They have been described in detail by Druitt and Sparks (1982), Druitt

(1985), and Druitt et al. (1999). The products of the eruption are predominantly

dacitic, but minor amounts of andesitic scoria were erupted during the initial Plinian

phase.

4.3.2 Age constraints

Radiometric dating of the Therasia lavas

The ages of flows 1, 3, 21 and 25, as calculated by Dr Stéphane Scaillet, are reported as

probability density plots in Figure 4.6. Also plotted are the corresponding Gauss plots

that reflect the statistical distribution of individual ages for each sample. Complete
40Ar/39Ar analytical data are reported in Fabbro et al. (2013) and are summarized

in Table 4.1, along with 2σ errors. All four samples exhibit relatively well behaved
40Ar/39Ar systematics in the form of unimodal density plots, with no (or only slightly)

pronounced tails on either side of the mode. The homogeneity of the samples is reflected

by the linear arrays formed by individual ages on the Gauss plots, indicating that they

follow the distribution expected from the propagated Gaussian experimental errors.

One exception is flow 3, which exhibits an age spread in excess of the variance expected

from the analytical errors (i.e., excess-error scatter). This sample is, along with flow 1,

the least glassy of the four, and both are characterized by slightly higher errors and

some excess-error scatter. This suggests that flows 1 and 3 may have been affected

by post-cooling alteration close to sea level near the base of the sequence, resulting in

higher apparent ages (presumably due to K loss). In contrast, flows 21 and 25 are very

glassy and pristine, with unusually tight error bars; especially flow 21.
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Table 4.1: 40Ar/39Ar-ages for the Therasia dacites, from Fabbro et al. (2013)

Sample Unit Gauss-plot age (ka) Weighted mean age (ka)
SAN 09-43 Flow 25 25.3± 1.4 24.6± 1.3
SAN 10-13 Flow 21 33.1± 1.1 33.2± 1.1
SAN 10-12 Flow 3 40.1± 2.2 39.4± 2.2
SAN 10-11 Flow 1 49.4± 2.5 48.2± 2.4

To account for secondary alteration effects, the data from flows 1 and 3 were stat-

istically screened by computing a weighted mean age using a MSWD cut-off value.

This includes only the youngest sub-population conforming to a Gaussian distribution

within each sample (see procedure in Gansecki et al., 1996; Scaillet et al., 2011). In

every instance, the weighted mean age agrees with the age derived from the best-fit

line through the corresponding Gauss-plot array (Figure 4.6). In what follows we cite

the weighted mean ages.

The ages all are consistent with observed field stratigraphic constraints, as sum-

marized in Figure 4.7. The age of the basal flow (flow 1; 48.2 ± 2.4 ka) is consistent

with the presence of a palaeosol separating it from the underlying Upper Scoria 2 (pre-

viously dated by 40Ar/39Ar at 54 ± 3 ka by Druitt et al., 1999), and with another

palaeosol separating it from the overlying flow 3 (39.4 ± 2.2 ka). Flow 21 yields an

age of 33.2 ± 1.1 ka, and flow 25 (at Fira) gives an age of 24.6 ± 1.3 ka. Taken as a

whole, our 40Ar/39Ar data between the base (48.2 ka) and the top (24.6 ka) of the lava

sequence define a ∼24 ky duration for the construction of the Therasia dome complex.

Correlation of the Cape Tripiti Pumice with the Y-4 deep-sea ash layer

The Cape Tripiti pumice is the most prominent pyroclastic layer in the Therasia se-

quence, and we have explored the possibility that, like most Plinian eruptions of San-

torini, (Asku et al., 2008; Federman and Carey, 1980; Keller et al., 1978; Schwarz, 2000;

Vinci, 1985; Wulf et al., 2002), the Cape Tripiti eruption left a recognisable ash layer in

deep-sea sediments of the Aegean area. Previous studies have recognized a 2-7 cm-thick

ash layer (Y-4 ash) preserved to the SE of Santorini; this ash lies stratigraphically be-
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neath the Cape Riva Y-2 ash layer, and has an age of 25.8 ka estimated by interpolation

in the sedimentary sequence of one core (Schwarz, 2000). The uncertainty on this age

could be ±2 ka (J Keller, pers. comm). The mineralogy of the Y-4 ash (plag, opx, cpx)

pinpoints its source to Santorini (Vinci, 1985). Schwarz (2000) explored the possibility

that the Y-4 correlates with the rhyodacitic Plinian phase of Upper Scoria 2; however,

the 40Ar/39Ar age data described above rule out this correlation, and show that the

Y-4 lies chronologically in the period of the Therasia dome complex. I analysed the in-

terstitial glass of three pumice lumps from the Cape Tripiti deposit, and find excellent

agreement with glass composition of the Y-4 (Figure 4.8). A 26 ka age for the Cape

Tripiti is consistent with all other age constraints (Figure 4.7).

Synthesis of published dates for the Cape Riva eruption

The Cape Riva eruption has been dated previously by radiocarbon on charcoal from

beneath the ignimbrite and via d18O wiggle matching in deep-sea sequences hosting the

distal equivalent Y-2 tephra layer (data and sources in Table 4.2). Calibration of the
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raw radiocarbon data against the curve of Fairbanks et al. (2005) returns a mean age of

21.8± 0.4 ka for Cape Riva (Table 4.2). This yields an interval of 2, 800 ± 1, 400 (2σ)

years between the youngest dated Therasia lava (flow 25) and the Cape Riva eruption.

This is a maximum estimate for the interval separating the Cape Riva eruption from

the Therasia lavas, since some of the undated flows on Therasia may be younger than

flow 25, or a younger flow could have been erupted and not preserved.

4.4 Discussion

4.4.1 Reconstruction of events leading up to the Cape Riva

eruption

Construction of the ∼12 km3 basaltic-to-andesitic Skaros shield between 67 and 54 ka

represented a period where the eruption rate was close to the average for Santorini

(∼1 km3 ky−1; Druitt et al., 1999). The Skaros period culminated at 54 ka in the

Upper Scoria 2 explosive eruption. Following Upper Scoria 2, the system stagnated

and entered a ∼15 ky-long period of near-repose until effusive activity resumed at

about 39 ka. Only two lava flows are preserved in the cliffs of Therasia from this
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period: the ∼48 ka lower Therasia andesite (flows 1 and 24) and an inaccessible flow

(flow 2) immediately above it. The andesite of Oia could also belong to this period;

it is chemically very similar to Upper Scoria 2 and could be residual magma from

that eruption. This period of reduced activity, during which the apparent eruption

rate based on preserved products was very low (<0.1 km3 ky−1), is marked by the

development of thick palaeosols.

Any mantle-derived basalt injected into the crust during this period must have

been trapped at depth, perhaps due to the stress imposed by the high Skaros edi-

fice (Pinel and Jaupart, 2000). Accumulation of heat from prolonged, deep intrusion

probably generated silicic melt by a combination of fractional crystallisation, partial

melting of crustal rocks and defrosting of extant mushy intrusions (Barton et al., 1983;

Druitt et al., 1999; Huijsmans, 1985; Huijsmans and Barton, 1989; Mann, 1983). Then,

between 39 and 25 ka, a chemically monotonous series of dacites (the Therasia dome

complex) was extruded from the summit of Skaros and from dykes on its western flank.

The lack of any systematic variation of whole rock or groundmass (i.e., melt) composi-

tion with time during this period (Figure 4.7) suggests thermal buffering of the crustal

storage region by an approximate balance of heat input, heat output and latent heat

of crystallisation. The mean eruption rate during construction of the Therasia dome

complex was very approximately 0.1–0.2 km3 ky−1: lower than the long-term average

on Santorini (∼1 km3 ky−1), but higher than that during the preceding repose period.

Towards the end of the Therasia activity, lava extrusion became increasingly punctu-

ated by explosive activity. Any basaltic magma intruded beneath the summit region

over the 15 ky was unable to reach the surface, except as rare quenched enclaves of

dacite-contaminated olivine basalt. Towards the end of the period, basalt mixed with

dacite in approximately equal proportions, forming the upper Therasia hybrid andesite.

Following extrusion of the last Therasia lava, no more than 2, 800 ± 1, 400 years

elapsed before the 21.8 ± 0.4 ka Cape Riva eruption took place. At least 10 km3 of

880 °C Cape Riva dacite, poorer in incompatible elements, was then erupted as Plinian
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fallout and pyroclastic flows. The eruption also discharged a small quantity (�1 km3)

of hybrid andesite formed by the mixing of olivine basalt and incompatible-depleted

dacite in sub-equal proportions, and the Skaros-Therasia edifice collapsed (Druitt et al.,

1999).

4.5 Summary

• The Therasia dome complex is made up of at least 11 different domes and coulées,

with at least five pyroclastic deposits. The earliest dated flow is the lower Ther-

asia andesite, which was erupted at 48.2± 2.4 ka. Dacite eruption had begun by

39.4 ± 2.2 ka, and most of the Therasia dome complex was emplaced after this

date.

• The most prominent pyroclastic unit is the product of a previously unrecognised

Plinian eruption, named here the Cape Tripiti pumice. This pumice fall correlates

with the deep sea Y-4 ash layer. The Y-4 ash layer has been dated at ∼26 ka,

which is consistent with the 40Ar/39Ar ages of the lavas.

• The youngest dated lava flow was erupted at 24.6± 1.3 ka; this is 2, 800± 1, 400

years before the Cape Riva. This is a maximum estimate of the time between

the end of the Therasia eruptions and the onset of the Cape Riva eruption: some

of the undated flows of the Therasia dome complex may be younger, or younger

flows may have been buried by the caldera collapse that accompanied the Cape

Riva eruption.
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Chapter 5

Chemistry and petrology

5.1 Introduction

Because the Therasia dome complex directly underlies the deposits from the Cape Riva

eruption, it can be used to trace the evolution of the volcanic system in the build-up

to the Cape Riva eruption. The stratigraphic relations discussed in Chapter 4 provide

a framework which allows us to track the changes in magma chemistry and petrology

with time. The radiometric ages of the different Therasia units, and of the Cape Riva

eruption, constrain the timescales of these changes. From these ages we know that

the eruption of dacite commenced ∼18 ky before the Cape Riva eruption, and the last

Therasia lava was erupted at most 2 800± 1 400 years before the Cape Riva.

The petrology and chemistry of the Cape Riva products has already been studied

in some detail (Druitt, 1983, 1985; Druitt et al., 1999). The majority of the Cape

Riva deposits are dacitic, with 15–20wt% of crystals of plagioclase, two pyroxenes and

Fe–Ti oxides. The Cape Riva also has a minor hybrid andesite component. There is

no systematic variation of the composition of the dacitic component with stratigraphic

height, which suggests that a large body of homogeneous dacite existed in the crust be-

fore the onset of eruption. The collapse of the Skaros-Therasia edifice during the Cape

Riva eruption suggests that this magma body was located beneath Skaros-Therasia.

111
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Phase equilibria experiments constrain the depth of dacite storage before the eruption

to 8± 2 km (Cadoux et al., 2014). The hybrid andesite either underlain the dacite, or

was introduced shortly before eruption.

The Therasia lavas have not been studied in as much detail. Druitt (1983, 1985)

reported that the whole-rock major element compositions and petrology of the Therasia

dome complex are very similar to that of the Cape Riva. The majority of the lava flows

and pumice fall deposits that make up the Therasia dome complex are dacitic, like the

Cape Riva, and they have a similar phenocryst assemblage. Capping the Therasia

sequence is a hybrid andesite, that closely resembles the one found in the Cape Riva

deposits. These similarities, along with the fact that the vents for the Therasia dome

complex were located in the area that subsequently collapsed to form the Cape Riva

caldera, led to the Therasia dacites being interpreted as leaks from the growing Cape

Riva magma chamber.

Before the crystal zoning patterns—and the ages recovered from diffusion mod-

elling—can be interpreted, the wider context needs to be understood. This chapter

looks at what the chemistry and petrology can tell us about the processes that occurred

in Santorini’s plumbing system prior to the Cape Riva eruption.

5.2 Methodology

Representative samples of lava and pumice from the Therasia complex, and pumice

and scoria from the Cape Riva deposits, were collected for chemical analysis. All

samples were chosen to be as fresh and glassy as possible. Groundmass separates of

selected lavas were obtained in order to analyse the compositions of the melt phases

of the magmas. This was done using a magnetic separator, and interstitial glasses of

pumice samples were concentrated by flotation in water. Remaining crystals were then

removed by hand picking under an optical microscope.

Major elements were analysed using inductively coupled plasma atomic emission
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spectroscopy (ICP AES) at the Laboratoire Magmas et Volcans, Université Blaise

Pascal, Clermont-Ferrand. Measurements were calibrated using three standards: a

blank (LiBO2), basalt (BR) and granite (GH). The DR-N and BHVO-2 standards

were then passed as unknowns. Trace elements were analysed using inductively coupled

plasma mass spectroscopy (ICP MS) at the Institut des Sciences de la Terre, Université

de Grenoble. The ICP MS analyses were calibrated using the BR standard, and the

BVHO-2 and AGV-1 standards were passed as unknowns. Some previous Cape Riva

samples of Druitt et al. (1999) were re-analysed for comparison with the data of those

authors. These comparisons showed good agreement between the two datasets for the

elements used in the present paper.

Phenocryst contents were calculated by mass balance from incompatible element

concentrations in the whole rock and groundmasses (Y, Zr, Nb, La, Ce, Pr, Nd, Sm,

Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Ta, Tl, Pb). The concentrations of these elements

in the groundmass separates was plotted against their concentration in the whole rock

analyses, and they were fit using a linear regression through the origin. By assuming the

concentrations of these elements is negligible in the crystals, it is possible to calculate

the total crystal content.

Mineral compositions were analysed using the Cameca SX 100 electron microprobe

at the Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand,

using a beam current of 15 nA. Glasses were analysed with a beam current of 4 nA

and a defocussed beam (10–15 µm) in order to limit Na loss. Fe-Ti oxide compositions

were analysed either in touching pairs or in pairs (that would have been in contact

with the same melt) adhering to the outside of the same pyroxene crystal. Magmatic

temperatures and oxygen fugacities were calculated with the ILMAT software package

(Lepage, 2003) using the formulation of Andersen and Lindsley (1985) and Stormer

(1983). This formulation has been found to give good agreement with data from

phase-equilibria experiments within the 850–950 °C temperature range (Blundy and

Cashman, 2008; Cottrell et al., 1999). These were compared to the temperatures
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calculated using the method of Ghiorso and Evans (2008), obtained from the calculator

on the authors’ website (http://ctserver.ofm-research.org/webcalculators.html).

5.3 Results

5.3.1 Mineral chemistry and assemblages

In this section I focus on the petrology and chemistry of Therasia lavas and pumices

younger than ∼39 ka (i.e., flow 3), as well as the products of the Cape Riva eruption

(Figure 5.1). The lower Therasia andesite, and the andesite found at Oia are only

discussed briefly, as they are significantly older than the bulk of the Therasia dome

complex. In so doing we focus on the effusive leaks of dacite during the build-up to

the Cape Riva eruption. The zoning patterns of plagioclase and orthopyroxene crystals

from the dacites are discussed in more detail in Chapters 6 and 7, respectively.

Andesite of Oia

The andesite of Oia is found only underneath Oia. Its precise stratigraphic position

relative to the lavas on Therasia is unknown, however as it sits above the Upper Scoria 2

deposits and below four Therasia pumice falls, it likely was erupted near the beginning

of the Therasia sequence. It has a whole rock SiO2 of 57.3wt% and an MgO content of

3.5wt%. It is crystal-poor, with 7.8 vol% crystals of plagioclase and pyroxene. It has

a glassy groundmass with 58wt% SiO2 and 3.5wt% MgO.

Figure 5.1 (facing page): Mineral compositions from the different rock units. Filled
symbols are crystal cores or undifferentiated measurements, open symbols are crystal
rims. Plagioclase populations are coloured according to their origin: orange symbols are
groundmass crystals, blue symbols are populations that originated in a silicic magma
and green symbols are populations that originated in a mafic magma. Some Cape Riva
data taken from Druitt et al. (1999). The fields of pyroxene compositions in the dacites
(a, d) are shown on the other figures, for comparison

http://ctserver.ofm-research.org/webcalculators.html
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Lower Therasia andesite

The lower Therasia andesite has 56.2wt% SiO2 and 4.1wt% MgO. It has 23.6wt%

crystals of plagioclase, pyroxene and olivine, set in a highly crystalline groundmass of

acicular plagioclase, pyroxene and Fe-Ti oxides with 57.4wt% SiO2.

Therasia dacites

The Therasia dacites have whole rock SiO2 contents of 64.6–68.7wt% and MgO con-

tents of 0.7–1.5wt%, with groundmass (i.e. melt) SiO2 contents of 64.7–69.1wt%.

No systematic evolution of either whole rock or groundmass composition is observed

with height in the lava succession. The dacites contain 1–17wt% phenocrysts (with

a smallest dimension >0.5mm) of plagioclase (75–85 vol%), two pyroxenes (10–20%,

with opx> cpx), Fe–Ti oxides (5–8%) and trace amounts of olivine (Table 5.1). Apatite

occurs as inclusions in orthopyroxene crystals. The glassy groundmass contains microl-

ites of feldspar and Fe–Ti oxides. The petrology of flows 3 (GS10-27a), 5 (GS10-17),

8 (GS10-14) and 9 (GS10-16) were studied in detail.

The free-floating crystals can be split into three groups: phenocrysts, xenocrysts,

and groundmass microlites. Some of the crystals are grouped into clusters, and these

clusters can be split into two groups: glass-bearing clusters and subsolidus nodules.

Phenocrysts: Plagioclase phenocrysts are normally zoned, with cores of An50−89

and rims of An39−51, and commonly contain multiple internal dissolution sur-

faces and sawtooth zoning. The rims are euhedral, and are compositionally

similar to plagioclase microlites in the groundmass. The anorthite content

of the mode of the phenocryst population varies slightly between flows. The

some unzoned plagioclases, and the cores of some sawtooth-zoned plagio-

clases, in flow 5 have large, brown glass inclusions. These glass inclusions

were not seen in the other flows. Orthopyroxene phenocrysts are euhedral

and have compositions of Wo3−4En53−60Fs37−43. Most of the orthopyroxenes

have a #Mg of 58–64 and are unzoned, however a few crystals have either
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Table 5.1: Total and modal crystal contents for the Therasia dome complex. Modal
mineral compositions given as a percentage of the total crystal content.

Total
crystal

Sample Unit1 Flow content Plagioclase Pyroxene Opaques Olivine2

GS10-50 AO 26 7.8%
GS10-44b LTA 1 23.6% 79.0% 18.7% 2.0% 0.3%
GS10-27a TD 3 8.6% 74.2% 18.6% 7.3% n.d.
GS10-17 TD 5 4.0% 72.9% 20.3% 6.8% n.d.
GS10-14 TD 8 5.2% 80.1% 13.5% 6.4% n.d.
GS10-16 TD 9 6.9%
GS10-30a TD 19 2.3% 79.3% 12.9% 7.9% n.d.
GS10-20 TD 20 5.1% 75.5% 15.8% 8.5% 0.3%
GS10-48 TD 21 2.3% 84.9% 9.8% 5.4% n.d.
GS10-40 TD 25 4.6%
GS10-27d CTP A 16.7%
GS10-27h TP C 4.7% 93.3% 3.6% 3.0% n.d.
GS10-28c TP D 0.6%
GS10-28f TP D 1.3%
GS10-28d TP D 0.3%
GS10-22 UTA 22 25.4% 75.9% 18.5% 5.5% 0.1%

Total crystal contents are in wt%, mineral modes are in vol%
1 AO: andesite of Oia, LTA: lower Therasia andesite, TD: Therasia dacite (lavas),
CTP: Cape Tripiti pumice, TP: Therasia pumice fall, UTA: upper Therasia
andesite.

2 n.d.: none detected

cores or mantles with a #Mg of 65–71. Clinopyroxenes are also euhedral

and poorly zoned, and their compositions are Wo40−42En42−43Fs15−17.

Xenocrysts: Xenocrysts of calcic plagioclase (An60−89) occur frequently in the

dacites, along with more calcic clinopyroxenes (Wo47−50En30−44Fs8−20).

Groundmass microlites: Acicular plagioclase is the dominant groundmass phase.

Most crystal have compositions of An30−51, although flow 9 contains some

ternary feldspars which contain up to 47mol% orthoclase (KAlSi3O8).

Glass-bearing clusters: These clusters were found in all the lavas studied ex-

cept flow 5, and contain euhedral crystals of plagioclase, orthopyroxene and

clinopyroxene. Plagioclases in these clusters are similar to those found freely

floating in the magma; their composition varies in a similar fashion to the
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phenocrysts, with cores of An44−70 and rims of An40−51. However, they lack

melt inclusions or saw-tooth zoning sometimes found in the free-floating

phenocrysts. Both orthopyroxene and clinopyroxene crystals in the clusters

have the same composition as those found individually in the magma, with

compositions of Wo3−4En54−60Fs36−42 and Wo40−42En39−42Fs16−22, respect-

ively. Between the crystals are pockets of brown glass, and electron micro-

probe analyses (with the beam opened to 10–20µm) show these glass pockets

to have similar composition to the groundmass (Table 5.2).

Subsolidus nodules: Alongside the glass-bearing clusters, there are holocrystal-

line nodules of plagioclase, pyroxene and sometimes olivine. The plagioclases

in these clusters vary from flow to flow. In flow 3 they are highly calcic (An89)

and unzoned apart from a small syn-eruptive overgrowth on crystal faces ex-

posed to the melt. The sub-solidus plagioclase crystals in flows 5 and 9 are

similar to each other. They have variably calcic cores (An50−84), but their

rims are roughly in equilibrium with their host magma (An41−43 in flow 5,

An48 in flow 8). Most of the orthopyroxenes from sub-solidus clusters have

similar compositions to the phenocrysts, however there are a small number of

more magnesian crystals (up to En69). Clinopyroxenes that resemble those

free-floating in the lavas are found in these clusters, along with another group

of more calcic pyroxenes. These match the composition of the clinopyroxenes

found in the mafic blebs (Wo47−50En30−44Fs8−20, discussed below). Olivines

are only found in the holocrystalline clusters, and have not been observed as

individual crystals. They often show textures characteristic of sub-solidus

reactions, such as olivines breaking down to form magnetite–pyroxene sym-

plectites. They are unzoned, and have a range of compositions from Fo51 to

Fo62.

The similarity between phenocryst rims and groundmass microlite compositions

suggests an equilibrium phenocryst rim assemblage in these lavas. The zoning patterns
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Table 5.2: Average glass compositions inside glass-bearing clusters and groundmass
compositions, measured using a defocused electron microprobe beam

Flow 3 Flow 8 Flow 9
Cluster Groundmass Cluster Groundmass Cluster Groundmass
n=2 n=2 n=1 n=2 n=3 n=4

O
xi
de

(w
t%

)

SiO2 69.97 67.12 68.48 69.67 68.73 69.74
K2O 3.00 2.96 5.05 3.22 5.38 3.46
CaO 1.84 3.16 1.58 2.39 1.15 2.20
FeO 3.39 3.71 3.35 2.89 3.70 3.08
Na2O 5.35 5.08 4.01 5.21 3.48 5.15
Al2O3 13.34 15.61 14.11 14.99 12.21 14.88
MgO 0.29 0.52 0.31 0.37 0.43 0.40
TiO2 0.81 0.49 0.67 0.65 0.73 0.59
MnO 0.09 0.10 0.08 0.10 0.09 0.09
Cr2O3 0.00 0.03 0.03 0.00 0.01 0.00
P2O5 0.15 0.14 0.16 0.13 0.14 0.05
Total 98.22 98.92 97.82 99.61 96.07 99.64

of the plagioclase and orthopyroxene are interpreted as recording varying melt com-

position during phenocryst growth, and are discussed in more detail in Chapters 6 and

7.

The glass-bearing clusters are interpreted as growing alongside the free-floating

phenocrysts, but in a mush zone on the reservoir margins. This is supported by

the textural and compositional similarity between the plagioclase, orthopyroxene and

clinopyroxene found in these clusters and the phenocrysts, along with the fact that the

glass within these clusters has the same composition as the glass outside. The euhedral

shape of the crystals also suggests that these crystals have a simple growth history and

they are not, for example, remelted plutonic mush.

The subsolidus nodules are interpreted as fragments of gabbro derived from plutonic

material related to previous intrusions. Their holocrystalline nature is evidence that

they represent magma that has fully solidified. The presence of symplectites in some

of these clusters implies prolonged storage at elevated—but subsolidus—temperatures.

Variations in the crystals in holocrystalline clusters in different flows suggest that the

plutonic material they are derived from is heterogeneous.
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Therasia mafic enclaves

Quenched basaltic (49.6–51.8wt% SiO2; 5.4–8.6wt% MgO) enclaves 1–10 cm in dia-

meter are found in flows 3 and 11, where they make up <1% of the erupted volume.

They contain phenocrysts of plagioclase (∼55 vol%), pyroxenes (∼35 vol%, with

cpx� opx) and olivine (∼10 vol%) set in a glassy, diktytaxitic groundmass. Two

populations of plagioclase phenocrysts with different core compositions, but similar

rim compositions, are observed: (1) normally zoned crystals with cores of An83−91

and rims of An64−71; (2) reversely zoned crystals with cores of An51−61, separated

by a sieve-textured zone from rims normally zoned from An82−86 to An64−71. Pla-

gioclase in the groundmass is An32−42. Olivines are normally zoned from cores of

Fo77−82 to rims of Fo53−60. Two clinopyroxene populations are found, although their

textural relationships with the plagioclase populations are ambiguous. Both cpx popu-

lations are euhedral and unzoned, with compositions of (1) Wo43−46En42−46Fs10−12 and

(2) Wo41−44En39−43Fs15−20. Rare orthopyroxenes with compositions of Wo3En67Fs30

also occur.

The occurrence of two plagioclase populations with different core compositions, but

similar, intermediate rim compositions is indicative of magma mixing. Plagioclases of

population 1 are interpreted as derived from a basaltic melt, and those of population 2

from a more evolved melt. The cores of olivine crystals (molar Mg/Fe=3.37–4.64)

are in equilibrium with the whole rock (i.e., basaltic) composition (Mg/Fe=1.20),

assuming a crystal-melt partition coefficient of between 0.26 and 0.36 (Roeder and

Emslie, 1970). The composition of population-2 clinopyroxenes is similar to that of

the clinopyroxene phenocrysts in the dacite. The enclaves are interpreted as having

formed by the in-mixing of a small proportion of more evolved magma (possibly dacitic,

containing population-2 plagioclase cores + population-2 cpx) into a basalt (contain-

ing population-1 plagioclase cores + olivine + population-1 cpx; Figure 5.2). Mixing

occurred long enough prior to eruption for plagioclase from the evolved component to

partially melt (generating sieve texture), followed by overgrowth of equilibrium rim
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Figure 5.2: Summary of plagioclase populations in the Cape Riva and Therasia rocks.
The numbers are the molar per cent anorthite content of the plagioclase

compositions on plagioclases from both populations.

Upper Therasia andesite

The upper Therasia andesite (60.5wt% SiO2, 2.6wt% MgO) contains 26wt% macro-

scopic crystals: plagioclase (75 vol%), pyroxenes (20%, with opx≈ cpx), Fe–Ti oxides

(5%) and trace amounts of olivine set in a glassy, 64wt% SiO2 groundmass contain-

ing microlites of plagioclase and magnetite (Table 5.1). Three distinct populations of

plagioclase are observed: (1) normally zoned crystals with cores of An83−89, and eu-

hedral rims of An57−61; (2) crystals with cores of An53−60 separated by a sieve-textured

zone from rims normally zoned from An75−87 to An55−70; (3) normally zoned crystals

with cores as calcic as An76 and rims of An36−55. Rare olivines have cores of Fo80−83,

and rims of Fo67−69. Orthopyroxenes have compositions of Wo3En57−59Fs38−39, and
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clinopyroxenes have compositions of Wo39−42En40−43Fs15−20.

Plagioclase populations 1 and 2 texturally and compositionally resemble plagioclase

populations 1 and 2 (respectively) in the basaltic enclaves; population 3 resembles

plagioclase phenocrysts in the dacites. The olivine rims have a molar Mg/Fe ratio of

1.99–2.22, which is in, or close to, equilibrium with the groundmass (Mg/Fe=0.76),

assuming a partition coefficient of between 0.26 and 0.36 (Roeder and Emslie, 1970);

the cores have an Mg/Fe ratio of 4.11–4.81 and grew in equilibrium with a basaltic

melt. The two pyroxenes are indistinguishable from the same phases in the dacites.

The upper Therasia andesite is interpreted as a hybrid magma formed by the mixing

of the basalt (containing plagioclase of populations 1 and 2 + olivine) represented by

the enclaves, with typical Therasia dacite (containing population-3 plagioclase + opx

+ cpx; Figure 5.2). Mixing occurred long enough prior to eruption to permit physical

homogenization of the resulting hybrid melt, but not long enough for crystals to grow

rims in equilibrium with that melt, or for those from the dacite to be resorbed.

Cape Riva dacite

Dacitic pumices of the Cape Riva eruption have whole rock compositions of 64–67wt%

SiO2 and 1.0–1.9wt% MgO, and interstitial glasses with 70–72wt% SiO2. Phenocryst

phases and proportions are the same as in the Therasia dacites, with total contents

ranging from 15 to 20wt%. Plagioclase phenocrysts are euhedral, with rims of An36−40,

and cores as calcic as An60. As in the Therasia dacites, plagioclase phenocrysts in the

Cape Riva dacite contain complex dissolution surfaces and saw tooth zoning. Rare

xenocrysts of An70−96 also occur. Orthopyroxene phenocrysts have compositions of

Wo3En52−68Fs45−29, and clinopyroxenes from Wo44En41Fs15 to Wo40En36Fs24.

Cape Riva mafic enclaves

Millimetre-sized quenched blebs of basaltic magma occur dispersed (�1%) through the

Cape Riva dacite, and in banded pumices containing the dacite and andesite mingled



5.3. Results 123

together. They contain An90−96 plagioclase, Fo72−84 olivine, Wo41−44En36−41Fs15−23

cpx and rare Wo3En68Fs29 opx. The enclaves have micro-crenulated surface textures,

and many have a single crystal or xenocrystic fragment at their centres. They are

interpreted as small fragments of chilled basaltic magma.

Cape Riva andesite

The Cape Riva andesitic scoria has 60–62wt% SiO2 and 3.2–2.5wt% MgO; it contains

∼12wt% macroscopic crystals of plagioclase, olivine, clinopyroxene and magnetite set

in brown dacitic glass with 63.5wt% SiO2. The pure andesitic component (free of any

in-mingled streaks of dacite) contains two populations of plagioclase: (1) a calcic pop-

ulation of An70−96, with a discrete population of euhedral, unzoned grains of An90−96,

and (2) a less abundant population with cores up to An52 and rims of An30−40. Oliv-

ines are compositionally uniform (Fo84). Augites occur sparsely as microphenocrysts

of Wo40−41En41−43Fs19. No orthopyroxene has been observed.

The olivines and population-1 plagioclases in the andesite resemble phenocrysts

present in the basaltic enclaves, whereas population-2 plagioclase resembles pheno-

crysts in the dacites. Genesis of the Cape Riva andesite is inferred to have involved

the mixing of basaltic and dacitic magmas (Figure 5.2). Eruption occurred long after

mixing for the hybrid glass to become homogeneous at the scale of the electron beam

(∼10µm).

5.3.2 Whole rock chemistry and mixing systematics

Whole rock analyses of representative samples of each unit are shown in Table 5.3, and

representative groundmass analyses in Table 5.4. The complete dataset is presented

in Appendix B. We have used a series of variation diagrams showing the whole rock

compositions of the Therasia and Cape Riva magmas, plus those of the lavas of the

Skaros shield (from Huijsmans, 1985) to gain insight into the petrogenesis of the dif-
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ferent magmas (Figs 11 and 12). Typical fractionation trends for Santorini magmas

are also shown (Mann 1983; Huijsmans 1985; Druitt et al. 1999).

Figure 5.3 shows the variations of five key major oxides (CaO, MgO, FeO, TiO2,

P2O5) and two strongly compatible trace elements (Cr and Ni). On the plots of CaO

and MgO (also Na2O, Al2O3, V and Sc) on which typical fractionation trends are weakly

curved, all the Therasia and Cape Riva magmas fall on, or close to, the fractionation

trend. However, on the plots of FeO, TiO2, P2O5, Cr and Ni, on which the fractionation

trends are strongly curved, the Cape Riva hybrid andesite falls systematically off the

fractionation trend. This is what we would expect to see if it was generated by the

mixing of mafic and silicic end-members. The upper Therasia hybrid andesite also

falls off the fractionation trend on plots of FeO and TiO2, it does not on the other

plots because mixing occurred along the fractionation trend, not across it. The lower

Therasia andesite has slightly lower FeOtot and TiO2, suggesting it may also be a hybrid.

The andesite of Oia, however, sits near the top of the TiO2 peak (Figure 5.3), showing

that it is the product of fractionation and not mixing. Geochemically it is similar to

the Upper Scoria 2, with slightly lower Al2O3 and Sr than the other Therasia andesites.

This may mean that the andesite of Oia is left over magma from the Upper Scoria 2

eruption, or that it was produced by the same processes.

Mixing models using the ‘PetroGraph’ software (Petrelli et al., 2005) successfully

reproduce the compositions of the upper Therasia and Cape Riva hybrid andesites

(Table 5.5). In the case of the upper Therasia andesite, low Cr and Ni require the

mafic end-member to also have low Cr and Ni. The relatively high P2O5, close to

the fractionation trend, requires the silicic end-member to have a high P2O5 content,

limiting it to a silica content of 64–67wt%. The upper Therasia andesite can be

successfully reproduced by mixing ∼60wt% of a typical Therasia dacite with ∼40wt%

of mafic magma with the same composition as a basaltic enclave (GS10-43) collected

from the same flow (sum of the squares of the residuals of 0.16). The Cape Riva

andesite has higher Cr and Ni than the upper Therasia andesite, requiring that the
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Table 5.3: Representative whole rock analyses of the Therasia and Cape
Riva products

Therasia Upper
mafic Therasia Therasia Cape Riva Cape Riva
enclave andesite dacite andesite dacite

Sample GS10-43 GS10-22 GS10-17 S09-41 S09-40
Unit Flow 22 Flow 22 Flow 5 Cape Riva A Cape Riva A

Major elements (ICP-AES, wt% dry)
SiO2 51.87 60.26 66.00 60.19 65.84
Al2O3 19.07 17.16 15.38 16.43 15.40
TiO2 0.89 0.86 0.75 0.88 0.76
FeOT

1 8.08 6.05 4.66 6.58 4.88
MgO 5.44 2.66 1.08 3.17 1.16
CaO 10.16 5.98 3.15 6.20 3.28
Na2O 3.30 4.52 5.48 4.63 5.84
K2O 0.90 2.18 3.19 1.56 2.45
MnO 0.16 0.14 0.13 0.16 0.16
P2O5 0.14 0.19 0.18 0.19 0.22
Trace elements (ICP-MS, ppm)
Li 16.2 18.1 25.5 16.4 17.4
Sc 25.9 17.4 13.9 23.4 13.8
V 193.0 109.0 30.1 139.0 30.2
Cr 31.30 9.52 1.17 27.10 0.60
Ni 15.80 5.65 0.86 14.20 2.57
Rb 25.8 68.1 104.0 50.0 71.7
Sr 323 231 133 185 127
Y 23.8 37.9 50.8 38.5 45.9
Zr 108 200 321 175 250
Nb 4.71 9.47 12.90 7.12 9.44
Ba 251 391 513 297 375
La 11.9 23.5 32.2 19.0 23.7
Ce 26.9 49.5 66.5 40.7 50.5
Pr 3.37 5.93 7.70 4.98 6.09
Nd 14.2 23.4 30.1 20.4 24.6
Sm 3.43 5.40 6.91 5.14 5.77
Eu 0.97 1.29 1.43 1.29 1.34
Gd 3.67 5.57 7.14 5.56 6.44
Tb 0.62 0.92 1.20 0.95 1.07
Dy 3.92 5.96 7.94 6.16 7.06
Ho 0.84 1.27 1.68 1.33 1.54
Er 2.53 3.89 5.20 4.11 4.77
Yb 2.42 3.94 5.30 4.08 4.92
Lu 0.37 0.59 0.81 0.62 0.75
Hf 2.78 5.27 7.51 4.69 6.22
Ta 0.29 0.63 0.92 0.50 0.64
1 FeOT is the total FeO and Fe2O3 content calculated as FeO
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Table 5.4: Representative groundmass analyses of the Ther-
asia and Cape Riva products

Upper
Therasia Therasia Cape Riva Cape Riva
andesite dacite andesite dacite

Sample GS10-22 GS10-17 S09-41 S09-40
Unit Flow 22 Flow 5 Cape Riva A Cape Riva A

Major elements (ICP-AES, wt% dry)
SiO2 63.67 67.99 61.53 69.88
Al2O3 15.44 14.70 16.98 15.05
TiO2 0.79 0.63 0.74 0.48
FeOT

1 5.60 4.03 5.96 3.31
MgO 2.39 0.85 2.62 0.53
CaO 4.62 2.34 5.86 2.14
Na2O 4.55 5.91 4.92 5.86
K2O 2.60 3.25 1.82 2.95
MnO 0.14 0.12 0.15 0.12
P2O5 0.20 0.19 0.17 0.16
Trace elements (ICP-MS, ppm)
Li 20.3 26.9 17.7 20.4
Sc 18.5 14.2 24.6 14.8
V 80.8 14.5 126.0 8.3
Cr 8.41 0.76 21.20 4.33
Ni 4.62 0.75 14.60 5.48
Rb 89.0 105.0 60.2 101.0
Sr 176 108 197 105
Y 44.9 53.6 44.2 61.1
Zr 271 334 214 341
Nb 11.40 13.30 7.58 11.60
Ba 455 542 323 460
La 27.9 33.9 20.5 28.9
Ce 63.2 70.2 43.6 61.6
Pr 7.07 8.22 5.41 7.40
Nd 27.9 31.9 21.6 29.5
Sm 6.31 7.16 5.28 7.09
Eu 1.20 1.33 1.27 1.28
Gd 6.40 7.35 5.68 7.50
Tb 1.09 1.27 0.97 1.29
Dy 7.12 8.43 6.58 8.58
Ho 1.51 1.80 1.41 1.87
Er 4.64 5.53 4.32 5.81
Yb 4.69 5.74 4.37 6.09
Lu 0.72 0.87 0.66 0.94
Hf 6.73 8.38 5.14 8.07
Ta 0.81 0.98 0.52 0.82
1 FeOT is the total FeO and Fe2O3 content calculated as FeO
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mafic end-member also has higher contents of these elements. The composition of the

Cape Riva andesite can be modelled by mixing ∼60wt% of Cape Riva dacite with

∼40 wt% of an average Skaros basalt (sum of the squares of the residuals of 0.14).

However, the calculated Ni content is higher than that measured in the Cape Riva

andesite, suggesting that the mafic endmember had lower Ni than the average Skaros

basalt.

Despite their broadly similar compositions in terms of silica content and many other

major and trace elements, most of the Therasia dacites are enriched in incompatible

elements such as K, Rb and Zr (also Nb, Ta, Th, Hf and LREE) compared to the

Cape Riva dacite (Figure 5.4). LREE are also more enriched in the Therasia dacites

relative to the HREE. For example, the Therasia dacites have an average La/Yb ratio

of 5.91 ± 0.16 (2σ), while the Cape Riva dacite has a ratio of 4.85 ± 0.04. Amongst

the HFSE, Nb and Ta are more enriched than Zr and Hf. The 23 analysed samples of

Cape Riva pumice form a tight linear cluster on Figure 5.4, showing that the magma

was well mixed. All of the 11 analysed Therasia lavas younger than ∼39 ka, and most

of the intercalated pumice horizons, similarly form a tight linear cluster (at higher

incompatible contents than the Cape Riva, for a given SiO2 content). However, some

of the Therasia pumices overlap with the Cape Riva field for some elements. Most

prominent of these is the Cape Tripiti pumice, which lies in, or close to, the Cape Riva

field for most incompatible elements except K, suggesting that the magma that fed the

Cape Tripiti eruption had some chemical characteristics intermediate between the two

groups of dacite.

The differences between the Therasia and Cape Riva dacites are also seen between

the corresponding hybrid andesites of these two series. Despite having a similar SiO2

content, the upper Therasia hybrid andesite is enriched in incompatible elements com-

pared to the Cape Riva hybrid andesite (e.g. 2.1wt% K2O compared to 1.7wt%, re-

spectively). Like the Therasia dacites, the Therasia andesite is also enriched in LREE

relative to HREE, and enriched in Nb and Ta relative to Zr and Hf compared top the
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Figure 5.4: Incompatible element variation diagrams. (a–c) Therasia and Cape Riva
data are plotted as points, along with the Skaros data of Huijsmans (1985) and Upper
Scoria 2 data of Druitt et al. (1999). Mixing models for the upper Therasia andesite
and the Cape Riva andesite are plotted, as in Figure 5.3. Fields of Santorini magma
during the volcanic history since 530 ka are plotted, showing the long-term decrease in
incompatible element concentration at Santorini Druitt et al. (1999); Huijsmans (1985);
Martin (2005). (d) REE diagram showing the Therasia and Cape Riva magmas. The
Therasia dacite is an average of 14 flows with 65–68wt% SiO2, and the Cape Riva dacite
is an average of four analyses with SiO2 contents of 66–67wt% (mean: 66.5wt%). The
upper Therasia andesite is an average of flows 11 and 22 (mean: SiO2 60.5wt%), and
the Cape Riva andesite is an average of three analyses with SiO2 contents between 60.2
and 60.4wt% (mean: 60.4wt%)
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Table 5.6: Temperatures, T , and oxygen fugacities, fO2, of the three Therasia
pumice fall units analysed, calculated using Fe–Ti oxide compositions using the
two formulations discussed in the text.

Andersen and Lindsley (1985)
with Stormer (1983) Ghiorso and Evans (2008)

Unit T (°C) log(fO2) T (°C) log(fO2)
Therasia:
Cape Tripiti 896± 12 −12.7± 0.3 901± 14 −12.7± 0.4
Pumice fall B 926± 9 −11.4± 0.2 956± 12 −10.9± 0.3
Pumice fall C 875± 5 −13.4± 0.1 876± 9 −13.4± 0.2
Cape Riva1 879± 11 −12.9± 0.2 891± 12 −12.6± 0.3

Errors are 2σ, where σ is the standard error of the mean.
1 Data from Cadoux et al. (2014)

Cape Riva andesite. This is also reflected in the calculated mafic mixing end-members

of the two hybrid andesites shown on Figure 5.4, although the difference is subtle.

5.3.3 Magmatic temperatures

Magmatic temperatures calculated from Fe–Ti oxide compositions from three pumice

falls from the Therasia dome complex are reported in Table 5.6. Using the formulation

of Andersen and Lindsley (1985) and Stormer (1983), temperatures for the Cape Tripiti

pumice and pumice fall C range from about 875 °C to 895 °C, and log(fO2) from −12.7

to −13.4 (at, or slightly below the FMQ oxygen buffer; Figure 5.5). These conditions

are close to what Cadoux et al. (2014) found for the Cape Riva (879± 15 °C and

log [fO2] = −12.9± 4). Pumice fall B is hotter and more oxidised, with a temperature

of about 925 °C and an oxygen fugacity on the NNO buffer. The temperatures and

oxygen fugacities of the Cape Tripiti pumice and pumice fall C calculated using Ghiorso

and Evans (2008) are in excellent agreement. However, the temperatures of pumice

fall B calculated using Ghiorso and Evans’s formulation are about 20 °C hotter, and

the oxygen fugacities are about 0.5 log units higher.
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Figure 5.5: Temperature and oxygen fugacities of the three Therasia pumice fall units
analysed, calculated using Fe–Ti oxide compositions using the formulation of Andersen
and Lindsley (1985) and Stormer (1983). Large symbols with error bars are averages,
errors are 2σ, where σ is the standard error of the mean. Cape Riva data from Cadoux
et al. (2014) shown for comparison. NNO and FMQ oxygen buffers are calculated at
2 kbar, and are taken from Huebner and Sato (1970) and Frost (1991), respectively.

5.4 Discussion

5.4.1 Origin of the magma series

The Therasia and Cape Riva dacites have similar whole rock major element com-

positions (for all major elements except K), phenocryst assemblages, phenocryst rim

compositions and Fe–Ti oxide temperatures, although the Cape Riva dacite has slightly

more evolved interstitial melt. The main difference between the two magmas is that

the Cape Riva dacite is depleted in incompatible elements compared to the Therasia

dacite. The Cape Riva hybrid andesite is also incompatible-depleted relative to the

upper Therasia hybrid andesite, and there are indications that the basaltic mixing

end-members were similarly different. Throughout most of the 15 ky over which the

Therasia dome complex was constructed, the eruptions tapped typical Therasia-type

dacite. However, the 26 ka Cape Tripiti eruption tapped dacite with some incompatible

trace element contents intermediate between those of Therasia and Cape Riva.
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Since the Therasia and Cape Riva magma series form parallel trends on incompat-

ible element variation diagrams (Figure 5.4), and have different LREE/HREE ratios,

they cannot be related to each other simply by closed-system crystal fractionation

schemes like those explored in previously published papers (Druitt et al., 1999; Mann,

1983; Nicholls, 1971). Neither can the Cape Riva dacite be generated by simple back-

mixing of Therasia dacite with an incompatible-depleted basalt, since mixing would

displace the silicic compositions almost parallel to the compositional trends rather than

perpendicular to them. Crustal contamination of Therasia dacite to produce Cape Riva

dacite is also unlikely, as this would be expected to increase incompatible element con-

centrations, not decrease them (Barton et al., 1983; Druitt et al., 1999). Moreover,

the two dacite types have very similar whole-rock 87Sr/86Sr ratios (0.7050 and 0.7049

respectively; Briqueu et al., 1986; Druitt et al., 1999; Zellmer et al., 2000), ruling out a

significant difference in the extent of upper crustal contamination. The Therasia and

Cape Riva magma series (basalt, dacite and hybrid andesite in each case) represent

two fundamentally distinct magma batches that cannot be related to each other in any

simple way by shallow-level processes.

This conclusion is supported by comparison of the two magma series with longer-

term geochemical trends at Santorini (Druitt et al., 1999; Huijsmans, 1985; Huijsmans

et al., 1988). The same incompatible elements have decreased progressively in Santorini

magmas over the last 530 ka, such that the lavas of the historical Kameni Volcano are

the most incompatible-depleted (Figure 5.4). The difference between the (older) Ther-

asia and (younger) Cape Riva series represents one step in this longer-term evolution.

The magnitude of the decrease is similar for most incompatible elements, so that the

ratios between them (e.g. K/Zr, Rb/Zr, Rb/La) have remained approximately con-

stant with time. However, the LREE have become depleted relative to HREE, a change

that is also apparent between Cape Riva and Therasia (Figure 5.4d). Similar changes

also occur between different high field strength elements: Nb and Ta concentrations

drop faster than those of Zr and Hf. Progressive depletion in K and other incompatible
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elements with time has also occurred at other centres in the Aegean region (Francalanci

et al., 2005).

A decrease in the extent of crustal contamination with time, as might be expec-

ted from the progressive sealing-off of ascending magmas from the crust, is not ten-

able; there is no evidence for a consistent decrease in the 87Sr/86Sr ratio with time at

Santorini (Figure 2.12). Isotopic signatures fluctuate with time (Barton et al., 1983;

Briqueu et al., 1986; Druitt et al., 1999; Martin et al., 2010), and some young melts

are amongst the most radiogenic in the history of the volcano (Martin et al., 2010;

Vaggelli et al., 2009).

Incompatible trace element contents and isotopic signatures at Santorini are de-

coupled, ruling out a simple common origin. A more likely explanation for the ob-

served trends lies in the nature of the mantle sources of the parental basalts feeding

the volcanic system. Possibilities include an increase with time in the degree of source

depletion, an increase of source melt fraction, or a decrease in degree of source meta-

somatism by slab-derived fluids or melts. All of these mechanisms could potentially

account for basaltic parents with decreasing incompatible element contents with time

(Bailey et al., 2009; Clift and Blusztajn, 1999; Francalanci et al., 2005; Huijsmans et al.,

1988; Zellmer et al., 2000).

A mantle origin is supported by the recent discovery at Santorini of multiple co-

existing basalt types with different trace element and isotopic signatures (Bailey et al.,

2009; Vaggelli et al., 2009). Changing proportions of different parental basalts that

ascend into the crust, where they mix and differentiate at between 4 and 2 kb to

intermediate and silicic compositions (Andújar et al., 2010; Cadoux et al., 2014), may

account for the observed temporal variations of trace element chemistry. Irrespective

of the exact explanation, our results demonstrate the availability of chemically distinct

batches of silicic magma within the crustal plumbing system beneath Santorini, as has

been demonstrated previously for basalts (Bailey et al., 2009).
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5.5 Summary

From the chemistry and the petrology of the Therasia and Cape Riva deposits we can

conclude:

• Between 39 ka and 25 ka, the ∼2 km3 of magma erupted as lavas and pumice falls

was compositionally (65–68 wt% SiO2) and thermally (895–925 °C) monotonous.

• The Therasia and Cape Riva dacites are similar in most major elements, but

the Cape Riva dacite has lower contents of K and incompatible trace elements

(e.g., Rb, Zr, Th, LREE) than the Therasia dacites at a given silica content.

This decrease in incompatibles that took place at 21.8 ka is one step in the well-

documented longer-term decrease in incompatible elements with time observed

at Santorini over the last 530 ky. The Therasia and Cape Riva dacites represent

distinct magma batches that are unrelated by shallow-level processes

• Discharge of basaltic magma during this time period is limited to�1% quenched

enclaves of olivine basalt in some Therasia lavas and in Cape Riva pumice. How-

ever, hybrid andesite magmas formed by the mixing of olivine basalt and dacite

in approximately equal proportions were erupted as lava towards the end of the

Therasia, and as scoria in the Cape Riva eruption. These hybrids may record an

increased influx of basalt into the upper crust over the several thousands of years

leading up to the Cape Riva eruption. Increased basaltic flux may have played

a role in the rapid accumulation of incompatible-depleted Cape Riva magma

beneath the summit of Skaros Volcano prior to its 21.8 ka eruption.
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Chapter 6

Plagioclase

6.1 Introduction

There is a lot of information that can be gleaned by examining the crystals in volcanic

rocks. Some of this has been described already in Chapter 5, such as how the different

mineral assemblages in the upper Therasia and Cape Riva andesites reveal that they

were formed by magma mixing.

In this chapter, I look in more detail at the zoning patterns of major and trace ele-

ments in plagioclase. I focus on the phenocrysts, as these provide the best record of the

events that took place within the magma reservoir, and I focus mostly on phenocrysts

in the dacites, as the dacites make up the majority of the erupted material during

the both the Cape Riva eruption and the construction of the Therasia dome complex

(Chapter 4).

The concentrations of a wide range of different elements were measured in the

plagioclase crystals (Si, Al, Na, Ca, Li, Mg, K, Ti, Fe, Sr, Ba, La, Ce, Pb), as ele-

ments with different diffusivities can provide different insights into magmatic processes

(Chapter 3). The concentrations of fast-diffusing elements can be used to estimate

timescales of magmatic processes through the modelling of diffusive gradients. On the

other hand, slowly-diffusing elements can be used to track growth conditions of crys-

137
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tals, as such elements require long times to re-equilibrate with their host magma. Their

concentrations in crystals should therefore reflect the magma composition at the time

of growth, and they should be unaffected by any subsequent changes to its chemistry.

Which elements can be considered ‘fast-’ and which can be considered ‘slow-diffusing’

depends the time- and length-scales of interest, as well as the temperature and plagio-

clase composition. This is discussed later in the chapter, after the zoning patterns are

presented.

Of particular interest are the changes that occurred in the magma reservoir in

the build-up to the Cape Riva eruption. In Chapter 5 we saw that a change in the

concentration of incompatible elements between the Therasia and Cape Riva eruptions

suggested that there was a large influx of new silicic magma shortly before the Cape

Riva eruption. The field and chemical evidence constrains the timing of this influx

to within 2,800± 1,400 y before the Cape Riva eruption (Chapter 4). We can look

for evidence of this influx in the composition of the plagioclase crystals, using slowly-

diffusing trace elements to track changes in the composition of the melt. Also of interest

are the longevities of the Therasia and Cape Riva magma reservoirs, and the plagioclase

crystals can be useful here as well. Diffusion modelling can provide estimates of the

high-temperature residence times of the plagioclase crystals, which can then be related

to magma reservoir longevity.

6.2 Methods

6.2.1 Analytical techniques

Thin sections from three dacitic lavas from the Therasia dome complex (flows 5, 8 and

9; samples GS10-17, GS10-14 and GS10-16, respectively) were studied in detail. Six

pumices from the Cape Riva eruption were selected, covering all four phases of the

eruption (phase A: GS11-34a and GS11-34f; phase B: S12-06; phase C: GS11-30b and

S12-05; phase D: GS11-39b). These were hand-crushed, and plagioclase crystals were
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hand-picked, set in resin and polished. Crystals with adhering melt were preferred, as

adhering melt demonstrates that those crystal faces are original rather than fracture

surfaces caused by crushing. Most of the plagioclase crystals are tabular, and these were

orientated so that their shortest dimension would be within the plane of the polished

surface. Trace element concentrations of plagioclase crystals in one thin section from

the upper Therasia andesite (flow 22; GS10-22) were also analysed.

Mineral major element compositions were analysed using the Cameca SX 100 elec-

tron microprobe at the Laboratoire Magmas et Volcans, Université Blaise Pascal,

Clermont-Ferrand, using a beam current of 15 nA.

Backscattered electron (BSE) images of selected plagioclase crystals were produced

on the scanning electron microscope (SEM), and then calibrated for anorthite content

using the analyses made with the electron microprobe. Five points on each crystal were

analysed using the electron microprobe for their anorthite content, and the greyscale

values of these same points was measured on the SEM images using the image analysis

software package ImageJ (Rasband, 2012). The relationship between the greyscale

value and composition was then calculated using a linear least-squares regression for

each image. A typical example is shown in Figure 6.1. Correlation between greyscale

value and anorthite content of the plagioclases was high, with correlation coefficients

r2 > 0.97 for most (and r2 > 0.90 for all) the images used. This corresponds to a

standard error in the calculated anorthite content of ±1–2mol%, estimated from the

regression parameters. With this relationship, the anorthite content of any spot on

the image could be calculated. This allowed me to quickly plot profiles of anorthite

against distance at much greater spatial resolution than would otherwise be practical

(pixel size was 0.5–1.5µm depending on the image).

Before plotting anorthite profiles from the BSE images, the images were smoothed

using a two pixel radius median filter. The advantage of a median filter over a moving

average is that it removes noise while leaving any sudden changes in composition un-

changed. This meant that sharp boundaries between the rim and core were not softened
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Figure 6.1: Typical calibration curve for a BSE image of a plagioclase crystal (GS10-14
XL66)

by the smoothing process. Each point on the profiles was the average of a strip 10× 1

pixels perpendicular to the direction of the profile for each point. The distance from

the rim for each point was corrected for profiles that were not perpendicular to the

crystal rim, although this correction was usually minor.

Trace elements in the plagioclase crystals (Li, Mg, K, Ti, Fe, Sr, Ba, La, Ce,

Pb) were measured at the Laboratoire Magmas et Volcans, Université Blaise Pascal,

Clermont-Ferrand, France using a Resonetics M-50-E 193 nm laser ablation system

connected to an Agilent 7500cs ICP MS. The beam size was 10–15 µm in diameter,

and laser pulses were fired at a rate of 2Hz.

Calcium was used as the internal standard for the LA ICP-MS analyses. For most

of the analyses, Ca values were measured by electron microprobe before LA ICP-MS

analysis. In the analyses from the profiles for diffusion modelling, Ca was again used

as the internal standard, but the Ca was measured from calibrated BSE images. The

grey scale of the BSE images of the selected plagioclases was calibrated for An content

using the electron microprobe, as discussed above. Photomicrographs of the analysed

crystals, with the laser pits visible, were then superimposed onto the calibrated BSE

images. The anorthite content of the spots analysed by LA ICP-MS could then be

calculated from the calibrated BSE images.
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For diffusion modelling, 13 representative crystals were selected. In these crystals

one or two profiles were measured perpendicular to the crystal edges by locating suc-

cessive laser analyses as close as possible to each other. In crystals where two profiles

were measured, these were placed perpendicular to each other. In crystals with only

one profile, the location of that profile was chosen to cover the shortest possible dis-

tance between the core and the rim. This is the part of the crystal where trace element

concentrations should change the fastest in response to diffusive exchange with the

liquid (Costa et al., 2008).

6.2.2 Partition coefficients

Because the partitioning of trace elements between silicic melts and plagioclase is

strongly dependent on the anorthite content of the plagioclase (Bédard, 2006; Binde-

man et al., 1998; Blundy and Wood, 1991), the trace element concentrations in pla-

gioclase tell us little on their own about the composition of the melt. The partition

coefficients of Bindeman et al. (1998) were therefore used to calculate the compositions

of melts that are in equilibrium with the measured plagioclase compositions; these are

referred to as “liquid-equivalent compositions” in the following text.

The partition coefficients take the form (using K instead of the traditional D, in

order to avoid confusion with the diffusion coefficient):

K = exp
(
AXAn +B

RT

)
(6.1)

where A and B are empirically determined coefficients, XAn is the molar fraction of

anorthite, R is the molar gas constant and T is the temperature (in K). Because the

partition coefficients depend on temperature, we assumed that temperature was related

to anorthite content as follows (Druitt et al., 2012):

T = 1 128 + 200× XAn − 0.4
0.4 (6.2)
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This equation implies that plagioclase of An40 is equilibrium with a melt at 855 °C and

An80 is in equilibrium at 1 055 °C, matching the temperatures of Santorini rhyodacites

and basaltic andesites, respectively (Michaud et al., 2000).

The error in the liquid equivalent trace element concentrations, σCmelt , due to inde-

pendent errors on the parameters in Equation 6.1 was estimated by error propagation:

σ2
Cmelt

= σ2
Cplag

(
∂Cplag

∂Cmelt

)2

+ σ2
A

(
∂A

∂Cmelt

)2

+ σ2
B

(
∂B

∂Cmelt

)2

+ σ2
XAn

(
∂XAn

∂Cmelt

)2

(6.3)

where the errors on the trace element and anorthite contents of the plagioclase, σCplag

and σXAn , were estimated from ICP-MS and EMP counting statistics, and the estimated

errors in the coefficients of the partition coefficient equation, σA and σB were taken

from Bindeman et al. (1998). This does not, however, take into account any error in

the temperature.

6.3 Zoning patterns

6.3.1 Anorthite zoning

The focus of this section is on the phenocrysts from the Therasia and Cape Riva dacites.

Xenocrysts and the plagioclase crystals found in the sub-solidus gabbro nodules in the

Therasia dacites are not considered here. Only those crystals whose rims appear to be

in equilibrium with the melt are discussed (Chapter 5).

Figure 6.2 (facing page): Sketches of plagioclase crystals from the Therasia dacites,
showing the characteristic features of the phenocrysts. Anorthite spot values from EMP
analyses marked on the diagrams. On the right are the corresponding calibrated BSE
images (a) A weakly zoned phenocryst (GS10-16 XL105) (b) a phenocryst without a calcic
core, but with an internal resorption surface and a normally zoned, “sawtooth” outer zone
(GS10-27a XL49) (c) a phenocryst with a glass inclusion-rich inner zone, overgrown by a
normally zoned, “sawtooth” outer zone (GS10-17 XL57) (d) a phenocryst with a simply
zoned calcic core (GS10-14 XL66) (e) a phenocryst with a partially resorbed, complexly
zoned core, overgrown by an oscillatory zoned outer zone (GS10-17 XL60)
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Therasia dacites

The majority of the plagioclase phenocrysts in the Therasia dacites are unzoned, or

have weak oscillatory zonation (Figure 6.2a). The anorthite content of these crystals

varies between An39 and An51, depending on the lava flow, but the anorthite content

of individual weakly zoned phenocrysts varies by less than about 5mol%.

The rest can be split into two broad groups: those with sawtooth zoning, and those

with calcic cores. I use the term “calcic core” to refer to a texturally well-defined entity

at the centre of a crystal that has a much higher anorthite content than the outer zone.

“Rim” is used to refer to the outermost part of the crystal to have grown within the

magma chamber.

Sawtooth zoned phenocrysts: Some of the phenocrysts in the Therasia dacites

have a single sawtooth, separating the crystal into two zones. The inner-

most zones of these crystals usually have a similar composition to the un-

zoned phenocrysts (An39 to An51). Sometimes these inner zones are unzoned

(Figure 6.2b), but sometimes they show signs of partial dissolution and have

lots of large, brown glass inclusions (Figure 6.2c). The inner zones are separ-

ated from the outer zones by a resorption surface which is sometimes smooth,

but can often have an irregular shape. The resorption surfaces are then over-

grown by more calcic plagioclase (An59 to An72). The crystals then gradually

become more sodic towards the rims, eventually reaching the same compos-

itions as the unzoned phenocrysts. An anorthite profile across a sawtooth

zone from a similarly zoned crystal in the Cape Riva is shown in Figure 6.3.

Calcic cores: Some phenocrysts have distinct calcic cores, with anorthite con-

tents between An50 and An91. These calcic cores are sometimes simply zoned

(Figure 6.2d), but sometimes show complex zoning indicative of partial dis-

solution (Figure 6.2e). The cores are separated from the rest of the crystal

by an irregular resorption surface. Some calcic cores are overgrown by un-
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Table 6.1: Plagioclase compositions in different Therasia dacite lavas

Flow Whole rock SiO2 (wt%) Phenocryst rims Calcic cores
9 (GS10-16) 65.8 An44−48 An53−78
8 (GS10-14) 65.4 An45−46 An65−91
5 (GS10-17) 66.0 An41−43 An50−80
3 (GS10-27a) 65.8 An49−51 —

zoned or weakly oscillatory zoned (e.g. Figure 6.2d), and these have the same

compositions as the weakly zoned phenocrysts (An39−51). Other calcic cores

are overgrown by plagioclase that is normally zoned (e.g. Figure 6.2e), and

these outer zones resemble the outer zones of the sawtooth-zoned crystals.

An anorthite profile from a crystal with a calcic core is shown in Figure 6.4.

There are slight textural variations between the plagioclase found in the different

dacitic lava flows of the Therasia dome complex. Sawtooth-zoned crystals were found

in flows 3 and 5, but not in flows 8 and 9. Large, rounded, brown glass inclusions

are found in many of the unzoned phenocrysts and the inner zones of the sawtooth-

zoned phenocrysts in flow 5, but these glass inclusions are rare in the other flows. The

composition of the rims and the calcic cores also vary slightly between the different

flows (Table 6.1; Figure 6.5). These observations suggest that the phenocrysts in each

flow are specific to that flow, and are not inherited from previous magma batches.

Figure 6.6 (facing page): Sketches of plagioclase crystals from the Cape Riva dacites,
showing the characteristic features of the phenocrysts. Anorthite spot values from EMP
analyses marked on the diagrams. (a) a phenocryst with a simply zoned calcic core
and an unzoned sodic rim (GS11-34a XL09) (b) a phenocryst with a partially resorbed
calcic core, surrounded by a sodic rim with weak oscillatory zonation (GS11-39b XL29)
(c) a phenocryst without a calcic core, but with two internal resorption surfaces, both
overgrown by a normally zoned “sawtooth” (GS11-34a XL14) (d) a phenocryst with
complexly zoned, partially resorbed core and a normally zoned, “sawtooth” rim (GS11-
30b XL08)
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Cape Riva dacite

The plagioclases in the Cape Riva are texturally quite similar to those found in the

Therasia dacites. Many of the Cape Riva plagioclases phenocrysts are unzoned or

only weakly zoned, but like the Therasia dacites there are also crystals with sawtooth

zoning. Most of the rims of the Cape Riva phenocrysts have a narrow range of anorthite

content (An36−40; Druitt, 1983; Druitt et al., 1999), suggesting the Cape Riva magma

reservoir was better mixed than the Therasia magma reservoir.

Sawtooth zones: The sawtooth zoned crystals have either plain centres, with

compositions similar to the unzoned phenocrysts (Figure 6.6c), or can be

complexly zoned (Figure 6.6d). The complex zonation appears to be the

result of partial dissolution, and these centres frequently contain large, brown

glass inclusions. While parts of these centres can be quite calcic (up to An58),

the dominant portions of the complexly zoned cores have composition similar

to those of the unzoned phenocrysts (An30 to An41). These centres are then

separated from their rims by a resorption surface. This surface is overgrown

by calcic plagioclase of An46 to An60, which gradually changes outwards

towards more sodic compositions. This pattern is sometimes repeated up to

three times, but the rim compositions always match those of the unzoned

phenocrysts.

Although some Cape Riva plagioclases appear to have calcic cores (e.g.

Figure 6.6a,b), these have similar compositions to the calcic parts of the

sawtooth zones (An48−59). These are therefore better described as the inner

zone of a sawtooth-zoned crystal. The inner zones can be simply zoned

(Figure 6.6a), however many of them show signs or partial resorption and

regrowth (Figure 6.6b). Both types of inner zone are separated from the

outer zone by an irregular resorption surface. The rims resemble the weakly

zoned phenocrysts: they have compositions of An30 to An41, and are either
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unzoned or have subtle oscillatory zoning.

Interpretation

Figure 6.7 summarises the textures found in the Therasia and Cape Riva plagioclase

phenocrysts. Most phenocrysts are unzoned or have multiple sawtooth zones (Fig-

ure 6.7a). The unzoned phenocrysts have the same composition as the rims of the

crystals with sawtooth zoning. The unzoned phenocrysts can, therefore, be considered

as equivalent to the rims of the sawtooth-zoned crystals. Either the unzoned crystals

do not have the calcic part of the sawteeth, or the calcic part is not exposed in the

section that was imaged. Some phenocrysts in the Therasia dacites have calcic cores

(e.g. Figure 6.2d,e). The cores of these crystals are more calcic than the sawtooth

zones, and the boundaries between them are sharp, rather than gradational as in the

sawtooth zones.
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6.3.2 Trace element zoning

Trace element profiles were measured in selected crystals using the LA ICP-MS. Two

profiles are shown in Figures 6.3 and 6.4.

Figure 6.4 shows an example of a plagioclase with a calcic core. The core has

higher liquid equivalent Sr contents, and lower liquid equivalent La contents, than the

rims. This would be expected from their behaviour in Santorini magmas—there is

more Sr in mafic melts and more La in evolved melts (Chapter 2)—and suggests that

their concentrations reflect the compositions of the melts from which they grew. The

Mg profile, on the other hand, is more complicated. Traced from the rim inwards,

the liquid-equivalent Mg concentrations start off correlated with the anorthite content.

However, the inner part of the core is in equilibrium with a melt with a lower Mg

concentration than that with which the outer part of the core is in equilibrium. This

is despite the fact that the inner part of the core has a higher anorthite content than

the outer part. This suggests that the Mg concentrations in this crystal have partially

re-equilibrated.

A similar pattern is seen in the crystals with sawtooth zoning (Figure 6.3). The

Sr liquid equivalents are positively correlated with, and the La liquid equivalents are

negatively correlated with, anorthite content. In this crystal, the shape of the Mg

liquid equivalent profile also resembles that of the anorthite profile. This suggests that

less diffusion has taken place in this crystal compared to Figure 6.4.

6.4 Using fast and slow diffusing elements to

elucidate magmatic processes

As stated in the chapter’s introduction, slow-diffusing elements can be used to estim-

ate melt compositions, while fast-diffusing elements can be modelled to get timescales

(Chapter 3). Which elements can be considered fast-diffusing and which can be con-

sidered slow-diffusing, however, depends on the distances and times in which we are
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interested. The influence of diffusion on zoning patterns can be estimated using a

back-of-the-envelope calculation for a characteristic length scale of diffusion, x:

x ≈
√
Dt (6.4)

whereD is the diffusion coefficient and t is the timescale in which we are interested. The

diffusion coefficient is strongly dependent on the temperature, which for the Cape Riva

dacite and two of the three analysed Therasia dacites is about 880±25 °C (Chapter 5).

The variation of characteristic distance with time for the elements discussed here at

880 °C is shown in Figure 6.8, along with the timescales and distances of interest in

this study.

The plagioclases typically reach about 1mm in length, so any element with a char-
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acteristic distance longer than this will have mostly re-equilibrated at the scale of whole

crystals. These elements will not, therefore, record original melt compositions. On the

other hand, elements with characteristic distances smaller than the size of the laser

pits (10–15 µm) will remain close to their initial concentration, and can also be used

to study the compositions of the melt from which each crystal zone grew. In between

these two limits are the elements that will have partially re-equilibrated—these are

the elements that can be modelled to best estimate high-temperature crystal residence

times.

For the Therasia–Cape Riva series, we are chiefly interested in processes that oc-

curred on timescales shorter than the ∼18 ky of dacitic eruption (the time between the

oldest Therasia dacite and the Cape Riva eruption; Chapter 4). Elements that remain

immobile over this length of time have been used below (Section 6.5) to reconstruct

melt compositions from plagioclase compositions. We are also particularly interested

in the processes that occurred between the end of the construction of the Therasia

dome complex and the onset of the Cape Riva eruption (∼2,800 y; Chapter 4). The

diffusion of elements that are expected to partially re-equilibrate over this period have

been modelled in Section 6.6 to estimate high-temperature crystal residence times.

From Figure 6.8, La and NaSi–CaAl can be considered immobile over 18 ky. Over

18 ky La has a characteristic distance of about 2µm (Figure 6.8).

NaSi–CaAl exchange is a little more complicated, as a wide range of diffusion coef-

ficients have been found for NaSi–CaAl interdiffusion (Chapter 3). The diffusion coeffi-

cient for NaSi–CaAl interdiffusion found by Liu and Yund (1992) at 1,500MPa and 1%

H2O is several orders of magnitude faster than that of Grove et al. (1984) under dry

conditions at atmospheric pressure. However, NaSi and CaAl can be considered im-

mobile whichever diffusion coefficient is used: using the diffusion coefficient of Liu and

Yund (1992), the characteristic diffusion distance over 18 ky is 10–15 µm (depending
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on the anorthite content), while using the diffusion coefficient of Grove et al. (1984)

this distance is only 35 nm.

The diffusivity of Ti has not been measured, but the high charge of Ti4+ ions implies

that it will be slow (Cherniak, 2010). The diffusion coefficient of Ce is also not known,

however the low diffusivity of La and other REE suggest that Ce will also diffuse slowly

(Cherniak, 2002b). The anorthite content of the plagioclases zones, along with their

La, Ce and Ti concentrations, can therefore be used to estimate the composition of the

melt from which each zone grew.

Sr has a slightly higher diffusion coefficient than the elements discussed above, and

has a characteristic diffusion length of 50–800µm over 18 ky (Chapter 3). However,

Figure 6.8 shows that if the high-temperature residence times for the crystals are

significantly less than the 2,800 y between the Therasia dome complex and the Cape

Riva eruption, then the Sr concentrations should be close to original. The tightness of

the relationship between Sr and anorthite in Figure 6.9a (see below) strongly suggests

this is the case, since any diffusive partial re-equilibration of Sr following crystal growth

would blur the Sr-anorthite relationship.

The fastest diffusing elements considered here, Mg and K, will almost completely

re-equilibrate over 18 ky (Chapter 3). Mg has a characteristic diffusion distance of

300–3,000µm over this time, while K has a characteristic diffusion distance of 600–

2,000µm (Giletti and Shanahan, 1997; Van Orman et al., 2014). This distance drops

to 25–250µm for Mg and 50–150µm for K over 100 years. This means that if high-

temperature crystal residence times are less than a few thousand years, Mg and K will

only be partially re-equilibrated. This makes Mg and K ideal targets for estimating

high-temperature crystal residence times by diffusion modelling. Mg was chosen over K

because K is a major element in the ternary anorthite–albite–orthoclase system, which

would complicate the diffusion modelling.
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6.5 Reconstructing melt compositions from

plagioclase compositions

The results of the LA ICP-MS analyses of the plagioclase crystals are shown in Fig-

ure 6.9, with concentrations converted to represent liquid compositions that are in

equilibrium with those found in the plagioclases. For Sr and Ti, there is a tight re-

lationship between their concentration and the anorthite content of the host crystal

(Figure 6.9a,b). These relationships mirror those found in the whole rock data, with

Sr decreasing with increasing degrees of melt evolution (i.e. decreasing An content),

and Ti showing a peak at around An65 (Chapter 2).

La and Ce show greater scatter than Sr and Ti. Some of this spread is due to

greater analytical uncertainty as a result of their very low concentrations. Although

there is a small amount of overlap, the Therasia and Cape Riva plagioclases form two

distinct trends (Figure 6.9c,d). For any given An content, the Therasia plagioclase

contain more La and Ce. This difference is significant, as it reflects the two separate

trends seen in the whole rock data (Chapter 5).

Although there is a general trend towards more Mg-rich compositions with increas-

ing anorthite content, there is a broad spread of Mg concentrations (Figure 6.9e). This

is particularly true for the calcic plagioclases. There are two possible interpretations

for this spread: either the spread reflects a spread of magma compositions from which

the plagioclases grew, or the Mg concentration has been modified by diffusion after

growth.

The relationship between K and anorthite resembles that of La and Ce, with a

general trend towards higher K concentrations with decreasing anorthite content, and

with the Therasia plagioclases containing more K than the Cape Riva plagioclases at

any given anorthite content(Figure 6.9f).
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Figure 6.9: Liquid equivalent compositions for plagioclase crystals from the Therasia
and Cape Riva eruptions. Typical anorthite error bars calculated from electron micro-
probe counting statistics, typical trace element error bars calculated using Equation 6.3.

6.5.1 Major element composition of the melt

In order to interpret the zoning patterns of the plagioclase, it is important to under-

stand what is causing the changes in the anorthite content. There are three potential

ways of changing the anorthite content of plagioclase:
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1. Changing the temperature, e.g. by underplating the magma reservoir with hotter

magma

2. Changing the water content of the melt, e.g. by degassing or volatile fluxing

3. Changing the melt composition through magma mixing (which would also change

the temperature, and possibly PH2O as well)

The concentrations of slowly diffusing trace elements in plagioclase crystals can be used

to distinguish between these different processes, as they will behave differently in each

case.

Assuming that the total pressure and the melt composition remain constant, then

the temperature and water pressure changes needed to produce the changes in anorthite

content can be estimated using the the plagioclase–liquid thermometer and hygrometer

equations of Putirka (2008). For example, the Cape Riva crystals have anorthite

contents that vary between An36−40 and An55−60. Assuming that the melt composition

remains constant, this change can be produced by modest increases in the temperature

(∼20 °C) or H2O concentration in the melt (∼0.3wt%).

However, there is a tight relationships between the anorthite content of the pla-

gioclase and the apparent Sr concentration of the melt that it is in equilibrium with

(Figure 6.9a). If the anorthite content of the plagioclase phenocrysts is controlled

purely by temperature or PH2O, then this relationship must be an artefact of the par-

tition coefficients chosen. While the temperature does affect the partitioning of Sr

between plagioclase and silicic melts, this effect is not large enough to explain the ap-

parent relationship. Changing the temperature by 100 °C (from 880 to 980 °C) using

the partition coefficients of Bindeman et al. (1998) changes the estimated Sr concentra-

tions in the melt by 10–15 ppm, while a differences of >100 ppm are seen in the liquid

equivalent compositions of Cape Riva plagioclase phenocrysts (e.g. Figure 6.3)—and

an even larger range is seen in the Therasia plagioclase phenocrysts (e.g. Figure 6.4).
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The effects of water concentration in the melt on the partition coefficient are less

well constrained. The global regression of all partition coefficient data carried out by

Bédard (2006) suggest that a change of 1–2wt% H2O in the melt could produce a

∼100 ppm variation in Sr melt concentrations. However, Blundy and Wood (1991)

found little difference between the partition coefficients of Sr from experiments both

under hydrothermal conditions and with silicate melts, implying that PH2O has little

effect on the partition coefficients of Sr. In either case, the total range of Sr melt

concentrations shown in Figure 6.9a is too large to be explained by changes in the

water content. Total pressure too has only a weak influence on the partition coefficient

of Sr (Bédard, 2006; Blundy and Wood, 1991). The zoning patterns in the plagioclase

crystals, therefore, must correlate principally with changes in the melt chemistry. These

changes in the melt chemistry may well be accompanied by changes the temperature

and PH2O of the melt— indeed studies of glass inclusions show that melt composition,

temperature and volatile contents correlate well in Santorini magmas (Mercier et al.,

2013)— the important point is that the compositions of the plagioclase crystals can be

used to estimate the compositions of the melts from which they grew.

Plotted on Figure 6.10 are the liquid equivalent Sr and Ti concentrations estimated

from the compositions of the plagioclase crystals, along with whole rock and ground-

mass compositions of different units from Santorini. Figure 6.10 shows that the Sr and

Ti contents of the melt compositions estimated from plagioclase analyses do, in fact,

match the whole rock compositions. For silicic magmas and sodic plagioclases there is a

tight fractionation trend towards low-Sr and low-Ti melts, seen in both the whole rock

plagioclase data. Most of the Cape Riva phenocrysts appear more evolved than the

whole rock compositions, however this is also true for the Cape Riva glass. The Cape

Riva plagioclases are therefore in equilibrium with compositions similar to—slightly

more evolved than—the Cape Riva glass, and not whole rock compositions. The dif-

ference between Therasia whole rock and glass compositions is less significant, as the

Therasia dacites have lower crystallinity then the Cape Riva dacite.



160 Chapter 6. Plagioclase

0

1

2

3

4

5

6

7

8

9

10

T
inU

×
10

3 np
pm

P

0 100 200 300 400 500 600
SrnUppmP

Therasiandacites
Uwholenrocknandn

groundmassP

CapenRiva
hybridnandesite

CapenRiva
dacitenglass

CapenRiva
dacite

UppernTherasia
andesite

SkarosnandnUS2

Peristeria

Therasia
maficnenclaves

CapenRiva
Therasia

70

65

60

55

Typicaln2σnerrors

Figure 6.10: Sr and Ti liquid compositions calculated to be in equilibrium with pla-
gioclase compositions. Fields are whole rock data for different Santorini units. Therasia
whole rock, groundmass and mafic enclaves are from this work, and the Cape Riva dacite
glass is one analysis from this work. Contours roughly match melt SiO2 concentrations,
in wt%. Cape Riva dacite and andesite, and Upper Scoria 2 (US2) data from Druitt
et al. (1999). Skaros and Peristeria data from Huijsmans (1985).

However, for more mafic magmas and more calcic plagioclases there is far less of a

trend. The plagioclase compositions still agree with whole rock compositions, however

there is quite a large range of Sr contents in Santorini basalts, even between those with

similar major element concentrations. In Skaros basalts and Therasia basaltic enclaves

at about 54wt% SiO2, there is between 200 and 300 ppm Sr. Some Peristeria basalts

have up to 450 ppm Sr, despite similar SiO2 contents (Huijsmans, 1985; Huijsmans

et al., 1988). The concentration of Sr in the whole rock can also change quite rapidly

with some indicators of melt evolution, such as MgO content. This means that small

amounts of uncertainty in the Sr concentration of the plagioclase crystal can lead to

large uncertainties in the calculated melt composition. This is particularly important

when we estimate initial Mg contents of the plagioclase crystals in order to model its

diffusion in Section 6.6. I therefore decided instead to use Ti concentrations to match
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up plagioclase compositions with whole rock compositions.

The differences in Sr concentrations between the different groups of Santorini basalts

do, however, cast light on the origin of the calcic cores in the plagioclases found in the

Therasia dacites. The most calcic crystal cores (with anorthite higher than An80) have

very high Sr, equivalent to up to 554 ppm in the melt (Figure 6.10). None of the Skaros

basalts or Therasia basaltic enclaves have Sr that high (Chapter 2); the only magmas

on Santorini with more than 350 ppm Sr are lavas from the Peristeria centre that was

active between 530 and 430 ka (Druitt et al., 1999; Huijsmans, 1985; Huijsmans et al.,

1988). This suggests that these cores were recycled from plutonic rock or mush from

the Peristeria period. The Peristeria vents were located in the north of the island,

and probably overlapped geographically with the locations of the Therasia vents. The

crystals with An<80 , however, are all in equilibrium with melts with less than 350 ppm

Sr. The Sr contents of these crystals cannot, therefore, distinguish between plutonic

mush or mafic recharge as their source.

We can use the Ti and Sr liquid-equivalent values to estimate the compositions

from which each plagioclase zone crystallised. Figure 6.11 shows how the Ti content

was used to match plagioclase composition to the SiO2 content of the melt in which

it grew, and Table 6.2 summarises the results for the different zones of the Therasia

and Cape Riva plagioclases. From Figure 6.11 we can see that plagioclase with a

composition of between An30 and An40, similar to that of the majority of the rims of the

plagioclase crystals found in the Cape Riva pumice, probably grew from a liquid with

between 69 and 72wt% SiO2: similar to the composition of the Cape Riva glass. The

Therasia plagioclase rims are slightly more calcic (between An40 and An50), and these

compositions correspond to whole rock compositions of between 65 and 69wt% SiO2;

this matches the whole rock and groundmass compositions observed in the Therasia

dacites. The most calcic plagioclases (∼An90) would have crystallised from a basalt

with about 50wt% SiO2.
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6.5.2 Distinguishing fractionated melts from hybrid melts

The Ti concentration also allows us to distinguish between crystals that grew in hy-

brid andesites and those that grew from andesites formed by fractionation (Chapter 5).

Figure 6.11 shows that most plagioclases lie on a curved band that mirrors the frac-

tionation trend seen in the whole rock data. Mixing between basalts and dacites and

rhyolites produces hybrid melts that fall below this trend (Figure 6.11d), and any crys-

tals that grow from these hybrid melts should fall below the equivalent trend in the
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Table 6.2: Estimated melt compositions in equilibrium with the different plagioclase
zones

Plagioclase composition Melt composition
(An, mol%) (SiO2, wt%)

Therasia dacites
Calcic cores 62–91 50–60 (basalt–andesite)
Peak of sawtooth zones 59–72 56–64 (andesite–dacite)
Rims 39–51 61–66 (dacite)
Cape Riva dacite
Peak of sawtooth zones 46–60 61–67 (dacite)
Rims 36–40 68–72 (rhyodacite)

composition of the plagioclases (Figure 6.11c).

The melt evolution paths determined from two plagioclase crystals from the Ther-

asia dacites are shown in Figure 6.12. Most of the crystals lie along the fraction trend,

including GS10-17 XL57 (Figure 6.12a). The centre (point 1) and the rim (point 3)

of GS10-17 XL57 both have low anorthite and liquid equivalent Ti contents. Where

the crystal becomes more calcic (point 2) it also has an increased liquid equivalent

Ti content, following melt fractionation trends again. This means that mixing with a

basalt cannot produce the calcic plagioclase at point 2.

GS10-17 XL71 is an example of a crystal that lies below the fractionation trends

(Figure 6.12a). Going from the centre of GS10-17 XL71 (point 1) towards the rim

(point 7), the plagioclases becomes less calcic. The first four points are in the calcic

core of the crystal, with compositions of An67−84. There is then a jump in anorthite

content, and the three points in the outer zone have compositions of An39−42. At

the same time, the liquid equivalent Ti content first increases, and reaches a peak at

point 4, after which it falls. Most of the points lie along the fractionation trends, apart

from point 4 which lies slightly below. This suggest that point 4 might have grown

from a hybrid melt.

In total, six analysed crystals from the Therasia dome complex have zones that

appear to have precipitated from hybrid melts (Figure 6.11); three of these are from
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Figure 6.12: Melt evolution paths determined from Ti contents of plagioclase crystals
from the Therasia dacites. The blue and green fields are the fields of Therasia and Cape
Riva plagioclases from Figure 6.11. (a) GS10-17 XL57, (b) GS10-17 XL71.

the upper Therasia andesite that has already been shown to be hybrid (Chapter 5). The

other three hybrid-derived plagioclase crystals, however, come from the uppermost flow

on Cape Tripiti, the dacitic flow 9 (GS10-16). One of these analyses is of a resorbed

inner zone; it could have emanated from the plutonic mush, and therefore it could

be much older than the Therasia dome complex. The other two, however, are in the

centres of crystals that grade normally into rims typical of the dacites and show no

signs of dissolution. This suggests that there was an input of hybrid andesite into the

magma reservoir before flow 9 was erupted.

The plagioclases from the Cape Riva dacite, on the other hand, all give liquid

equivalent Ti values that lie along the trend defined by the fractionated magmas. This

can be seen for four individual crystals in Figure 6.13. Above, it was argued that

the Cape Riva plagioclases grew in equilibrium with melts ranging from dacite to
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rhyodacite in composition. If the dacite was produced by magma mixing, then we can

place constraints on the mafic endmember. A basaltic or basaltic-andesite melt would

have low Ti, and would drive the plagioclase compositions between the two arms of

the fractionation trend (as in the mixing models in Figure 6.11d). Because the Cape

Riva plagioclases all lie along the right-hand arm of the fractionation trend, all the

incoming magmas must have at least ∼57wt% SiO2. The sawtooth zoning in the Cape

Riva plagioclases, therefore, records the mixing of melts that range from silicic andesite

to rhyodacite.

6.5.3 Incompatible element concentrations of the melt

The difference in incompatible element concentrations in the Therasia and Cape Riva

dacites provides a means of distinguishing crystals that grew in a Cape Riva-like magma

from those that grew in a Therasia-like magma. The Cape Riva dacite is depleted in

incompatible elements (such as La and Ce) relative to Therasia dacites, and this can be

explained if a significant proportion of the Cape Riva dacite was a new silicic magma

batch introduced into the sub-volcanic plumbing system less than 2,800± 1,400 y before

the Cape Riva eruption (Chapter 5).

The lower La and Ce concentrations in the Cape Riva plagioclase, coupled with

the very slow diffusion rates of La and Ce (Figure 6.8), indicate that the majority

of the Cape Riva plagioclase grew from a Cape Riva-like magma. K also is depleted

in the Cape Riva magma, however it diffuses much more rapidly (Chapter 3; Brady,

1995; Giletti and Shanahan, 1997). This means that K concentrations may not re-

flect the original growth conditions of the plagioclase, because the crystals may have

re-equilibrated with their host magma. However, the low K values in Cape Riva pla-

gioclases relative to Therasia plagioclases are consistent with a Cape Riva source for
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most of the Cape Riva plagioclase (Figure 6.9f).

Only two out of the 90 analyses preformed on 37 different Cape Riva plagioclases

have high La and Ce (Figure 6.9c,d). One of these analyses is from the inner zone

of a crystal, and shows signs of resorption; this inner zone could be xenocrystic, and

therefore tells us little about evolution of the Cape Riva melt. The other, however,

is from the calcic part of a sawtooth zone of a crystal (S12-06 XL08). The centre of

this crystal has low La and Ce, suggesting that it started growing in a Cape Riva-

like magma. This crystal could then have been transferred to a Therasia-like magma,

where it was partially resorbed and overgrown by more calcic plagioclase. S12-06 XL08

was then transferred back into Cape Riva-like magma, or the Therasia-like magma was

possibly mixed into a much larger body of Cape Riva-like magma, as the rim of this

crystal has the low La and Ce typical of the Cape Riva dacite. This interpretation

implies that there was still at least a small amount of Therasia-like melt stored beneath

Santorini when the Cape Riva magma was transferred to the shallow storage region,

although interpretations based on only one data point are obviously rather speculative.

It is clear, however, that few (if any) Cape Riva plagioclases are antecrysts derived

from the Therasia magmas. This has important implications for the residence time of

the Cape Riva magma in the shallow crust. From the whole-rock data we know that

a large volume of incompatible melt arrived in the shallow plumbing system less than

∼2,800 years before the Cape Riva eruption. However, the chemistry did not allow us

to rule out that up to half of the Cape Riva magma was actually residual Therasia

magma. The lack of plagioclase crystals recycled from the Therasia period suggests

that there was very limited mixing with residual magma, although it is still possible

that the Therasia plagioclases were resorbed before the Cape Riva plagioclases grew.

An important implication of this observation is that the high-temperature residence

times for the Cape Riva crystals estimated from diffusion modelling below relate only

to processes occurring in the Cape Riva magma.
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6.6 Estimating timescales with diffusion modelling

6.6.1 Initial Mg concentration of the plagioclase crystals

Given the rate of diffusion of Mg in plagioclase (Figure 6.8), we might expect to find

that Mg has diffused. The relationship between Mg and anorthite shown in Figure 6.9e

suggests that this is indeed the case. In order to model the diffusion of Mg in plagio-

clase, it is first necessary to estimate the initial Mg concentration of the crystals. This

was done in two steps. First, a equation relating the Ti and Mg concentrations in

the whole rock data was constructed. Then, a similar relationship between Ti and An

was found, and the two equations were combined to create the final equation for the

initial Mg content in terms of An. The lines of best fit and the amount variation were

estimated by eye.

The relationship between Ti and Mg in the whole-rock data can be fit by two

exponential functions: one for the rocks produced by Fe-Ti oxide–absent fractional

crystallisation (where Ti increases with the degree of fractionation), and one for where

Fe-Ti oxides are present during fractionation (where Ti decreases with the degree of

fractionation). Both of these equations have the form (Figure 6.14a):

C liq
Mg = a1 exp

(
a2C

liq
Ti

)
(6.5)

where a1 and a2 are coefficients to be determined. These can be combined with linear

functions for Ti against An, where Ti concentrations are those in a liquid in equilibrium

with the plagioclase (Figure 6.14b):

C liq
Ti = b1XAn + b2 (6.6)

where b1 and b2 are also coefficients to be determined.

Combining Equations 6.5 and 6.6 we get the concentration of Mg in the liquids that
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crystallised plagioclase of a particular anorthite content:

C liq
Mg = a1 exp [a2 (b1XAn + b2)] (6.7)

Using the partition coefficients of Bindeman et al. (1998), we can calculate the

concentration of Mg in the plagioclase that would be in equilibrium with these liquids:

Cxl
Mg = a1 exp (a2b1XAn + a2b2) exp

(
AXAn +B

RT

)

= a1 exp
[
a2b2 +

(
a2b1 + A

RT

)
XAn + B

RT

]
(6.8)

Plugging the numbers in, this equation does not quite fit the data: the calculated

initial concentrations are lower than those measured in the rims of the plagioclases.

This may be a problem with the partition coefficients; Bindeman et al. (1998) measured

theirs in basalt whereas our plagioclases grew from a dacite, and melt composition has

been shown to effect trace element partitioning (Blundy and Wood, 2003). The same

issue was also noted by Druitt et al. (2012). Multiplying the equation by a constant

fixes this, however. The final equation used to predict the initial concentration of Mg

in the plagioclases is (Figure 6.15):

C init
Mg =


310 exp

[(
6.13 + A

RT

)
XAn + B

RT

]
for An < 69

2130 exp
[(

3.33 + A

RT

)
XAn + B

RT

]
for An ≥ 69

(6.9)

The uncertainty in this estimate is given by the following bounds:

C init-low
Mg =


340 exp

[(
5.62 + A

RT

)
XAn + B

RT

]
for An < 72

1316 exp
[(

3.73 + A

RT

)
XAn + B

RT

]
for An ≥ 72

(6.10)
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C init-high
Mg =


276 exp

[(
6.72 + A

RT

)
XAn + B

RT

]
for An < 66

3150 exp
[(

3.03 + A

RT

)
XAn + B

RT

]
for An ≥ 66

(6.11)

6.6.2 Equilibrium profiles

Final, equilibrium profiles for the plagioclase crystals can also be calculated using the

plagioclase–liquid partition coefficients of Bindeman et al. (1998). As the plagioclase–

liquid partition coefficient of element i is defined as:

K
plag/liq
i = Cplag

i

C liq
i

(6.12)

we can combine the partition coefficients for two different plagioclase compositions

(plag-1 and plag-2) as follows:

K
plag-1/liq
i

K
plag-2/liq
i

= Cplag-1
i /C liq

i

Cplag-2
i /C liq

i

= Cplag-1
i

Cplag-2
i

(
= K

plag-1/plag-2
i

)
(6.13)

If the rim is assumed to be in equilibrium with the melt, then the equilibrium profile

can be constructed by working inwards. We can use Equation 6.13 to calculate the

concentration of i in each part of the crystal that is in equilibrium with the part of the

crystal immediately outside of it. Diffusion will tend to drive the composition of the

plagioclase towards this equilibrium profile (Costa et al., 2003; Zellmer et al., 1999).

6.6.3 Numerical modelling

The diffusion of Mg in plagioclase can modelled numerically using the method of Costa

et al. (2003) as used by Druitt et al. (2012). The changes in concentration due to

diffusion of a trace element in plagioclase such as Mg, CMg, the following equation can
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be used (Equation 3.16 in Chapter 3):

∂CMg

∂t
= ∂

∂x

(
DMg

∂CMg

∂x
−DMgCMg

A

RT

∂XAn

∂x

)
(6.14)

where DMg is the diffusion coefficient of Mg in plagioclase, A is the parameter that

describes the variation of the partition coefficient of Mg with anorthite content in

Equation 6.1 above.

In order to model the diffusion of Mg in plagioclase numerically, Equation 6.14 is

expanded and converted to a finite difference scheme. The subscripts i and j refer to

a discrete spacial and temporal step, respectively, with widths or durations of ∆x and

∆t:

∂CMg

∂t
=DMg

∂2CMg

∂x2 + ∂CMg

∂x

∂DMg

∂x

− A

RT

(
DMg

∂CMg

∂x

∂XAn

∂x
+ CMg

∂DMg

∂x

∂XAn

∂x
+DMgCMg

∂2XAn

∂x2

)
(6.15)

Ci,j+1 − Ci,j

∆t =Di,j
Ci+1,j − 2Ci,j + Ci−1,j

∆x2 + (Ci+1,j − Ci,j) (Di+1,j −Di,j)
∆x2

− A

RT

(
Di,j

(Ci+1,j − Ci,j) (XAn,i+1,j −XAn,i,j)
∆x2

+ Ci,j
(Di+1,j −Di,j) (XAn,i+1,j −XAn,i,j)

∆x2

+Di,jCi,j
XAn,i+1,j − 2XAn,i,j +XAn,i−1,j

∆x2

)
(6.16)

Equation 6.16 allows Ci,j+1 to be calculated explicitly given Ci−1,j, Ci,j and Ci+1,j,

and was implemented using Matlab scripts (Appendix D).

The outside end of the profile was fixed assuming the first measured point was in

equilibrium with the melt it resided in. The profile was assumed to be symmetrical
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by implicitly mirroring it around the innermost point, except where the profile was

significantly longer than half the crystal. Where the profile spanned the entire crystal,

both ends of the profile were assumed to be in equilibrium with the liquid.

The diffusion times of all the profiles were first estimated using one-stage models:

the whole crystal was assumed to have grown instantaneously, with no diffusion, and

then allowed the re-equilibrate with the melt at 880 °C. The time taken for the calcu-

lated profile to match the measured profile is then assumed to be the high-temperature

residence time of the crystal. Some of the profiles could, however, be better fit by a

two-stage model. The two-stage models were run as follows:

1. First, the inner zone was assumed to grow instantaneously.

2. The inner zone was then allowed to partially re-equilibrate. The outer-most part

of the inner zone was assumed to still have its initial Mg concentration, and to

be in equilibrium with the melt. Diffusion is modelled at temperatures between

880 and 930 °C, depending on the anorthite content of the outside edge of the

inner zone (estimated using Equation 6.2).

3. The outer zone was then assumed to grow instantaneously, with no diffusion

taking place during growth.

4. The whole crystal was then allowed to re-equilibrate diffusively with the melt, as

in the single-stage models.

Although this approach is still a simplification of the processes of concurrent growth

and diffusion, it is closer approximation to reality than one stage models. This method

allows two times to be calculated: the total high-temperature residence times of the

inner zones, and the high-temperature residence times of the crystals following outer

zone growth.
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6.6.4 Diffusion coefficient

The different experimental calibrations of the diffusion coefficient of Mg in plagioclase

are discussed in Chapter 3. I chose to used the diffusion coefficient of Van Orman et al.

(2014), whose experiments were carried out between 800 and 1150 °C (which includes

the temperatures of interest to this study). Their equation for the diffusion coefficient

as a function of temperature and plagioclase composition is:

Dplag
Mg = exp

[
(−6.06± 1.10)− (7.96± 0.42)XAn −

287, 000± 10, 000
RT

]
(6.17)

6.6.5 Results

The results of one-stage diffusion models of plagioclase crystals from the Therasia

dacites are shown in Figure 6.16, and the results of two-stage diffusion models are

shown in Figure 6.17. The results of one-stage and two-stage diffusion models for

plagioclase crystals from the Cape Riva dacite are shown in Figures 6.18 and 6.19,

respectively. Also shown on the graphs are the predicted initial Mg concentrations

and uncertainties, calculated using Equations 6.9–6.11; and the Mg concentrations

calculated to be in equilibrium with the edges of the crystals (and hence the melt),

using Equation 6.13. The calibrated BSE images and anorthite profiles for all the

crystals modelled are presented in Appendix E.

Most of the Mg concentrations of the analysed points (especially those in the centres

of the crystals) sit somewhere between the estimated initial Mg concentrations and

the estimated equilibrium concentrations. This confirms that the Mg has partially re-

equilibrated by diffusion, and allows us to estimate high-temperature residence times for

the crystal using diffusion modelling. Two crystals from the Cape Riva dacite (GS11-

34a XL14 and XL23, Figures 6.18e-h and 6.20), however, have Mg concentrations

within, or close, to the range of uncertainty of the initial Mg concentrations. The

lack of Mg diffusion within these crystals suggest that they grew very shortly before

eruption.
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Figure 6.16: The results of one-stage diffusion models of plagioclase crystals from the
Therasia dacites. Solid black lines are best fit models, while dashed lines show how the
Mg profile evolves with time. Labels on the right of each figure are the time in years for
each of the models shown. The results are summarised in Table 6.3.
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Figure 6.17: The results of two-stage diffusion models of plagioclase crystals from the
Therasia dacites. Dashed black line is the modelled result after the first stage (inner
zone only), solid black line is the result after both stages. The inner zone and outer zone
times stated on the diagram are the times for each stage only; the total high-temperature
residence times of the crystals is the inner zone residence time + outer zone residence
time. The results are summarised in Table 6.3.
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Figure 6.18: The results of one-stage diffusion models of plagioclase crystals from the
Cape Riva dacite. Solid black lines are best fit models, while dashed lines show how the
Mg profile evolves with time. Labels on the right of each figure are the time in years for
each of the models shown. The results are summarised in Table 6.3.
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Figure 6.18 continued: The results of one-stage diffusion models of plagioclase crystals
from the Cape Riva dacite.
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Figure 6.19: The results of two-stage diffusion models of plagioclase crystals from the
Cape Riva dacite. Dashed black line is the modelled result after the first stage (inner
zone only), solid black line is the result after both stages. The inner zone and outer zone
times stated on the diagram are the times for each stage only; the total high-temperature
residence times of the crystals is the inner zone residence time + outer zone residence
time. The results are summarised in Table 6.3.
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Figure 6.20: A plagioclase crystal from the Cape Riva dacite (GS11-34 XL14). (a,b)
Anorthite contents along the two laser profiles, measured using the calibrated BSE image.
(c,d) The results of one-stage diffusion models. Solid black lines are best fit models, while
dashed lines show how the Mg profile evolves with time. No best-fit diffusion model shown
for profile 1 (c), as the data are best fit by the initial profile. Labels on the right of each
figure are the time in years for each of the models shown.
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GS11-34a XL14 (Figure 6.20) also shows a common feature of the diffusion models:

profile 2 appears to be more equilibrated than profile 1, and hence gives a longer

high-temperature residence time. Where this is the case, the shorter time is taken as

the better estimate of the crystal’s high-temperature residence time. One-dimensional

diffusion models, such as those presented here, may overestimate the time needed for

diffusive re-equilibration (Costa et al., 2008). One-dimensional models assume that all

the diffusion occurs parallel to the modelled profile. Where the geometry of the zoning

pattern is complex, like it is around profile 2 of GS11-34a XL14, diffusion in other

directions becomes more significant. Diffusion perpendicular to the modelled profile

will allow the crystal to re-equilibrate faster than the models suggest.

There may be other fast paths for diffusion that are not obvious in the BSE images,

such as cracks or grain boundaries. The zoning patterns of most of the plagioclase

crystals from the Therasia and Cape Riva dacites have complex shapes, and even where

the zoning patterns seem simple in the two dimensions visible in the BSE images, they

may be complicated as you move out of the plane of the polished sections. Resorption

also complicates the interpretation of the Mg profiles. Repeated cycles of growth,

partial dissolution, re-equilibration and then renewed growth—as seen in GS11-34a

XL14 (Figure 6.20), for example—will affect the shape of the Mg profile, and the

one- and two-stage models presented here are clearly simplifications. It is for these

reasons that the high-temperature residence times of the plagioclase crystals must be

considered to be maximum residence times (except where the crystals appear to have

fully equilibrated, as discussed below).

While some crystals were best fit by a one-stage model (GS11-34a XL14 and 23, dis-

cussed above; also GS10-16 XL148, Figure 6.16g and GS11-39b XL29, Figure 6.18i,j),

most fits were improved by running a two-stage model. Figure 6.21 shows an example

of one such crystal (GS11-30b XL15). In a one-stage model (Figure 6.21b), the calcu-

lated profile reaches the measured Mg concentrations in the edge of the crystal after

less that 10 y. However, the Mg concentrations at the centre of the crystal are not
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Figure 6.21: A plagioclase crystal from the Cape Riva dacite (GS11-30b XL15). (a)
Anorthite contents along the laser profile, measured using the calibrated BSE image. (b)
The results of one-stage diffusion models. Dashed lines show how the Mg profile evolves
with time. Labels on the right are the time in years for each of the models shown. (c)
The results of a two-stage diffusion model. Dashed black line is the modelled result after
the first stage (inner zone only), solid black line is the result after both stages. The inner
zone and outer zone times stated on the diagram are the times for each stage only; the
total high-temperature residence times of the crystals is the inner zone residence time +
outer zone residence time.
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reached until about 450 y. In the two-stage model (Figure 6.21c), the inner zone is

allowed to equilibrate for 400 y without the outer zone, and reaches the measured Mg

concentrations. The outer zone then grows, and the crystal only remains in the melt

for a short period (∼2 y) before being erupted.

A few crystals, however, are not well fit by either one-stage or two-stage diffusion

models (e.g. GS10-14 XL32, Figure 6.22). The one-stage model for profile 1 (Fig-

ure 6.22c), for example, reaches the Mg concentration of the analyses between 170 and

250 µm from the outer zone after about 450 y. The Mg concentrations of the rest of the

crystal are not reached until about 1,100 y. For the two-stage model, it is the analyses

between 260 and 400 µm from the outer zone that cannot be fit at the same time as the

rest of the crystal. A similar effect is seen in profile 2. One possible explanation is that

not all the diffusion is occurring parallel to the measured profile. For GS10-14 XL32,

it is possible that there is a join between two crystals at about 250µm from the crystal

outer zone along profile 1. This would provide a fast path for Mg to diffuse along.

Another possibility is that the crystal grew in three stages rather than just two. Both

explanations would require us to reduce the estimate of high-temperature crystal resid-

ence time, therefore even the poorly fit models can give us maximum high-temperature

residence times.

The final feature of the diffusion models can also be seen in GS10-14 XL32 (Fig-

ure 6.22). The data can be fit by two-stage models where the inner zone first reaches

equilibrium with its host melt, before the outer zone is grown. This is true of two other

Therasia crystals (GS10-14 XL66, Figure 6.17c,d; GS10-17 XL60, Figure 6.17f). Once

a crystal reaches equilibrium with its surroundings, it can remain at high temperat-

ure indefinitely without any changes to its composition. The timescales of these three

inner zones, therefore, are minimum values. The fact that the inner zones are not in

equilibrium with their outer zones, however, demonstrates that the outer zones must

be younger than the inner zones, and allows us to estimate the time these crystals

resided at high temperature after the growth of the outer zones.
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6.6.6 Uncertainties

Uncertainty in the fit

The uncertainty in the high-temperature residence times due to the fit of the data

was quantitatively assessed as follows. As the models were run, the time at which

the calculated profile first reached the measured Mg concentrations was noted. The

diffusion model was then allowed to continue until the calculated profile fell below most

of the measured Mg concentrations. Although this approach is somewhat subjective,

it was conservatively applied to produce the largest possible range of ages supported

by the data.

Uncertainty in the initial conditions

Another major source of uncertainty in the diffusion models is the initial conditions.

Three profiles were selected to investigate the effect of the initial Mg concentration on

the residence times recovered from the diffusion models. The three profiles were run

starting at the three different estimates of the initial concentration (‘best’, low, and

high, as given by Equations 6.9, 6.10 and 6.11, respectively). The time each profile took

to reach different levels of equilibration was then compared for the different starting

conditions. The effect of using either the high or low initial Mg concentrations, rather

than the ‘best’ initial concentrations, was to change the estimated high-temperature

residence times by between 15 and 65 y (with an average difference of 40 y).

We can also asses the impact that the uncertainty in the initial conditions has on

Figure 6.22 (facing page): A plagioclase crystal from the Therasia dacites (GS10-14
XL32). (a,b) Anorthite contents along the laser profiles, measured using the calibrated
BSE image. (c,d) The results of one-stage diffusion models. Dashed lines show how the
Mg profile evolves with time, and solid black lines are the best fit model. Labels on the
right are the time in years for each of the models shown. (e,f) The results of a two-stage
diffusion model. Dashed black line is the modelled result after the first stage (inner
zone only), solid black line is the result after both stages. The inner zone and outer zone
times stated on the diagram are the times for each stage only; the total high-temperature
residence times of the crystals is the inner zone residence time + outer zone residence
time.
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the high-temperature residence times by looking at the time it takes for the calculated

profile to drop from the ‘best’ initial profile to below the low bound of the initial

concentration. In most cases this is less than 40 y. The exceptions are in the centres of

long plateaus of the Mg concentration and regions affected by “uphill diffusion”. For

example, the very centre of Figure 6.21b stays at roughly the same Mg concentration

for the first 180 y. This is due to the fact that the diffusion front has to migrate to

the centre. In the case of “uphill diffusion” (e.g. Figure 6.22d), it is Mg diffusing out

of regions with high initial Mg concentrations that stops the Mg profile from dropping

(even driving the Mg concentrations “uphill”, away from equilibrium). In both cases,

changing the initial Mg concentration does not change this behaviour; instead it adds

or subtracts ∼40 years on top of the time it takes for the Mg concentrations in the

regions affected to start dropping. A value of ±40 y was taken as the uncertainty due

to potential variations in the initial Mg concentration, and was added to the range

of times estimated from the range of possible fits to the data (as described above).

In crystals with high-temperature residence times shorter than 40 y, however, the time

taken for the one-stage models to drop from the best estimate to below the lower bound

of the estimates of the initial Mg concentrations was used instead.

Uncertainty in the diffusion coefficient

The final source of uncertainty in the models is the uncertainty in the diffusion coeffi-

cient. Because time is inversely proportional to the diffusion coefficient in Equation 6.4,

we can assess this analytically. The biggest source of error in the diffusion coefficient is

the temperature at which the diffusion is assumed to have taken place. The relationship

between the diffusion coefficient and the temperature takes the form:
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D = D0 exp
(−Q
RT

)
(6.18)

The ratio between the time diffusion takes at two different temperatures, T1 and

T2, can therefore be written as:

t1
t2

= D0 exp (−Q/RT2)
D0 exp (−Q/RT1)

ln
(
t1
t2

)
= Q

RT1
− Q

RT2
(6.19)

Fe–Ti oxides from two of the three analysed pumice fall deposits from the Therasia

dome complex, along with the Cape Riva eruption give temperatures of within about

± 25 °C of 880 °C (Chapter 5; Cadoux et al., 2014). This temperature range is therefore

used to asses the uncertainty in the diffusion models. It is worth noting that the pumice

fall deposit that falls outside this temperature range, pumice fall B, is significantly

hotter. This would speed up Mg diffusion, again making the high-temperature residence

times presented here overestimates.

Using the equation for the diffusion coefficient an An40 of Van Orman et al. (2014),

diffusion at 855 °C should take 1.94 times as long as at 880 °C, and diffusion at 905 °C

should take 0.53 times as long. This approach may not be strictly applicable, however,

as the diffusion coefficient of Mg in plagioclase is not constant across the length of

the crystal. This leads to a ∂DMg
∂x

term in the expansion of the diffusion equation

(Equation 6.15). However, running models at 855 and 905 °C confirms that a factor

of two is a reasonable estimate of the uncertainty in the models due to variation in

temperature. The lower and upper bounds on the range of high-temperature residence

times estimated from the possible fits to the data and the uncertainties in the initial

conditions were therefore multiplied or divided by a factor of two to take this into

account.
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6.7 Combining petrological and timescale

information

The results of the diffusion models of the plagioclase crystals are presented in Table 6.3.

Also shown are the range of possible high-temperature residence times, taking into

account the uncertainties on the fit to the data, the initial conditions, and the temper-

ature. The best estimate of the high-temperature residence time of each crystal, out

of all the models presented, is shown in bold. The high-temperature crystal residence

times are also plotted in Figure 6.23, along with timescale constraints from field data

(Chapter 4). For the Therasia dacites, the average time between eruptions is calcu-

lated as the time between the youngest and oldest Therasia dacites, ∼15 ky, divided

by the minimum number of pauses between the eruptions that took place during that

time, 10 (≈ 1.5 ky per eruption). On the plot of Cape Riva high-temperature resid-

ence times (Figure 6.23b), the time between the youngest dated Therasia lava and the

Cape Riva eruption is plotted, along with the uncertainty from the radiometric dating.

Inner phenocryst zones are distinguished on the graph only where a separate high-

temperature residence time could be determined using diffusion models. Outer zone

residence times are either one stage models, or the second stage of two-stage models.

In order to properly interpret the crystal residence times recovered from diffusion

modelling, they need to be seen in the context of the petrology and crystal textures.

The three longest high-temperature residence times from the Therasia dacites come

from calcic cores. As discussed in Section 6.5.1, these cores are probably xenocrystic.

They could have either been introduced from a mafic recharge magma, or from an

ancient plutonic mush. The high Sr content of some of the crystals suggested a plutonic

origin, and the long timescales estimated here support this interpretation.

The high-temperature residence times of the outer crystal zones and one-stage mod-

els, which better represent the high-temperature residence times of phenocrysts in the

Therasia magma reservoir, are all much shorter than the mean time between eruptions.
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The phenocrysts from the Therasia dacites appear to have grown within a few decades,

up to possibly a few centuries, prior to eruption. This tends to support the idea that

there was no persistent magma reservoir during the construction of the Therasia dome

complex. If there had been, we would expect to see phenocrysts recycled between

eruptions.

The zoning patterns of the Cape Riva crystals record the repeated mixing of com-

positionally diverse magmas (silicic andesite to rhyodacite). The key result of the diffu-

sion modelling of the Cape Riva plagioclase crystals is that all their high-temperature

residence times are shorter than the 2, 800±1, 400 y between the youngest dated Ther-

asia lava and the Cape Riva eruption (Chapter 4). The depletion of incompatible

elements in the Cape Riva whole rock relative to the Therasia magma suggests that

much of the Cape Riva magma arrived during this time, and the short high-temperature

residence times (mostly years to decades, up to a maximum of few centuries) support

this interpretation.

6.8 Summary

In this chapter I have looked in detail at the plagioclase phenocrysts in the Therasia

and Cape Riva dacites. I have characterised the anorthite zoning patterns of the

phenocrysts, and compared these to zoning patterns of selected trace elements. I

used the zoning patterns of slowly diffusing components (anorthite, Sr, Ti, La, Ce)

to investigate the composition of the melts that the plagioclase phenocrysts came

into contact with, and used the zoning patterns of Mg to estimate high-temperature

residence times. The key findings of this chapter are:

• The plagioclase phenocrysts from the Therasia dacites have rims of An39 to

An51. Some of the crystals have sawtooth zoning, where anorthite contents cycle

between An59−72 and the rim compositions. Other crystal have a calcic core, with

compositions of An50 to An91.
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Table 6.3: High-temperature residence times, in years, calculated in diffusion models of Mg
in plagioclase.

Therasia dacites
1 Stage 2 Stage

Crystal Profile Calcic corea Outer zoneb

Flow 5 (GS10-17)
XL60 — 2,200 (630–9,000) 3,000 (1,000–) 15 (0–120)

XL71 1 800 (100–3,400) — —
2 330 (10–1,100) 125 (30–480) 50 (0–330)

Flow 8 (GS10-14)

XL32 1 1,100 (200–3,700) 500 (150–) 75 (5–330)
2 800 (25–2,100) 500 (7–) 75 (5–480)

XL66 1 9,000 (430–) 5,000 (1,200–) 400 (130–1,100)
2 3,000 (25–) 1,500 (400–) 15 (0–130)

Flow 9 (GS10-16)
XL148 — 180 (10–1,700) — —

Cape Riva dacite
1 Stage 2 Stage

Crystal Profile Inner sawtootha Outer sawtoothb

Phase A (GS11-34a)

XL09 1 20 (5–240) 10 (2–120) 5 (0–100)
2 70 (10–440) 15 (5–120) 10 (0–110)

XL14 1 0 (0–120) — —
2 80 (15–520) — —

XL23 1 0 (0–260) — —
2 0 (0–400) — —

Phase B (S12-06)

XL24 1 300 (45–1,500) 10 (5–) 250 (55–680)
2 170 (20–480) 125 (30–380) 1 (0–4)

Phase C (GS11-30b)
XL15 — 180 (5–980) 400 (130–1,100) 2 (1–16)
XL18 — 20 (5–280) 50 (5–280) 25 (5–140)
Phase C (S12-05)

XL03 1 25 (2–180) 10 (4–180) 4 (0–12)
2 220 (20–1,100) 75 (5–280) 1 (0–16)

Phase D (GS11-39b)

XL29 1 60 (10–680) — —
2 4 (1–22) — —

Figures in parentheses are the range of possible high-temperature residence times, taking
into account the uncertainties in model fit, initial conditions, and temperature. Where
an upper bound is not present, the Mg is at or close to equilibrium. Bold figures are the
best estimate for each crystal. Outer zone and one-stage models run at 880 °C, inner zone
models sometimes run at higher temperatures.

a Residence times of the inner zones up until the growth of the outer zone.
b Residence time of the outer zone, from its growth until eruption.
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Figure 6.23: high-temperature Residence times of plagioclase crystals from (a) the
Therasia and (b) the Cape Riva dacites. Outer zone residence times are either the dura-
tion of the second stage of the two stage models, or the residence times calculated from
one-stage models where two-stage models were not run. Calcic core and inner sawtooth
high-temperature residence times are the combined durations of the first and second
stages of the two-stage models. Error bars represent the uncertainties in the estimates
based on uncertainties in the model fit, the initial conditions and the temperature (as
discussed in the text). Outer zone and one-stage models run at 880 °C, inner zone models
sometimes run at higher temperatures (as discussed in the text). Average time between
Therasia eruptions and the time between the last Therasia eruption and the Cape Riva
eruption is calculated using the radiometric dates presented in Chapter 4.
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• The compositions of the phenocryst rims vary between the different Therasia

eruptions. There are also textural differences between the plagioclase found in

each flow. Crystals with sawtooth zoning are present in some flows and absent

in others. Some flows have crystals with large, brown, rounded glass inclusions,

while these crystals are not found in others.

• The Cape Riva plagioclase phenocryst rims have compositions of An31−41, with

most clustering between An36 and An40. Some Cape Riva plagioclase phenocrysts

have sawtooth zones, cycling between An46−60 and rim compositions. No cores

more calcic than the sawtooth zones were found. There are no obvious differences

between crystals from the different phases of the eruption, suggesting that the

Cape Riva magma reservoir was well mixed before eruption.

• The liquid equivalent Sr concentrations of the plagioclase phenocrysts in both the

Therasia and Cape Riva eruptions are tightly correlated with anorthite content.

This suggests that the changes in the anorthite content of the plagioclases cor-

respond largely to changes in the melt composition. Using the Sr and Ti content

of the plagioclase crystals, the composition of the melt that each zone grew from

could be estimated.

• The Sr and Ti content of the Therasia plagioclase phenocrysts show that the

rims grew in equilibrium with a dacitic melt. The calcic parts of the sawtooth

zones demonstrate that the phenocrysts came into contact with a silicic andesitic

melt during their growth. The Ti contents of these crystals suggest that most of

the silicic andesite input into the Therasia plumbing system lay along fractional

crystallisation trends. There is little evidence from the Ti content of the pheno-

crysts in the dacites for inputs of basaltic magma, apart from two crystals in the

dacitic flow 9, close to the top of the sequence.

• The calcic cores found in some Therasia phenocrysts grew in a basaltic or an-

desitic melt, with a high Sr content characteristic of the much older (530-430 ka)
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Peristeria magma. This suggests a xenocrystic origin, although it is possible that

some of the calcic cores emanated from a mafic recharge magma.

• The Cape Riva plagioclase phenocrysts grew from dacitic to rhyodacitic melt

compositions. The Ti content of the phenocrysts demonstrate that the incoming

magma driving these composition cycles must be at least as evolved as a silicic

andesite.

• The incompatible element concentrations (La, Ce, K) of the plagioclase crystals

vary between the Therasia and Cape Riva magmas, in a similar fashion to the

whole rock compositions (Chapter 5). While K diffuses quickly and may have

re-equilibrated before eruption, La and Ce diffuse very slowly and the plagioclase

crystals should preserve their original growth concentrations. Very few of the

Cape Riva plagioclases have Therasia-like incompatible element concentrations,

suggesting very little recycling of Therasia crystals into the Cape Riva magma.

Only one crystal appears to have seen Therasia-like melt during its growth.

• Diffusion modelling of the Therasia plagioclase crystals shows that some of the

calcic cores had extended histories of at least a few thousand years at high tem-

peratures, while the bulk of the phenocrysts grew within a few decades (up to a

maximum of a few centuries) before eruption.

• The Cape Riva plagioclases all have high-temperature residence times shorter

than the 2,800± 1,400 years between the last Therasia eruption and the Cape

Riva eruption deduced from the field data and radiometric dating (Chapter 4).

This agrees with the suggestion, based on the whole rock chemistry (Chapter 5),

that the Cape Riva magma only arrived in the shallow crust shortly before erup-

tion. Most of the high-temperature residence times of the Cape Riva plagioclases

are a few years to decades, up to perhaps a few hundred years.
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Chapter 7

Orthopyroxene

7.1 Introduction

This chapter looks at the orthopyroxene crystals in the Therasia and Cape Riva dacites,

in a similar way to how I investigated the plagioclase crystals in the previous chapter.

The orthopyroxene crystals have been breifly described in Chapter 5 In this chapter,

I look in more detail at the zoning patterns of both major and trace elements in

orthopyroxene crystals. I consider only the phenocrysts, as these crystals provide a

record of the events that took place within the magma reservoir, and I focus entirely

on the dacites, as these make up the majority of the erupted material during both the

Cape Riva eruption and the construction of the Therasia dome complex (Chapter 4).

Just as with the plagioclase phenocrysts, the zoning patterns of different elements

with different diffusion coefficients were measured to provide complimentary informa-

tion on the crystals’ histories. Fe and Mg zoning patterns were measured quantitatively,

using calibrated SEM images, while Al and Ca zoning patterns were imaged qualit-

atively using X-ray counts on the electron microprobe. The concentrations of fast-

diffusing elements can be used to estimate timescales of magmatic processes through

diffusion modelling. On the other hand, slowly-diffusing elements can be used to track

growth conditions of crystals as they require long times to re-equilibrate with their

195
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host magma. Their concentrations in crystals should therefore reflect the temperature,

pressure and composition of the melt at the time of the crystals’ growth, and they

should be unaffected by any subsequent changes to its chemistry. Which elements can

be considered “fast-” and which can be considered “slow-diffusing” depends on the

temperature, the timescales and length-scales of interest. This is discussed later in the

chapter, after the zoning patterns themselves are presented.

Of particular interest are the changes that occurred in the magma reservoir in

the build-up to the Cape Riva eruption. In Chapter 5 we saw that a change in the

concentration of incompatible elements between the Therasia and Cape Riva erup-

tions suggested that there was a large influx of new silicic magma shortly before the

Cape Riva eruption. The field evidence constrains the timing of this influx to within

2,800± 1,400 y before the Cape Riva eruption (Chapter 4). The Cape Riva plagioclase

crystals also appear to record the mixing of silicic magmas with slightly different com-

positions (Chapter 6). We can look for evidence of this in the zoning patterns of the

orthopyroxene crystals.

Also of interest is the residence times of the phenocrysts in the Therasia and Cape

Riva silicic magma reservoirs. Diffusion modelling of plagioclase crystals gave high-

temperature residence times of years to centuries in both the Therasia and Cape Riva

dacites (Chapter 6). This suggests that the shallow magma reservoirs that fed the

Therasia and Cape Riva eruptions were short-lived.

7.2 Analytical techniques

Thin sections from three dacitic lavas from the Therasia dome complex were selected for

study (flows 5, 8 and 9; samples GS10-17, GS10-14 and GS10-16, respectively), along

with five pumices from the Cape Riva eruption, covering all four phases of the eruption

(phase A: GS11-34a; phase B: S12-06; phase C: GS11-30b and S12-05; phase D: GS11-

39b). These are the samples from which the plagioclases in Chapter 6 where taken.



7.2. Analytical techniques 197

40 60 80 100 120 140 160
50

52

54

56

58

60

62

64

66

68

#M
g 

(m
ol

%
)

Greyscale

Figure 7.1: Typical calibration curve for #Mg (magnesium number;
100×molar Mg/[Mg+Fe]) for a BSE image of an orthopyroxene crystal (GS11-
39b PYX29). Horizontal error bars are the standard deviation of the greyscale values
within the circles measured in ImageJ, vertical error bars are calculated from the
counting statistics of the electron microprobe but are smaller than the symbol.

The pumices were hand crushed, and orthopyroxene crystals were hand-picked, set in

resin and polished. Crystals with adhering melt were preferred, as this demonstrates

that those crystal face are original rather than fractures caused by crushing.

Mineral major element compositions were analysed using the Cameca SX 100 elec-

tron microprobe at the Laboratoire Magmas et Volcans, Université Blaise Pascal,

Clermont-Ferrand, using a beam current of 15 nA. Orthopyroxene element maps were

made of selected crystals with a beam current of 100 nA at 15 kV, and a dwell time of

100ms per pixel. Pixel size varied between 1 and 3µm, depending on the size of the

crystal to be imaged.

Backscattered electron (BSE) images of selected orthopyroxene crystals were pro-

duced on the scanning electron microscope (SEM), and then calibrated for #Mg (mag-

nesium number; 100×molar Mg/[Mg+Fe]) on the electron microprobe. Five points on

each crystal were analysed using the electron microprobe for their #Mg. The average

greyscale values in circles 2–5 µm in diameter around these same points was measured

in the SEM images using the image analysis software package ImageJ (Rasband, 2012).

The relationship between the greyscale value and composition was then calculated us-
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ing a linear least-squares regression for each image (Figure 7.1). Correlation between

greyscale values and anorthite content of the orthopyroxene was generally high, with

correlation coefficients r2 > 0.95 for most (and r2 > 0.80 for all) of the images used.

This corresponds to a standard error in #Mg of ±0.2–1mol%, estimated from the re-

gression parameters. With this relationship, the #Mg content of any spot on the image

could be calculated. This allowed me to quickly plot profiles of #Mg against distance

at much greater spatial resolution than would otherwise be practical (pixel size was

0.01–1µm depending on the image).

7.3 Zoning patterns

7.3.1 Mg–Fe zoning

Most of the Therasia orthopyroxene phenocrysts are euhedral, weakly zoned and have

a #Mg of 58–64 Wo3−4En53−60Fs37−43, where Wo is molar Ca/(Ca+Mg+Fe), En

is molar Mg/(Ca+Mg+Fe) and Fs is molar Fe/(Ca+Mg+Fe). A weakly zoned

orthopyroxene is shown in Figure 7.2a. Some orthopyroxenes have a Mg-rich inner zone,

with a #Mg of 65–71 (Wo3−4En62−68Fs29−35). These inner zones have diffuse boundaries

with the rims, and grade into similar compositions to the weakly zoned orthopyroxenes

(Figure 7.2c). There are also rare crystals with three zones (Figure 7.2e). These crystals

have inner and outer zones of a similar composition to the weakly zoned orthopyroxene

(#Mg: 61–65), with an intermediate zone that has a similar composition to the Mg-rich

cores (#Mg: 67–68).

The orthopyroxenes from the Cape Riva dacite are similar in appearance to those

found in the Therasia dacites. The main differences are that more of the Cape Riva

orthopyroxenes are zoned, and the Cape Riva orthopyroxenes are slightly more iron

rich the Therasia orthopyroxenes. The weakly zoned Cape Riva orthopyroxenes have

#Mg of 53–58 (Wo3−4En52−56Fs41−44), and can be slightly normally or reversely zoned

(Figure 7.2b). Many Cape Riva orthopyroxenes have Mg-rich inner zones with #Mg
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Figure 7.2: Calibrated BSE images of pyroxene crystals (a) a weakly zoned ortho-
pyroxene from flow 8 of the Therasia dome complex (GS10-14 PYX01) (b) a weakly
zoned orthopyroxene from the Cape Riva dacite (S12-05 PYX26) (c) an orthopyroxene
with a Mg-rich rim from flow 5 of the Therasia dome complex (GS10-17 PYX30) (d) an
orthopyroxene with a Mg-rich core from the Cape Riva dacite (S12-05 PYX12) (e) an
orthopyroxene with a Mg-rich mantle from flow 8 of the Therasia dome complex (GS10-14
PYX26) (f) an orthopyroxene with a Mg-rich mantle from Cape Riva dacite (GS11-30b
PYX08). cpx: clinopyroxene; plag: plagioclase.
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1

2

3

True zoning pattern Apparent zoning patterns after sectioning

Figure 7.3: Sketch of the typical zoning pattern of Therasia and Cape Riva orthopyrox-
enes, showing how different cuts through one crystal can reveal three apparently different
zoning patterns. The zones are numbered for reference.

of 60–68 (Wo3−4En57−65Fs32−40). Like the Mg-rich inner zones in the Therasia dacites,

these grade into rims of the same composition as the weakly zoned orthopyroxene

crystals (Figure 7.2d). There are also orthopyroxenes with Mg-rich intermediate zones

in the Cape Riva dacite (Figure 7.2f). Like in the Therasia dacites, the compositions

of the intermediate zones match those of the Mg-rich cores, and the cores and rims

match the weakly zoned crystals.

The different zoning patterns described above can all be related to a single, schem-

atic zoning pattern, shown in Figure 7.3. The low-Mg zone 3 is overgrown by the

high-Mg zone 2, which is in turn overgrown by the low-Mg zone 1. The BSE images

are two-dimensional slices through three-dimensional crystals. The position of this slice

relative to the zoning pattern of each crystal will be variable, and this could explain

the variation in zoning patterns. A slice close to the centre of the crystal would reveal

all three zones, and produce the orthopyroxenes with Mg-rich mantles. A cut closer

to the edge of the crystal could go through zones 1 and 2, but miss zone 3. The BSE

image would appear to show a crystal with a high-Mg core and a low-Mg rim. Cuts

through just zone 1 would produce the weakly zoned crystals.

An alternative interpretation is that some of the weakly zoned crystals simply do

not contain any zones 2 and 3, and the crystals with high-Mg cores do not contain any



7.3. Zoning patterns 201

zone 3. In either case, the high-Mg cores and high-Mg mantles can be considered to

be equivalent to zone 2 of the general scheme (Figure 7.3). It is also possible that both

explanations play a role in varying the zoning pattern between orthopyroxene, as the

cut effect will be superimposed upon any real variation in zoning patterns.

The weakly zoned crystals have a similar composition to both zones 1 and 3. If

we assume that all orthopyroxene crystals have all three zones, then the weakly zoned

crystals cannot be zone 3. There is no single cut that would expose zone 3 without

also exposing zone 2 (Figure 7.3). However, we cannot assume that all crystals have a

zone 2. For weakly zoned orthopyroxenes without a zone 2 hidden from view outside

of the plane of the section there are two possible scenarios: either they grew the same

time as zone 1, but without a pre-existing orthopyroxene at their core, or they grew at

the same time as zone 3 and were kept isolated from the strongly zoned orthopyroxenes

during the growth of zone 2 (and possibly zone 1 as well).

7.3.2 Trace element zoning in the Cape Riva dacite

Figures 7.4–7.7 show element maps of Mg, Fe, Ca and Al of four typical orthopyroxene

crystals from the Cape Riva, demonstrating the different types of apparent zoning

pattern observed. Although these images are not calibrated, and therefore cannot give

quantitative information on the composition, the raw X-ray counts for each element

can be compared qualitatively. Fully calibrated electron microprobe spot analysis of

the different zones are plotted in Figure 7.8, and these show the range of compositions

found in the different zones. In all crystals examined Al zoning was sharper than Ca,

which was in turn sharper than Mg and Fe. Sketches of the different features seen in

the Al maps are shown in Figure 7.9.

Different types of inclusion can also be distinguished by comparing the different

element maps (labelled in Figure 7.4). Glass inclusions (as well as adhering glass) have

higher Al, similar Ca and lower Mg and Fe, than the orthopyroxene crystals themselves.

Fe-Ti oxides have high Fe, moderately high Al, and low Mg and Ca. Apatite inclusions
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Figure 7.4: Element maps of a weakly zoned orthopyroxene from the Cape Riva eruption
(S12-05 PYX26). Scale bars are the number of X-ray counts per 100ms for each element
measured on the electron microprobe.
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Figure 7.5: Element maps of an orthopyroxene with a Mg-rich inner zone (zone 2) from
the Cape Riva eruption (S12-05 PYX12). Scale bars are the number of X-ray counts per
100ms for each element measured on the electron microprobe.
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Figure 7.6: Element maps of an orthopyroxene with a Mg-rich intermediate zone
(zone 2) from the Cape Riva eruption (GS11-30b PYX08). Scale bars are the number of
X-ray counts per 100ms for each element measured on the electron microprobe.
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Figure 7.7: Element maps of an orthopyroxene with sector zoning or skeletal growth
(S12-06 PYX17). Scale bars are the number of X-ray counts per 100ms for each element
measured on the electron microprobe.
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of the strongly zoned crystals, from electron microprobe spot analyses. The boundaries
between the zones are defined using the Al maps.

have high Ca, and low Mg, Fe and Al.

The features of the different zones of the orthopyroxene crystals are as follows:

Weakly zoned crystals: In all of the six orthopyroxene crystals with weak Mg–Fe

zonation that were imaged, there is only slight variations in Al and Ca. Al

often show weak oscillatory growth zonation (Figures 7.4 and 7.9a). There

are broad correlations between all four elements, with higher Al generally

corresponding to higher Fe, and lower Mg and Ca (Figure 7.8). Electron

microprobe point analyses on weakly zoned crystals show between 0.36 and

0.68wt% Al2O3 and between 1.50 and 1.72wt% CaO.

Figure 7.9 (facing page): Sketches of the Al zoning patterns in typical Cape Riva
orthopyroxenes, alongside EMP Al maps. (a) A weakly zoned crystal (S12-05 PYX26)
(b) a crystal with a partially resorbed high-Al core (S12-05 PYX12) (c) a crystal with
sector zoning or skeletal growth (S12-06 PYX17) (d) a crystal with a high-Al mantle
(GS11-30b PYX07).
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Zone 1: Examples of strongly zoned orthopyroxenes are shown in Figures 7.5–

7.7. Their outer, low-Mg zone (zone 1) also has low Al. Electron microprobe

spot analyses record similar compositions to the weakly zoned crystals, with

0.44–0.69wt% Al2O3 and 1.49–1.71wt% CaO (Figure 7.8a).

Zone 2: The high-Mg inner and intermediate zones (zone 2) also have high

Al (up to 1.26–1.65wt% Al2O3, depending on the crystal). While there is

sometimes correlation between the areas of high Al with areas of high Ca

(e.g. Figure 7.5), in general Ca contents in zone 2 are decoupled from the

concentrations of the other elements. Ca contents in zone 2 have a larger

range than zone 1 (1.42–1.85wt% CaO; Figure 7.8a). There is often more

fine scale zoning visible in the Al maps, with zone 2 regularly split into an

are of high Al and an area of intermediate Al (Figure 7.9b-d). A few crystals

show repeated oscillation between intermediate and high Al contents within

zone 2. The boundaries between zones 1 and 2 are sharp on Al maps, and

often cut across the internal zoning in zone 2. There are often “wormy”

structures, filled in with zone 1 orthopyroxene (Figure 7.9c,d). These are

probably melt escape structures, as they often have glass inclusions trapped

at their inner end. Alternatively, they may be due to partial dissolution of

zone 2 before the growth of zone 1. One crystal (S12-06 PYX17; Figures

7.7 and 7.9d) shows evidence of skeletal growth or sector zoning during the

growth of zone 2 preserved in the Al zoning patterns.

Zone 3: These zones have similar compositions to both zone 1 and the weakly

zoned orthopyroxene crystals. It has between 0.47 and 0.54wt% Al2O3 and

between 1.59 and 1.67wt% CaO (Figure 7.8a). The boundaries between

zones 3 and 2 are sharp on maps of Al, and sometimes show signs of dissol-

ution (Figure 7.9c).
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7.4 Using fast and slow diffusing elements to

elucidate magmatic processes

As previously discussed for plagioclase in Chapter 6, slow-diffusing elements can be

used to reveal the crystals’ histories, while fast-diffusing elements can be modelled to

get timescales. The influence of diffusion on zoning patterns can be estimated using a

back-of-the-envelope calculation for a characteristic length scale of diffusion, x:

x ≈
√
Dt (7.1)

where D is the diffusion coefficient and t is the timescale that we are interested in.

The variation of characteristic distance with time for the elements discussed here at

880 °C and at the FMQ buffer is shown in Figure 7.10, along with the timescales and

distances of interest to this study.

The orthopyroxenes typically reach about 500µm in length, so any element with a

characteristic distance longer than this will have mostly re-equilibrated at the scale of

whole crystals. These elements will not, therefore, record original growth compositions,

and they will only provide information on minimum crystal residence times. On the

other hand, elements with characteristic distances smaller than the size of the electron

microprobe beam (1 µm) will remain close to their initial concentration. These slow-

diffusing elements will be able to provide only maximum crystal high-temperature

residence times. However, because their concentrations remain relatively unmodified

even over extended periods, they can also be used to study the histories of the crystals.

In between these two limits are the elements that will have partially re-equilibrated—

these are the elements that can be modelled to estimate crystal high-temperature

residence times.

For the Therasia–Cape Riva series, we are chiefly interested in processes that oc-

cur on timescales shorter than the ∼18 ky of dacitic eruption (the time between the
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Figure 7.10: Characteristic diffusion distance against time, calculated using Equa-
tion 7.1 at 880 °C. The upper and lower horizontal dashed lines represent the typical
orthopyroxene size (500 µm) and the size of the electron microprobe beam (1 µm), re-
spectively. The left and right vertical dashed lines are the time between the youngest
dated Therasia lava and the onset of the Cape Riva eruption (2,800 y), and the time
between the first dacitic eruption of the Therasia dome complex and the onset of the
Cape Riva eruption (18,000 y), respectively. References: 1: Nakagawa et al. (2005); 2:
Ganguly and Tazzoli (1994), in orthopyroxene with a #Mg of 60mol%, at the FMQ
oxygen buffer.

oldest Therasia dacite and the Cape Riva eruption; Chapter 4). Elements that remain

immobile over this length of time have been used in Section 7.5 to reconstruct crys-

tal histories from orthopyroxene compositions. We are also particularly interested in

the processes that occurred between the end of the construction of the Therasia dome

complex and the onset of the Cape Riva eruption (2,800± 1,400 y; Chapter 4). The

diffusion of elements that are expected to partially re-equilibrate over this period have

been modelled in Section 7.6 in order to estimate crystal high-temperature residence

times.

The diffusion coefficients of Al Fe–Mg have been discussed in detail in Chapter 3.

Aluminium has a characteristic distance of ∼3µm over 18 ky, and can be considered

immobile here (Nakagawa et al., 2005; Smith and Barron, 1991). This is confirmed by

the sharpness of the zoning patterns in the Al maps presented here (Figures 7.4–7.7).
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Al contents should therefore be close to original, and the Al zoning can be used to

reconstruct the crystals’ growth histories (Section 7.5).

The Ca zoning patterns are not as sharp as the Al zoning patterns, but they are

not as diffuse as the zoning patterns of Fe–Mg (Figure 7.2). It therefore appears the

the diffusion coefficient of Ca is intermediate between that of Al and that of Fe–Mg,

although there is no available experimental data to estimate the diffusion coefficient

quantitatively. A diffusion coefficient between that of Al and that of Fe-Mg would

agree with data for clinopyroxene (Cherniak and Dimanov, 2010).

Fe–Mg are the fastest diffusing elements considered in this chapter, and most orth-

opyroxene crystals will have completely re-equilibrated their Fe-Mg over 18 ky (Fig-

ure 7.10). The characteristic distance is ∼160µm over the ∼2,800 y between the last

Therasia eruption and the Cape Riva eruption, and this drops to 30 µm over 100 y.

This means Fe–Mg diffusion should be useful to constrain the timescales of the mag-

matic processes that took place between the last Therasia eruption and the Cape Riva

eruption, and it is modelled in Section 7.6.

7.5 Estimating melt compositions from

orthopyroxene compositions

Despite the low diffusivity of Al and Ca in orthopyroxene, it is difficult to use their

concentrations in the crystals to estimate melt compositions the same ways as Sr and

Ti in plagioclase were used in Chapter 6. Whole-rock Al contents vary little at San-

torini (Chapter 2), and the partitioning of Al between the melt and orthopyroxenes

is complicated by the fact that Al can occupy either the tetrahedral or the metal ion

sites (Bédard, 2007). Ca is not strictly a trace element, and experimental data for

both Al and Ca shows that there is no simple relationship between their concentration

in orthopyroxene and melt composition or other parameters (Bédard, 2007). This is

true even when we look at the compositions of experimental orthopyroxenes from only
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Figure 7.11: #Mg of orthopyroxenes plotted against the SiO2 contents coexisting
glasses produced in the experiments of Cadoux et al. (2014) using the Cape Riva da-
cite as a starting material. The horizontal grey bands represent the compositions of the
natural orthopyroxenes from the Cape Riva (this chapter). The vertical grey bands are
the compositions of the glass from the Cape Riva dacite (Chapter 5) and the melt compos-
itions calculated from the trace element contents of the calcic parts of the sawtooth-zoned
plagioclases (Chapter 6).

Cape Riva whole-rock compositions (Cadoux et al., 2014).

The low diffusivity of Al and Ca in orthopyroxene does mean that we can assume

that the Al and Ca contents are primary, although they may have been affected by

fast growth. The relationship between #Mg and Al content in the zoned crystals can

therefore be used to interpret the lack of Fe-Mg zoning in the weakly zoned crystals.

The high-Mg zone 2 also has high Al (Figure 7.8b), and if the weakly zoned crystals

originally had a high-Mg zone 2 that was erased by diffusion, then we would expect

them to still have a high-Al zone. Figures 7.4 and 7.8 show that this is not the case,

the weakly zoned crystals have the same Al (and Ca) contents as the low-Mg zones

1 and 3 of the strongly zoned crystals. It seems unlikely, therefore, that the weakly

zoned crystals were ever strongly zoned in Fe–Mg.

The #Mg of orthopyroxene is more useful than Al and Ca as an indicator of melt

composition. Figure 7.11 shows how the #Mg of the orthopyroxenes produced in the

phase-equilibrium experiments of Cadoux et al. (2014) varied with the SiO2 content
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of the coexisting glass during their runs using the Cape Riva dacite as the starting

material. The orthopyroxenes range from a #Mg of 38mol% at 76wt% SiO2 to 58mol%

at 69wt% SiO2. This is consistent with the weakly zoned crystals, zone 1 and zone 3

growing from the melt with the composition of the the Cape Riva glass (70–72wt%

SiO2; Chapter 5), while zone 2 grew from a more mafic melt.

The growth histories of the orthopyroxene crystals can be compared to those of the

plagioclase crystals, documented in Chapter 6. The trace element concentrations of

the plagioclases implied that they had cycled between a melt similar in composition to

the Cape Riva glass and another, more mafic melt, with between 61 and 67wt% SiO2.

Although the data of Cadoux et al. do not extend back that far, the trend is consistent

with the zone 2 orthopyroxene growing from the same 61–67wt% SiO2 melt.

7.6 Estimating timescales with diffusion

chronometry

7.6.1 Method

As discussed in Chapter 3, Fe–Mg diffusion in orthopyroxene varies with orthopyroxene

composition and oxygen fugacity as well as temperature (Ganguly and Tazzoli, 1994;

Klügel, 2001). The equation for the diffusion coefficient, DFe–Mg, used for the models

presented here is the same as that used by Allan et al. (2013):

Dopx
Fe–Mg = exp

(
−6.77− 5.99XMg −

240, 000
RT

)
×
(

fO2 (sample)
fO2 (IW buffer)

) 1
6

(7.2)

where XMg is the molar Mg fraction (Mg/[Mg+Fe]); R is the molar gas constant; and

T is the temperature in Kelvin. Fe–Ti oxides from the Cape Riva dacite and two of the

three Therasia pumice fall deposits analysed plot along the fayalite–magnetite–quartz

(FMQ) oxygen buffer (Chapter 5), which is about four log units higher than the iron–

würstite (IW) buffer used in the calibration of the equation above (Frost, 1991). The
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diffusion coefficient is strongly dependent on the temperature, which for the Cape Riva

dacite and two of the three analysed Therasia dacites is about 880±25 °C (Figure 5.5).

The models were therefore run at 880 °C, and at the FMQ oxygen buffer. The effect

of using different temperatures and oxygen fugacities is discussed later, in Section 7.6.

The zone boundaries were assumed to initially be sharp, and modelled as a step

function. The initial #Mg on either side of the boundary was estimated by taking

the values of #Mg at a distance away from the boundary where they appeared to be

unmodified by diffusion. The weakly zoned orthopyroxene crystals do not have obvious

zone boundaries, however many of them do have small variations in the #Mg. These

variations often have the curved profiles that are typical of diffusion. These profiles

were modelled assuming they were initially a step function, to give the maximum times

that the observed #Mg variations could survive at high temperature.

Because the variation in #Mg in each individual profile was always small (<10%),

the dependence of the Mg–Fe diffusion coefficient on #Mg within a single profile was

ignored. This meant that the diffusion profiles could be fit by a simple analytical

solution to the diffusion equation (Chapter 3):

XMg (x, t) = X left
Mg +

X left
Mg +Xright

Mg

2

[
1 + erf

(
x√
tD

)]
(7.3)

where X left
Mg and Xright

Mg are the initial molar Mg fraction to the left and the right of the

step function, respectively; x is the distance, centred on the initial step function; t is

the time; and erf (u) is the error function, shown below:

erf(u) = 2√
π

∫ u

0
e−k2dk (7.4)

The diffusion coefficient was calculated using an XMg half way between X left
Mg and Xright

Mg .

Implicit in Equation 7.3 is the assumption that diffusion occurs in an infinitely long

solid. This assumption is valid as long as the profiles are long compared to the length

affected by diffusion (approximated by
√
tD in Equation 7.3 above).
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First, low resolution BSE images were taken with short acquisition times (∼60–90 s).

Although these were noisy, they could be used to pick promising crystals for diffusion

modelling. High-resolution images were then made across the zone boundaries, with

acquisition times of ∼30 minutes. High-resolution images of selected weakly zoned

crystals were also taken. Profiles perpendicular to zone boundaries were then plotted

using the ImageJ software (Rasband, 2012). The profiles were made up of averages

across a strip 20–50 pixels wide. The profiles were then fit by eye in a spreadsheet

(LibreOffice Calc), allowing t, the diffusion time, to be extracted from Equation 7.3.

7.6.2 Results

The results of models of Mg–Fe diffusion in orthopyroxene crystals from the Therasia

dacites are presented in Figures 7.12–7.14, and the results for crystals from the Cape

Riva are shown in Figures 7.15–7.19. Low resolution BSE images with the location of

the boundaries modelled are presented in Appendix F.

Most of the Mg–Fe profiles zone boundaries can be modelled as initial step func-

tions that have broadened by diffusion. However, there is evidence that not all the

gradients are entirely due to diffusion. There are sometimes large differences in the

times calculated for different profiles in the same crystal. Profile 3 of S12-06 PYX17

(Figure 7.20c), for example, gives a high-temperature residence time of 450 y, while

the other two profiles (Figure 7.20a,b) give diffusion times of only 11–33 y. The zoning

pattern of this crystal suggests that it was originally elongated parallel to profile 3,

which implies that growth was quickest along this direction. If crystal growth con-

tinued during a change in magma composition or another parameter that effects the

orthopyroxene composition, then a compositional gradient reflecting this change will

be preserved in the orthopyroxene. The faster growth is (relative to the change in

magma composition), the shallower the gradient. The diffusion models presented here

assume that the boundary was initially a step function, and any initial gradient due to

growth will increase the apparent high-temperature residence times of the crystals. The
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Figure 7.15 continued: The results of models of Mg-Fe diffusion in orthopyroxenes
from phase A of the Cape Riva eruption (GS11-34a).
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Figure 7.15 continued: The results of models of Mg-Fe diffusion in orthopyroxenes
from phase A of the Cape Riva eruption (GS11-34a).

longer high-temperature residence time given by profile 3 can, therefore, be explained

by faster growth in that direction.

While the diffusion coefficient for Fe–Mg diffusion in orthopyroxene is thought to be

isotropic (Ganguly and Tazzoli, 1994), comparison of the Fe–Mg zoning patterns with

those of Al suggest that growth is at least partially responsible for the longer apparent

high-temperature residence time calculated for profile 3. The boundary between zones

2 and 1 in the Al map is sharp along profiles 1 and 2, but more diffuse along profile 3

(Figure 7.21). This is consistent with the results of Allan et al. (2013), who also

found that gradients along the c axis, parallel to the direction of elongation of the

orthopyroxene crystals, were best explained by a mix of growth and diffusion. Where

only one profile in a crystal was modelled, it was chosen to be perpendicular to the

long axis in order to minimise this effect. Where more than one profile was modelled,

the shorter high-temperature residence time was used as the best estimate of the high-

temperature residence time of the crystal. The sharpness of the zoning patterns in

most of the Al maps of the strongly zoned crystals suggests that the effect of growth

on the timescales calculated for the strongly zoned crystals is small (Section 7.3.2).

This is less true for the weakly zoned crystals, as the Al and Ca often show gradual

changes in their concentrations. However, correcting for the effect of growth will always

reduce the high-temperature residence times. The high-temperature residence times
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Figure 7.16: The results of models of Mg-Fe diffusion in orthopyroxenes from phase B
of the Cape Riva eruption (S12-06).
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Figure 7.16 continued: The results of models of Mg-Fe diffusion in orthopyroxenes
from phase B of the Cape Riva eruption (S12-06).

presented here are therefore maxima.

Another apparent contradiction in the data is that for many crystals the high-

temperature residence times implied by the inner, zone 3/2 boundary is shorter than

that implied by the outer, zone 2/1 boundary (e.g. GS11-30b PYX08; Figure 7.22).

This cannot be explained by changes in the diffusion coefficient (through changes in

the temperature or oxygen fugacity, for example) as any changes that affected the

outer boundary would also affect the inner boundary. Instead, it is probable that the

discrepancy can be explained by a mixture of growth and diffusion, in the same way as

the different ages of the different profiles of the same boundary in S12-06 PYX17 are

explained above. If orthopyroxene growth was more rapid—or the change in magma

composition more gradual—during the transition from zone 2 to zone 1 than the

transition from zone 3 to zone 2, then the outer boundary would initially be more

diffuse than the inner boundary. This would increase the apparent high-temperature

residence time of the outer boundary. Again, this shows that the high-temperature

residence times presented here are maxima.

Most of the Fe–Mg zone boundaries can be fit by a single step function, however

in a few crystals the boundary between zone 2 and zone 1 occurs in two steps (GS11-

34a PYX59, Figure 7.15c–f; GS11-34a PYX63, Figure 7.15i,j; GS11-30b PYX08, Fig-

ure 7.17c,d; S12-05 PYX18 Figure 7.18e,f). Two steps are often seen in the Al zoning
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Figure 7.17: The results of models of Mg-Fe diffusion in orthopyroxenes from phase C
of the Cape Riva eruption (GS11-30b).
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Figure 7.17 continued: The results of models of Mg-Fe diffusion in orthopyroxenes
from phase C of the Cape Riva eruption (GS11-30b).

(e.g. Figure 7.9b,c), even in crystals where the zone 2 to zone 1 boundary occurs as

a single step (e.g. Figure 7.5). This suggests that some of the one-step boundaries

between zones 2 and 1 seen in Fe–Mg zoning initially had two steps. The two steps

could have merged as they broadened by diffusion. Modelling these boundaries as a

single step would give anomalously long high-temperature residence times.

7.6.3 Uncertainties

Temperature

The temperature will have an effect on all the residence times presented here. Be-

cause we are using an analytical solution to the diffusion equation (Equation 7.3), the
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Figure 7.18: The results of models of Mg-Fe diffusion in orthopyroxenes from phase C
of the Cape Riva eruption (S12-05).
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Figure 7.18 continued: The results of models of Mg-Fe diffusion in orthopyroxenes
from phase C of the Cape Riva eruption (S12-05).
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Figure 7.18 continued: The results of models of Mg-Fe diffusion in orthopyroxenes
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Figure 7.20: An orthopyroxene crystal from the Cape Riva dacite (S12-06 PYX17).

relationship between the residence time t and temperature T is given by:

t ∝ 1
D
∝ exp

(240, 000
RT

)
(7.5)

where the diffusion coefficient D is given by Equation 7.2.

Pre-eruptive temperatures calculated from Fe–Ti oxides in the Cape Riva and two

of the three analysed Therasia pumice fall deposits have a range of ±25 °C, centred

around 880 °C (Chapter 5). The residence times quoted here are calculated at 880 °C;
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using a temperature of 855 °instead changes the calculated residence times by a factor

of 1.42, while calculations done at 905 °C change the residence times by a factor of

0.71.

Diffusion was modelled at constant temperature of 880 °C. However in Section 7.5

it was argued that zone 2 grew from a less evolved melt(61–66wt% SiO2), which would

have been hotter. It is difficult to assess how much time the crystals resided in this

hotter melt, but the fact that zone 1 appears to be in equilibrium with the Cape Riva

glass suggests that the crystals were stored at 880 °C immediately prior to eruption.

Because higher temperatures lead to faster diffusion, modelling the crystals at 880 °C

for the duration of their pre-eruptive storage provides a maximum estimate of their

high-temperature residence times.

Oxygen fugacity

The oxygen fugacity also has an effect on the diffusion coefficient. The relationship

between the residence times and fO2 is given by:

t ∝ 1
D
∝ (fO2)− 1

6 (7.6)

Pre-eruptive oxygen fugacities calculated from Fe–Ti oxides in the Cape Riva and

two of the three analysed Therasia pumice fall deposits have a range of ±0.3 log units

around the FMQ oxygen buffer. This translates to a difference in high-temperature

residence times of ±12% relative to the high-temperature residence times presented

here, calculated at the FMQ buffer.

Pumice Fall B, however, was significantly hotter and more oxidised than both the

Cape Riva dacite and the other two Therasia pumice fall deposits that were analysed

(∼925 °C and FMQ+0.7 log units). If Pumice Fall B better represents the pre-eruptive

conditions, then high-temperature residence times would be reduced by a factor of 3.
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7.7 Comparison of plagioclase and orthopyroxene

timescales

The results of the diffusion models of orthopyroxene crystals from the Therasia dacites

are presented in Table 7.1, and those from the Cape Riva in Table 7.2. The range of

high-temperature residence times for each model is estimated by the range of times

that still provide reasonable fits to most of the data, adjusted by ±50% to account for

uncertainty in the diffusion coefficient due to uncertainty in the temperature and oxygen

fugacity. The crystal high-temperature residence times are also plotted in Figure 7.23,

along with timescale constraints from field data (Chapter 4). For the Therasia dacites,

the average time between eruptions is calculated as the time between the youngest and

oldest Therasia dacites, ∼15 ky, divided by the minimum number of pauses between

the eruptions that took place during that time, 10 (≈ 1.5 ky per eruption). On the plot

of Cape Riva high-temperature residence times, the time between the youngest dated

Therasia lava and the Cape Riva eruption is plotted, along with the uncertainty from

the radiometric dating.

All the modelled Therasia orthopyroxenes have high-temperature residence times

significantly shorter than the average time between eruptions, with estimated high-

temperature residence times varying from a few months up to a few decades. These

times are similar, but slightly shorter than those estimated for the plagioclase pheno-

crysts (decades to a few centuries). This difference may be real, and the plagioclase

crystals may have grown before the orthopyroxene crystals, however it is more likely

to be an artefact. Both the orthopyroxene and plagioclases residence times are max-

imum high-temperature residence times. The tabular shapes and complex resorption

surfaces found in the plagioclase crystals means that diffusion in two and three dimen-

sions will be significant. In contrast, the orthopyroxene crystals have prismatic shapes

and planar zone boundaries. This make the assumption of diffusion in 1D more realistic

for the orthopyroxenes. It is likely that the plagioclase models overestimate the true
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Table 7.1: Residence times, in years, calculated in diffusion models of Fe–Mg in
orthopyroxene from the Therasia dacites.

Crystal Profile Zone 3 → Zone 2 Zone 2 → Zone 1
Flow 5 (GS10-17)
PYX22 — 2.6 (0.90–6.8) 2.4 (0.46–6.8)
PYX24 — — 24 (3.8–60)

PYX30 1 — 6.5 (1.8–15)
2 — 14 (5.0–45)

Flow 8 (GS10-14)
PYX01 — — 5.6 (1.2–14)
PYX19 — — 1.1 (0.34–2.8)
PYX24 — — 2.5 (0.60–7.8)
PYX26 — 0.17 (0.08–0.38) 0.27 (0.06–0.94)
PYX29 — — 20 (8.0–60)

Flow 9 (GS10-16)

PYX02 1 — 32 (11–88)
2 — 89 (34–190)

PYX03 1 — 7.1 (2.2–20)
2 — 9.6 (3.2–27)

PYX05 — 3.2 (0.90–11) 5.8 (1.8-16)

Figures in parentheses are the range of possible residence times, taking into
account the uncertainties discussed in the text. Bold figures are the best
estimate for each crystal.

high-temperature residence times by a greater amount than the orthopyroxene models

do.

The orthopyroxenes from the Cape Riva dacite have also have short high-

temperature residence times, of months to decades. There is no significant differ-

ence between the timescales estimated for crystals in each of the four eruptive phases.

This is also true for diffusion models of both the zone 3 to zone 2 and the zone 2

to zone 1 boundary, as well as chemical gradients in the weakly zoned orthopyroxene

crystals. This suggests that the majority of the orthopyroxene crystals in the Cape

Riva are young. Although some of these gradients may be due to growth rather than
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Table 7.2: Residence times, in years, calculated in diffusion models of Fe–Mg in orthopyr-
oxene from the Cape Riva dacite.

Crystal Profile Zone 3 → Zone 2 Zone 2 → Zone 1 Weakly Zoned
Phase A (GS11-34a)
PYX36 — — — 1.2 (0.28–3.3)

PYX39 1 — 9.0 (3.6–21) —
2 — 250 (95-520) —

PYX59 1 1.5 (0.38–3.6) 0.49 (0.12–1.5) —
2 15 (2.7–30) 1.5 (0.33–7.5) —

PYX62 — — 40 (9.0–220) —

PYX63 1 5.2 (1.5–11) 4.1 (1.2–10) —
2 0.63 (0.21–1.5) 0.09 (0.03–0.50) —

PYX64 — — — 38 (13–120)
PYX65 — — — 28 (10–70)

Phase B (S12-06)

PYX01 1 — 5.0 (1.2–11) —
2 — 1.7 (0.60–5.6) —

PYX04 — — 5.3 (1.2–10) —
PYX07 — — 20 (6.0–54) —
PYX13 — 2.7 (1.0–6.6) — —

PYX17
1 — 11 (3.9–24) —
2 — 33 (10–63) —
3 — 450 (160–940) —

Phase C (GS11-30b)
PYX01 — — 13 (4.4–28) —
PYX03 — — — 8.5 (1.4–32)
PYX07 — — — 14 (2.8–36)

PYX08 1 6.2 (2.4–14) 7.5 (2.0–33) —
2 0.22 (0.08–0.48) 0.23 (0.04–0.58) —

PYX10 1 — — 6.0 (1.2–16)
2 — — 9.4 (2.6–22)

PYX29 — — 29 (10–64) —

Figures in parentheses are the range of possible residence times, taking into account
the uncertainties discussed in the text. Bold figures are the best estimate for each
crystal.
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Table 7.2 continued: Residence times, in years, calculated in diffusion models of Fe–Mg
in orthopyroxene from the Cape Riva dacite.

Crystal Profile Zone 3 → Zone 2 Zone 2 → Zone 1 Weakly Zoned
Phase C (S12-05)

PYX01 1 0.73 (0.20–1.8) 1.3 (0.22–3.2) —
2 1.8 (0.60–3.4) 5.2 (1.8–16) —

PYX06 1 — — 2.9 (0.80–7.2)
2 — — 14 (4.3–30)

PYX12 — — 22 (4.8–51) —
PYX17 — — — 5.3 (1.6–15)

PYX18 1 1.7 (0.22–3.3) 2.1 (0.75–6.0) —
2 0.16 (0.05–0.33) 0.22 (0.05–0.70) —

PYX26 1 — — 19 (5.5–56)
2 — — 11 (3.6–39)

PYX28 1 0.88 (0.22–2.1) 3.5 (0.95–13) —
2 — 0.88 (0.16–3.3) —

PYX34 — — — 3.6 (0.55–10)
Phase D (GS11-39b)
PYX11 — — — 19 (5.5–39)
PYX12 — — — 11 (2.8–30)
PYX21 — 4.7 (1.2–11) — —
PYX31 — 0.16 (0.06–0.46) 1.5 (0.46–2.8) —
PYX37 — — 12 (4.9–24) —

Figures in parentheses are the range of possible residence times, taking into account
the uncertainties discussed in the text. Bold figures are the best estimate for each
crystal.

diffusion, the diffusion models still place constraints on the maximum time that the

orthopyroxenes resided at high temperature before eruption. Significantly, the models

show that this is much shorter than the 2,800± 1,400 y between the youngest dated

Therasia eruption and the Cape Riva eruption (Chapter 4). This supports the short

high-temperature residence times calculated for the Cape Riva plagioclase phenocrysts

(Chapter 6). Like in the Therasia dacites, the Cape Riva orthopyroxenes appear to

have shorter high-temperature residence times than the plagioclases. As described for

the Therasia dacites above, this is probably an artefact of the different modelling pro-
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Figure 7.23: High-temperature residence times of plagioclase crystals from (a) the
Therasia and (b) the Cape Riva dacites.

cedures rather than indicating that the orthopyroxene crystals are in fact younger than

the plagioclase crystals.

There is still ambiguity over whether the weakly zoned crystals are the equivalent

of zones 1 or 3 of the strongly zoned crystals. Their relatively long high-temperature

residence times—at the upper end of the range shown by the strongly zoned crystals—

would seem to suggest that they are too old to be equivalent to zone 1. However, the

gradients in the weakly zoned crystals are probably at least partly due to growth, and

that the calculated high-temperature residence times for the weakly zoned crystals are

overestimates. Even if the calculated high-temperature residence times are overestim-
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Figure 7.24: (a) An orthopyroxene crystal from the Cape Riva dacite (S12-06 PYX17)
and (b) an orthopyroxene from the experiments of Schwandt and McKay (2006), showing
possible sector zoning

ates, they are still short (up to a few decades). This, along with the lack of strong Al

zonation, makes it unlikely that the weakly zoned crystals were once strongly zoned

before they re-equilibrated with their host melt.

There is evidence for rapid growth of zone 2, which is consistent with the short high-

temperature residence times. Many of the crystals’ zone 2 has melt escape features

typical of rapid growth visible in the Al zoning (Figure 7.9). Another orthopyroxene

crystal (S12-06 PYX17) appears to have sector zoning (Figure 7.24). Schwandt and

McKay (2006) found Al sector zoning in some of the orthopyroxene crystal that were

produced in their experiments, but only when crystal growth was sufficiently fast.

7.8 Summary

• Many of the orthopyroxene phenocrysts found in the Therasia are weakly zoned

Wo3−4En53−60Fs37−43 (#Mg: 58–64). Those that have strong Fe-Mg zoning

can be described schematically as different cuts through a crystal with three

zones: a core (zone 3) and rim (zone 1) with similar compositions to the weakly

zoned orthopyroxene crystals, and in between these a high-Mg mantle (zone 2)

of Wo3−4En62−68Fs29−35 (#Mg: 65–71 ). The boundaries between the different
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zones are diffuse, and can be used to estimate high-temperature residence times

for the different zones.

• The orthopyroxene phenocrysts found in the Cape Riva dacite have similar zoning

patterns to those found in the Therasia dacites. Weakly zoned crystals have

compositions of Wo3−4En52−56Fs41−44 (#Mg: 53–58). Strongly zoned crystals are

more common than in the Therasia dacites, but have a similar, diffuse Fe–Mg

zoning patterns. The cores (zone 3) and rims (zone 1) of strongly zoned Cape Riva

phenocrysts have similar compositions to the weakly zoned crystals found in the

Cape Riva dacite. Zone 2, the mantles, have compositions of Wo3−4En57−65Fs32−40

(#Mg: 60–68).

• Electron microprobe X-ray count maps show that the high-Mg zone 2 also has

high Al. Because Al diffuses very slowly in orthopyroxene (Nakagawa et al.,

2005; Smith and Barron, 1991), the Al concentrations seen in the element maps

are close to original. The sharp boundaries between different zones in most of

the Al maps suggest that the Fe–Mg zoning was also originally sharp, and this

is assumed in the timescale modelling. The present gradients seen in Fe–Mg are

therefore mostly due to diffusion. The lack of significant Al zoning in the crystals

with weak Fe–Mg zoning suggests that they were never strongly zoned.

• The experiments of Cadoux et al. (2014) show that the composition of zones 1, 3

and the weakly zoned orthopyroxene crystals is consistent with them growing

from a melt with the composition of the Cape Riva, between 70–72wt% SiO2.

The high-Mg zone 2 could have grown from a melt with between 61 and 67wt%

SiO2, as proposed for the Ca-rich parts of the sawtooth zoned plagioclase crystals

(Chapter 6).

• Modelling the diffusion of Fe–Mg across the zone boundaries in the Therasia orth-

opyroxenes give high-temperature residence times of months to decades. This is

consistent with high-temperature residence times of years to centuries calculated
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by modelling Mg diffusion in plagioclase (Chapter 6). The plagioclase diffusion

models probably overestimate the true high-temperature residence times of the

plagioclase crystals, due to diffusion in 2/3D. These ages are significantly shorter

than the average time between eruptions during the construction of the Therasia

dome complex.

• Modelling the diffusion of Fe–Mg across the zone boundaries of the strongly zoned

orthopyroxene crystals found in the Cape Riva dacite, as well as the more gentle

gradients in the weakly zoned crystals, also gives high-temperature residence

times of months to decades. The timescale for all four eruptive phases is the

same.



240 Chapter 7. Orthopyroxene



Chapter 8

Conclusions

8.1 Introduction

There is currently much discussion over the processes that allow the accumulation of

large bodies of eruptible silicic magma in the shallow crust, and particularly over the

timescales over which these processes operate (Chapter 1). For example, radiometric

ages of accessory minerals such as zircon are often found to be 105–106 y older than

eruption ages, which suggests long-term storage for these magmas (e.g. Brown and

Fletcher, 1999; Chamberlain et al., 2014). However, diffusion chronometry often sug-

gests much shorter times for the assembly of these magma bodies, of 101–103 y (e.g.

Allan et al., 2013; Druitt et al., 2012). This apparent dichotomy between short and

long timescales is usually explained by long-term storage in a rigid crystal mush, fol-

lowed by rapid remobilisation or segregation shortly before eruption (e.g. Bachmann

and Bergantz, 2004; Bachmann et al., 2007a; Burgisser and Bergantz, 2011).

With this in mind, I studied the >10 km3, dacitic Cape Riva eruption of Santorini,

Greece (Chapter 2). Over a period of about 18 ky prior to the Cape Riva eruption, the

volcano extruded a series of dacitic domes and coulées: the Therasia dome complex.

This allowed me to investigate the evolution of the plumbing system of Santorini during

the build-up to a caldera-forming eruption. I focused in particular on answering the

241
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following three questions:

1. How are large, shallow crustal bodies of volatile-rich, crystal-poor magma as-

sembled?

2. How and where do the crystals in these eruptions form, and what do the zoning

patterns of the crystals record?

3. What are the associated timescales of these processes?

I attempted to answer these questions by combining information acquired using

multiple approaches. The first technique I used was field mapping (Chapter 4). The

stratigraphic relationships between the different units provided the context into which I

could place the subsequent results. These relative dates were augmented with 40Ar/39Ar

absolute dates of four key lava flows provided by Dr S. Scaillet (Fabbro et al., 2013).

The Y-4 ash layer in the Aegean was found to correlate with the one of the pumice

fall deposits intercalated between the Therasia lavas (the Cape Tripiti Pumice), and

this provided further constraints on the absolute ages of the Therasia dacites. A key

finding was that the last Therasia eruption occurred no more the 2,800± 1,400 y before

the Cape Riva eruption.

Following the field mapping, I analysed the chemistry and petrology of the Therasia

dome complex and the Cape Riva eruption (Chapter 5). Using the stratigraphic rela-

tionships identified in the field, I could show that there were no systematic trends in

the composition of the magma emitted in the build-up to the Cape Riva eruption. The

chemistry and petrology allowed me to distinguish hybrid andesites from fractionated

andesites, which allowed me to place constraints on mafic recharge. Comparing the

chemistry of the Therasia dacites with that of the Cape Riva dacite allowed me to rule

out the possibility that the Therasia dacites were precursory leaks from the growing

Cape Riva magma reservoir, contrary to previous interpretations (Bacon, 1985; Druitt,

1985).
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I then looked in more detail at the zoning patterns of plagioclase and orthopyroxene

crystals in both the Therasia and Cape Riva dacites (Chapters 6 and 7). I examined the

zoning patterns of multiple elements with different diffusion coefficients in each mineral,

as these provided complimentary information. The distribution of slowly diffusing ele-

ments, such as NaSi–CaAl and Ti in plagioclase and Al in orthopyroxene, would not be

modified by diffusion during the crystals’ storage in the magma reservoir. This meant

they could be used to recreate the melt compositions those crystals came into contact

with, and study the magmatic processes that the crystals witnessed. After interpreting

the histories recorded by the crystals’ zoning patterns, the timescales associated with

the identified processes could be estimated by modelling the diffusion of fast-diffusing

elements (Mg in plagioclase and Fe–Mg in orthopyroxene). Using diffusion models of

two different minerals in the same samples provides more robust constraints on the

timescales.

Below, I first summarise the key findings of this thesis. I then discuss how these

findings can be used to place constraints on the ascent and storage of the Therasia and

Cape Riva magmas, on the growth of the phenocrysts, and on the timescales calculated

in the diffusion models. Finally, I bring together all the different pieces of evidence in

order to present a coherent model for the evolution of the plumbing system of Santorini

in the build-up to the Cape Riva eruption.

8.2 Summary of the Therasia–Cape Riva sequence

8.2.1 The Therasia dome complex

• The Therasia dacites were preceded by the construction of the ∼10 km3 Skaros

shield from 67±9 ka, which culminated in the 54±3 ka large, explosive, andesitic

Upper Scoria 2 eruption (Chapter 2).

• Between the Upper Scoria 2 eruption and the first Therasia dacite there was a
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period of 15±4 ky of near repose, with a low eruptive rate (<0.1 km3 ky−1). Lavas

emitted during this period were andesitic (Chapter 4).

• Starting at 39.4±2.2 ka, dacite began to be erupted from diffuse vents across the

Skaros edifice. Two feeder dykes from these lavas are visible on the south-east

corner of Therasia (Chapter 4).

• Dacite eruption continued for a period of 14.8±2.6 ky, during which time ∼2 km3

was emitted over at least 11 extrusive eruptions and 5 explosive eruptions. This

give a maximum mean repose time between eruptions of ∼1,000 y (Chapter 4).

• Pumice fall deposits intercalated between the lavas are concentrated towards the

top of the sequence, suggesting increased explosivity with time (Chapter 4).

• There are only minor, non-systematic variations with stratigraphic height in

both whole-rock and groundmass (i.e. melt) compositions of the Therasia dacites

(Chapter 5).

• The compositions of both the plagioclase and orthopyroxene phenocryst rims

vary between lava flows. There are also textural differences in plagioclases in

different flows (Chapter 6).

• There are also variations in the pre-eruptive temperatures and oxygen fugacities

of different pumice fall deposits. Fe–Ti oxides in the Cape Tripiti pumice fall and

Pumice Fall C record temperatures of ∼880 °C and oxygen fugacities close to the

FMQ buffer. Fe–Ti oxides from Pumice Fall B, however, record temperatures

∼50 °C hotter and oxygen fugacities close to the NNO buffer (Chapter 5).

• The Therasia dacites contain glass-bearing clusters of plagioclase and orthopyr-

oxene. The crystals in these clusters have similar compositions and textures to

the phenocrysts. These clusters are interpreted as having grown on the margins

of the magma reservoir at the same time as the phenocrysts (Chapter 5).
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• The lavas also contain holocrystalline gabbroic nodules, composed of plagioclase,

two pyroxenes and olivine. These nodules are interpreted as remobilised plutonic

material intruded during previous episodes of volcanism at Santorini. The tex-

tures of these nodules, as well as the compositions of the minerals of which they

consist, vary from lava flow to lava flow (Chapter 5).

• Some plagioclase phenocrysts have calcic cores, with compositions of An62−91.

These are often resorbed, in equilibrium with a high Sr melt, and have high-

temperature residence times of at least a few thousand years. They are probably

derived from plutons related to previous volcanic activity on Santorini, although

some may have been introduced by basaltic or andesitic recharge magmas. These

calcic cores are overgrown by rims with the same composition as the phenocrysts

(Chapter 6).

• Some plagioclase phenocrysts have sawtooth zoning, cycling between An59−72 and

An41−51, the latter being similar to rim compositions. The tight correlation of Sr

with anorthite content suggests that the sawtooth zones grew from melts ranging

in composition from andesite to dacite. The Ti contents of these crystals suggest

that most of the melts injected into the Therasia reservoir were the products

of fractional crystallisation; these plagioclase crystals do not record evidence of

basaltic recharge (Chapter 6).

• The compositions of the orthopyroxene crystals are also consistent with growth

from andesitic to dacitic melts (Chapter 7).

• Plagioclase phenocrysts in the Therasia dacites have maximum high-temperature

residence times of a few decades to a few centuries at 880 °C, as estimated by

diffusion chronometry (Chapter 6). Orthopyroxene yield shorter maximum high-

temperature residence times, of a few months to a few decades (Chapter 7).

These timescales are shorter that the estimated repose times between eruptions

(∼1,000 y).
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• After the eruption of the first Therasia dacite at ∼39 ka, up until the final lava

flow discharged before the Cape Riva eruption, mafic magma only reaches the

surface as minor (�1%) chilled basaltic enclaves (Chapter 5).

• The final eruption of the Therasia period, the upper Therasia andesite, is a hybrid

andesite that formed through a ∼60:40 mix of dacite and basalt (Chapter 5).

• The youngest dated Therasia lava was erupted at 24.6± 1.3 ka (Chapter 4).

8.2.2 The Cape Riva eruption

• The Cape Riva eruption occurred at 21.8±0.4 ka, 2,800± 1,400 y after the young-

est dated Therasia eruption (Chapter 4).

• >10 km3 of mainly dacitic magma was erupted, with a minor (>1%) hybrid

andesite component formed by mixing olivine basalt and dacite in the ratio 60:40

(Chapter 4).

• The Skaros–Therasia edifice collapsed during the eruption, creating a caldera

5–6 km in diameter in the north of the volcanic field (Chapter 2).

• The dacite discharged during all four phases of the eruption has the same com-

position and pre-eruptive temperatures and oxygen fugacities (Chapter 5).

• The rim compositions of the plagioclases and orthopyroxene crystals erupted

during all four phases is the same (Chapter 5).

• Many plagioclase phenocrysts have sawtooth zoning, cycling between An46−60

and An36−41 rim compositions. The tight correlation of Sr with anorthite content

suggests that these plagioclase compositions grew from melts that range from

dacitic to rhyodacitic compositions. The Ti content of the sawtooth zones of the

plagioclase crystals rule out the injection and mixing into the Cape Riva magma

reservoir of melts less evolved than a silicic andesite as the cause of the changes

in melt composition (Chapter 6).
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• The orthopyroxene phenocrysts have compositions that are consistent with

growth from melts with compositions ranging between that of the Cape Riva

glass and a dacitic melt (Chapter 7).

• Major element contents of the Cape Riva dacite are similar to those found in

the Therasia dacites. In addition, the major element contents of the Cape Riva

hybrid andesite are similar to the upper Therasia hybrid andesite. However, the

Cape Riva dacite is depleted in incompatible elements compared to the Therasia

dacites (K, Rb, Zr, LREE, HREE). A similar depletion is implied for both the

mafic and silicic endmembers that mixed to form the Cape Riva hybrid andesite

(Chapter 5).

• Plagioclase phenocrysts in the Cape Riva dacite are also depleted in La and Ce

compared to plagioclase phenocrysts in the Therasia dacite (Chapter 6).

• Maximum high-temperature residence times of the plagioclase phenocrysts in

the Cape Riva are a few years up to a few centuries at 880 °C, as measured by

diffusion chronometry (Chapter 6). Maximum high-temperature residence times

of the orthopyroxene phenocrysts at the same temperature are months to decades

(Chapter 7). This is short compared to the 2,800± 1,400 y maximum repose time

after the last Therasia dacite eruption.

8.3 Constraints on the volcanic plumbing system

8.3.1 Magma reservoir depths

Figure 8.1 shows the estimated storage depths of Santorini magmas. Andújar et al.

(2010) examined a basalt from a cinder cone erupted during the Peristeria period along

with the andesitic Upper Scoria 1 (Chapter 2). Their phase equilibria experiments

suggest that the basalt was stored at around 4 kbar (∼15 km) prior to eruption. They

also suggest that the Upper Scoria 1 differentiated from basalt to andesite at about
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4 kbar. This is close to the boundary between the upper and lower crust (Endrun et al.,

2008; Karagianni et al., 2005; Konstantinou, 2010).

Cadoux et al. (2013, 2014) carried out phase equilibria experiments using the Cape

Riva dacite as their starting material, and the phase relationships they calculated are

shown in Figure 8.2. They estimated the depth of storage of the Cape Riva magma

was 2±0.5 kbar (8±2 km). The similar chemistry and petrology of the Cape Riva and

Therasia dacites suggests that they were stored at comparable depths. In the following
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discussion, I shall refer to this reservoir at ∼2 kbar as the “shallow” reservoir.

The storage depths of other silicic magmas from Santorini have also been estimated.

Cadoux et al. (2013, 2014) also carried out experiments on the deposits of three other

Plinian eruptions of Santorini, the Minoan, Lower Pumice 1 and Lower Pumice 2.

Their results indicate that all four magmas were stored at about 2 kbar. Cottrell

et al. (1999) also studied the products of the Minoan eruption. They suggested that

the Minoan magma underwent two stages of evolution, the first at >2 kbar, and the

second at ∼0.5 kbar. However, Cottrell et al. (1999) carried out their experiments at

water-saturated conditions. Cadoux et al. (2013, 2014) demonstrate that the Minoan

eruption was not water saturated, and that the phase relationships observed in the

Minoan products can be explained by a single stage of evolution at 2 kbar. Gertisser

et al. (2009) used the aluminium content of rare amphibole crystals to estimate a

storage depth of about 4 kbar for the Lower Pumice 2 magma. A shallower magma

reservoir, at about 2–4 km depth, has been suggested for the youngest dacites, based

on modelling recent deformation at Santorini (Foumelis et al., 2013; Newman et al.,

2012; Papoutsis et al., 2013; Parks et al., 2012).

8.3.2 Magma ascent and storage during the Therasia period

The vents of the Therasia dacites were located across the flanks and summit area of the

Skaros shield. This suggests that they were fed from one or more reservoirs situated

beneath the Skaros shield. The depth at which these dacites were stored is not well

constrained. However, the mineralogy and major element composition of the Therasia

dacites is similar to that of the Cape Riva dacite, suggesting they were stored at similar

depths (about 8 km).

The Therasia dacites have been previously interpreted as “precursory leaks” from

the growing Cape Riva magma body (Druitt, 1985). Precursory leaks of silicic magma

from diffuse vents prior to caldera-forming eruptions are believed to record the pro-

longed, incremental growth of large crustal magma reservoirs (Bacon, 1985). For ex-
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ample, leaks of rhyodacite at Mount Mazama (Crater Lake, Oregon) bear witness to

the progressive growth, over about 20,000 y, of the magma body that was discharged

6,850 years ago (Bacon, 1985; Bacon and Lanphere, 2006). The Glass Mountain rhyol-

ites at Long Valley, California, have also been described as precursory leaks recording

the growing Bishop Tuff magma chamber over about 300 ky (Chapter 1; Halliday et al.,

1989; Hildreth and Wilson, 2007), although this interpretation is somewhat controver-

sial (Chamberlain et al., 2014; Reid and Coath, 2000; Simon and Reid, 2005).

However, there are several lines of evidence that suggest that the Therasia dacites

were fed by multiple small magma reservoirs, rather than one single, long-lived reser-

voir. Whole rock and melt compositions vary slightly throughout the sequence, along

with temperature and oxygen fugacity, but not in any systematic way (Figure 4.7).

The crystals found in one flow do not appear to be the same as the crystals found

in another. The composition of the rims of the plagioclase and orthopyroxene pheno-

crysts vary from flow to flow, and the plagioclase crystals have a range of textures in

different units. In some lavas some of the plagioclase crystals have large, brown glass

inclusions, while these crystals are absent in others. Similarly, plagioclase crystals with

sawtooth zoning are only present in some lava flows. Although plagioclase crystals with

calcic cores are present in most lava flows, the composition of these cores varies from

flow to flow. The composition and zoning patterns of the plagioclases found in the

gabbroic also differs between flows. Finally, the high-temperature residence times of

both the plagioclase and orthopyroxene phenocrysts are short compared to the repose

time between eruptions. This implies that there is little recycling of crystals between

eruptions, contrary to what would be expected if the Therasia lavas were fed from a

single, long-lived reservoir.

There are three potential ways of producing multiple, small batches of silicic magma

in the shallow crust: (1) fractional crystallisation from basalt to dacite, followed by

the upward transfer to the shallow reservoir in small batches; (2) the defrosting and

bulk remobilisation of a crystal mush stored in the shallow crust; (3) mush defrosting,
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followed by melt segregation.

Fractional crystallisation and upward transfer

The Therasia dacites could be produced by fractional crystallisation from basalt at

depth. Small parcels of dacite could be transferred to a shallow holding reservoir at

about 2 kbar, where the phenocrysts would would grow. Each individual parcel would

then either promptly be erupted, or would rapidly freeze. There is little constraint

on the depth at which this fractionation would happen, but one possibility is that it

occurred in the 4 kbar reservoir identified by Andújar et al. (2010) as the location where

basalt fractionates to andesite (Figure 8.1).

Defrosting and bulk remobilisation of a crystal mush

In situ melting and remobilising of a shallow crystal mush could have been caused

by the injection of basalt into the shallow plumbing system. The injection of basalt is

recorded by the presence of mafic enclaves in many of the Therasia dacites; the injected

mafic magma could have melted some of the overlying crystal mush by conduction or

gas sparging, without large-scale mixing and hybridisation (Bachmann and Bergantz,

2006). The gabbroic nodules attest to at least some assimilation of plutonic material.

The glass-bearing clusters appear to once have been part of a network of touching

crystals, which is consistent with them having grown in a mush zone.

However, there is little textural evidence that the crystals in the Therasia dacites

are derived from a partially remelted crystal mush. The plutonic nodules are holocrys-

talline, and appear to have been incorporated by mechanical disaggregation rather than

melting and resorption. The phenocrysts are euhedral, and they often are normally

zoned towards their rims. This is true of phenocrysts found as individual crystals as

well as those found in the glass-bearing clusters. The last thing the phenocrysts appear

to record is a period of growth, not a period of dissolution.
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Mush defrosting followed by melt segregation

If the Therasia dacites were produced by the defrosting of a crystal mush, then the

melt must have been segregated and transferred into a shallow holding reservoir before

eruption. It is not possible to place constraints on the depth of the source mush. One

possibility is that the source mush may have been located at about 4 kbar (Figure 8.1.

Another possibility is that the source mush was already in the shallow crust, and

segregation only occurred locally. In either case, most of the phenocrysts would have

grown in the shallow holding reservoir after segregation.

Conclusion

The Therasia dacites formed either by remelting and remobilising a rigid crystal mush

or by fractional crystallisation; however in both cases the melts that were produced

must have segregated and been stored for a period in small, short-lived holding reser-

voirs before eruption. Most of the phenocrysts would have grown in these holding

reservoirs.

8.3.3 The ascent and storage of the Cape Riva magma

The Cape Riva dacite was probably stored in a single, well-mixed reservoir immediately

prior to eruption. The evidence for this is that all four phases of the Cape Riva eruption

have the same whole rock and melt compositions (Druitt, 1983; Druitt et al., 1999);

the phenocrysts found in all four phase have the same rim compositions and the same

textures; and the temperature and oxygen fugacity does not vary between different

phases (Cadoux et al., 2013, 2014).

Despite the similar major-element chemistry and petrology of the Cape Riva and

Therasia dacites, the Cape Riva dacite is depleted in incompatible elements compared

to the Therasia dacites (Figure 5.4). This depletion cannot be produced by fractional

crystallisation of the Therasia dacite, or by back-mixing of the Therasia dacite with

an incompatible-depleted basalt. The similar 87Sr/86Sr of the Cape Riva and Therasia
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dacites rules out significant crustal assimilation (Briqueu et al., 1986; Druitt et al.,

1999; Zellmer et al., 2000). This depletion is part of a longer term trend, and is

probably related to processes occurring in the source region of the magmas (Bailey

et al., 2009; Clift and Blusztajn, 1999; Francalanci et al., 2005; Huijsmans et al., 1988;

Zellmer et al., 2000). This suggests that the Therasia and Cape Riva magmas are

separate batches that evolved independently.

One possible model for the storage of these two dacite types is that they were

emplaced in separate, long-lived reservoirs that coexisted in the upper crust, perhaps

for much of the 30 ky since the Upper Scoria 2 eruption. The Therasia eruptions

would have been fed from one or more small reservoirs, and the Cape Riva eruption

from another, larger reservoir. The Cape Tripiti pumice, with its intermediate chemical

character, might have resulted from a temporary connection between the two reservoirs.

However, field and phase equilibria data provide quite stringent constraints on the

possible locations of the two reservoirs in such a model. First, the vents that fed

the Therasia lavas lay within the area that subsequently collapsed to form the Cape

Riva caldera (Druitt, 1985, 2014; Druitt and Francaviglia, 1992), showing that the

reservoirs were geographically coincident. Second, the similarities in whole rock major

element composition, phenocryst assemblage, phenocryst rim compositions and Fe–Ti

oxide temperatures, show that the Therasia dacites must have been stored immediately

prior to eruption at a pressure (2 ± 0.5 kbar, equivalent to 8 ± 2 km) similar to that

determined experimentally for the Cape Riva dacite by Cadoux et al. (2013, 2014). The

two reservoirs must therefore have been situated within the ∼4 km vertical distance

represented by the ±0.5 kbar uncertainty on the pressure. Moreover, this uncertainty is

on the absolute pressure, not on the relative pressure difference between the two dacite

types. It is difficult to see how two magma reservoirs within this confined space could

remain largely isolated over many thousands of years. This model cannot be ruled out,

but it raises problems that are hard to surmount.

My preferred interpretation is that the Therasia and Cape Riva magma batches
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were emplaced sequentially into the upper crust beneath the summit of the volcano,

the first then being partially, or wholly, flushed out by the arrival of the second. The

new input magma mixed with any remaining Therasia magma to generate the dacite

that subsequently discharged during the Cape Riva eruption. This may have had

the composition of pure Cape Riva dacite, or may have been a dacite even poorer in

incompatibles (e.g. Kameni-like dacite). However, the lower La and Ce contents of

the Cape Riva plagioclase phenocrysts relative to the Therasia phenocrysts suggest

that few of the crystals in the Cape Riva dacite were derived from remnant Therasia

magma. Either there was little Therasia magma remaining in the shallow plumbing

system when the Cape Riva magma arrived, or the remnant Therasia magma was

mostly aphyric.

8.4 Constraints on the growth of the phenocrysts

8.4.1 Cause of the zoning in the phenocrysts

Understanding the cause of the zoning patterns of the crystals is key to interpreting the

high-temperature residence times estimated from the diffusion modelling. The ortho-

pyroxene and plagioclase phenocrysts appear to be recording the same events, with a

similar story in both the Therasia and Cape Riva dacites. The Therasia phenocrysts

mostly grew in a dacitic melt, however the calcic peaks of the sawtooth zones of some

plagioclases and the Mg-rich zones of some orthopyroxenes show that they occasionally

came into contact with an andesitic melt. Zoning in the Cape Riva dacite shows cycling

between slightly more evolved melts (dacites and rhyodacites).

The high Ti contents of most of the Therasia and all of the Cape Riva plagioclase

phenocrysts that were analysed, along with the tight correlation of Sr with anorthite

content, implies that the majority of the melts that the phenocrysts came into contact

with lay along fractionation trends for Santorini magmas (Figure 6.11). The reversely

zoned sections of the phenocrysts must record a period when the melt was driven back
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down the fractional crystallisation trends, towards more primitive compositions. This

suggests that magma mixing occurred during the growth of the phenocrysts. The mafic

endmember would have to be at least as evolved as a silicic andesite to explain the

high Ti contents of the plagioclase phenocrysts.

The mixing would not necessarily have had to involve the entire reservoir simultan-

eously. This is particularly evident in the Cape Riva phenocrysts, where the range of

residence times recovered suggests that mixing was a continuous process, affecting dif-

ferent crystals at different times. The zoning patterns could record mingling and mixing

between small batches of differing compositions, or the injection of small batches into

a growing Cape Riva magma reservoir. Either way, these different batches must have

amalgamated into a single reservoir and been homogenised prior to eruption.

8.4.2 Triggering crystal growth

Although the zoning patterns of the phenocrysts suggest that their growth coincided

with a period of magma mixing, it does not tell us what is causing the crystals to grow

in the first place.

The experiments of Cadoux et al. (2013, 2014) show that both plagioclase and

orthopyroxene growth in the Cape Riva dacite can be caused either by a reduction in

the temperature, or by a reduction in the pressure of the magma (Figure 8.2). For

example, a melt with XH2O = 0.8 at 2 kbar cooling from 925 to 880 °C will first start

to crystallise plagioclase, then orthopyroxene. Similarly, a melt with XH2O = 0.8 and

a temperature of 880 °C decompressing from 4 to 2 kbar will also grow first plagioclase

then orthopyroxene.

There are several potential magmatic processes that could trigger crystal growth

on a timescale of decades to centuries:

1. Decompression of the dacitic melt through upward transfer through the crust.

2. Cooling of the dacitic melt due to mixing with cooler resident magma at shallow
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levels.

3. Transfer of dacitic melt upwards through the crust to a cooler environment.

4. Depressurisation of the shallow magma reservoir through precursory eruptions or

degassing.

These processes are not mutually exclusive, and the data presented here is not sufficient

to definitively rule out any of them.

The phase relationships shown in Figure 8.2 suggest that the magma reservoir

would have to cool by about 25 °C in order to grow the observed plagioclase and

orthopyroxene phenocrysts. The high-temperature residence times of the phenocrysts

requires that this cooling occurred within decades to a few centuries of eruption; it is

difficult to reconcile such a sudden drop in temperature with a model of a long-lived,

stable magma reservoir. If cooling of the reservoir did cause crystal growth, then some

other process— such as the transfer of the magma to a cooler part of the crust—must

have triggered the cooling.

Precursory eruptions prior to the Cape Riva are unlikely to have caused the growth

of the Cape Riva crystals No products of precursory volcanic activity are preserved on

Santorini after the last Therasia dacite at 39.4 ± 2.2 ka. Precursory degassing would

not leave much evidence in the geological record, however precursory degassing raises

much the same questions as cooling. If the reservoir is present in the shallow crust

for long periods of time, what would cause it to start degassing only shortly before

eruption?

The zoning patterns of the phenocrysts show that crystal growth was coincident

with the amalgamation of compositionally diverse melts (silicic andesite to rhyoda-

cite), and a major reorganisation of the plumbing system must have occurred a few

decades before the Cape Riva eruption. If a hotter dacitic melts were mixed into cooler

rhyodacitic melts, then the dacites would cool and start to crystallise.
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The final process capable of triggering the growth of the phenocrysts is through the

upward movement and decompression of the magma. The the Cape Riva dacite was

probably stored at about 2 kbar had about 6wt% water in the melt (Cadoux et al.,

2013, 2014). The same magma at 4 kbar would be close to its liquidus, and would not

contain any plagioclase or orthopyroxene crystals. Transferring the magma upwards

from about 4 kbar to about 2 kbar would trigger the growth of ∼10% phenocrysts. This

interpretation is consistent with magma storage depths estimated from experimental

petrology (Figure 8.1). It is possible that the mafic parental magma for the Cape Riva

was stored in the lower reservoir, where it partially crystallised. The melt from this

stage, which had the same composition as the bulk Cape Riva, then separated from its

crystals and ascended in to the upper reservoir.

In summary: the growth of the phenocrysts in the both the Cape Riva and Therasia

dacites was probably caused by a mixture of cooling and decompression triggered by the

amalgamation and emplacement of multiple batches of compositionally diverse melts

(silicic andesite to rhyodacite) in the shallow crust.

8.5 The evolution of the volcanic plumbing system

prior to the Cape Riva eruption

I now bring together all of the evidence presented in this thesis in order to put forward

an integrated model of the evolution of the plumbing system of Santorini in the build-up

to the Cape Riva eruption.

8.5.1 Skaros–Upper Scoria 2 (67–54 ka)

The Skaros shield was studied in detail by Huijsmans (1985) and Huijsmans and Barton

(1989), and their conclusions are presented here for completeness. The oldest Skaros

lava has been dated at 67 ± 9 ka (Druitt et al., 1999). During the Skaros period the

volcano is interpreted as having behaved as an open conduit. The eruptive rate was
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high, and close to the long-term average for Santorini (∼1 km3). The volcanic activity

mostly involved the extrusion of andesites and relatively primitive basalts.

A few times during this period, the system began to stagnate and the composition

of the erupted magma became steadily more evolved. Each of these cycles ended with a

minor explosive eruption, leaving pumice fall and phreatomagmatic deposits. The last

of these failed stagnations ended with the Upper Scoria 2 eruption, at 54±3 ka (Druitt

et al., 1999). The Upper Scoria 2 eruption began with a small dacitic pumice and ash

fall, before discharging several km3 of andesitic scoria as pyroclastic flows (Mellors and

Sparks, 1991). This was the first time dacite had been erupted at Santorini since the

beginning of the Skaros period.

8.5.2 Early Therasia period (54–39 ka)

After the Upper Scoria 2 eruption, the volcano entered a period of near-repose where

the eruption rate dropped to <0.1 km3 ky−1. The activity consisted of only a few

andesitic lavas, such as the Lower Therasia andesite (48.2 ± 24 ka). The Andesite of

Oia was probably also erupted during this period; its composition is very similar to that

of the Upper Scoria 2 andesite, and it is probably remnant magma from that eruption.

It is possible that the weight of the Skaros edifice during this period prevented the

ascent of magma to the surface, trapping the incoming mafic magma at depth (Pinel

and Jaupart, 2000, 2004).

8.5.3 The Therasia dacites (39–25 ka)

The first erupted dacite after the Upper Scoria 2 eruption was erupted at 39.4±2.2 ka.

From this point on, mafic magma was only erupted as minor (�0.1%) basaltic enclaves.

Incoming mafic magma was probably still being trapped at depth. Accumulation of

heat from prolonged, deep intrusion probably generated silicic melt by a combination

of fractional crystallisation, partial melting of crustal rocks and defrosting of extant
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mushy intrusions (Barton et al., 1983; Druitt et al., 1999; Huijsmans, 1985; Huijsmans

and Barton, 1989; Mann, 1983).

While the Therasia dacites have been interpreted as leaks from the growing Cape

Riva magma reservoir (Druitt, 1985), the differences in incompatible element concen-

trations in the Therasia and Cape Riva dacites suggest this is not the case. While

I cannot rule out the possibility that the Therasia dacites were fed from a single,

long-lived reservoir, it is more likely that they were fed from a series of small, ephem-

eral reservoirs. Small batches of dacitic melt would have been sequentially emplaced

in the shallow crust, at a depth corresponding to a presure of about 2 kbar (∼8 km;

Figure 8.1). This emplacement would have driven crystal growth through a mixture

of cooling and decompression. Occasional inputs of less evolved magma would have

caused the sawtooth zoning in the plagioclases and the high-Mg zones in the orthopyr-

oxenes. Gabbroic nodules were incorporated into the magma from plutonic material

intruded during previous volcanic activity at Santorini, and some plagioclase crystals

from this plutonic material became the cores of new plagioclase phenocrysts. Eruption

occurred within a few decades to centuries of the onset of crystallisation.

The Therasia period ended with the eruption of the upper Therasia andesite, a

hybrid andesite formed by mixing ∼60wt% Therasia dacite with ∼40wt% basalt. This

hybrid andesite represents the first time that basaltic magma had ascended into the

shallow crust since the eruption of the first Therasia dacite, and may have signalled an

increase in the rate magma supply from depth. Increasing explosivity towards the top

of the Therasia sequence was also potentially a result of this increase in magma flux.

The youngest dated Therasia lava was erupted at 24.6 ± 1.3 ka, 2,800± 1,400 y

before the Cape Riva eruption.

8.5.4 The build-up to the Cape Riva eruption (25–22 ka)

As argued above, most of the Cape Riva magma probably arrived in the shallow crust

after the extrusion of the last Therasia dacite. At 26 ka the system may have been
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replenished by incompatible-depleted silicic melt, which mixed with Therasia dacite

and was discharged as the Cape Tripiti Pumice. The subsequent return to eruption of

“pure” Therasia dacite suggests that if a discrete Cape Riva reservoir already existed

below the summit at this time, it had probably not yet reached its full size. Following

extrusion of the last Therasia lava flow, the input of incompatible-depleted silicic melt

continued, and perhaps accelerated, during the < 2 800 ± 1 400 y preceding the Cape

Riva eruption.

The Cape Riva magma reservoir formed through the amalgamation of multiple

compositionally diverse melts (silicic andesite to rhyodacite). Crystallisation of pla-

gioclase and orthopyroxene was triggered by a mixture of decompression and cooling.

Sawtooth zoning in the plagioclases was generated as the crystals cycled between hot-

ter and cooler melts. Crystals transferred from a cooler rhyodacite to a hotter, less

evolved melt were first partially resorbed, then overgrown with more calcic plagioclase.

A similar story is recorded in the orthopyroxene crystals. Crystal high-temperature

residence times indicate that this occurred within a few decades to centuries before

eruption. The entire reservoir was then homogenised prior to eruption.

If the Cape Riva magma reservoir did not exist in the shallow crust during the

Therasia period, then a robust minimum magma supply rate can be calculated assum-

ing that most of the >10 km3 of Cape Riva magma was injected into the shallow crust

in the <2,800±1,400 y between the last Therasia eruption and the onset of the Cape

Riva eruption. This yields a time-averaged supply rate of >0.004± 0.002 km3 y−1. The

high-temperature residence times of the phenocrysts are much shorter than the break

between the end of the Therasia period and the Cape Riva eruption. This suggests

that supply rates could be much greater, although the phenocrysts may only record the

last few pulses of reservoir assembly rather than the accumulation of the entire Cape

Riva magma body. Using the longest high-temperature residence time found in the

plagioclase phenocrysts (400 y), the magma supply rate rises to >0.025 km3 y−1, and

using the longest high-temperature residence time found for the orthopyroxene crystals
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(40 y) gives a supply rate of >0.25 km3 y−1.

For comparison, the mean accumulation rate estimated over the 1600 y to prior

the Oruanui eruption has been estimated as >0.33 km3 y−1, culminating in values

of ∼1 km3 y−1 (Allan et al., 2013; Wilson and Charlier, 2009). A late-stage growth

spurt of the Minoan magma reservoir has been estimated as >0.05 km3 y−1 (Druitt

et al., 2012). Intrusion rates comparable to, or higher than, that estimated for the

Cape Riva are implied by measured deformation rates at silicic volcanoes such as

Uturuncu (∼0.01 km3 y−1; Pritchard and Simons, 2004; Sparks et al., 2008), Kameni

(∼0.01 km3 y−1; Parks et al., 2012), Yellowstone (∼0.1 km3 y−1; Chang et al., 2010),

and Lazufre (∼0.01 km3 y−1; Froger et al., 2007; Ruch et al., 2009).

Rapid intrusion of the Cape Riva dacite into the upper crust would have favoured

runaway growth of a melt-dominated magma reservoir (Annen, 2009; Gelman et al.,

2013; Schöpa and Annen, 2013). Driving mechanisms for magma ascent may have

included increased basaltic flux from the mantle, tectonic forces, or gravitational in-

stability of crustal magma storage regions. Possible evidence of increased basaltic flux

is provided by the production of hybrid andesites (formed by mixing of basalt and da-

cite in approximately equal proportions) in the few thousand years prior to the Cape

Riva eruption, as well as in the Cape Riva reservoir itself. Pressurization of the upper

crustal plumbing system by sustained, high-flux injection of dacite and basalt may

have triggered the transition from prolonged, largely effusive activity to catastrophic

explosive eruption and caldera collapse.
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Appendix A

Sample locations

Sample Locality Unit Description Latitude Longitude

GS10-03 Manolas Therasia 19 lava 36.4417 25.3527
GS10-06 Manolas Therasia 27 lava 36.4406 25.3565
GS10-14 South Therasia Therasia 8 lava 36.4122 25.3507
GS10-16 South Therasia Therasia 9 lava 36.4122 25.3507
GS10-17 South Therasia Therasia 5 lava 36.4122 25.3507
GS10-18 South Therasia Therasia 14 lava 36.4184 25.3483
GS10-20 Mt. Vigalos Therasia 22 lava 36.4265 25.3468
GS10-22 Mt. Vigalos Therasia 22 lava 36.4265 25.3468
GS10-27a South Therasia Therasia 3 lava 36.4139 25.3440
GS10-27b South Therasia Therasia 3 lava 36.4139 25.3440
GS10-27c South Therasia Therasia 3 enclave 36.4139 25.3440
GS10-27d South Therasia Therasia A single pumice clast 36.4139 25.3440
GS10-27e South Therasia Therasia A single pumice clast 36.4139 25.3440
GS10-27f South Therasia Therasia A pumice 36.4139 25.3440
GS10-27g South Therasia Therasia B pumice and obsidian 36.4139 25.3440
GS10-27h South Therasia Therasia C pumice 36.4139 25.3440
GS10-28a South Therasia Therasia D banded pumice 36.4144 25.3508
GS10-28b South Therasia Therasia D single scoria clast 36.4144 25.3508
GS10-28c South Therasia Therasia D single scoria clast 36.4144 25.3508
GS10-28d South Therasia Therasia D single pumice clast 36.4144 25.3508
GS10-28e South Therasia Therasia D single pumice clast 36.4144 25.3508
GS10-28f South Therasia Therasia D pumice 36.4144 25.3508
GS10-30a Mt. Vigalos Therasia 19 lava 36.4211 25.3477
GS10-30b Mt. Vigalos Therasia 15 lava 36.4211 25.3477
GS10-31a Mt. Vigalos Therasia D single scoria clast 36.4267 25.3468
GS10-31b Mt. Vigalos Therasia D single pumice clast 36.4267 25.3468
GS10-31c Mt. Vigalos Therasia D single pumice clast 36.4267 25.3468
GS10-31d Mt. Vigalos Therasia D single pumice clast 36.4267 25.3468
GS10-31e Mt. Vigalos Therasia D pumice 36.4267 25.3468
GS10-32 Manolas Therasia E pumice 36.4373 25.3475
GS10-33 Manolas Therasia 27 lava 36.4374 25.3478
GS10-36 Oia Therasia 26 lava 36.4628 25.3699
GS10-37b Oia Therasia 26 enclave 36.4659 25.3681
GS10-38a Oia Oia A pumice 36.4659 25.3682
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Sample Locality Unit Description Latitude Longitude

GS10-38b Oia Oia B pumice 36.4659 25.3682
GS10-38c Oia Oia C pumice 36.4659 25.3682
GS10-38d Oia Oia D pumice 36.4659 25.3682
GS10-39a Oia Cape Riva A scoria 36.4663 25.3684
GS10-39b Oia Cape Riva A banded pumice 36.4663 25.3684
GS10-39c Oia Cape Riva A pumice 36.4663 25.3684
GS10-40 Phira Therasia 25 lava 36.4198 25.4297
GS10-41 Cape Skaros Skaros lava 36.4324 25.4196
GS10-43 South Therasia Therasia 11 enclave 36.4168 25.3377
GS10-44b South Therasia Therasia 1 lava 36.4181 25.3363
GS10-46 South Therasia Therasia 11 lava 36.4168 25.3377
GS10-48 Mt. Vigalos Therasia 21 lava 36.4311 25.3445
GS10-49 Balos Upper Scoria 2 scoria 36.3617 25.3934
GS10-50 Ammoudi Andesite of Oia lava 36.4659 25.3680
GS11-07a Balos Cape Riva B single pumice clast 36.3603 25.4044
GS11-07b Balos Cape Riva B single pumice clast 36.3603 25.4044
GS11-07c Balos Cape Riva B single pumice clast 36.3603 25.4044
GS11-12a Akrotiri Quary Therasia pumice 36.3628 25.4178
GS11-12b Akrotiri Quary Therasia pumice 36.3628 25.4178
GS11-30a Cape Riva Cape Riva C single pumice clast 36.4505 25.3466
GS11-30b Cape Riva Cape Riva C single pumice clast 36.4505 25.3466
GS11-30c Cape Riva Cape Riva C single pumice clast 36.4505 25.3466
GS11-32a Red Beach Cape Riva B single pumice clast 36.3481 25.4151
GS11-32b Red Beach Cape Riva B single pumice clast 36.3481 25.4151
GS11-32c Red Beach Cape Riva B single pumice clast 36.3481 25.4151
GS11-34a Katheros Cape Riva A single dacite pumice 36.4661 25.3682
GS11-34b Katheros Cape Riva A dacite pumice 36.4661 25.3682
GS11-34c Katheros Cape Riva A single dacite pumice 36.4661 25.3682
GS11-34d Katheros Cape Riva A single dacite pumice 36.4661 25.3682
GS11-34e Katheros Cape Riva A single dacite pumice 36.4661 25.3682
GS11-34f Katheros Cape Riva A single dacite pumice 36.4661 25.3682
GS11-34g Katheros Cape Riva A single dacite pumice 36.4661 25.3682
GS11-34h Katheros Cape Riva A andesite scoria 36.4661 25.3682
GS11-34i Katheros Cape Riva A single andesite scoria 36.4661 25.3682
GS11-39a Ammoudi Cape Riva D single pumice clast 36.4629 25.3708
GS11-39b Ammoudi Cape Riva D single pumice clast 36.4629 25.3708
GS11-39c Ammoudi Cape Riva D single pumice clast 36.4629 25.3708
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Andesite Lower
of Oia Therasia Andesite Therasia Dacites

Sample GS10-50 GS10-44b GS10-33 GS10-27a GS10-17 GS10-14 GS10-16
Unit Flow 26 Flow 1 Flow 24 Flow 3 Flow 5 Flow 8 Flow 9
Type Lava Lava Lava Lava Lava Lava Lava

Major elements (wt% dry)
SiO2 57.26 56.26 56.19 65.83 66.00 65.36 65.80
Al2O3 15.74 17.73 17.45 15.73 15.38 15.86 15.65
TiO2 1.28 1.04 1.01 0.81 0.75 0.80 0.80
FeOT 9.15 8.05 7.78 5.23 4.66 4.71 4.64
MgO 3.54 4.16 4.07 1.25 1.08 1.31 1.21
CaO 7.28 8.26 8.05 3.69 3.15 3.83 3.53
Na2O 3.96 2.87 3.74 4.33 5.48 5.04 5.21
K2O 1.40 1.32 1.39 2.77 3.19 2.75 2.78
MnO 0.18 0.16 0.16 0.14 0.13 0.13 0.13
P2O5 0.21 0.16 0.16 0.22 0.18 0.20 0.24
Trace elements (ppm)
Li 11.4 10.3 9.6 24.3 25.5 23.7 24.2
Sc 30.1 26.3 25.7 13.1 13.9 13.7 13.3
V 275 215 206 40 30 50 41
Cr 5.23 13.30 17.50 2.76 1.17 2.27 1.17
Co 23.00 22.30 22.00 7.08 5.77 6.92 6.17
Ni 7.84 11.10 11.90 1.69 0.86 1.13 0.79
Cu 48.4 37.0 44.4 20.4 17.5 14.5 12.7
Zn 92.0 79.1 73.8 77.2 76.4 71.6 71.2
As 1.98 0.91 1.02 1.99 2.18 1.90 2.00
Rb 52.7 42.8 45.1 95.0 104.0 91.6 92.6
Sr 183 247 247 166 133 180 177
Y 38.9 31.2 31.1 41.4 50.8 46.0 46.8
Zr 175 140 146 243 321 272 281
Nb 6.44 5.99 6.03 11.70 12.90 12.50 12.60
Cd 0.070 <DL 0.081 0.078 0.129 0.108 0.117
Cs 1.77 0.65 0.70 2.90 3.21 2.74 2.80
Ba 236 253 256 450 513 482 489
La 16.4 16.5 16.8 28.6 32.2 30.3 30.6
Ce 36.1 35.2 35.3 57.9 66.5 63.1 63.8
Pr 4.62 4.36 4.32 6.60 7.70 7.33 7.49
Nd 19.3 18.3 18.0 25.6 30.1 29.1 29.4
Sm 5.08 4.41 4.35 5.83 6.91 6.51 6.54
Eu 1.33 1.18 1.17 1.28 1.43 1.42 1.39
Gd 5.74 4.79 4.63 5.92 7.14 6.62 6.73
Tb 0.99 0.80 0.79 1.00 1.20 1.12 1.11
Dy 6.27 5.17 5.17 6.45 7.94 7.09 7.12
Ho 1.36 1.08 1.08 1.40 1.68 1.54 1.58
Er 4.10 3.30 3.26 4.26 5.20 4.76 4.75
Yb 4.13 3.33 3.20 4.36 5.30 4.71 4.79
Lu 0.598 0.501 0.483 0.665 0.810 0.725 0.722
Hf 4.82 3.80 3.85 6.06 7.51 6.55 6.76
Ta 0.488 0.423 0.436 0.886 0.920 0.869 0.868
Tl 0.111 0.170 0.161 0.455 0.491 0.418 0.441
Pb 8.1 6.6 6.5 15.2 16.9 14.7 14.9
Th 9.8 8.2 8.4 15.7 17.9 15.1 15.4
U 2.91 2.34 2.41 4.40 5.15 4.14 4.23
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Upper
Therasia Dacites Therasia Andesite

Sample GS10-30a GS10-20 GS10-48 GS10-40 GS10-46 GS10-22
Unit Flow 19 Flow 20 Flow 21 Flow 25 Flow 11 Flow 22
Type Lava Lava Lava Lava Lava Lava

Major elements (wt% dry)
SiO2 67.46 65.08 67.87 68.67 60.79 60.26
Al2O3 15.26 15.65 15.17 15.25 17.04 17.16
TiO2 0.72 0.82 0.67 0.61 0.85 0.86
FeOT 4.42 5.18 4.25 4.09 6.01 6.05
MgO 0.87 1.43 0.67 0.65 2.58 2.66
CaO 2.68 3.79 2.39 2.37 5.85 5.98
Na2O 5.23 4.97 5.50 5.60 4.43 4.52
K2O 3.07 2.75 3.21 2.50 2.09 2.18
MnO 0.12 0.14 0.12 0.12 0.14 0.14
P2O5 0.17 0.21 0.16 0.14 0.20 0.19
Trace elements (ppm)
Li 25.2 24.3 26.4 28.2 16.7 18.1
Sc 13.2 15.3 12.8 14.9 17.5 17.4
V 22 51 8 8 106 109
Cr 0.42 2.88 0.64 0.98 8.44 9.52
Co 4.88 7.91 3.35 3.38 13.10 13.80
Ni 0.75 2.01 0.23 <DL 4.85 5.65
Cu 14.9 20.4 10.6 16.3 21.7 16.5
Zn 76.4 77.8 79.6 75.4 68.7 71.9
As 2.26 2.03 2.36 2.70 1.39 1.54
Rb 107.0 95.6 109.0 106.0 69.0 68.1
Sr 123 146 117 108 232 231
Y 51.1 48.5 53.7 55.4 38.0 37.9
Zr 333 296 354 352 201 200
Nb 13.30 11.80 13.40 14.70 9.58 9.47
Cd 0.119 0.116 0.112 0.150 0.069 0.077
Cs 3.29 2.97 3.40 3.34 1.40 2.09
Ba 528 480 542 533 400 391
La 33.1 30.4 33.4 32.7 24.0 23.5
Ce 68.7 62.9 69.0 66.5 50.5 49.5
Pr 7.96 7.41 8.11 8.11 6.01 5.93
Nd 30.8 28.9 31.5 32.0 23.9 23.4
Sm 7.04 6.69 7.18 7.30 5.60 5.40
Eu 1.37 1.39 1.46 1.40 1.30 1.29
Gd 7.21 6.82 7.44 7.67 5.66 5.57
Tb 1.22 1.13 1.25 1.27 0.94 0.92
Dy 8.04 7.56 8.29 8.76 6.03 5.96
Ho 1.73 1.65 1.82 1.88 1.30 1.27
Er 5.20 4.98 5.49 5.73 3.96 3.89
Yb 5.35 5.06 5.68 5.88 3.99 3.94
Lu 0.821 0.767 0.854 0.883 0.597 0.589
Hf 7.80 7.05 8.32 8.62 5.25 5.27
Ta 0.933 0.833 0.928 1.050 0.643 0.634
Tl 0.484 0.436 0.348 0.454 0.279 0.287
Pb 17.1 15.8 16.9 18.3 10.8 11.6
Th 18.8 16.5 18.7 17.7 11.3 11.3
U 5.25 4.71 5.34 5.06 3.20 3.15
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Therasia Pumices

Sample GS10-27d GS10-27g(o) GS10-27g(p) GS10-27h GS10-28c GS10-28d
Unit CTP PF B PF B PF C PF D PF D
Type Pumice Obsidian Pumice Pumice Pumice Pumice

Major elements (wt% dry)
SiO2 67.50 64.60 64.82 68.14 65.16 66.24
Al2O3 15.10 15.61 15.62 15.15 15.31 15.41
TiO2 0.72 0.97 0.98 0.60 0.86 0.87
FeOT 4.35 5.39 5.54 4.14 4.79 4.83
MgO 0.88 1.42 1.46 0.78 1.07 1.07
CaO 2.68 3.70 3.80 2.29 3.10 3.16
Na2O 5.54 5.38 5.05 5.36 6.52 5.34
K2O 2.92 2.48 2.28 3.27 2.81 2.68
MnO 0.13 0.15 0.15 0.12 0.14 0.14
P2O5 0.17 0.30 0.31 0.15 0.25 0.26
Trace elements (ppm)
Li 20.2 23.5 23.1 22.4 25.3 24.7
Sc 13.6 16.3 16.8 12.0 15.2 14.8
V 9 44 48 11 21 20
Cr <DL 4.77 1.02 0.93 0.81 0.43
Co 5.66 6.69 7.26 3.50 4.73 4.64
Ni 1.09 2.61 0.90 0.65 0.78 1.66
Cu 6.5 8.9 10.5 13.6 5.8 8.7
Zn 71.4 85.9 86.1 71.1 83.0 82.2
As 2.12 1.96 2.06 2.94 2.08 2.09
Rb 86.6 80.2 79.8 104.0 91.4 90.7
Sr 112 164 168 108 145 143
Y 46.6 52.1 51.7 55.2 51.9 52.3
Zr 279 280 287 362 296 308
Nb 11.90 11.20 11.10 13.30 12.00 11.90
Cd 0.136 0.115 0.128 0.140 0.127 0.108
Cs 2.71 2.54 2.54 3.33 2.90 2.87
Ba 454 450 442 508 486 480
La 28.3 29.5 29.4 32.2 31.2 31.1
Ce 56.7 62.8 62.4 67.6 65.1 64.5
Pr 6.88 7.61 7.57 7.99 7.78 7.54
Nd 27.7 30.8 30.6 31.6 30.7 30.5
Sm 6.27 7.29 7.05 7.23 7.20 7.23
Eu 1.24 1.64 1.58 1.35 1.54 1.54
Gd 6.50 7.73 7.47 7.45 7.51 7.31
Tb 1.09 1.26 1.25 1.30 1.23 1.24
Dy 7.20 8.23 8.03 8.52 8.13 8.06
Ho 1.55 1.76 1.77 1.85 1.76 1.75
Er 4.78 5.48 5.27 5.64 5.33 5.33
Yb 4.91 5.41 5.34 5.83 5.43 5.38
Lu 0.743 0.837 0.822 0.888 0.831 0.832
Hf 6.85 6.96 6.88 8.55 7.39 7.30
Ta 0.852 0.758 0.755 0.905 0.820 0.833
Tl 0.481 0.384 0.408 0.512 0.452 0.417
Pb 15.3 14.1 14.4 17.6 15.9 15.5
Th 15.2 14.2 13.7 17.5 15.7 15.7
U 4.33 4.11 3.92 4.94 4.49 4.52
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Therasia Andesite L. Therasia
Therasia Pumices Mafic Enclaves of Oia Andesite

Sample GS10-28f GS10-32 GS10-38d GS10-27c GS10-43 GS10-50 GS10-44b
Unit PF D PF E Oia PF D Flow 3 Flow 11 Flow 26 Flow 1
Type Pumice Pumice Pumice Enclave Enclave Gdms Gdms

Major elements (wt% dry)
SiO2 65.49 65.32 66.34 49.62 51.87 58.44 57.39
Al2O3 14.94 15.37 15.55 17.41 19.07 15.71 17.35
TiO2 0.72 0.78 0.83 0.51 0.89 1.31 1.08
FeOT 4.36 5.06 4.71 7.39 8.08 9.41 8.19
MgO 0.91 1.29 1.04 8.58 5.44 3.50 3.79
CaO 2.65 3.46 3.00 14.53 10.16 7.35 7.39
Na2O 7.75 5.65 5.29 1.39 3.30 3.77 3.94
K2O 2.87 2.70 2.87 0.36 0.90 1.42 1.59
MnO 0.13 0.14 0.14 0.16 0.16 0.18 0.16
P2O5 0.17 0.21 0.22 0.05 0.14 0.21 0.19
Trace elements (ppm)
Li 23.6 29.4 22.7 9.5 16.2 11.4 9.6
Sc 13.3 14.0 13.8 46.2 25.9 30.5 28.9
V 13 29 24 201 193 285 192
Cr 0.92 1.83 2.17 44.20 31.30 5.40 8.92
Co 4.40 5.99 4.75 37.50 27.40 23.90 21.30
Ni 1.70 0.92 1.46 32.80 15.80 8.93 10.40
Cu 8.9 33.1 6.4 17.6 54.4 48.3 40.8
Zn 78.9 82.1 77.4 50.3 72.6 98.8 85.7
As 2.31 2.39 2.61 0.27 0.77 1.91 1.12
Rb 97.5 91.8 89.7 10.1 25.8 55.7 52.8
Sr 124 155 153 215 323 183 261
Y 51.7 47.7 52.6 14.2 23.8 39.6 37.9
Zr 323 265 318 40 108 191 186
Nb 12.20 11.20 13.10 1.24 4.71 6.23 7.24
Cd 0.148 0.130 0.145 0.047 0.072 0.075 0.083
Cs 3.02 5.30 3.02 0.29 0.52 1.86 0.77
Ba 496 451 476 65.2 251 235 295
La 31.3 29.4 31.7 3.8 11.9 16.2 19.2
Ce 64.7 60.7 69.3 9.0 26.9 38.1 41.4
Pr 7.60 7.14 7.88 1.19 3.37 4.59 5.20
Nd 29.9 28.0 31.5 5.4 14.2 19.5 20.9
Sm 6.89 6.27 7.18 1.68 3.43 4.96 5.04
Eu 1.43 1.37 1.46 0.56 0.97 1.26 1.30
Gd 7.05 6.66 7.58 1.98 3.67 5.53 5.27
Tb 1.21 1.10 1.25 0.35 0.62 0.96 0.88
Dy 7.88 7.35 8.25 2.40 3.92 6.32 5.82
Ho 1.72 1.59 1.77 0.50 0.84 1.37 1.25
Er 5.23 4.74 5.36 1.56 2.53 4.08 3.82
Yb 5.40 4.81 5.57 1.43 2.42 4.15 3.76
Lu 0.814 0.757 0.830 0.226 0.369 0.622 0.573
Hf 7.58 6.61 7.87 1.18 2.78 4.89 4.63
Ta 0.843 0.789 0.872 0.090 0.285 0.477 0.524
Tl 0.464 0.609 0.503 0.083 0.110 0.126 0.199
Pb 17.5 17.5 16.5 2.9 15.9 8.2 7.9
Th 16.6 15.4 16.4 1.3 3.5 9.8 11.0
U 4.74 4.67 4.37 0.45 1.02 2.97 2.94
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Therasia Dacites

Sample GS10-27a GS10-17 GS10-14 GS10-16 GS10-30a GS10-20 GS10-48
Unit Flow 3 Flow 5 Flow 8 Flow 9 Flow 19 Flow 20 Flow 21
Type Gdms Gdms Gdms Gdms Gdms Gdms Gdms

Major elements (wt% dry)
SiO2 66.06 67.99 67.35 67.44 68.99 67.07 68.93
Al2O3 15.36 14.70 15.35 15.13 14.93 15.22 15.23
TiO2 0.73 0.63 0.68 0.73 0.60 0.66 0.60
FeOT 4.91 4.03 4.00 4.28 3.88 4.36 3.97
MgO 1.14 0.85 1.05 1.08 0.76 1.17 0.64
CaO 3.35 2.34 3.13 2.80 2.23 3.07 2.31
Na2O 5.25 5.91 5.19 5.10 5.45 5.09 5.48
K2O 2.86 3.25 2.94 3.06 3.49 3.04 3.16
MnO 0.14 0.12 0.12 0.13 0.12 0.12 0.12
P2O5 0.19 0.19 0.20 0.24 0.15 0.20 0.15
Trace elements (ppm)
Li 23.6 26.9 24.5 24.8 24.1 25.1 25.4
Sc 15.5 14.2 13.1 13.4 12.9 15.5 14.1
V 27 15 24 25 9 29 5
Cr 2.54 0.76 1.09 1.05 <DL 2.28 0.85
Co 6.96 4.48 5.25 5.33 3.93 6.28 3.08
Ni 1.95 0.75 1.02 1.19 0.80 4.39 0.75
Cu 24.6 22.9 16.5 15.6 18.0 25.3 13.0
Zn 82.5 75.9 68.5 73.1 71.5 77.2 78.3
As 1.88 3.06 1.97 2.60 3.04 2.85 2.03
Rb 106.0 105.0 100.0 102.0 106.0 105.0 110.0
Sr 172 108 160 146 99 125 125
Y 46.5 53.6 48.4 50.5 52.7 50.9 50.8
Zr 267 334 287 302 341 312 365
Nb 12.30 13.30 12.90 13.20 13.50 12.40 13.60
Cd 0.101 0.117 0.107 0.113 0.128 0.116 0.110
Cs 2.92 3.55 3.00 3.05 3.57 3.26 3.28
Ba 463 542 514 520 510 511 548
La 29.3 33.9 32.2 32.3 33.6 31.9 29.1
Ce 59.5 70.2 66.4 67.9 69.8 66.6 63.4
Pr 6.90 8.22 7.77 8.05 8.22 7.80 7.40
Nd 26.6 31.9 30.5 31.4 31.5 30.4 29.5
Sm 5.96 7.16 6.72 7.04 7.17 7.04 6.63
Eu 1.26 1.33 1.35 1.39 1.32 1.33 1.35
Gd 6.08 7.35 6.89 7.07 7.27 7.13 6.88
Tb 1.01 1.27 1.13 1.19 1.24 1.22 1.19
Dy 6.71 8.43 7.42 7.74 8.20 8.00 8.04
Ho 1.44 1.80 1.61 1.67 1.76 1.71 1.70
Er 4.43 5.53 4.92 5.18 5.39 5.27 5.27
Yb 4.48 5.74 5.03 5.25 5.58 5.40 5.56
Lu 0.699 0.871 0.777 0.806 0.851 0.833 0.855
Hf 6.42 8.38 7.18 7.52 8.43 7.82 8.62
Ta 0.896 0.982 0.929 0.969 0.992 0.917 0.942
Tl 0.461 0.546 0.466 0.477 0.531 0.484 0.355
Pb 16.3 18.8 16.3 16.4 18.5 17.3 17.7
Th 18.3 20.5 16.6 17.2 20.5 18.8 17.3
U 4.64 5.84 4.64 4.77 5.78 5.35 5.56
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Therasia U. Therasia
Dacites Andesite Therasia Pumices

Sample GS10-40 GS10-22 GS10-27d GS10-27h GS10-28c GS10-28d GS10-28f
Unit Flow 25 Flow 22 CTP PF C PF D PF D PF D
Type Gdms Gdms Glass Glass Glass Glass Glass

Major elements (wt% dry)
SiO2 68.97 63.67 67.87 69.13 65.82 66.69 68.38
Al2O3 15.23 15.44 15.28 14.89 15.11 15.16 15.44
TiO2 0.56 0.79 0.64 0.49 0.93 0.81 0.66
FeOT 3.90 5.60 4.05 3.74 4.93 4.60 4.05
MgO 0.60 2.39 0.74 0.57 1.33 1.05 0.79
CaO 2.20 4.62 2.63 1.99 3.02 2.87 2.63
Na2O 5.58 4.55 5.51 5.47 5.72 5.64 5.41
K2O 3.27 2.60 2.97 3.47 2.70 2.79 3.02
MnO 0.12 0.14 0.13 0.11 0.15 0.14 0.13
P2O5 0.13 0.20 0.19 0.13 0.28 0.25 0.16
Trace elements (ppm)
Li 29.7 20.3 24.1 24.1 24.6 25.1 24.8
Sc 13.5 18.5 15.4 14.4 16.7 14.8 15.7
V 6 81 7 5 16 13 9
Cr 0.82 8.41 2.20 0.63 <DL <DL 1.09
Co 3.17 12.00 5.10 2.83 5.30 4.24 3.30
Ni 0.57 4.62 1.12 0.66 1.12 0.72 1.01
Cu 17.8 21.8 12.7 13.0 19.6 14.0 11.5
Zn 77.7 71.9 88.6 86.4 93.1 85.5 85.0
As 3.29 2.31 2.10 2.52 1.94 2.07 1.99
Rb 105.0 88.5 106.0 118.0 91.0 83.2 105.0
Sr 107 176 143 111 144 134 136
Y 57.9 44.9 56.7 60.6 52.2 50.9 55.3
Zr 369 271 336 380 298 309 327
Nb 13.70 11.40 12.70 13.60 12.00 11.90 12.00
Cd 0.136 0.097 0.123 0.143 0.111 0.104 0.120
Cs 3.54 2.72 3.06 3.45 2.83 2.89 2.98
Ba 554 455 511 537 478 486 502
La 33.8 27.9 31.5 32.8 30.7 28.9 31.5
Ce 71.1 63.2 65.7 68.8 65.3 62.0 65.1
Pr 8.45 7.07 7.77 8.32 7.73 7.33 7.78
Nd 33.2 27.9 30.1 32.7 30.8 29.5 30.2
Sm 7.53 6.31 7.02 7.40 7.15 6.73 7.02
Eu 1.40 1.20 1.41 1.29 1.52 1.42 1.39
Gd 7.76 6.40 7.10 7.62 7.25 7.09 7.03
Tb 1.32 1.09 1.23 1.29 1.23 1.20 1.19
Dy 8.91 7.12 8.30 8.61 8.09 8.05 8.13
Ho 1.90 1.51 1.75 1.88 1.75 1.74 1.72
Er 5.96 4.64 5.41 5.85 5.35 5.33 5.35
Yb 6.12 4.69 5.55 5.90 5.46 5.44 5.52
Lu 0.942 0.718 0.861 0.923 0.829 0.835 0.844
Hf 9.16 6.73 7.91 8.96 7.35 7.54 7.79
Ta 0.963 0.813 0.878 0.934 0.855 0.856 0.844
Tl 0.488 0.387 0.527 0.552 0.430 0.440 0.506
Pb 18.7 14.4 17.3 19.0 16.5 16.7 17.2
Th 19.0 14.6 18.6 20.1 15.7 14.8 18.7
U 5.47 4.07 4.97 5.30 4.59 4.70 4.88
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Cape Riva Andesite Cape Riva Dacite

Sample S09-41 S80-145 S09-64 S09-40 S09-38 S82-52 S09-62
Unit A A A A A A A
Type Scoria Scoria Scoria Pumice Pumice Pumice Pumice

Major elements (wt% dry)
SiO2 60.19 60.41 60.46 65.84 66.38 66.68 67.11
Al2O3 16.43 16.61 16.77 15.40 15.41 15.58 15.17
TiO2 0.88 0.83 0.84 0.76 0.78 0.73 0.71
FeOT 6.58 6.33 6.44 4.88 4.78 4.57 4.61
MgO 3.17 3.03 3.08 1.16 1.19 1.05 1.02
CaO 6.20 6.22 6.29 3.28 3.28 3.12 2.88
Na2O 4.63 4.65 4.30 5.84 5.85 5.49 5.55
K2O 1.56 1.60 1.49 2.45 1.98 2.44 2.60
MnO 0.16 0.16 0.16 0.16 0.16 0.15 0.15
P2O5 0.19 0.16 0.17 0.22 0.20 0.19 0.19
Trace elements (ppm)
Li 16.4 16.9 16.8 17.4 17.9 19.2 20.2
Sc 23.4 22.7 22.7 13.8 13.9 14.8 14.0
V 139 127 131 30 26 30 25
Cr 27.10 29.20 25.80 0.60 0.23 0.71 0.55
Co 15.50 14.70 15.00 6.39 4.79 4.39 4.65
Ni 14.20 12.00 11.10 2.57 3.51 2.38 1.11
Cu 37.0 35.8 33.3 7.4 10.2 7.8 7.8
Zn 82.1 82.6 78.6 75.5 71.6 80.8 76.0
As 1.47 1.42 1.34 1.82 1.89 1.98 2.27
Rb 50.0 50.2 50.4 71.7 72.2 78.7 84.9
Sr 185 188 186 127 132 139 120
Y 38.5 38.3 38.5 45.9 48.4 50.2 53.0
Zr 175 184 178 250 246 279 306
Nb 7.12 7.27 7.30 9.44 9.28 10.20 10.80
Cd 0.080 0.098 0.082 0.097 0.109 0.122 0.138
Cs 1.56 1.57 1.60 2.22 2.24 2.46 2.73
Ba 297 298 299 375 388 409 430
La 19.0 18.9 18.9 23.7 24.4 25.6 27.0
Ce 40.7 40.3 40.9 50.5 51.4 54.3 57.3
Pr 4.98 4.96 4.95 6.09 6.34 6.59 6.95
Nd 20.4 20.3 20.5 24.6 25.1 26.8 27.8
Sm 5.14 4.99 4.90 5.77 6.32 6.31 6.80
Eu 1.29 1.28 1.30 1.34 1.37 1.47 1.36
Gd 5.56 5.42 5.54 6.44 6.50 6.94 7.14
Tb 0.95 0.92 0.93 1.07 1.13 1.17 1.21
Dy 6.16 6.05 6.06 7.06 7.38 7.84 8.15
Ho 1.33 1.35 1.33 1.54 1.63 1.71 1.78
Er 4.11 4.02 4.13 4.77 4.89 5.12 5.38
Yb 4.08 4.00 4.12 4.92 5.02 5.22 5.60
Lu 0.624 0.609 0.622 0.747 0.766 0.799 0.829
Hf 4.69 4.61 4.74 6.22 6.03 6.66 7.24
Ta 0.498 0.498 0.498 0.640 0.648 0.697 0.745
Tl 0.217 0.193 0.225 0.353 0.324 0.374 0.398
Pb 9.5 13.0 9.5 12.5 11.8 14.6 14.3
Th 8.5 8.7 8.9 11.9 12.2 13.0 14.1
U 2.44 2.47 2.54 3.48 3.42 3.74 4.06
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Cape Riva
Cape Riva Andesite Dacite Upper Scoria 2 Skaros

Sample S09-41 S09-64 S09-40 GS10-49 GS10-49 GS10-41
Unit A A A Top flow
Type Glass Glass Glass Scoria Gdms Lava

Major elements (wt% dry)
SiO2 61.53 62.83 69.88 58.70 59.19 57.65
Al2O3 16.98 16.59 15.05 16.38 16.47 15.88
TiO2 0.74 0.71 0.48 1.34 1.32 1.26
FeOT 5.96 5.57 3.31 8.60 8.56 8.42
MgO 2.62 2.53 0.53 2.95 2.93 3.64
CaO 5.86 5.67 2.14 6.58 6.63 7.15
Na2O 4.92 4.68 5.86 3.44 4.35 3.94
K2O 1.82 1.81 2.95 1.59 1.54 1.63
MnO 0.15 0.14 0.12 0.18 0.18 0.17
P2O5 0.17 0.18 0.16 0.23 0.13 0.25
Trace elements (ppm)
Li 17.7 17.2 20.4 15.5 15.1 13.3
Sc 24.6 19.6 14.8 25.5 28.6 28.9
V 126 111 8 200 198 194
Cr 21.20 20.80 4.33 1.17 1.93 54.70
Co 14.20 14.60 5.62 17.50 17.60 20.70
Ni 14.60 11.60 5.48 2.78 1.69 19.60
Cu 39.2 34.8 10.3 13.2 15.9 83.5
Zn 132.0 387.0 92.3 96.2 98.5 90.8
As 1.60 1.76 2.10 2.21 1.85 1.82
Rb 60.2 53.7 101.0 59.3 61.6 59.6
Sr 197 171 105 190 209 181
Y 44.2 39.5 61.1 40.4 42.9 43.4
Zr 214 212 341 177 194 198
Nb 7.58 7.40 11.60 7.09 7.09 7.41
Cd 0.087 0.089 0.124 0.079 0.086 0.084
Cs 1.70 1.83 2.82 2.10 2.06 1.47
Ba 323 331 460 224 225 244
La 20.5 19.3 28.9 17.5 17.4 18.6
Ce 43.6 44.9 61.6 38.6 38.1 41.6
Pr 5.41 5.17 7.40 4.9 4.89 5.3
Nd 21.6 21.2 29.5 20.7 20.6 22.0
Sm 5.28 5.16 7.09 5.37 5.20 5.59
Eu 1.27 1.24 1.28 1.38 1.43 1.42
Gd 5.68 5.45 7.50 5.97 5.84 6.43
Tb 0.97 0.94 1.29 0.99 0.99 1.09
Dy 6.58 6.34 8.58 6.56 6.60 7.06
Ho 1.41 1.37 1.87 1.41 1.42 1.50
Er 4.32 4.17 5.81 4.20 4.37 4.55
Yb 4.37 4.27 6.09 4.26 4.29 4.49
Lu 0.663 0.655 0.938 0.641 0.655 0.680
Hf 5.14 5.21 8.07 4.91 4.89 5.36
Ta 0.520 0.529 0.819 0.531 0.538 0.535
Tl 0.242 0.319 0.427 0.189 0.182 0.154
Pb 11.1 11.8 16.0 9.6 9.7 10.3
Th 10.9 9.2 17.3 10.3 11.3 10.4
U 2.86 2.90 4.56 3.12 3.18 3.05
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Appendix D

Plagioclase diffusion model code

D.1 1 Stage model

An = % Anorthite profile
x_An = % Positions of the anorthite profile points
C_mes = % Measured Mg
x_C = % Location of measured Mg points
T = % Temperature in Kelvin
delta_t = % Time step in seconds
j_max = % Number of time steps to run diffusion model
a = % Parameter from partition coefficient equation
b = % Parameter from partition coefficient equation
Title = % Title for graphs

i_max = length (x_An );
C_eq = zeros(i_max ,1);
C_init = zeros(i_max ,1);
C_High = zeros(i_max ,1);
C_Low = zeros(i_max ,1);

% Calculate initial Mg profile from An [via Ti]
for i = 1: i_max

if An(i) < 0.69
C_init (i) = 3 * 310 * exp ((6.13 - ...

(26100 / (7670 + 4160 * An(i)))) * An(i) ...
- (25700 / (7670 + 4160 * An(i))));

else
C_init (i) = 3 * 2130 * exp ((3.33 - ...

(26100 / (7670 + 4160 * An(i)))) * An(i) ...
- (25700 / (7670 + 4160 * An(i))));

end
end
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% Upper bound on the initial Mg
for i = 1: i_max

if An(i) < 0.66
C_High (i) = 3 * 276 * exp ((6.72 - ...

(26100 / (7670 + 4160 * An(i)))) * An(i) ...
- (25700 / (7670 + 4160 * An(i))));

else
C_High (i) = 3 * 3150 * exp ((3.03 - ...

(26100 / (7670 + 4160 * An(i)))) * An(i) ...
- (25700 / (7670 + 4160 * An(i))));

end
end

% Lower bound on the initial Mg
for i = 1: i_max

if An(i) < 0.72
C_Low(i) = 3 * 340 * exp ((5.62 - ...

(26100 / (7670 + 4160 * An(i)))) * An(i) ...
- (25700 / (7670 + 4160 * An(i))));

else
C_Low(i) = 3 * 1320 * exp ((3.73 - ...

(26100 / (7670 + 4160 * An(i)))) * An(i) ...
- (25700 / (7670 + 4160 * An(i))));

end
end

% Find location of the first measurement
first_C = find(abs(x_An - min(x_C )) ...

== min(abs(x_An - min(x_C ))));

C_eq( first_C ) = C_mes( length (C_mes ));

for i = first_C +1:1: i_max
C_eq(i) = C_eq(i -1) * exp(a * (An(i)-An(i -1)) ...

/ (8.3144621* T));
end

for i = first_C -1: -1:1
C_eq(i) = C_eq(i+1) * exp(a * (An(i)-An(i+1)) ...

/ (8.3144621* T));
end

% Plot initial and equilibrium profiles
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figure

plot(x_An ,C_init ,’LineStyle ’,’-’,’Color ’ ,[0 170/255 0] ,...
’DisplayName ’,’Initial ’)

plot(x_An ,C_High ,’LineStyle ’,’-’,’Color ’ ,[85/255 1 85/255] ,...
’DisplayName ’,’Uncertainty ’)

plot(x_An ,C_Low ,’LineStyle ’,’-’,’Color ’ ,[85/255 1 85/255] ,...
’DisplayName ’,’Uncertainty ’)

plot(x_An ,C_eq ,’LineStyle ’,’-’,’Color ’ ,[0 85/255 212/255] ,...
’DisplayName ’,’Equilibrium ’)

plot(x_C ,C_mes ,’LineStyle ’,’none ’,’Color ’ ,[212/255 0 0] ,...
’DisplayName ’,’Measured ’, ...

’Marker ’,’+’)

title(Title)

legend (’show ’, ’Location ’, ’NorthWest ’)

% Calculate initial parameters

% Calculate the distance between points
delta_x = (x_An (2) - x_An (1));

% Calculate total time for model
t_max = j_max * delta_t ;

% Add an extra row rather than overwrite An data in making
% crystal " symmetrical "
i_max = length (x_An )+1;
x2 = x_An;
x2(i_max) = x_An(i_max -1) + delta_x ;

% Variables for before and after each diffusion step
C_old = C_init ;
C_new = C_init ;

% External boundary condition
Out_BC = C_eq (1);

% make crystal " symmetrical "
An(i_max) = An(i_max -1);
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C_init (i_max) = C_init (i_max -1);

% Diffusion coefficient equation
% D = 10^( m_An * An + c_An) * exp(- act_en /RT)
m_An = -3.46;
c_An = -2.63;
act_en = 287000;

% Check for stability
D_max = 10^( m_An*min(An)+ c_An) * exp(- act_en /(8.3144621* T)) ...

* 10^12;
r = D_max * delta_t / delta_x ^2 %#ok <NOPRT >

if r >= 0.5;
t_max = 0;
error(’plag_diff : Courant ’, strcat ( ...

’Courant condition unfulfilled : r = ’, ...
num2str (r,3), ’ >= 0.5 ’))

end

% Diffusion model

% Calculate constants invariant with time , so they are only
% calculated once
rr = delta_t / delta_x ^2;
ART = a / (8.3144621* T);
D = 10.^( m_An * An + c_An) * exp( -act_en ...

/ (8.3144621 * T)) * 10^12;
delta_D = zeros(i_max ,1);
delta_An = zeros(i_max ,1);
delta_An2 = zeros(i_max ,1);
for i = 2:1: i_max -1

delta_D (i) = (D(i+1) - D(i));
delta_An (i) = (An(i+1) - An(i));
delta_An2 (i) = An(i+1) - 2*An(i) + An(i -1);

end
D_delta_An = D .* delta_An ;
D_delta_An2 = D .* delta_An2 ;
delta_D_delta_An = delta_D .* delta_An ;

% Diffuse
for j = 1: j_max

C_new (1)= Out_BC ;
for i = 2:1: i_max -1

C_new(i) = C_old(i) + rr * (...
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D(i) * (C_old(i+1) - 2* C_old(i) + C_old(i -1)) ...
+ delta_D (i) * (C_old(i+1) - C_old(i)) ...
- ART * ( D_delta_An (i) * (C_old(i+1) - C_old(i))...
+ C_old(i) * delta_D_delta_An (i) ...
+ C_old(i) * D_delta_An2 (i)));

end

% Symmetrical crystal ( internal boundary condition )
C_new(i_max) = C_new(i_max -1);

C_old = C_new;
end

% remove the extra datapoint added to make the crystal
% symmetrical
C_new(i_max )=[];

%Plot the results

% Calculate the length of time diffusion has taken place over
% in a sensible unit , and append it to graph label
time_in = ’years ’;

if strcmp (time_in ,’days ’)
t_max = t_max /(60*60*24) %#ok <NOPTS >

elseif strcmp (time_in ,’years ’)
t_max = t_max /(60*60*24*365.25) %#ok <NOPTS >

else
time_in = ’seconds ’;

end

% Plot results
figure (’Name ’, [Title , ’ for ’, num2str (t_max ,3), ’ ’, ...

time_in ])

plot(x_An ,C_init ,’LineStyle ’,’-’,’Color ’ ,[0 170/255 0] ,...
’DisplayName ’,’Initial ’)

hold on

plot(x_An ,C_new ,’LineStyle ’,’-’,’Color ’,’k’,’DisplayName ’, ...
[ num2str (t_max ,3), ’ ’, time_in , ’ @ ’, num2str (T), ’K’])

plot(x_An ,C_eq ,’LineStyle ’,’-’,’Color ’ ,[0 85/255 212/255] ,...
’DisplayName ’,’Equilibrium ’)
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plot(x_C ,C_mes ,’LineStyle ’,’none ’,’Color ’ ,[212/255 0 0] ,...
’DisplayName ’,’Measured ’, ’Marker ’,’+’)

plot(x_An ,C_High ,’LineStyle ’,’-’,’Color ’ ,[85/255 1 85/255] ,...
’DisplayName ’,’Uncertainty ’)

plot(x_An ,C_Low ,’LineStyle ’,’-’,’Color ’ ,[85/255 1 85/255] ,...
’DisplayName ’,’Uncertainty ’)

% Plot labels
ylabel (’Mg (ppm)’)
xlabel (’Distance from rim ( microns )’)
title(Title)
legend (’show ’, ’Location ’, ’NorthWest ’)
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D.2 2 stage model

An = % Anorthite profile
x_An = % Positions of the anorthite profile points
C_mes = % Measured Mg
x_C = % Location of measured Mg points
T_core = % Temperature for the first (core) stage
T_rim = % Temperature for the second (whole crystal ) stage
i_min = % Location of the core/rim boundary (in steps)
delta_t = % Time step in seconds
j_max = % Number of time steps to run diffusion model
a = % Parameter from partition coefficient equation
b = % Parameter from partition coefficient equation
Title = % Title for graphs
Core_Yr = % Time(s) in years to run the first stage
Rim_Yr = % Time(s) in years to run the second stage

i_max = length (x_An );
C_eq = zeros(i_max ,1);
C_init = zeros(i_max ,1);
C_High = zeros(i_max ,1);
C_Low = zeros(i_max ,1);

% Calculate initial Mg profile from An [via Ti]
for i = 1: i_max

if An(i) < 0.69
C_init (i) = 3 * 310 * exp ((6.13 - ...

(26100 / (7670 + 4160 * An(i)))) * An(i) ...
- (25700 / (7670 + 4160 * An(i))));

else
C_init (i) = 3 * 2130 * exp ((3.33 - ...

(26100 / (7670 + 4160 * An(i)))) * An(i) ...
- (25700 / (7670 + 4160 * An(i))));

end
end

% Upper bound on the initial Mg
for i = 1: i_max

if An(i) < 0.66
C_High (i) = 3 * 276 * exp ((6.72 - ...

(26100 / (7670 + 4160 * An(i)))) * An(i) ...
- (25700 / (7670 + 4160 * An(i))));

else
C_High (i) = 3 * 3150 * exp ((3.03 - ...

(26100 / (7670 + 4160 * An(i)))) * An(i) ...
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- (25700 / (7670 + 4160 * An(i))));
end

end

% Lower bound on the initial Mg
for i = 1: i_max

if An(i) < 0.72
C_Low(i) = 3 * 340 * exp ((5.62 - ...

(26100 / (7670 + 4160 * An(i)))) * An(i) ...
- (25700 / (7670 + 4160 * An(i))));

else
C_Low(i) = 3 * 1320 * exp ((3.73 - ...

(26100 / (7670 + 4160 * An(i)))) * An(i) ...
- (25700 / (7670 + 4160 * An(i))));

end
end

% Find location of the first measurement
first_C = find(abs(x_An - min(x_C )) ...

== min(abs(x_An - min(x_C ))));

C_eq( first_C ) = C_mes( length (C_mes ));

for i = first_C +1:1: i_max
C_eq(i) = C_eq(i -1) * exp(a * (An(i)-An(i -1)) ...

/ (8.3144621* T));
end

for i = first_C -1: -1:1
C_eq(i) = C_eq(i+1) * exp(a * (An(i)-An(i+1)) ...

/ (8.3144621* T));
end

% Plot initial and equilibrium profiles
figure

plot(x_An ,C_init ,’LineStyle ’,’-’,’Color ’ ,[0 170/255 0] ,...
’DisplayName ’,’Initial ’)

plot(x_An ,C_High ,’LineStyle ’,’-’,’Color ’ ,[85/255 1 85/255] ,...
’DisplayName ’,’Uncertainty ’)

plot(x_An ,C_Low ,’LineStyle ’,’-’,’Color ’ ,[85/255 1 85/255] ,...
’DisplayName ’,’Uncertainty ’)
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plot(x_An ,C_eq ,’LineStyle ’,’-’,’Color ’ ,[0 85/255 212/255] ,...
’DisplayName ’,’Equilibrium ’)

plot(x_C ,C_mes ,’LineStyle ’,’none ’,’Color ’ ,[212/255 0 0] ,...
’DisplayName ’,’Measured ’, ...

’Marker ’,’+’)

title(Title)

legend (’show ’, ’Location ’, ’NorthWest ’)

% Contestants for calculating the diffusion coefficient using
% D = 10^( m_An * An + c_An) * \exp( act_en / RT
m_An = -3.46;
c_An = -2.63;
act_en = 287000;

% Combine upper and lower bounds of the initial profile
C_un = [ C_High ; NaN; C_Low ];

% Calculate delta_t to give a maximum r of 0.48 ( fulfilling the
% Courant condition ) for both the rim and core separately
delta_x = x_An (2) - x_An (1);

D_max = 10 ^ (m_An * min(An) + c_An) * exp(- act_en / ...
(8.3144621 * T_core )) * 10^12;

delta_t_core = 0.48 * delta_x ^2 / D_max;

D_max = 10 ^ (m_An * min(An) + c_An) * exp(- act_en / ...
(8.3144621 * T_rim )) * 10^12;

delta_t_rim = 0.48 * delta_x ^2 / D_max;

% Turn times from years into multiples of delta_t (in s)
Core = fix( Core_Yr * 31557600 / delta_t_core );
Rim = fix( Rim_Yr * 31557600 / delta_t_rim );

% Call the diffusion functions
for n1 = 1:1: length (Core)

if n1 == 1
[C_new_core , t_max] = DiffCore ( delta_t_core , ...

Core(n1), T_core , An , x_An , C_init , i_min , ...
element , m_An , c_An , act_en );
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else
[C_new_core , t_maxb ] = DiffCore ( delta_t_core , ...

Core(n1) - Core(n1 -1), T_core , An , x_An , ...
C_new_core , i_min , element , m_An , c_An , act_en );

t_max = t_max + t_maxb ;
end

for n2 = 1:1: length (Rim)
if n2 == 1

[C_new_rim , t_max2 ] = DiffRim ( delta_t_rim , ...
Rim(n2), T_rim , An , x_An , C_new_core , C_eq , ...
element , m_An , c_An , act_en );

else
[C_new_rim , t_max2b ] = DiffRim ( delta_t_rim , ...

Rim(n2) - Rim(n2 -1), T_rim , An , x_An , ...
C_new_rim , C_eq , element , m_An , c_An , act_en );

t_max2 = t_max2 + t_max2b ;
end

PlotDiff (Title , t_max , t_max2 , x_An , C_init , C_un , ...
C_eq , x_C , C_mes , C_new_core , T_core , ...
C_new_rim , T_rim , element );

end

end

function [C_new , t_max] = DiffCore (delta_t , j_max , ...
T_core , An , x_An , C_init , i_min , element , m_An , ...
c_An , act_en )

% Calculate the first stage in a 2 stage diffusion model
%
% Output :
% C_new = final profile
% C_old = profile after diffusion in just the core
%
% Inputs :
% delta_t = seconds per time step
% j_max = number of time steps for the core
% j_max2 = number of time steps for the core + rim
% T_core = temperature for core diffusion (in K)
% T_rim = temperature for rim diffusion (in K)
% An = anorthite profile
% x_An = location of the anorthite measurements (in microns )
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% C_eq = equilibrium profile
% C_init = initial profile
% C_un = uncertainty in the initial profile
% i_min = location of the core/rim boundary (in pixels )
% element = element diffusing
% m_An = Diffusion coefficient parameter
% c_An = Diffusion coefficient parameter
% act_en = Diffusion coefficient parameter
% Title = title for the graph
%
% Diffusion coefficient is in the form:
% D = 10^( m_An * An + c_An) * \exp( act_en / RT

% adding an extra row rather than overwriting An data
% in making crystal " symetrical "
i_max = length (x_An )+1;
x_An(i_max) = x_An(i_max -1);
An( i_max) = An(i_max -1);

% Calculate the time core diffuses in years
t_max = delta_t * j_max / 31557600;

C_old = C_init ;
C_old(i_max) = C_init (i_max -1);
C_new = C_old;

A = -21600;

% Calculate constants invariant with time , so they are only
% calculated once
delta_x = x_An (2) - x_An (1);
rr = delta_t / delta_x ^2;
delta_An = zeros(i_max ,1);
delta_An2 = zeros(i_max ,1);
for i = 2:1: i_max -1

delta_An (i) = (An(i+1) - An(i));
delta_An2 (i) = An(i+1) - 2*An(i) + An(i -1);

end

% Core

% Calculate constants invariant with time at core temperatures
ART = A / (8.3144621* T_core );
D = 10 .^ (m_An * An + c_An) * ...

exp(- act_en / (8.3144621 * T_core )) ...
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* 10^12;
delta_D = zeros(i_max ,1);
for i = 2:1: i_max -1

delta_D (i) = (D(i+1) - D(i));
end
D_delta_An = D .* delta_An ;
D_delta_An2 = D .* delta_An2 ;
delta_D_delta_An = delta_D .* delta_An ;

% Diffuse
for j = 1: j_max

for i = i_min :1: i_max -1
C_new(i) = C_old(i) + rr * (...

D(i) * (C_old(i+1) - 2* C_old(i) + C_old(i -1)) ...
+ delta_D (i) * (C_old(i+1) - C_old(i)) ...
- ART * ( D_delta_An (i) * (C_old(i+1) - C_old(i))...
+ C_old(i) * delta_D_delta_An (i) ...
+ C_old(i) * D_delta_An2 (i)));

end

% symmetrical crystal ( internal boundary condition )
C_new(i_max) = C_new(i_max -1);

C_old = C_new;
end

% remove the extra datapoint added to make the crystal
% symmetrical
C_new(i_max )=[];

end

function [C_new , t_max2 ] = DiffRim (delta_t , j_max2 , T_rim , ...
An , x_An , C_init , C_eq , element , m_An , c_An , act_en )

% Calculate the second stage in a 2 stage diffusion model
%
% Output :
% C_new = final profile
% C_old = profile after diffusion in just the core
%
% Inputs :
% delta_t = seconds per time step
% j_max = number of time steps for the core
% j_max2 = number of time steps for the core + rim
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% T_core = temperature for core diffusion (in K)
% T_rim = temperature for rim diffusion (in K)
% An = anorthite profile
% x_An = location of the anorthite measurements (in microns )
% C_eq = equilibrium profile
% C_init = initial profile
% C_un = uncertainty in the initial profile
% i_min = location of the core/rim boundary (in pixels )
% element = element diffusing
% m_An = Diffusion coefficient parameter
% c_An = Diffusion coefficient parameter
% act_en = Diffusion coefficient parameter
% Title = title for the graph
%
% Diffusion coefficient is in the form:
% D = 10^( m_An * An + c_An) * \exp( act_en / RT

% adding an extra row rather than overwriting An data
% in making crystal " symmetrical "
i_max = length (x_An )+1;
x_An(i_max) = x_An(i_max -1);
An( i_max) = An(i_max -1);

% Time whole crystal diffuses
t_max2 = delta_t * j_max2 / 31557600;

C_old = C_init ;
C_old(i_max) = C_init (i_max -1);
C_old (1) = C_eq (1);
C_new = C_old;

A = -21600;

% Calculate constants invariant with time , so they are only
% calculated once
delta_x = x_An (2) - x_An (1);
rr = delta_t / delta_x ^2;
delta_An = zeros(i_max ,1);
delta_An2 = zeros(i_max ,1);
for i = 2:1: i_max -1

delta_An (i) = (An(i+1) - An(i));
delta_An2 (i) = An(i+1) - 2*An(i) + An(i -1);

end

% Core
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% Calculate constants invariant with time at rim temperatures
ART = A / (8.3144621* T_rim );
D = 10 .^ (m_An * An + c_An) * ...

exp(- act_en / (8.3144621 * T_rim )) ...
* 10^12;

delta_D = zeros(i_max ,1);
for i = 2:1: i_max -1

delta_D (i) = (D(i+1) - D(i));
end
D_delta_An = D .* delta_An ;
D_delta_An2 = D .* delta_An2 ;
delta_D_delta_An = delta_D .* delta_An ;

for j = 1: j_max2
for i = 2:1: i_max -1

C_new(i) = C_old(i) + rr * (...
D(i) * (C_old(i+1) - 2* C_old(i) + C_old(i -1)) ...
+ delta_D (i) * (C_old(i+1) - C_old(i)) ...
- ART * ( D_delta_An (i) * (C_old(i+1) - C_old(i))...
+ C_old(i) * delta_D_delta_An (i) ...
+ C_old(i) * D_delta_An2 (i)));

end

% symmetrical crystal ( internal boundary condition )
C_new(i_max) = C_new(i_max -1);
C_old = C_new;

end

% remove the extra datapoint added to make the crystal
% symmetrical
C_new(i_max )=[];

end
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Figure F.1: Therasia dacite flow 5 (GS10-17)



357

50 60 70 75

#Mg

55 65

Figure F.2: Therasia dacite flow 8 (GS10-14)
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Figure F.3: Therasia dacite flow 9 (GS10-16)
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Figure F.4 continued: Cape Riva A (GS11-34a)



361

50 60 70 75

#Mg

55 65

Figure F.5: Cape Riva B (S12-06)



362 Appendix F. Orthopyroxene diffusion model results

50 60 70 75

#Mg

55 65

Figure F.6: Cape Riva C (GS11-30b)
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Figure F.7 continued: Cape Riva C (S12-05)
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G.1 Abstract

The formation of caldera-sized reservoirs of crystal-poor silicic magma requires the

generation of large volumes of silicic melt, followed by the segregation of that melt

and its accumulation in the upper crust. The 21.8 ± 0.4 ka Cape Riva eruption of

Santorini discharged >10 km3 of crystal-poor dacitic magma along with �1 km3 of

hybrid andesite, and collapsed a pre-existing lava shield. We have carried out a field,

petrological, chemical and high-resolution 40Ar/39Ar chronological study of a sequence

of lavas discharged prior to the Cape Riva eruption in order to constrain the crustal

residence time of the Cape Riva magma reservoir. The lavas were erupted between

39∼and 25 ka, forming a ∼2 km3 complex of dacitic flows, coulées and domes up to

200m thick (Therasia dome complex). The Therasia dacites show little chemical vari-

ation with time, suggesting derivation from one or more thermally buffered reservoirs.

Minor pyroclastic layers occur intercalated within the lava succession, particularly near

the top. A prominent pumice fall deposit probably correlates with the 26-ka Y-4 ash

layer found in deep-sea sediments SE of Santorini. One of the last Therasia lavas to be

discharged was a hybrid andesite formed by the mixing of dacite and basalt. The Cape

Riva eruption occurred no more than 2,800± 1,400 y after the final Therasia activity.

The Cape Riva dacite is similar in major element composition to the Therasia dacites,

but is poorer in K and most incompatible trace elements (e.g. Rb, Zr, LREE). The

same chemical differences are observed between the Cape Riva and Therasia hybrid

andesites, and between the calculated basaltic mixing endmembers of each series. The

Therasia and Cape Riva dacites are distinct silicic magma batches and are not related

by shallow processes of crystal fractionation or assimilation. The Therasia lavas were
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therefore not simply precursory leaks from the growing Cape Riva magma reservoir.

The change 21.8 ky ago from a magma series richer in incompatible elements to one

poorer in those elements is one step in the well documented decrease with time of in-

compatibles in Santorini magmas over the last 530 ky. The two dacitic magma batches

are interpreted to have been emplaced sequentially into the upper crust beneath the

summit of the volcano, the first (Therasia) then being partially, or wholly, flushed out

by the arrival of the second (Cape Riva). This constrains the crustal residence time

of the Cape Riva reservoir to less than 2,800± 1,400 years, and the associated time-

averaged magma accumulation rate to >0.004 km3 y−1. Rapid ascent and accumulation

of the Cape Riva dacite may have been caused by an increased flux of mantle-derived

basalt into the crust, explaining the occurrence of hybrid andesites (formed by the

mixing of olivine basalt and dacite in approximately equal proportions) in the Cape

Riva and late Therasia products. Pressurization of the upper crustal plumbing system

by sustained, high-flux injection of dacite and basalt may have triggered the transition

from prolonged, largely effusive activity to explosive eruption and caldera collapse.

Keywords: Santorini, magma reservoirs, melt accumulation, residence timescales,

calderas

G.2 Introduction

Caldera-forming ignimbrite eruptions discharge large volumes (1-103 km3) of silicic

magma from shallow reservoirs (Mason et al., 2004; Miller and Wark, 2008; Smith,

1979). The processes that generate such reservoirs, and the timescales on which those

processes operate, are not completely understood (e.g. Bachmann and Bergantz, 2008a;
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Costa, 2008; Gelman et al., 2013). This is particularly true of caldera systems such

as Santorini that erupt crystal-poor silicic magmas (Allan et al., 2013; Bachmann and

Bergantz, 2004; Druitt et al., 2012; Gualda et al., 2012b; Hildreth and Wilson, 2007;

Wilson and Charlier, 2009).

The formation of caldera-sized reservoirs of crystal-poor silicic magma requires the

generation of large volumes of silicic melt, followed by the segregation of that melt

and its accumulation in the upper crust (Bachmann and Bergantz, 2004, 2008a; Lind-

say et al., 2001). Large volumes of silicic melt are generated in crustal hot zones

by fractional crystallization of mantle-derived basalt, partial melting of crustal rocks,

defrosting of incompletely crystallized plutons (Annen et al., 2006; Hildreth, 1981; Hil-

dreth and Moorbath, 1988; Solano et al., 2012). Fractional crystallization is driven by

outgassing and cooling of magma during ascent (Blundy and Cashman, 2008). Partial

melting of crustal rocks and pre-existing plutons is driven by heat advected by mantle-

derived magma and magmatic volatiles (Bachmann and Bergantz, 2006; Hildreth, 1981;

Huber et al., 2011). Silicic melt generation can occur over timescales of 105 to 101 years

(Bachmann and Bergantz, 2006; Brown and Fletcher, 1999; Burgisser and Bergantz,

2011; Charlier et al., 2005; Huber et al., 2011; Klemetti et al., 2011). Magmatic crystal

mushes generated by these processes may remain at depth, or may erupt en masse to

form crystal-rich ignimbrites (the monotonous intermediates of Hildreth, 1981).

The formation of reservoirs of crystal-poor silicic magma requires the separation of

melt from residual mush crystals, and the accumulation of that melt at a particular

crustal level—either in situ within the mush (e.g. Bachmann and Bergantz, 2004), or

at higher levels in the plumbing system (e.g. Allan et al., 2013). The rate at which
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silicic melt can separate from crystals is limited by its high viscosity (Bachmann and

Bergantz, 2008b; McKenzie, 1985). Possible mechanisms include gravitational separa-

tion through hindered settling of individual crystals, or compaction of a porous crystal

network (Bachmann and Bergantz, 2004). Melt migration driven by shear or gas filter

pressing may generate small, local segregations (Brown and Solar, 1998; Sisson and Ba-

con, 1999; Stevenson, 1989) that are subsequently concentrated into large melt lenses.

Runaway reservoir growth requires rates of heat (and hence magma) input high enough

to limit crystallisation and avoid plutonic death (Annen, 2009; Gelman et al., 2013;

Schöpa and Annen, 2013).

Estimates of melt accumulation timescales for crystal-poor silicic magmas vary

widely. Assembly of the rhyolitic magma reservoir that discharged the 600-650 km3

Bishop Tuff has been estimated as ∼105 y, based on zircon ages and on the chemical

similarity between the Bishop magma and earlier rhyolites (Hildreth and Wilson, 2007).

However, element diffusion profiles and melt inclusion faceting in Bishop quartz crystals

yield much shorter timescales (103–102 y; Gualda et al., 2012b; Wark et al., 2007). The

reservoir that fed the 530 km3 Oruanui Ignimbrite at Taupo was assembled over 1600

years (Allan et al., 2013; Wilson and Charlier, 2009), and that of the ∼35 km3 post-

Oruanui ‘Y’ eruption was assembled over <1000 years (Sutton et al., 2000). The

magma reservoir of the 30-60 km3 Minoan eruption at Santorini underwent a spurt of

rapid growth in the centuries preceding venting (Druitt et al., 2012). Ascent of silicic

melt into shallow reservoirs can occur in pulses with durations that are short compared

to the repose period between eruptions (Druitt et al., 2012; Parks et al., 2012).

In this paper we study a sequence of silicic and intermediate lavas at Santorini
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that were discharged prior to a ≥10 km3 caldera-forming eruption of crystal-poor silicic

magma (the 22-ka Cape Riva eruption). The lavas record the development of the crustal

plumbing system over many thousands of years preceding the Cape Riva eruption. We

present field, petrological and chemical data for these lavas, along with new, high-

precision 40Ar/39Ar ages. The results enable us to place constraints on the residence

timescale of the Cape Riva magma reservoir in the upper crust.

G.3 Geological Setting

Santorini Volcano lies on the Hellenic volcanic arc, which stretches between Greece

and Turkey through the Aegean Sea, and owes its origin to the subduction of the

African plate beneath the Eurasian plate (Le Pichon and Angelier, 1979; Nocquet,

2012; Papazachos et al., 2000). Santorini lies on continental crust about 23 km thick

(Karagianni et al., 2005; Tirel et al., 2004). The boundary between the upper crust

and lower crust lies at about 15 km depth (Konstantinou, 2010).

The volcanic history of Santorini has been described by Druitt et al. (1999). Vol-

canism commenced about 650 ka (Figure G.1). From about 360 ka onwards, activity

consisted of multiple large (>1 km3) explosive eruptions alternating with periods of

lava extrusion and minor explosive events. The last major eruption (Minoan eruption)

occurred about 1639–1616 BCE (Manning et al., 2006) and discharged 30-60 km3 of

magma (Pyle, 1990; Sigurdsson et al., 2006). Since the Minoan eruption there have

been at least ten dacitic effusive eruptions, building up the Kameni intra-caldera vol-

cano (Pyle and Elliott, 2006).

Santorini magmas are calc-alkaline to mildly tholeiitic, and range from basalt to
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Figure G.1: Simplified geological map of Santorini, adapted from Druitt et al. (1999).
Inset is a map of the Aegean region, with Santorini marked with a box

rhyodacite in composition (Druitt et al., 1999). The silicic magmas are generally poor

in phenocrysts (<5–20 vol% on a vesicle-free basis). Phase-equilibria experiments (An-

dújar et al., 2010) have shown that mantle-derived basalt ascending beneath Santorini

stagnates and fractionates to basaltic andesite at about 4 kb (∼15 km, assuming a mean

upper crustal density of 2640 kgm−3; Konstantinou, 2010), near the boundary between

the upper and lower crust. The silicic magmas discharged during large eruptions are

stored in the upper crust at 2± 0.5 kb (∼8 km) immediately prior to eruption (Cadoux

et al., 2013).

Our study focuses on the products of the volcano from the period between 70 and

22 ka (Figure G.2). About 70 ky ago a caldera formed in the northern half of the

volcanic field, probably as a result of one or more explosive eruptions (Druitt et al.,
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Figure G.2: Morphological evolution of Santorini between 70 ka and 21 ka, after Druitt
et al. (1999). The dashed line is the present-day outline of the islands. Contours are
at 100m intervals (a) The volcano after collapse of the Skaros caldera, which happened
some time before the first Skaros lava was erupted at 69± 7 ka (b) The maximum extent
of the Skaros shield, which culminated with the 54±3 ka Upper Scoria 2 eruption (c) The
maximum extent of Therasia dome complex at ∼25 ka (d) The island shortly after the
∼22 ka Cape Riva eruption

1999). Eruption of basaltic to andesitic lavas then built up a lava shield within this

caldera (Skaros lava shield; 70–54 ka). The shield grew to over 350m above present-day

sea level, filling and partly overspilling the caldera (Druitt et al., 1999; Huijsmans, 1985;

Huijsmans and Barton, 1989). The volume of the shield has been estimated at about

12 km3 from reconstructions based on lavas exposed in the caldera cliffs (Druitt et al.,

1999). Construction of the shield culminated 54 ky ago with an explosive eruption

called Upper Scoria 2, which generated a rhyodacitic Plinian fall deposit overlain by

voluminous andesitic scoria flows (Mellors and Sparks, 1991). Following Upper Scoria 2,

about 2 km3 of silicic lavas were extruded across the summit and western flank of Skaros

to form the Therasia dome complex.

At ∼22 ka, a large silicic explosive eruption (the Cape Riva eruption) collapsed the

Skaros-Therasia edifice (Druitt and Francaviglia, 1992). The eruption had an initial

Plinian phase from a vent located somewhere in the northern part of the volcanic

field. This was followed by the discharge of pyroclastic flows that laid down welded
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ignimbrite, non-welded ignimbrite and lithic-rich lag deposits up to 25m thick all over

the islands (Druitt and Sparks, 1982). The volume of magma discharged during the

Cape Riva eruption is poorly constrained, since most of the ignimbrite lies under the

sea. However distal tephra from the eruption, recognised as the Y-2 marine ash bed,

is found over a very wide area of the eastern Mediterranean and as far north as the

Island of Lesvos and the Sea of Marmara (Asku et al., 2008; Federman and Carey,

1980; Keller et al., 1978; Margari et al., 2007; Thunell et al., 1979; Wulf et al., 2002).

The dispersal area and thickness of the Y-2 ash are similar to those of the Z-2 ash

from the Minoan eruption, suggesting that the Cape Riva and Minoan eruptions were

of comparable magnitude (Asku et al., 2008; Narcisi and Vezzoli, 1999). Graphical

integration of Y-2 ash thicknesses recorded by the above authors yields a minimum

volume of ∼10 km3. Since distal ashes commonly have comparable volumes to the

parent ignimbrite (e.g. Pyle, 1990), we very approximately infer a volume of >20 km3

for the Cape Riva products, equivalent to >10 km3 of magma.

Remnants of the Skaros and Therasia lavas are widely exposed in the northern half

of the present day complex. The Skaros lavas are thickest (up to 300m) on Thera,

and the Therasia lavas are thickest (up to 200m) on Therasia. The products of the

Therasia and Cape Riva eruptions are the focus of the present paper.

G.4 Methodology

Lavas of the Therasia dome complex cropping out in the caldera cliffs were photo-

graphed from a boat, and the photos were merged using computer software and inter-

preted to produce synthetic sections detailing the relationships and lateral extents of
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individual lavas. Correlations were checked by onland observations, and stratigraphic

relationships were mapped out. Pumice layers and palaeosols between the lavas were

also mapped. Lavas from four key stratigraphic levels were dated using the 40Ar/39Ar

technique. The groundmass of each sample was separated, hand-picked, and cleaned in

an ultrasonic bath of dilute nitric acid prior to irradiation in the Cd-lined fast neutron

slot b1 of the Osiris reactor (CEA, Saclay) with sanidine ACR (1.206±0.002Ma, Renne

et al., 2011, 2010). Upon receipt from the nuclear reactor, the samples were analysed

by multiple laser fusion using a high-sensitivitymm5400 mass spectrometer operated in

pulse-counting mode following the experimental and correction procedures of Scaillet

et al. (2011, 2008). More than 25 individual ages were extracted from each sample via

a two-step fusion of ∼10mg of groundmass replicates (see procedural details in Scaillet

et al., 2011).

Representative samples of lava and pumice from the Therasia complex, and pumice

and scoria from the Cape Riva deposits, were collected for chemical analysis. All

samples were chosen to be as fresh and glassy as possible. Groundmass separates of

selected lavas were obtained in order to analyse the compositions of the melt phases

of the magmas. This was done using a magnetic separator, and interstitial glasses

of pumice samples were concentrated by flotation in water. Remaining crystals were

then removed by hand picking under an optical microscope. Major elements were

analysed using inductively coupled plasma atomic emission spectroscopy (ICP AES)

at the Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand.

Measurements were calibrated using three standards: a blank (LiBO2), basalt (BR)

and granite (GH). The DR-N and BHVO-2 standards were then passed as unknowns.
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Trace elements were analysed using inductively coupled plasma mass spectroscopy

(ICP MS) at the Institut des Sciences de la Terre, Université de Grenoble. The ICP

MS analyses were calibrated using the BR standard, and the BVHO-2 and AGV-1

standards were passed as unknowns. Some previous Cape Riva samples of Druitt

et al. (1999) were re-analysed for comparison with the data of those authors. These

comparisons showed good agreement between the two datasets for the elements used

in the present paper.

Phenocryst contents were calculated by mass balance from Zr concentrations in

whole rock and groundmass analyses of individual samples, by assuming that the crys-

tals contain no Zr. Zirconium behaves incompatibly in all magmas younger than 530 ka

at Santorini (Druitt et al., 1999; Huijsmans, 1985), and zircon has never been observed

as a mineral phase in those magmas. Proportions of the different phenocryst phases

were estimated by image analysis of thin sections using the ImageJ software pack-

age (Rasband, 2012). Mineral compositions were analysed using the Cameca SX 100

electron microprobe at the Laboratoire Magmas et Volcans, Université Blaise Pascal,

Clermont-Ferrand, using a beam current of 15 nA. Glasses were analysed with a beam

current of 4 nA and a defocussed beam (10-15µm) in order to limit Na loss. Fe–Ti oxide

compositions were analysed either in touching pairs or in pairs (that would have been

in contact with the same melt) adhering to the outside of the same pyroxene crystal.

Magmatic temperatures and oxygen fugacities were calculated with the ILMAT soft-

ware package (Lepage, 2003) using the formulation of Andersen and Lindsley (1985)

and Stormer (1983). This formulation has been found to give good agreement with data

from phase-equilibria experiments within the 850-950 °C temperature range (Blundy
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and Cashman, 2008; Cottrell et al., 1999). Values we obtained using the formulation

of Ghiorso and Evans (2008) are 10–20 °C and 0.2–0.4 fO2 log units higher than those

obtained using Andersen and Lindsley (1985), for the temperature range in question.

G.5 Results

G.5.1 Field and stratigraphic relationships

Photographs and sketches of the Therasia cliffs are shown in Figure G.3; schematic

diagrams summarising the architecture of the lavas are shown in Figure G.4 (with

individual lavas numbered for reference). Lavas of the Therasia dome complex overlie

Upper Scoria 2, separated by a palaeosol. They make up much of the present-day cliffs

of Therasia (flows 1–24), and one lava crops out at the top of the caldera wall north of

Fira town (flow 25). Thin lava flows occupying the same stratigraphic position (between

Upper Scoria and Cape Riva) occur beneath the town of Oia (flow 26; Andesite of Oia

of Druitt et al., 1999).

The lava succession on Therasia consists of many individual lava flows, coulées and

domes (termed flows for short). Individual flows range in thickness up to 60m (Fig-

ure G.5a); thin flows tend to be dark grey and glassy, whereas thicker ones are pale grey

and de-vitrified. Many exhibit flow banding that is most evident in the thicker, de-

vitrified flows. The greatest accumulated thicknesses occur near Cape Tripiti (∼150m)

and Mount Viglos (∼200m), where, at each location, nine flows are stacked. Correl-

ations of individual flows between the Tripiti and Viglos sections is difficult, as only

two flows (3 and 4) are continuous between them. Flows 1 and 24 are compositionally



380 Appendix G. Evolution of the crustal magma plumbing system

CR Therasia lava

US2

Minoan

CTP

a

b
Therasia

Cape Tripiti

Manolas

Mt Viglos

d

c

a

b

Skaros

MP

Simandiri

d

Mt Viglos

Manolas

c

Mt Viglos

Cape Tripiti

Dyke

Cape Tripiti

Dyke

CTP

Figure G.3: Photos of the cliffs of Therasia, and the sketches drawn from them. Inset
is a map of Therasia, showing where the photos of the cliffs were taken from. CR = Cape
Riva, CTP = Cape Tripiti Pumice, US2 = Upper Scoria 2, MP = Middle Pumice
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Figure G.4: Schematic representation of the different lava flows from the Therasia dome
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and analysed are coloured, while unsampled flows are in grey. Where a correlation of two
flows is made based on their chemistry, they are drawn in the same colour. Flows that
have been 40Ar/39Ar dated are labelled with arrows; 40Ar/39Ar ages are weighted mean
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very similar, and are probably the same flow. This is also true of flows 11 and 22.

Most of the lava flows on Therasia are dacitic to rhyodacitic, with two exceptions.

First, the basal flows 1 and 24 are andesitic, and we refer to them jointly as the

lower Therasia andesite. Second, the topmost flow on Mount Viglos (flow 22) is also

andesitic, and we refer to this (and the compositionally similar flow 11) as the upper

Therasia andesite. Enclaves of quenched basaltic magma with crenulated margins

occur in some of the lowest lavas (flows 1 and 3) and towards the top of the succession

(flows 22 and 25); rare gabbroic enclaves also occur. The widespread distribution of the

Therasia lavas show that they were fed from vents extending from the summit to the

western flank of the Skaros shield (Figure G.2). The feeder dyke of flow 3 is preserved

at Cape Tripiti (Figure G.3b,c). The dyke is oriented NE–SW, parallel to the main
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Figure G.5: Photos of the Therasia dome complex. (a) A thick dacitic dome above the
lower Therasia andesite (b) The upper Therasia andesite on top of Mt Viglos (c) The
Cape Tripiti pumice fall and an overlying phreatomagmatic tuff above lava flow 3 on the
south coast of Therasia (d) The thick, orange soil between Upper Scoria 2 and the lower
Therasia andesite

dyke trend in northern Thera and the alignment of the recent vents on the Kameni

Islands (Druitt et al., 1999; Heiken and McCoy, 1984).

At least four dacitic pumice fall units and a phreatomagmatic tuff occur intercalated

within the Therasia succession (Figure G.5c). The pyroclastic units are concentrated

towards the top of the succession (younger than flow 7 at Tripti, and younger than

flow 20 at Viglos), showing an increasing tendency for explosive activity with time

during eruption of the Therasia dome complex. A single pumice fall deposit crops

out between flows 24 and 27 below Manolas. The most prominent fall deposit is up
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to a metre thick and widespread in the cliffs of southern Therasia (Figure G.5c). It

occurs stratigraphically between lava flows 7 and 8, and is the product of a Plinian not

recognized in previous studies. We name this unit the Cape Tripiti pumice fall deposit.

Palaeosols occur at several levels in the Therasia succession. A thick one separates

the entire Therasia succession from Upper Scoria 2 (Figure G.5d). Another separates

the lower Therasia andesite from overlying dacitic flows, showing that eruption of the

lower Therasia andesite was both preceded, and followed, by significant time breaks.

Local palaeosols also occur between some of the pyroclastic layers.

The andesite of Oia is both underlain and overlain by thick palaeosols. Long periods

therefore separated its eruption from both the preceding Upper Scoria 2 eruption and

the subsequent Cape Riva eruption. Four thin pumice fall layers (5–25 cm thick) occur

within the palaeosol overlying the lava (sequence M11 of Vespa et al., 2006); they may

correlate with the pumice layers intercalated within the lavas on Therasia, but this has

not been checked chemically.

Products of the Cape Riva eruption are observed to overlie all lavas of the Ther-

asia dome complex. They have been described in detail by (Druitt and Sparks, 1982),

(Druitt, 1985), and (Druitt et al., 1999). The products of the eruption are predom-

inantly dacitic, but minor amounts of andesitic scoria were erupted during the initial

Plinian phase.
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Table G.1: New 40Ar/39Ar ages for the Therasia dacites

Sample Unit Gauss-plot age (ka) Weighted mean age (ka)
SAN 09-43 Flow 25 25.3± 1.4 24.6± 1.3
SAN 10-13 Flow 21 33.1± 1.1 33.2± 1.1
SAN 10-12 Flow 3 40.1± 2.2 39.4± 2.2
SAN 10-11 Flow 1 49.4± 2.5 48.2± 2.4

G.5.2 Age constraints

Radiometric dating of the Therasia lavas

The ages of flows 1, 3, 21 and 25 are reported as probability density plots in Figure G.6,

along with the corresponding Gauss plots that reflect the statistical distribution of

individual ages for each sample. Complete 40Ar/39Ar analytical data are reported

in Supplementary Table S1 and are summarized in Table G.1, along with 2σ errors.

All four samples exhibit relatively well behaved 40Ar/39Ar systematics in the form of

unimodal density plots, with no (or only slightly) pronounced tails on either side of

the mode. The homogeneity of the samples is reflected by the linear arrays formed

by individual ages on the Gauss plots, indicating that they follow the distribution

expected from the propagated Gaussian experimental errors. One exception is flow 3,

which exhibits an age spread in excess of the variance expected from the analytical

errors (i.e. excess-error scatter). This sample is, along with flow 1, the least glassy of

the four, and both are characterized by slightly higher errors and some excess-error

scatter. This suggests that flows 1 and 3 may have been affected by post-cooling

alteration close to sea level near the base of the sequence, resulting in higher apparent

ages (presumably due to K loss). In contrast, flows 21 and 25 are very glassy and

pristine, with unusually tight error bars; especially flow 21.
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Figure G.6: Probability density plots (below) and Gauss plots (above) of 40Ar/39Ar
data obtained on four lava flows dated in the Therasia sequence. Ages reported above
each plot are ±2σ and represent inverse variance weighted mean ages (density plots) or
best-fit apparent ages through the linear array (Gauss-plot). Empty symbols on Gauss-
plots: data excluded from the fit. Red curve on density plots: density distribution with
outlier removed; blue curve: density distribution of complete dataset. N: number of data
points included in the fit over total number of runs for each sample.

To account for secondary alteration effects, the data from flows 1 and 3 were stat-

istically screened by computing a weighted mean age using a MSWD cut-off value.

This includes only the youngest sub-population conforming to a Gaussian distribution

within each sample (see procedure in Gansecki et al., 1996; Scaillet et al., 2011). In

every instance, the weighted mean age agrees with the age derived from the best-fit

line through the corresponding Gauss-plot array (Figure G.6). In what follows we cite

the weighted mean ages.

The ages all are consistent with observed field stratigraphic constraints, as sum-
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content of the eruptive products is shown on the right. Black symbols are whole rock
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marized in Figure G.7. The age of the basal flow (flow 1; 48.2 ± 2.4 ka) is consistent

with the presence of a palaeosol separating it from the underlying Upper Scoria 2 (pre-

viously dated by 40Ar/39Ar at 54 ± 3 ka by Druitt et al. (1999), and with another

palaeosol separating it from the overlying flow 3 (39.4± 2.2 ka). Flow 21 yields an age

of 33.2±1.1 ka, and flow 25 (at Fira) gives an age of 24.6±1.3 ka. Taken as a whole, our

40Ar/39Ar data between the base (48.2 ka) and the top (24.6 ka) of the lava sequence

define a ∼24 ky duration for the construction of the Therasia dome complex.
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Correlation of the Cape Tripiti Pumice with the Y-4 deep-sea ash layer

The Cape Tripiti pumice is the most prominent pyroclastic layer in the Therasia se-

quence, and we have explored the possibility that, like most Plinian eruptions of San-

torini, (Asku et al., 2008; Federman and Carey, 1980; Keller et al., 1978; Schwarz, 2000;

Vinci, 1985; Wulf et al., 2002), the Cape Tripiti eruption left a recognisable ash layer

in deep-sea sediments of the Aegean area. Previous studies have recognized a 2–7 cm-

thick ash layer (Y-4 ash) preserved to the SE of Santorini; this ash lies stratigraphically

beneath the Cape Riva Y-2 ash layer, and has an age of 25.8 ka estimated by inter-

polation in the sedimentary sequence of one core (Schwarz, 2000). The uncertainty on

this age could be ±2 ka (J Keller, pers. comm). The mineralogy of the Y-4 ash (plag,

opx, cpx) pinpoints its source to Santorini (Vinci, 1985). Schwarz (2000) explored the

possibility that the Y-4 correlates with the rhyodacitic Plinian phase of Upper Scoria 2;

however, the 40Ar/39Ar age data described above rule out this correlation, and show

that the Y-4 lies chronologically in the period of the Therasia dome complex. We have

analysed the interstitial glass of three pumice lumps from the Cape Tripiti deposit, and

find excellent agreement with glass composition of the Y-4 (Figure G.8, Supplementary

Table S2). A 26 ka age for the Cape Tripiti is consistent with all other age constraints

(Figure G.7).

Synthesis of published dates for the Cape Riva eruption

The Cape Riva eruption has been dated previously by radiocarbon on charcoal from

beneath the ignimbrite and via d18O wiggle matching in deep-sea sequences hosting

the distal equivalent Y-2 tephra layer (data and sources in Table G.2). Calibration of
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the raw radiocarbon data against the curve of Fairbanks et al. (2005) returns a mean

age of 21.8± 0.4 ka for Cape Riva (Table G.2). This yields an interval of 2,800± 1,400

(2σ) y between the youngest dated Therasia lava (flow 25) and the Cape Riva eruption.

This is a maximum estimate for the interval separating the Cape Riva eruption from

the Therasia lavas, since some of the undated flows on Therasia may be younger than

flow 25, or a younger flow could have been erupted and not preserved.

G.5.3 Mineral chemistry and assemblages

In this section we present the petrology and chemistry of Therasia lavas and pumices

younger than ∼39 ka (i.e. flow 3), as well as the products of the Cape Riva eruption

(Fig. 9). We exclude the lower Therasia andesite, which is significantly older, as well

as the andesite of Oia. In so doing we focus on the effusive leaks of dacite during the

build-up to the Cape Riva eruption.
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Figure G.9: Mineral compositions from the different rock units. Filled symbols are
crystal cores or undifferentiated measurements, open symbols are crystal rims. Plagio-
clase populations are coloured according to their origin: orange symbols are groundmass
crystals, blue symbols are populations that originated in a silicic magma and green sym-
bols are populations that originated in a mafic magma. Some Cape Riva data taken from
Druitt (1983). The fields of pyroxene compositions in the dacites (a, d) are shown on the
other figures, for comparison.

Therasia products

Therasia dacites. The Therasia dacites have whole rock SiO2 contents of 64.6–68.7wt%

and MgO contents of 0.7–1.5wt%, with groundmass (i.e. melt) SiO2 contents of 64.7-

69.1wt%. No systematic evolution of either whole rock or groundmass composition

is observed with height in the lava succession (Figure G.7). The dacites contain

1-17wt% of phenocrysts (with a smallest dimension >0.5mm) of plagioclase (75-

85 vol%), 2 pyroxenes (10-20%, with opx > cpx), Fe–Ti oxides (5–8%) and trace

amounts of olivine. Apatite occurs as inclusions in orthopyroxene crystals. The glassy

groundmass contains microlites of feldspar and Fe–Ti oxides. Plagioclase phenocrysts
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are normally zoned, with cores of An38−89 and rims of An39−51, and commonly con-

tain multiple internal dissolution surfaces and sawtooth zoning. The rims are eu-

hedral, and are compositionally similar to plagioclase microlites in the groundmass

(An30−51). Orthopyroxene phenocrysts are euhedral and unzoned, and have compos-

itions of Wo3−4En54−60Fs36−42. Clinopyroxenes are also euhedral and unzoned, and

their compositions are Wo39−42En36−43Fs15−22. Some phenocrysts occur as aggregates

of multiple euhedral crystals with brown interstitial glass. Xenocrysts of calcic plagio-

clase (An60−89) occur frequently in the dacites, along with more calcic clinopyroxenes

(Wo47−50En30−44Fs8−20). There are also fragments of sub-solidus olivine-bearing gab-

bro, with some olivines that have broken down to form pyroxene-magnetite sym-

plectites. Fe–Ti oxides from three different dacitic pumice fall deposits within the

Therasia sequence record magmatic temperatures of 875±5 °C at an fO2 of 13.4±0.1,

896± 12 °C at an fO2 of 12.7± 0.3, and 926± 9 °C at an fO2 of 11.4± 0.2 (2σ, where

σ is the standard error of the mean, Supplementary Table S3).

The similarity between phenocryst rims and groundmass microlite compositions

suggests an equilibrium phenocryst rim assemblage in these lavas. Sawtooth zoning

of plagioclase is interpreted as recording repeated recharge of the magmas by hotter

magma during phenocryst growth. Glass-bearing phenocryst clusters were probably

derived from crystal mush of the reservoir margins.

Therasia mafic enclaves. Quenched basaltic (49.6–51.8wt% SiO2; 5.4–8.6wt%

MgO) enclaves 1–10 cm in diameter are found in flows 3 and 11, where they make

up <1% of the erupted volume. They contain phenocrysts of plagioclase (∼55 vol%),

pyroxenes (∼35 vol%, with cpx� opx) and olivine (∼10 vol%) set in a glassy, diktytax-
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itic groundmass. Two populations of plagioclase phenocrysts with different core com-

positions, but similar rim compositions, are observed: (1) normally zoned crystals with

cores of An83−91 and rims of An64−71; (2) reversely zoned crystals with cores of An51−61,

separated by a sieve-textured zone from rims normally zoned from An82−86 to An64−71.

Plagioclase in the groundmass is An32−42. Olivines are normally zoned from cores of

Fo77−82 to rims of Fo53−60. Two clinopyroxene populations are found, although their

textural relationships with the plagioclase populations are ambiguous. Both cpx popu-

lations are euhedral and unzoned, with compositions of (1) Wo43−46En42−46Fs10−12 and

(2) Wo41−44En39−43Fs15−20. Rare orthopyroxenes with compositions of Wo3En67Fs30

also occur.

The occurrence of two plagioclase populations with different core compositions, but

similar, intermediate rim compositions is indicative of magma mixing. Plagioclases of

population 1 are interpreted as derived from a basaltic melt, and those of population 2

from a more evolved melt. The cores of olivine crystals (molar Mg/Fe = 3.37–4.64)

are in equilibrium with the whole rock (i.e. basaltic) composition (Mg/Fe = 1.20),

assuming a crystal-melt partition coefficient of between 0.26 and 0.36 (Roeder and

Emslie, 1970). The composition of population-2 clinopyroxenes is similar to that of

the clinopyroxene phenocrysts in the dacite. The enclaves are interpreted as having

formed by the inmixing of a small proportion of more evolved magma (possibly dacitic,

containing population-2 plagioclase cores + population-2 cpx) into a basalt (containing

population-1 plagioclase cores + olivine + population-1 cpx; Figure G.10). Mixing

occurred long enough prior to eruption for plagioclase from the evolved component to

partially melt (generating sieve texture), followed by overgrowth of equilibrium rim
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Figure G.10: Summary of plagioclase populations in the Cape Riva and Therasia rocks.
The numbers are values of molar % anorthite content of plagioclase

compositions on plagioclases from both populations.

Upper Therasia andesite. The upper Therasia andesite (60.5wt% SiO2, 2.6wt%

MgO) contains 26wt% of macroscopic crystals: plagioclase (75 vol%), pyroxenes (20%,

with opx≈ cpx), Fe–Ti oxides (5%) and trace amounts of olivine set in a glassy, 64wt%

SiO2 groundmass containing microlites of plagioclase and magnetite. Three distinct

populations of plagioclase are observed: (1) normally zoned crystals with cores of

An83−89, and euhedral rims of An57−61; (2) crystals with cores of An53−60 separated

by a sieve-textured zone from rims normally zoned from An75−87 to An55−70; (3) nor-

mally zoned crystals with cores as calcic as An76 and rims of An36−55. Rare oliv-

ines have cores of Fo80−83, and rims of Fo67−69. Orthopyroxenes have compositions of
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Wo3En57−59Fs38−39, and clinopyroxenes have compositions of Wo39−42En40−43Fs15−20.

Plagioclase populations 1 and 2 texturally and compositionally resemble plagioclase

populations 1 and 2 (respectively) in the basaltic enclaves; population 3 resembles

plagioclase phenocrysts in the dacites. The olivine rims have a molar Mg/Fe ratio of

1.99–2.22, which is in, or close to, equilibrium with the groundmass (Mg/Fe = 0.76),

assuming a partition coefficient of between 0.26 and 0.36 (Roeder and Emslie, 1970);

the cores have an Mg/Fe ratio of 4.11–4.81 and grew in equilibrium with a basaltic

melt. The two pyroxenes are indistinguishable from the same phases in the dacites.

The upper Therasia andesite is interpreted as a hybrid magma formed by the mixing of

the basalt (containing plagioclase of populations 1 and 2 + olivine) represented by the

enclaves, with typical Therasia dacite (containing population-3 plagioclase + opx +

cpx). Mixing occurred long enough prior to eruption to permit physical homogenization

of the resulting hybrid melt, but not long enough for crystals to grow rims in equilibrium

with that melt, or for those from the dacite to be resorbed.

Cape Riva products

Cape Riva Dacite. Dacitic pumices of the Cape Riva eruption have whole rock composi-

tions of 64–67wt% SiO2 and 1.0–1.9wt% MgO, and interstitial glasses with 70–72wt%

SiO2. Phenocryst phases and proportions are the same as in the Therasia dacites,

with total contents ranging from 15 to 20wt%. Plagioclase phenocrysts are euhedral,

with rims of An31−65, and cores as calcic as An70. As in the Therasia dacites, plagio-

clase phenocrysts in the Cape Riva dacite contain complex dissolution surfaces and

saw tooth zoning. Rare xenocrysts of An70− 96 also occur. Orthopyroxene pheno-

crysts have compositions of Wo3En52−68Fs45−29, and clinopyroxenes from Wo44En41Fs15
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to Wo40En36Fs24. Touching Fe–Ti oxide pairs give temperatures of 879±15 °C and fO2

of −12.9± 0.4 (Cadoux et al., 2013).

Cape Riva mafic enclaves. Millimetre-sized quenched blebs of basaltic magma occur

dispersed (�1%) through the Cape Riva dacite, and in banded pumices containing the

dacite and andesite mingled together. They contain An90−96 plagioclase, Fo72−84 oliv-

ine, Wo41−44En36−41Fs15−23 cpx and rare Wo3En68Fs29 opx. The enclaves have micro-

crenulated surface textures, and many have a single crystal or xenocrystic fragment at

their centres. They are interpreted as small fragments of chilled basaltic magma.

Cape Riva andesite. The Cape Riva andesitic scoria has 60–62wt% SiO2 and

3.2–2.5wt% MgO; it contains ∼12wt% macroscopic crystals of plagioclase, olivine,

clinopyroxene and magnetite set in brown dacitic glass with 63.5wt% SiO2. The pure

andesitic component (free of any in-mingled streaks of dacite) contains two popula-

tions of plagioclase: (1) a calcic population of An70−96, with a discrete population of

euhedral, unzoned grains of An90−96, and (2) a less abundant population with cores

up to An52 and rims of An30−40. Olivines are compositionally uniform (Fo84). Augites

occur sparsely as microphenocrysts of Wo40−41En41−43Fs19. No orthopyroxene has been

observed.

The olivines and population-1 plagioclases in the andesite resemble phenocrysts

present in the basaltic enclaves, whereas population-2 plagioclase resembles pheno-

crysts in the dacites. Genesis of the Cape Riva andesite is inferred to have involved

the mixing of basaltic and dacitic magmas. Eruption occurred long after mixing for

the hybrid glass to become homogeneous at the scale of the electron beam (∼10 µm).
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G.5.4 Whole rock chemistry and mixing systematics

Representative samples of each unit are shown in Table G.3, and the complete dataset

is presented in Supplementary Table S4. We have used a series of variation diagrams

showing the whole rock compositions of the Therasia and Cape Riva magmas, plus

those of the lavas of the Skaros shield (from Huijsmans, 1985) to gain insight into the

petrogenesis of the different magmas (Figs 11 and 12). Typical fractionation trends for

Santorini magmas are also shown (Druitt et al., 1999; Huijsmans, 1985; Mann, 1983).

Figure G.11 shows the variations of five key major oxides (CaO, MgO, FeO, TiO2,

P2O5) and two strongly compatible trace elements (Cr and Ni). On the plots of CaO

and MgO (also Na2O, Al2O3, V and Sc) on which typical fractionation trends are weakly

curved, all the Therasia and Cape Riva magmas fall on, or close to, the fractionation

trend. However, on the plots of FeO, TiO2, P2O5, Cr and Ni, on which the fractionation

trends are strongly curved, the Cape Riva hybrid andesite falls systematically off the

fractionation trend. This is what we would expect to see if it was generated by the

mixing of mafic and silicic end-members. The upper Therasia hybrid andesite also falls

off the fractionation trend on plots of FeO and TiO2, (it does not on the other plots

because mixing occurred along the fractionation trend, not across it).

Mixing models using the ‘PetroGraph’ software (Petrelli et al., 2005) successfully

reproduce the compositions of the upper Therasia and Cape Riva hybrid andesites

(Table G.5). In the case of the upper Therasia andesite, low Cr and Ni require the

mafic end-member to also have low Cr and Ni. The relatively high P2O5, close to

the fractionation trend, requires the silicic end-member to have a high P2O5 content,

limiting it to a silica content of 64–67wt%. The upper Therasia andesite can be
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Table G.3: Representative whole rock and groundmass analyses of the
Therasia and Cape Riva products

Therasia Upper
mafic Therasia Therasia Cape Riva Cape Riva
enclave andesite dacite andesite dacite

Sample GS10-43 GS10-22 GS10-17 S09-41 S09-40
Unit Flow 22 Flow 22 Flow 5 Cape Riva A Cape Riva A

Major elements (ICP-AES, wt% dry)
SiO2 51.87 60.26 66.00 60.19 65.84
Al2O3 19.07 17.16 15.38 16.43 15.40
TiO2 0.89 0.86 0.75 0.88 0.76
FeOT

1 8.08 6.05 4.66 6.58 4.88
MgO 5.44 2.66 1.08 3.17 1.16
CaO 10.16 5.98 3.15 6.20 3.28
Na2O 3.30 4.52 5.48 4.63 5.84
K2O 0.90 2.18 3.19 1.56 2.45
MnO 0.16 0.14 0.13 0.16 0.16
P2O5 0.14 0.19 0.18 0.19 0.22
Trace elements (ICP-MS, ppm)
Li 16.2 18.1 25.5 16.4 17.4
Sc 25.9 17.4 13.9 23.4 13.8
V 193.0 109.0 30.1 139.0 30.2
Cr 31.30 9.52 1.17 27.10 0.60
Ni 15.80 5.65 0.86 14.20 2.57
Rb 25.8 68.1 104.0 50.0 71.7
Sr 323 231 133 185 127
Y 23.8 37.9 50.8 38.5 45.9
Zr 108 200 321 175 250
Nb 4.71 9.47 12.90 7.12 9.44
Ba 251 391 513 297 375
La 11.9 23.5 32.2 19.0 23.7
Ce 26.9 49.5 66.5 40.7 50.5
Pr 3.37 5.93 7.70 4.98 6.09
Nd 14.2 23.4 30.1 20.4 24.6
Sm 3.43 5.40 6.91 5.14 5.77
Eu 0.97 1.29 1.43 1.29 1.34
Gd 3.67 5.57 7.14 5.56 6.44
Tb 0.62 0.92 1.20 0.95 1.07
Dy 3.92 5.96 7.94 6.16 7.06
Ho 0.84 1.27 1.68 1.33 1.54
Er 2.53 3.89 5.20 4.11 4.77
Yb 2.42 3.94 5.30 4.08 4.92
Lu 0.37 0.59 0.81 0.62 0.75
Hf 2.78 5.27 7.51 4.69 6.22
Ta 0.29 0.63 0.92 0.50 0.64
1 FeOT is the total FeO and Fe2O3 content calculated as FeO
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Table G.4 continued: Representative whole rock and ground-
mass analyses of the Therasia and Cape Riva products

Upper
Therasia Therasia Cape Riva Cape Riva
andesite dacite andesite dacite

Sample GS10-22 GS10-17 S09-41 S09-40
Unit Flow 22 Flow 5 Cape Riva A Cape Riva A

Major elements (ICP-AES, wt% dry)
SiO2 63.67 67.99 61.53 69.88
Al2O3 15.44 14.70 16.98 15.05
TiO2 0.79 0.63 0.74 0.48
FeOT

1 5.60 4.03 5.96 3.31
MgO 2.39 0.85 2.62 0.53
CaO 4.62 2.34 5.86 2.14
Na2O 4.55 5.91 4.92 5.86
K2O 2.60 3.25 1.82 2.95
MnO 0.14 0.12 0.15 0.12
P2O5 0.20 0.19 0.17 0.16
Trace elements (ICP-MS, ppm)
Li 20.3 26.9 17.7 20.4
Sc 18.5 14.2 24.6 14.8
V 80.8 14.5 126.0 8.3
Cr 8.41 0.76 21.20 4.33
Ni 4.62 0.75 14.60 5.48
Rb 89.0 105.0 60.2 101.0
Sr 176 108 197 105
Y 44.9 53.6 44.2 61.1
Zr 271 334 214 341
Nb 11.40 13.30 7.58 11.60
Ba 455 542 323 460
La 27.9 33.9 20.5 28.9
Ce 63.2 70.2 43.6 61.6
Pr 7.07 8.22 5.41 7.40
Nd 27.9 31.9 21.6 29.5
Sm 6.31 7.16 5.28 7.09
Eu 1.20 1.33 1.27 1.28
Gd 6.40 7.35 5.68 7.50
Tb 1.09 1.27 0.97 1.29
Dy 7.12 8.43 6.58 8.58
Ho 1.51 1.80 1.41 1.87
Er 4.64 5.53 4.32 5.81
Yb 4.69 5.74 4.37 6.09
Lu 0.72 0.87 0.66 0.94
Hf 6.73 8.38 5.14 8.07
Ta 0.81 0.98 0.52 0.82
1 FeOT is the total FeO and Fe2O3 content calculated as FeO
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successfully reproduced by mixing ∼60wt% of a typical Therasia dacite with ∼40wt%

of mafic magma with the same composition as a basaltic enclave (GS10-43) collected

from the same flow (sum of the squares of the residuals of 0.16). The Cape Riva

andesite has higher Cr and Ni than the upper Therasia andesite, requiring that the

mafic end-member also has higher contents of these elements. The composition of the

Cape Riva andesite can be modelled by mixing ∼60wt% of Cape Riva dacite with

∼40wt% of an average Skaros basalt (sum of the squares of the residuals of 0.14).

However, the calculated Ni content is higher than that measured in the Cape Riva

andesite, suggesting that the mafic endmember had lower Ni than the average Skaros

basalt.

Despite their broadly similar compositions in terms of silica content and many other

major and trace elements, most of the Therasia dacites are enriched in incompatible

elements such as K, Rb and Zr (also Nb, Ta, Th, Hf and LREE) compared to the

Cape Riva dacite (Figure G.12). LREE are also more enriched in the Therasia dacites

relative to the HREE. For example, the Therasia dacites have an average La/Yb ratio

of 5.91± 0.16 (2σ), while the Cape Riva dacite has a ratio of 4.85± 0.04. Amongst the

HFSE, Nb and Ta are more enriched than Zr and Hf. The 23 analysed samples of Cape

Riva pumice form a tight linear cluster on Figure G.12, showing that the magma was

well mixed. All of the 11 analysed Therasia lavas younger than ∼39 ka, and most of

the intercalated pumice horizons, similarly form a tight linear cluster (at higher incom-

patible contents than the Cape Riva, for a given SiO2 content). However, some of the

Therasia pumices overlap with the Cape Riva field for some elements. Most prominent

of these is the Cape Tripiti pumice (Fig. 5c), which lies in, or close to, the Cape Riva
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field for most incompatible elements except K, suggesting that the magma that fed the

Cape Tripiti eruption had some chemical characteristics intermediate between the two

groups of dacite. The differences between the Therasia and Cape Riva dacites are also

seen between the corresponding hybrid andesites of these two series. Despite having a

similar SiO2 content, the upper Therasia hybrid andesite is enriched in incompatible

elements compared to the Cape Riva hybrid andesite (e.g. 2.1wt% K2O compared to

1.7wt%, respectively). Like the Therasia dacites, the Therasia andesite is also enriched

in LREE relative to HREE, and enriched in Nb and Ta relative to Zr and Hf compared

top the Cape Riva andesite. This is also reflected in the calculated mafic mixing end-

members of the two hybrid andesites shown on Figure G.12, although the difference is

subtle.

G.6 Discussion

G.6.1 Origin of the magma series

The Therasia and Cape Riva dacites have similar whole rock major element com-

positions (for all major elements except K), phenocryst assemblages, phenocryst rim

compositions and Fe-Ti oxide temperatures, although the Cape Riva dacite has slightly

more evolved interstitial melt. The main difference between the two magmas is that

the Cape Riva dacite is depleted in incompatible elements compared to the Therasia

dacite. The Cape Riva hybrid andesite is also incompatible-depleted relative to the

upper Therasia hybrid andesite, and there are indications that the basaltic mixing

end-members were similarly different.
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Since the Therasia and Cape Riva magma series form parallel trends on incompat-

ible element variation diagrams (Figure G.12), and have different LREE/HREE ratios,

they cannot be related to each other simply by closed-system crystal fractionation

schemes like those explored in previously published papers (Druitt et al., 1999; Mann,

1983; Nicholls, 1971). Neither can the Cape Riva dacite be generated by simple back-

mixing of Therasia dacite with an incompatible-depleted basalt, since mixing would

displace the silicic compositions almost parallel to the compositional trends rather than

perpendicular to them. Crustal contamination of Therasia dacite to produce Cape Riva

dacite is also unlikely, as this would be expected to increase incompatible element con-

centrations, not decrease them (Barton et al., 1983; Druitt et al., 1999). Moreover,

the two dacite types have very similar whole-rock 87Sr/86Sr ratios (0.7050 and 0.7049

respectively; Briqueu et al., 1986; Druitt et al., 1999; Zellmer et al., 2000), ruling out a

significant difference in the extent of upper crustal contamination. The Therasia and

Cape Riva magma series (basalt, dacite and hybrid andesite in each case) represent

two fundamentally distinct magma batches that cannot be related to each other in any

simple way by shallow-level processes.

This conclusion is supported by comparison of the two magma series with longer-

term geochemical trends at Santorini (Druitt et al., 1999; Huijsmans, 1985; Huijsmans

et al., 1988). The same incompatible elements have decreased progressively in Santorini

magmas over the last 530 ka, such that the lavas of the historical Kameni Volcano are

the most incompatible-depleted (Figure G.12). The difference between the (older)

Therasia and (younger) Cape Riva series represents one step in this longer-term evolu-

tion. The magnitude of the decrease is similar for most incompatible elements, so that
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the ratios between them (e.g. K/Zr, Rb/Zr, Rb/La) have remained approximately con-

stant with time. However, the LREE have become depleted relative to HREE, a change

that is also apparent between Cape Riva and Therasia (Figure G.12d). Similar changes

also occur between different high field strength elements: Nb and Ta concentrations

drop faster than those of Zr and Hf. Progressive depletion in K and other incompatible

elements with time has also occurred at other centres in the Aegean region (Francalanci

et al., 2005). A decrease in the extent of crustal contamination with time, as might be

expected from the progressive sealing-off of ascending magmas from the crust, is not

tenable; there is no evidence for a decrease in the 87Sr/86Sr ratio with time at Santorini.

Isotopic signatures fluctuate with time (Barton et al., 1983; Briqueu et al., 1986; Druitt

et al., 1999; Martin et al., 2010), and some young melts are amongst the most radiogenic

in the history of the volcano (Martin et al., 2010; Vaggelli et al., 2009). Incompatible

trace element contents and isotopic signatures at Santorini are decoupled, ruling out

a simple common origin. A more likely explanation for the observed trends lies in the

nature of the mantle sources of the parental basalts feeding the volcanic system. Pos-

sibilities include an increase with time in the degree of source depletion, an increase of

source melt fraction, or a decrease in degree of source metasomatism by slab-derived

fluids or melts. All of these mechanisms could potentially account for basaltic parents

with decreasing incompatible element contents with time (Bailey et al., 2009; Clift

and Blusztajn, 1999; Francalanci et al., 2005; Huijsmans et al., 1988; Zellmer et al.,

2000). A mantle origin is supported by the recent discovery at Santorini of multiple

co-existing basalt types with different trace element and isotopic signatures (Bailey

et al., 2009; Vaggelli et al., 2009). Changing proportions of different parental basalts



406 Appendix G. Evolution of the crustal magma plumbing system

that ascend into the crust, where they mix and differentiate at between 4 and 2 kb to

intermediate and silicic compositions (Andújar et al., 2010; Cadoux et al., 2013), may

account for the observed temporal variations of trace element chemistry. Irrespective

of the exact explanation, our results demonstrate the availability of chemically distinct

batches of silicic magma within the crustal plumbing system beneath Santorini, as has

been demonstrated previously for basalts (Bailey et al., 2009).

G.6.2 Reconstruction of events leading up to the Cape Riva

eruption

Construction of the ∼12 km3 basaltic-to-andesitic Skaros shield between 67 and 54 ka

represented a period where the eruption rate was close to the average for Santorini

(∼1 km3 ky−1; Druitt et al., 1999). The Skaros period culminated at 54 ka in the

Upper Scoria 2 explosive eruption. Following Upper Scoria 2, the system stagnated

and entered a ∼15 ky-long period of near-repose until effusive activity resumed at

about 39 ka. Only two lava flows are preserved in the cliffs of Therasia from this

period: the ∼48 ka lower Therasia andesite (flows 1 and 24) and an inaccessible flow

(flow 2) immediately above it. The andesite of Oia could also belong to this period;

it is chemically very similar to Upper Scoria 2 and could be residual magma from

that eruption. This period of reduced activity, during which the apparent eruption

rate based on preserved products was very low (<0.1 km3 ky−1), is marked by the

development of thick palaeosols.

Any mantle-derived basalt injected into the crust during this period must have

been trapped at depth, perhaps due to the stress imposed by the high Skaros edi-
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fice (Pinel and Jaupart, 2000). Accumulation of heat from prolonged, deep intrusion

probably generated silicic melt by a combination of fractional crystallization, partial

melting of crustal rocks and defrosting of extant mushy intrusions (Barton et al., 1983;

Druitt et al., 1999; Huijsmans, 1985; Huijsmans and Barton, 1989; Mann, 1983). Then,

between 39 and 25 ka, a chemically and thermally (895-925 °C) monotonous series of

dacites (the Therasia dome complex) was extruded from the summit of Skaros and

from dykes on its western flank. The lack of any systematic variation of whole rock

or groundmass (i.e. melt) composition with time during this period (Figure G.7) sug-

gests thermal buffering of the crustal storage region by an approximate balance of heat

input, heat output and latent heat of crystallisation. The mean eruption rate during

construction of the Therasia dome complex was very approximately 0.1–0.2 km3 ky−1:

lower than the long-term average on Santorini (∼1 km3 ky−1), but higher than that

during the preceding repose period. Towards the end of the Therasia activity, lava ex-

trusion became increasingly punctuated by explosive activity. Throughout most of this

15 ky period, the eruptions tapped typical Therasia-type dacite. However, the 26 ka

Cape Tripiti eruption tapped dacite with some incompatible trace element contents

intermediate between those of Therasia and Cape Riva. Any basaltic magma intruded

beneath the summit region over the 15 ky was unable to reach the surface, except

as rare quenched enclaves of dacite-contaminated olivine basalt. Towards the end of

the period, basalt mixed with dacite in approximately equal proportions, forming the

upper Therasia hybrid andesite.

Following extrusion of the last Therasia lava, no more than 2,800± 1,400 years

elapsed before the 21.8 ± 0.4 ka Cape Riva eruption took place. At least 10 km3 of
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880 °C Cape Riva dacite, poorer in incompatible elements, was then erupted as Plinian

fallout and pyroclastic flows. The eruption also discharged a small quantity (�1 km3)

of hybrid andesite formed by the mixing of olivine basalt and incompatible-depleted

dacite in sub-equal proportions, and the Skaros-Therasia edifice collapsed (Druitt et al.,

1999).

G.6.3 Constraints on magma reservoir development

The Therasia dacites have been previously interpreted as ‘precursory leaks’ from the

growing Cape Riva magma body (Bacon, 1985; Druitt, 1985). Precursory leaks of

silicic magma from diffuse vents prior to caldera-forming eruptions are believed to

record the prolonged, incremental growth of large crustal magma reservoirs (Bacon,

1985). For example, leaks of rhyodacite at Mount Mazama (Crater Lake, Oregon) bear

witness to the progressive growth, over about 20,000 years, of the magma body that

was discharged 6,850 years ago (Bacon, 1985; Bacon and Lanphere, 2006). However,

the Therasia lavas cannot simply be leaks from a single, growing Cape Riva reservoir,

because they represent a chemically different magma batch.

One possibility is that the two dacite types were stored in separate, long-lived

reservoirs that coexisted in the upper crust, perhaps for much of the 30 ky since Up-

per Scoria 2. The Therasia eruptions would have been fed from one or more small

reservoir(s), and the Cape Riva eruption from another, larger reservoir. The Cape

Tripiti pumice, with its intermediate chemical character, might have resulted from a

temporary connection between the two reservoirs. However, field and phase equilibria

data provide quite stringent constraints on the possible locations of the two reser-
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voirs in such a model. First, the vents that fed the Therasia lavas lay within the

area that subsequently collapsed to form the Cape Riva caldera (Druitt, 1985, 2014;

Druitt and Francaviglia, 1992), showing that the reservoirs were geographically coin-

cident. Second, the similarities in whole rock major element composition, phenocryst

assemblage, phenocryst rim compositions and Fe–Ti oxide temperatures, show that the

Therasia dacites must have been stored immediately prior to eruption at a pressure

(2± 0.5 kb, equivalent to 8± 2 km) similar to that determined experimentally for the

Cape Riva dacite by Cadoux et al. (2013). The two reservoirs must therefore have been

situated within the ∼4 km vertical distance represented by the ±0.5 kb uncertainty on

the pressure. Moreover, this uncertainty is on the absolute pressure, not on the rel-

ative pressure difference between the two dacite types. It is difficult to see how two

magma reservoirs within this confined space could remain largely isolated over many

thousands of years. We cannot rule out this model, but it raises problems that are

hard to surmount. Our preferred interpretation is that the Therasia and Cape Riva

magma batches were emplaced sequentially into the upper crust beneath the summit

of the volcano, the first then being partially, or wholly, flushed out by the arrival of

the second. In this model the 15 ky of Therasia activity was fed either from a single

long-lived, melt-dominated reservoir or by the ascent, partial eruption and rapid freez-

ing of multiple melt packets (e.g. Zellmer et al., 2003). At 26 ka the system may have

been replenished by incompatible-depleted dacite, which mixed with Therasia dacite

and was discharged as the Cape Tripiti Pumice. The subsequent return to eruption of

‘pure’ Therasia dacite suggests that if a discrete Cape Riva reservoir already existed

below the summit at this time, it had probably not yet reached its full size. Following
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extrusion of the last Therasia lava flow, the input of incompatible-depleted dacite con-

tinued, and perhaps accelerated, during the <2,800± 1,400 y preceding the Cape Riva

eruption. The new input magma mixed with any remaining Therasia magma to gener-

ate the dacite that subsequently discharged during the Cape Riva eruption. This may

have had the composition of pure Cape Riva dacite, or may have been a dacite even

poorer in incompatibles (e.g. Kameni-like dacite; Figure G.12). Amalgamation and

homogenization of the different magma batches resulted in the formation of a single,

contiguous reservoir.

Assuming injection of most of the >10 km3 of Cape Riva magma in <2800 y yields a

time-averaged supply rate of > 0.004±0.002 km3 y−1, although the peak value may have

been much higher. For comparison, the mean accumulation rate estimated over the

1600 y to prior the Oruanui eruption has been estimated as >0.33 km3 y−1, culminating

in values of ∼1 km3 y−1 (Allan et al., 2013; Wilson and Charlier, 2009). A late-stage

growth spurt of the Minoan magma reservoir has been estimated as >0.05 km3 y−1

(Druitt et al., 2012). Intrusion rates comparable to, or higher than, that estimated for

the Cape Riva are implied by measured deformation rates at silicic volcanoes such as

Uturuncu (∼0.01 km3 y−1; Pritchard and Simons, 2004; Sparks et al., 2008), Kameni

(∼0.01 km3 y−1; Parks et al., 2012), Yellowstone (0.1 km3 y−1; Chang et al., 2010), and

Lazufre (∼0.01 km3 y−1; Froger et al., 2007; Ruch et al., 2009).

Rapid intrusion of the Cape Riva dacite into the upper crust would have favoured

runaway growth of a melt-dominated magma reservoir (Annen, 2009; Gelman et al.,

2013; Schöpa and Annen, 2013). Driving mechanisms for magma ascent may have

included increased basaltic flux from the mantle, tectonic forces, or gravitational in-
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stability of crustal magma storage regions. Possible evidence of increased basaltic flux

is provided by the production of hybrid andesites (formed by mixing of basalt and da-

cite in approximately equal proportions) in the few thousand years prior to the Cape

Riva eruption, as well as in the Cape Riva reservoir itself. Pressurization of the upper

crustal plumbing system by sustained, high-flux injection of dacite and basalt may

have triggered the transition from prolonged, largely effusive activity to catastrophic

explosive eruption and caldera collapse.

G.7 Conclusions

We have combined field, high-resolution radiometric, petrological and geochemical ap-

proaches in a study of the evolution of the crustal magma plumbing system of Santorini

prior to a silicic caldera-forming eruption. The main conclusions are listed below.

1. Between 39 ka and 25 ka, a sequence of compositionally (65-68wt% SiO2) and

thermally (895-925 °C) monotonous dacitic lavas leaked out to form the ∼2 km3

Therasia dome complex across the summit and western flank of the high, extant

Skaros lava shield. Pyroclastic units interbedded with the lavas towards the top

of the sequence record increasing explosivity of the system towards the end of

this period. One prominent pumice fall deposit within the Therasia complex

probably correlates with the 26 ka Y-4 ash layer observed in deep-sea sediments

SE of Santorini. Following a pause in activity no longer than 2,800± 1,400 ky, the

21.8± 0.4 ka Cape Riva explosive eruption discharged >10 km3 of 880 °C dacite,

and collapsed the Skaros shield.
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2. The Therasia and Cape Riva dacites are similar in most major elements, but

the Cape Riva dacite has lower contents of K and incompatible trace elements

(e.g., Rb, Zr, Th, LREE) than the Therasia dacites at a given silica content.

This decrease in incompatibles that took place at 21.8 ka is one step in the well-

documented longer-term decrease in incompatible elements with time observed

at Santorini over the last 530 ka. The Therasia and Cape Riva dacites represent

distinct magma batches that are unrelated by shallow-level processes.

3. Given that the source vents for the Therasia and Cape Riva dacites were geo-

graphically coincident, and that the reservoir depths estimated from phase equi-

libria were similar, accumulation of most of the Cape Riva magma in the upper

crust probably took place within the 2,800± 1,400 y period between the last

Therasia eruption and the Cape Riva. This would have required a time-averaged

magma accumulation rate in excess of 0.004± 0.002 km3 y−1.

4. Discharge of basaltic magma during this time period is limited to�1% quenched

enclaves of olivine basalt in some Therasia lavas and in Cape Riva pumice. How-

ever, hybrid andesite magmas formed by the mixing of olivine basalt and dacite

in approximately equal proportions were erupted as lava towards the end of the

Therasia, and as scoria in the Cape Riva eruption. These hybrids may record an

increased influx of basalt into the upper crust over the several thousands of years

leading up to the Cape Riva eruption. Increased basaltic flux may have played

a role in the rapid accumulation of incompatible-depleted Cape Riva magma

beneath the summit of Skaros Volcano prior to its 21.8 ka eruption.

5. Pressurization of the upper crustal plumbing system by sustained, high-flux in-
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jection of dacite and basalt may have triggered the transition from prolonged,

largely effusive activity (Therasia) to catastrophic explosive eruption and caldera

collapse (Cape Riva).
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