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Local Convex Hull support and boundary

estimation

C. Aaron∗, O. Bodart†

December 18, 2014

Abstract

In this paper we introduce a new estimator for the support of a
multivariate density. It is defined as a union of convex hulls of obser-
vations contained in balls of fixed radius. We study the asymptotic
behavior of this “local convex hull” for the estimation of the support
and its boundary. When the support is smooth enough, the proposed
estimator is proved to be, eventually almost surely, homeomorphic to
the support. Numerical simulations on both simulated and real data
illustrate the performance of our estimator.

Key Words: Convex-Hull, polyhedron, support estima-

tion, topological data analysis, geometric inference.
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1 Introduction

Let Xn = {X1, . . . , Xn} be a set of n independent and identically distributed
(i.i.d) random variables with probability density f defined on Rd. Let

S = {x ∈ Rd, f(x) > 0} ⊂ Rd,

be the support of the probability density f , and

∂S = S \ S̊,
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be its topological boundary (where A denotes the closure of the set A and
Å its interior). We aim at building an estimator of S and ∂S based on the
set of observations Xn. Therefore, for a given estimator Ŝn of the support S,
the following errors can be studied:

1. the measure of the symmetric difference:

|Ŝn∆S| = |(Ŝn ∩ Sc) ∪ (Ŝc
n ∩ S)|,

(where Ac denotes the complementary of the set A and |A| the Lebesgue
measure of the set A);

2. the Hausdorff distance between Ŝn and S:

dH(Ŝn, S) = max(max
a∈Ŝn

(min
b∈S

‖a− b‖),max
b∈S

(min
a∈Ŝn

‖a− b‖)),

where ‖a− b‖ denotes the Euclidean distance between a and b.

The first criterion is the most commonly used, but when it comes to evaluate
the quality of the estimation of ∂S, only the Hausdorff distance dH(∂Ŝn, ∂S)
between ∂Ŝn and ∂S is relevant.

The most intuitive and simple way to estimate S was introduced by De-
vroye and Wise (see [9] or [13]). They defined the following estimator:

Ŝr =

n⋃

1

B(Xi, r), (1)

where B(X, r) denotes the closed ball centered in x and of radius r > 0.
The parameter r being set, building the estimator Ŝr is of low computational
cost. Its properties have been widely studied for the estimation of S and
∂S. In [13], for a sequence of radiuses rn → 0 such that nrdn → ∞, it
has been proved to be universally consistent with respect to the symmetric
difference. In [1], assuming standardness on S and f (see Definition 5 below),
a rate of convergence of order (lnn/n)1/d in terms of symmetric difference is
established. With additional assumptions on f , central limit type theorems
type are obtained in [3]. In [12], the authors study the estimation of the
boundary of S in terms of the Haussdorff distance. Other estimators have
also been proposed by various authors. In [18], the authors study the case
when S is a subset of the unit square in R2. When f is an α−decreasing
function (see Definition 8 below), a piecewise polynomial estimator of ∂S
is built and proved to have an optimal rate (which depends on α and the
regularity of ∂S).
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When S is a convex set, the convex hull of the observations is known
to be a natural estimator of S (see e.g. [2, 24, 26, 14, 16]). This idea
can be generalized to the non-convex case. In [25], the r−convex hull of
the set of observations is studied as an estimator of S and ∂S. Assuming
regularity on ∂S and that the probability density is bounded from below,
it has the same convergence rate as the one obtain in [14] for a (similarly
smooth) convex support, but with a weaker assumption on the support shape.
Characterizing the r−convex hull via an erasing process, one can easily infer
that the estimator can degenerate when S is a manifold of dimension d′ < d.
In [10], the authors build an analogous estimator with a different erasing
process. This allows to weaken the assumptions on S. However the estimator
presents the same degeneracy drawback.

In this work, we also propose a generalization of the convex hull, defined
as follows:

Ĥr =
⋃

X∈Xn

H(B(X, r) ∩ Xn), (2)

where H(A) denotes the convex hull of the set A.
Let us note that the first idea of using a local convex hull estimator

has been introduced in [17], using nearest-neighbors instead of fixed radius.
This estimator has good performances in different applications as home-range
estimation, zoology and ecology (see e.g. [21], [19] or [22]). However, to
our knowledge, the mathematical properties of this estimator have not been
investigated so far.

In this paper, we study the estimator Ĥr defined by (2) as an estimator
of the support S, and ∂Ĥr as an estimator of ∂S. Under general assumptions
Ĥr (resp. ∂Ĥr) will be proved to be consistent in terms of the symmetric
difference (resp. the Hausforff distance). Under assumptions on the proba-
bility density f and geometrical assumptions on S, convergence rates will be
exhibited. Moreover, topological properties of Ĥr will also be given. More
precisely, it will be proved to be eventually almost surely homeomorphic to
S. The practical interest of such a property is illustrated in [7, 5]. Such a
property is more frequently studied in the field of computational or discrete
geometry than in statistics (see e.g. [15, 4, 6, 28, 8]).

The paper is organized as follows. Section 2 is devoted the presentation
of the probabilistic and geometrical framework of the article, and of our main
results. Theorem 1 deals with the consistency of Ĥr. Theorem 2 and 3 give
convergence rates. Finally, Theorem 4 studies the topological properties of
our estimator. In Section 3, Theorems 1 and 2 are proved. Sections 4 and 5
are devoted to the proof of Theorems 3 and 4 respectively. The last section
present numerical simulations.
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2 General framework and main results

We will start this section with the setting of the geometric and probabilistic
framework of this work. We will then state our results.

2.1 Notation and geometrical concepts

Throughout the paper, ωd will denote the Lebesgue measure of the unit ball
in Rd, d ≥ 1. The measure of a set A ∈ Rd will be denoted by |A|, and ‖x‖
will denote the euclidean norm of x ∈ Rd. Moreover, for a set A ∈ Rd and
a positive real number ε, A⊕ εB (reps. A⊖ εB) will denote the Minkowski
sum (resp. difference) of A and balls of radius ε, that is

A⊕ εB =
⋃

a∈A

B(a, ε); A⊖ εB = {a ∈ A,B(a, ε) ⊂ A}.

Finally, the Hausdorff distance between two sets A and B in Rd is defined as
follows:

dH(A,B) = inf{ε, A ⊂ B ⊕ εB, B ⊂ A⊕ εB}.
The main geometrical objects under consideration in this paper are man-

ifolds in Rd.

Definition 1. Two topological spaces A and B are homeomorphic (denoted
by A ≈ B) if there exists a bijective map ϕ : A → B such that ϕ and ϕ−1

are continuous.

Definition 2. A bounded set A ⊂ Rd is a k−dimensional manifold (or more
shortly a k−manifold) if, for each point x ∈ A, there exists a neighborhood
Ux of this point such that Ux ≈ Rk or Ux ≈ {(x1, . . . , xk) ∈ Rk, x1 ≥ 0}. Its
boundary ∂A is the union of the points x which don’t admit any neighborhood
Ux ≈ Rk.

A k−manifold is thus locally homeomorphic to a plane of dimension k,
and its boundary (if it exists) is homeomorphic to a half plane. It is worth
noticing that the definition of the boundary of a manifold coincides with the
classical one (i.e. ∂A = A \ Å) when the natural topology induced by A is
chosen. Moreover we have the classical results:

Proposition 1. If A ∈ Rd is a k−manifold with non-empty boundary ∂A
then ∂A is a (k − 1)−manifold.

Proposition 2. If A is a compact d−manifold in Rd, then it has a non
empty boundary and for all x ∈ A, y ∈ Ac the line segment [x, y] intersects
the boundary: [x, y] ∩ ∂A 6= ∅.
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Let us notice that Proposition 2 does not hold for a k−manifold in Rd

with k < d. Definition 2 is the topological definition of a manifold. The
notion of differentiable manifold (or more generally of a manifold of class
Cp) is also relevant. It is essentially related to the regularity of the local
homeomorphisms featured in the topological definition. For more details
about this question, and about manifolds and differential geometry we refer
to [20]. The concept of homeomorphic sets is also relevant to another aspect
of this work: if the estimator of the support S is homeomorphic to S, then
its topological properties are preserved by the estimation process.

A k−manifold is of topological dimension k; in this work, another dimen-
sion parameter is also used.

Definition 3. Let A ⊂ Rd be a compact set, and let N(A, ε) denote the min-
imal number of balls of radius ε that are needed to cover A. The Minkowski
(or box-counting) dimension of A is defined, if it exists, by:

DimMink(A) = lim
ε→0

− lnN(A, ε)

ln ε
.

There exist sets which have no Minkowski dimension, which will not be
considered in this paper. We will consider sets which have a Minkowski
dimension that can be different from their topological dimension. Such sets
can be rather pathological (consider for example a Koch snowflake in R2

which has Minkowski dimension 4/3), but in the case of smooth enough
manifolds, the situation is rather simple.

Proposition 3. If A ⊂ Rd is a k−manifold of class C1, with k ≤ d then
DimMink(A) = k. Moreover there exists λA such that N(A, ε) ≤ λAε

−k.

Notice that a compact d−manifold in Rd is necessarily of class C∞ (see
[20]).

We now introduce definitions in concepts in a more direct relationship
with our concerns.

Definition 4. A sequence (An) of events in the same probability space is
told to happen eventually almost surely, denoted by e.a.s. if the sequence of
random variables 1An satisfies : 1An

a.s.−→ 1.

In the sequel we will make use of the following classical result.

Proposition 4. If (An) and (Bn) are two sequences of events such that (An)
happens e.a.s and, for n large enough, An ⇒ Bn then (Bn) happens e.a.s.

One of our main results (Theorem 2) deals with density supports that have
a regularity property called standardness and partial expandability which are
defined as follows.
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Definition 5. A measure is said to be standard with respect to the Lebesgue
measure if there exists λ > 0 and δ > 0 such that: PX(B(x, ε)) ≥ δ|B(x, ε)|
for all x ∈ S and ε ∈]0, λ].

Definition 6. A bounded Borel set S ⊂ Rd is said to be partly expandable
if there exists constants CS ≥ 1 (called expandability constant) and rS > 0
such that dH(∂S, ∂S ⊕ εB) ≤ ε CS for all ε ∈]0, rS].

The concept of standardness was first introduced in [11] . We refer to
[12] for the study of partial expandability. Standardness is a geometrical and
probabilistic property. However, partial expandability is a stronger geomet-
rical assumption than standardness. Therefore, if both are assumed, only
the probabilistic consequences of standardness remain significant. Mainly,
making these two assumptions ensures that the probability density decays
fast enough to 0, and prevents the existence of cusps in the boundary of the
support. However, they are satisfied by a large class of nonsmooth supports.
For example, a uniform probability measure defined inside a Koch snowflake
in R2 is standard and its support is partially expandable. It also has to be
remarked that, when the underlying probability density f is smooth enough,
a direct consequence of standardness and partial expandability is that f pos-
sesses a positive uniform lower bound on its support. We aim at weakening
such an assumption. This will lead to stronger geometrical assumptions on
the shape of the support.

Definition 7. Let S be a d−manifold in Rd with non empty boundary. We
say that balls of radius Rout > 0 (resp. Rin > 0) roll freely outside (resp.
inside) S if, for all x ∈ ∂S there exists O−

x ∈ Rd (resp. O+
x ∈ Rd) such that:

x ∈ B(O−
x , Rout) ⊂ Sc (resp. x ∈ B(O+

x , Rin) ⊂ S).

This property has regularity consequences which will be used in the se-
quel.

Proposition 5. Let S be a compact d−manifold in Rd such that balls of
radius RS roll freely inside and outside S. Then, for all x ∈ ∂S, there exists
a unique inward pointing unit normal vector ux and

∀(x, y) ∈ ∂S2, ||uy − ux|| ≤
1

RS
||x− y||.

Moreover ∂S is a (d−1)−dimensional manifold of class C1 and there exists a
positive constant λ∂S such that N(∂S, ε) ≤ λ∂S ε

k−1 (hence DimMink(∂S) =
k − 1).
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Proposition 6. Let S be a compact d−manifold in Rd such that balls of
radius RS roll freely inside and outside S. Then S is partly expandable with
expandability constant CS = 1.

The proof of Proposition 5 can be found in [27]. For Proposition 6, we
refer to [12]. We will also use the following result.

Proposition 7. Let S be a compact d−manifold in Rd such that balls of ra-
dius RS roll freely inside and outside S. Then, for all x such that d(x, ∂S) <
RS, there exists a unique x∗ ∈ ∂S such that d(x, x∗) = minz∈∂S ||x − z||.
Moreover x− x∗ is collinear to ux∗.

Proof. Let x be a point such that x ∈ S and d(x, ∂S) = d < RS. If y1 and y2
are two points in ∂S such that ||x− y1|| = ||x − y2|| = d then B(x, d) ⊂ S.
The (inside and outside) rolling ball property implies that O+

y1, x, y1 and O
−
y1

are on the same line directed by uy1 . Hence, the condition d < RS implies

that (B̊(O+
y1, RS))

c ∩B(x, d) = {y1}. But, y2 ∈ B(x, d) and y2 /∈ B̊(O+
y1, RS))

(because y2 /∈ S̊) so y2 = y1 = x∗ and x, O+
x∗ , O−

x∗, and x∗ are on the same
line directed by ux∗.

A symmetrical reasoning can be done when x belong to Sc and d(x, ∂S) =
d < RS.

Remark: In the sequel, we will use the notations O+
x , O

−
x and ux that are

introduced in Definition 7 and Proposition 5.
The rolling balls property being stronger than partial expandability and

standardness, this will allow us to weaken the assumption on the probability
distribution of the sample Xn.

Definition 8. A probability density f supported in S ⊂ Rd is said to be
α−quickly decreasing if there exists α ≥ 0 and Cf > 0 such that

∀x ∈ S, f(x) ≥ Cf d(x, ∂S)
α.

This assumption is indeed weaker than standardness. It is similar to the
one introduced in [18].

Finally, when dealing with manifolds satisfying the rolling ball property,
we will make use of the notion of tangent cylinder.

Definition 9. Let u be a unit vector in Rd, x ∈ Rd, r > 0, and h > 0. The
cylinder at point x in the direction u of radius r and height h is defined as
follows:

C
u(x, r, h) = {y, |〈y − x, u〉| ≤ h, ||y − x− 〈y − x, u〉u|| ≤ r}
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The following result then holds.

Proposition 8. Let x and x′ be two points and u and u′ be two unit vectors.
Let us denote ||x− x′|| = εx and ||u− u′|| = εu. We define:

i) e1 = εx + 2(
√
r2 + h2 + εx)εu,

ii) e2 = εx +
√
r2 + h2εu.

When εx and εu are small enough so that e1 ≤ r and e2 ≤ h, we have:

C
u′

(x′, r − e1, h− e2) ⊂ C
u(x, r, h).

The proof is easy and left to the reader.

Definition 10. Let S be a compact d−manifold in Rd such that balls of radius
RS roll freely inside and outside S. Let x ∈ ∂S, and ux as in Proposition 5.
For r > 0 and h > 0, the cylinder C(x, r, h) = Cux(x, r, h) is called a tangent
cylinder to ∂S.

2.2 Main results

The first result we prove in this article is a universal consistency theorem.

Theorem 1. Let Xn = {X1, . . . , Xn} be a set of i.i.d random observations
in Rd, d ≥ 1, which distribution PX is absolutely continuous with respect to
the Lebesgue measure and supported in a compact d−manifold S ∈ Rd which
boundary is such that DimMink(∂S) = d′ < d. Assume that there exists a
sequence of radiuses (rn) such that

rn → 0 a.s. and S ⊂ Ŝrn/4 e.a.s. (3)

where Ŝrn/4 is the Devroye-Wise estimator defined by (1). The estimator Ĥrn

defined by (2) then satisfies:

∀u > 0, |Ĥrn∆S|/rd−d′−u
n → 0 a.s., (4)

dH(∂Ĥrn , ∂S) → 0 a.s. (5)

In [12], it is proved that the sequence rn = 4 dH(Xn, S) fulfills assump-
tion (3). However this sequence of radiuses is abstract and its convergence
rate to 0 cannot be calculated. Therefore Theorem 1 provides us with no
convergence rate of the estimators of S and ∂S. This is the aim of our two
next results: thanks to additional assumptions on S and PX , we will exhibit
explicit sequences (rn) allowing to estimate the convergence rate in (4) and
(5).
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Theorem 2. Let Xn = {X1, . . . , Xn} be a set of i.i.d random observations
in Rd, d ≥ 1, which distribution PX is absolutely continuous with respect
to the Lebesgue measure and supported in a compact d−manifold S ∈ Rd

which boundary is such that DimMink(∂S) = d′ < d. Assume that S is partly
expandable (with a expandability constant CS) and that PX is standard with
respect to the Lebesgue measure. Consider the radius sequence:

rn = c ·
(
2 ln(n)

δωdn

)1/d

for some c > 4, (6)

where δ > 0 is the constant appearing in Definition 5. Then the estimator
Ĥrn defined by (2) satisfies (4). Moreover we have

dH(∂S, ∂Ĥrn) ≤ CS rn e.a.s. (7)

Notice that (7) provides the classical rate of order (lnn/n)1/d for the
estimator of the boundary. The convergence rate given by (4) is weaker and
depends on the Minkowski dimension of ∂S. However, assuming that ∂S is
of class C1, one can easily obtain the same classical convergence rate for the
symmetric difference Ĥrn∆S.

With a smoothness assumption on the boundary of S, and an adequate
choice of the sequence of radiuses, we obtain a better convergence rate. More
precisely we have the following Theorem.

Theorem 3. Let Xn = {X1, . . . , Xn} be a set of i.i.d random observations in
Rd, d ≥ 1, which distribution PX is absolutely continuous with respect to the
Lebesgue measure and supported in a compact d−manifold S ∈ Rd. Assume
that the probability f density associated to PX is α−quickly decreasing and
that there exists RS > 0 such that balls of radius RS roll freely inside and
outside S. Let

rn = λ (lnn/n)1/(d+1+2α), λ > 0. (8)

We then have :

|Ĥrn∆S| (n/ lnn)2/(d+1+2α) is e.a.s. bounded, (9)

dH(∂Ĥrn , ∂S) (n/ lnn)
2/(d+1+2α) is e.a.s. bounded. (10)

When d = 2, the convergence rate given here is the same as in [18]
(our assumptions on the boundary smoothness being similar). In higher
dimensions, when α = 0, it is the same as the one obtain in [14] using the
convex hull to estimate a (similarly smooth) convex support under the same
assumption on the density. This suggests that our result might be optimal,
although it is not proved here.

The same assumptions also yield the following result on the preservation
of the topology of the support and its boundary.
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Theorem 4. Under the assumptions of Theorem 3 on S, PX and the sequence
(rn), we have:

∂Ĥrn is homeomorphic to ∂S e.a.s., (11)

Ĥrn is homeomorphic to S e.a.s. (12)

3 Proof of Theorems 1 and 2

3.1 Proof of Theorem 1

In a first step we are going to prove that

(Ĥrn ∩ Sc) ∪ (Ĥc
rn ∩ S) ⊂ ∂S ⊕ rnB e.a.s. (13)

Let us set r = rn fixed temporarily for the sake of clarity. From (1) and (2),
we clearly have Ĥr ⊂ Ŝr ⊂ S ⊕ rB, hence Ĥr ∩ Sc ⊂ (S ⊕ rB) ∩ Sc. Let
x ∈ (S ⊕ rB) ∩ Sc. In view of Proposition 2 there exists y ∈ S such that
||x− y|| ≤ r and the line segment [x, y] intersects ∂S at some point z which
is obviously such that ||x− z|| ≤ r. We thus have (S ⊕ rB) ∩ Sc ⊂ ∂S ⊕ rB
that is

Ĥr ∩ Sc ⊂ ∂S ⊕ rB. (14)

Next, we write

Ĥc
r ∩ S = (Ĥc

r ∩ (S ⊖ r

2
B)) ∪ (Ĥc

r ∩ (S \ (S ⊖ r

2
B))).

Let us first prove that Ĥc
r ∩ (S ⊖ r

2
B) = ∅. Assume it is not the case,

and let x ∈ Ĥc
r ∩ (S ⊖ r

2
B). Then, necessarily, x /∈ H(B(x, r/2) ∩ Xn).

Indeed, if x ∈ H(B(x, r/2) ∩ Xn), then there exists at least one observation
Xi ∈ B(x, r/2) and, as B(x, r/2) ⊂ B(Xi, r), we have x ∈ H(B(Xi, r) ∩ Xn)
so that x ∈ Ĥr. Now, since x /∈ H(B(x, r/2) ∩Xn) there exists a unit vector
u such that any observation Xi ∈ Xn∩B(x, r/2) satisfies 〈Xi−x, u〉 ≤ 0. Let
y = x+ (r/4)u as depicted in Figure 1. We have ||x− y|| = r/4, and, since
x ∈ (S ⊖ r

2
B), the inclusions B(y, r/4) ⊂ B(x, r/2) ⊂ S hold. Hence y ∈ S.

But we also have B(y, r/4) ∩ Xn = ∅, that is y ∈ Ŝc
rn/4

which is impossible

since, due to assumption (3), S ∩ Ŝc
r/4 = ∅. Hence we have

Ĥc
r ∩ S = Ĥc

r ∩ S \ (S ⊖ r

2
B)) ⊂ S \ (S ⊖ r

2
B).
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Let x ∈ S \ (S ⊖ r
2
B). Proposition 2 implies the existence of y ∈ B(x, r/2)∩

Sc 6= ∅ such that the line segment [x, y] intersects ∂S at some point z such
that ||x− z|| ≤ r/2. Hence, we have

Ĥc
r ∩ (S \ (S ⊖ r

2
B)) ⊂ S \ (S ⊖ r

2
B) ⊂ ∂S ⊕ (r/2)B. (15)

Formula (13) is a direct consequence of (14), (15) and Proposition 4.

Figure 1: x ∈ Hc
r ∩ (S ⊖ r

2
B) ⇒ ∃y ∈ S ; B(y, r/4) ∩ Xn = ∅

Now, for fixed n, the parameter N(∂S, rn) being as given in Definition 3,
we have

∂S ⊂
N(∂S,rn)⋃

i=1

B(xi, rn),

that is, due to the triangle inequality,

∂S ⊕ rnB ⊂
N(∂S,rn)⋃

i=1

B(xi, 2rn),

hence |∂S ⊕ rnB| ≤ N(∂S, rn)ωd2
drdn.

Since DimMink(∂S) = d′ < d, in view of Definition 3 and assumption (3),
we have lnN(∂S, rn)/ ln rn → −d′ as n→ ∞, that is

∀u > 0, ∃nu; n ≥ nu −→ lnN(∂S, rn)/ ln(rn) ≥ −d′ − u/2.

Therefore, for any u > 0, we have |∂S⊕ rnB|/rd−d′−u
n ≤ ωd2

dr
u/2
n → 0, which

implies, in view of Proposition 4, that

∀u > 0, |∂S ⊕ rnB|/rd−d′−u
n → 0 e.a.s. (16)
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Combining (13) and (16), we obtain (4).
Let us now prove (5). First, we have

max
x∈∂S

d(x, ∂Ĥrn) → 0 a.s. (17)

We will only sketch the proof of this convergence, since it is an adaptation to
our case of the proof of Theorem 1 in [12]. Suppose (17) does not hold. Then,
there exists ε > 0 and a subsequence of indexes (nk) and a sequence (ynk

) of

points in ∂S such that P(d(ynk
, ∂Ĥrnk

) > 2ε) 6= 0. The boundary ∂S being
compact, we can extract a subsequence, still denoted (ynk

) for convenience,

converging to y ∈ ∂S. The triangle inequality implies that d(y, ∂Ĥrnk
) > ε

for k large enough, that is B(y, ε) ∩ ∂Ĥrnk
= ∅ eventually with positive

probability.
Notice now that the events Ik = {Xk ∈ B(y, ε)}, P(Ik) > 0 are mutually

independent. Therefore the Borel-Cantelli Lemma implies the existence, with
probability 1, of a subsequence Xnk

∈ B(y, ε) so that B(y, ε)∩Ĥrnk
6= ∅. But

B(y, ε) is a connected set, so that y ∈ ∂S is such that B(y, ε) ⊂ ˚̂
Hrnk

, with

probability 1 for k large enough. This is impossible since H̊rnk
⊂ S ⊕ rnk

B

and rnk
→ 0 a.s. Thus (17) is proved.

Finally, in view of (13), we have

∂Ĥrn ⊂ ∂S ⊕ rnB e.a.s., (18)

which, combined with (17), proves (5).

3.2 Proof of Theorem 2

From (6), the assumptions of Theorem 3 in [12] are fulfilled by the sequence
of radiuses (rn), then we have S ⊂ Ŝrn/4 e.a.s. Hence, Theorem 1 applies,
i.e. (4),(5) and the inclusion (18) hold true.

Let then x ∈ ∂S; obviously two cases can occur. First, according to
Theorem 3 in [12], e.a.s., for all x ∈ ∂S ∩ Ĥc

rn , there exists an observation
Xi ∈ Xn such that

‖Xi − x‖ ≤
(
2 ln(n)

δωdn

)1/d

,

which, in view of (6), implies d(x, Ĥrn) ≤ rn ≤ CS rn, since CS ≥ 1 (from
Definition 6), thus (7) holds true. Secondly, if x ∈ ∂S ∩ Ĥrn, we proceed
by contradiction and suppose that d(x, ∂Ĥrn) > CS rn. Due to (18), this
implies:

B(x, CS rn) ⊂
˚︷ ︸︸ ︷

S ⊕ rnB.

12



Therefore we have d(x, ∂(S ⊕ rnB) > CSrn. Since, x ∈ ∂S this is in contra-
diction with Definition 6. This concludes the proof of Theorem 2.

4 Proof of Theorem 3

4.1 Technical lemmas

Lemma 1. Under the assumptions of Theorem 3 on S and PX , we have

lim
n→∞

sup
( n

lnn

)1/(d+α)

d(Xn, S) ≤
(

4

Cf ωd

)1/d+α

a.s., (19)

Proof. Let X be a random variable of distribution PX , with density f .
Let x ∈ S. We are going to bound the probability PX(B(x, rn)) for any

sequence rn → 0. To this aim, let us denote t0 = d(x, ∂S), and x∗ ∈ ∂S such
that ‖x− x∗‖ = d(x, ∂S). For t ∈ [0, t0 + rn] let us denote z(t) = x∗ + t ux∗,
A(t) = S(O+

y , RS)∩B(z(t), rn) and A(t) its (d−1)-dimensional measure. We
have

PX(B(x, rn)) ≥
∫ t0+rn

max(0,t0−r)

Cf t
αA(t) dt

Figure 2: Probability for an observation to be in a given ball

As rn = o(1), we have t = O(rn), t0 = O(rn) and A(t) ≥ ωd−1 h(t)
d−1

with h(t) = t20+2tt0−z2+ r2n+o(r2n), hence h(t) = r2n− (t− t0)2+2t20+o(r
2
n)

and

PX(B(x, rn)) ≥
∫ t0+rn

t0

tαCf ωd−1(r
2
n − (t− t0)

2 + o(r2n))
d−1
2 dt

13



Using the change the variables u = (t− t0)
2/r2n we then have

PX(B(x, rn)) ≥
Cf ωd

2
rα+d
n (1 + o(1)). (20)

Now, reasoning classically (as e.g. in [12]), we shall prove (19). For two
given positive sequences rn and εn such that rn → 0 and εn ≪ rn, let us
deterministically cover S with N(εn) ≤ λSε

−d
n balls of radius εn centered in

points xj ∈ S, j ∈ {1, . . . , N(εn)}. We have

P(sup
x∈S

min
i

||x−Xi|| ≥ rn) ≤ P(max
xj

min
i

||xj −Xi|| ≥ rn − εn),

and, noticing that supx∈S mini ||x − Xi|| = dH(S,Xn), and making use of
(20), we obtain:

P(dH(S,Xn) ≥ rn) ≤ λSε
−d
n

(

1− Cf ωd

2
(rn − εn)

d+α(1 + o(1))

)n

.

Setting

rn(u) =

(

2( d
d+α

+ 1 + u) lnn

Cf ωd n

)1/(d+α)

, εn =

(
1

n

)1/(d+α)

,

we finally have
P(dH(Xn, S) ≥ rn(u)) / n−1−u.

Applying the Borel-Cantelli lemma and noticing that d
d+α

+ 1 ≤ 2 concludes
the proof.

The next lemma gives a bound on the tangent cylinders to the support
of the distribution that do not contain any observations of the sample Xn.

Lemma 2. Assume the hypotheses of Theorem 3. Then, for any λ > 0 and
µ > 1 such that

c =
λCf ωd−1 (µ− 1)α+1

(α + 1)Rα+1
S

− 2d− 2

d+ 1 + 2α
> 1,

let us denote tn and hn two sequences such that

tn =

(

λ
lnn

n

) 1
d+1+2α

(1 + o(1)), hn = µ
r2n
2RS

(1 + o(1)).

Then, e.a.s, we have: for all x ∈ ∂S, C(x, tn, hn) ∩ Xn 6= ∅.

14



Proof. First notice that, if X is drawn from a distribution PX with density
f , then for all x ∈ ∂S, for all r > 0, for all h ≥ RS −

√

R2
S − r2 we have:

PX(C(x, r, h)) ≥ Cf ωd−1

∫ r0

0

zα
(

1− z

RS

)d−1

dz, (21)

where

r0 = RS

h− RS +
√

R2
S − r2

√

R2
S − r2

.

The calculation is left to the reader as it is similar to the one used in
previous Lemma.

Now, let us denote εn = (lnn)−2 and let us cover ∂S with N(∂S, εnr
2
n)

small deterministic balls, centered in points xi ∈ ∂S and that have a radius
εnr

2
n.
If there exists x ∈ ∂S such that C(x, rn, hn)∩Xn = ∅ then exists a xi such

that x ∈ B(xi, εnr
2
n). and ||ux − uxi

|| ≤ R−1
S εnr

2
n (according to Walther 99

Th1). Thus, according to Property 8 we can find explicit values for r′n and h′n
such that: C(xi, r

′
n, h

′
n) ⊂ C(x, rn, hn), r

′
n = rn(1+o(1)) and h

′
n = hn(1+o(1)),

hence we have

pn = PX(∃x ∈ ∂S,C(x, rn, hn) ∩ Xn = ∅) ≤ PX(∃xi,C(xi, r′n, h′n) ∩ Xn = ∅).

According to (21), replacing hn and rn by there given values we obtain:

pn ≤ N(∂S, εnr
2
n)

(

1− Cf ωd−1 (µ− 1)α+1 λ

(α + 1) (2RS)α+1

lnn

n
(1 + o(1))

)n

,

i.e.

pn ≤ λ∂Sε
−d+1
n (lnn)−2d+2 λ−2 d−1

d+1+2α n
2d−2

d+1+2α n
−

Cfωd−1(µ−1)α+1λ

(α+1)(2RS )α+1 +o(1)
.

With the chosen value for εn, we have

pn ≤ λ∂Sλ
− 2d−2

d+1+2α n−c+o(1).

Since c > 1 we have
∑
pn <∞ and we can apply the Borrel-Cantelli Lemma

to conclude.

4.2 Proof of Theorem 3

In view of the decomposition (13), we will proceed through two steps. First,
let x ∈ Ĥrn ∩ Sc, and, in view of Proposition 7, let x∗ ∈ ∂S such that

15



‖x − x∗‖ = d(x, ∂S). From Proposition 7, x, x∗, O+
x∗ and O−

x∗ are on the
same line. Moreover, since x ∈ Ĥrn, the definition (2) implies the existence
of i ∈ {1, . . . , n} and k + 1 ≤ d + 1 indexes {i1, . . . , ik+1} such that Xij ∈
B(Xi, rn), j = 1 . . . k+1, and x ∈ H({Xi1 , . . . , Xik+1

}). Therefore, for all j ∈
{i1, . . . , ik+1}, we have ‖x−Xij‖ ≤ 2rn, hence x ∈ H(B(x, 2r)∩Bc(O−

x∗ , RS)).
Then, as described in Figure 3,

∀x ∈ Ĥrn ∩ Sc, d(x, ∂S) ≤ RS −
√

R2
S − 4r2n.

Let us assume, with no loss of generality due to the asymptotic nature of our
result, that n is large enough in order to have rn < RS/4. This inclusion and
(8) yield

Ĥrn ∩ Sc ⊂ ∂S ⊕
(
2r2n
RS

(1 + o(1))

)

B. (22)

Notice that proof of (22) is purely geometric and deterministic.

Figure 3: x ∈ H(B(x, 2rn) ∩Bc(O−
x , RS)) =⇒ d(x, ∂S) ≤ RS −

√

R2
S − 4r2n

We now move to the study of Ĥc
rn∩S. We are going to prove the following:

Ĥc
rn ∩ S ⊂ ∂S ⊕ b r2nB e.a.s., (23)

where the constant b is explicitly given by

b =
19

32RS
+

1

2

(
(3d− 1 + 2α)(α + 1)4d+1+2α

(d+ 1 + 2α)λCfωd

)1/(α+1)

. (24)

To this aim, we argue by contradiction, and suppose that Ĥc
rn ∩ S * ∂S ⊕

br2nB, i.e. there exists a point x ∈ Ĥc
rn ∩ S such that dn = d(x, ∂S) > br2n.

16



Let then x∗ be the point of ∂S such that d(x, x∗) = dn. Proceeding as in the
proof of Theorem 1, we obtain that, since x ∈ Ĥc

rn, there exists a unit vector
u such that for all Xi in B(x, rn/2) ∩ Xn, 〈u,Xi − x〉 ≥ 0. Let us denote

ρn =

(
4 lnn

Cfωdn

) 1
d+α

.

Note that ρn ≪ rn. Three cases can then occur, which will be studied
separately :

i) dn > 3ρn : we have B(x, dn) ⊂ S so that B(x, 3ρn) ⊂ S. Setting
z = x − (3ρn/2)u, we have (u being a unit vector) ‖x − z‖ = 3ρn/2,
hence z ∈ S. For n large enough so that 3ρn ≤ rn/2, we thus have
B(z, 3ρn/2)∩Xn = ∅. This is not possible e.a.s. according to Lemma 1.

ii) dn ≤ 3ρn and u = ux∗: this case is represented in Figure 4. We will build
a tangent cylinder to ∂S which does not intersect Xn. As described by
Figure 4, we have:

C(x∗,
√

r2n/4− 4d2n, dn) ∩ Xn = ∅. (25)

Let tn =
√

r2n/4− 4d2n. Since dn ≤ 3ρn, we can write tn = (rn/2)(1 +
o(1)), b r2n). Then, in view of (25) and the fact that dn > b r2n, we have

C(x∗, tn, b r
2
n) ∩ Xn = ∅,

which, taking (24) into account, is e.a.s. impossible due to Lemma 2.

Figure 4: Xi ∈ B(x, rn/2) =⇒ 〈u,Xi − x〉 ≥ 0, ie Xi ∈ B−.

iii) dn ≤ 3ρn and u 6= ux∗: let w = −u + 〈u, ux∗〉ux∗, v = w/||w|| and
z∗ = x∗ + (

√

r2n/4− 4d2/2)v. As displayed in Figure 5, we have

C
ux∗ (z∗,

√

r2n/4− 4d2n/2, dn) ∩ Xn = ∅.

17



Figure 5: Xi ∈ B(x, rn/2) =⇒ 〈u,Xi − x〉 ≥ 0, ie Xi ∈ B−.

Let tn =
√

r2n/4− 4d2n/2 = (rn/4)(1 + o(1)). As in the previous case,
we deduce that

C
ux∗ (z∗, tn, br

2
n) ∩ Xn = ∅. (26)

The cylinder featured in (26) is not a tangent one, then the proof is yet
to be completed. From Definition 7 (see Figure 6), we have d(z∗, ∂S) ≤
αn = −RS +

√

R2
S + r2n/16 ∼ r2n/(32RS).

For a given z ∈ ∂S such that d(z, z∗) ≤ αn, we have d(z, x
∗) ≤ αn+rn/4,

so that, according to Proposition 5, ||uz − ux∗|| ≤ (rn/4 + αn)/RS. Let

e1 =
r2n

32RS
+ 2

(
√

t2n + b2r4n +
r2n

32RS

)
1

RS

(

αn +
rn
4

)

,

e2 =
r2n

32RS

+
√

t2n + b2r4n
1

RS

(

αn +
rn
4

)

.

Proposition 8 yields:

C(z, tn − e1, br
2
n − e2) = C

uz(z, tn − e1, br
2
n − e2) ⊂ C

ux∗ (z∗, tn, br
2
n).

A basic calculation gives

tn − e1 = tn(1 + o(1)), br2n − e2 =

(

b− 3

32RS

)

r2n (1 + o(1)),

and, in view of (26), we have

C(z, tn − e1, br
2
n − e2) ∩ Xn = ∅,

which, arguing as in the previous case, is e.a.s. impossible. Therefore
(23) is proved.

Notice now that, from Proposition 6, S is partly expandable with ex-
pandability constant CS = 1. Taking this into account, and reasoning as in
the proof of Theorem 2, we obtain (9) and (10) as a direct consequence of
inclusions (22) and (23).
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Figure 6: d(z∗, ∂S) ≤ αn.

5 Proof of Theorem 4

5.1 Technical framework and lemmas

We will first introduce some concepts related to the geometrical nature of
the estimator Ĥrn .

Definition 11. A d′−dimensional convex polyhedron in Rd is the convex hull
of a set of k > d′ + 1 points {x1, . . . xk} which spans Rd′.

Definition 12. A d′−dimensional polyhedron is a finite union of d′−dimensional
convex polyhedrons. Its boundary ∂A is a (d′ − 1)−dimensional polyhedron.
There exist N∂ ∈ N and a set {σ1, . . . , σN∂

} of (d′ − 1)−dimensional convex
polyhedrons, called faces, such that ∂A =

⋃
σi. Let σ̊i = {x ∈ σi, j 6= i ⇒

x /∈ σj} be the interior of the face for the usual topology induced by σi, and vi
the unit normal vector to σi pointing outward A. Then, for all z ∈ σ̊i there
exist εz > 0 such that :

i) ∀ε ∈]0, εz], z + εvi /∈ A,

ii) ∀ε ∈]0, εz], z − εvi ∈ Å.

Lemma 3. Let A be a d−dimensional polyhedron in Rd. Let z ∈ ∂A and
u ∈ Rd.

i) If there exists ε0 > 0 such that z + εu ∈ Ac for all ε ∈]0, ε0] then, there
exists i ∈ {1, . . . N∂} such that z ∈ σi and 〈vi , u〉 ≥ 0;

ii) if there exists ε0 > 0 such that z + εu ∈ Å for all ε ∈]0, ε0] then, there
exists i ∈ {1, . . . N∂} such that z ∈ σi and 〈vi , u〉 ≤ 0.
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Proof. Let us first notice that the result is obvious when the point z belongs
to a unique face of ∂A, that is z ∈ σ̊i for a unique index i ∈ {1, . . . , N∂}.

It then remains to prove the result for the points z located at the inter-
section of more than one face. Let z be a point of ∂A and I ⊂ {1, . . . , N∂}
the set of indexes such that z ∈ ⋂

i∈I σi, z /∈ ⋃

i∈Ic σi. Let us introduce
a = mini∈Ic d(z, σi). We will only prove the first assertion of the lemma (the
proof of the second one being similar). Assume that there exists ε0 > 0 such
that z + εu ∈ Ac for all ε ∈]0, ε0] and let us suppose that there also exists
i0 ∈ I such that 〈u, vi0〉 < 0. We set ε = min(ε0, a/4) and z1 = z + εu ∈ Ac.
For all z2 ∈ σ̊i0 with ||z − z2|| < ε, we have

〈z2 − z1, vi0〉 = ε〈u, vi0〉 < 0. (27)

According to our remark at the beginning of the proof, one can find t(z2) ∈
]z1, z2[∩Å. Thus, there exists x(z2) ∈]z1, t(z2)[∩∂A such that

[t(z2), x(z2)[⊂ Å. (28)

Since ||x(z2) − z|| ≤ ||x(z2)− z2|| + ||z2 − z1|| ≤ 3ε < a, there exists j0 ∈ I
such that x(z2) ∈ σj0. Noticing that x(z2) = σj0 ∩ [z1, z2], we can choose
z2 such that x(z2) ∈ σ̊j0 . Hence, (27), (28) and our initial remark allow to
conclude that choosing i = j0 proves the first assertion of the Lemma.

Lemma 4. Assume the hypotheses of Theorem 3 on Xn, PX and S. If the
sequence of radiuses rn satisfies (8), then there exist, e.a.s., at least d + 1
observations in every B(Xi, rn), i = 1 . . . n.

Proof. For a given i ∈ {1, . . . , n}, let us denote pn(i) = PX(B(Xi, rn)). The
probability qn(i) for B(Xi, rn) to contain less than d other observations of
the sample is then given by

qn(i) =
d−1∑

k=0

(
n
k

)

pn(i)
k(1− pn(i))

n−k.

For n > 2d, we have

qn(i) ≤
nd−1

(d− 1)!
(1− pn(i))

n
d−1∑

k=0

(
pn(i)

1− pn(i)

)k

,

then

qn(i) ≤
nd−1

(d− 1)!
(1− pn(i))

n 1− pn(i)

1− 2pn(i)
.
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As in the proof of Lemma 1, we have pn(i) ≥ A0r
d+α
n . Moreover, it is

obvious that pn(i) ≤ ωdmax(f)rdn → 0, hence, setting u = α+1
d+1+2α

, and in
view of (8), we obtain

qn(i) / nd−1 exp
(
−A0λ

d+αnu(lnn)1−u
)
.

Finally, the probability Pn that theres exists i ∈ {1, . . . , n} such that
B(Xi, rn) contains less than d+ 1 observations of the sample satisfies:

Pn / nd exp
(
−A0λ

d+αnu(lnn)1−u
)
.

Obviously, we have
∑
Pn < ∞ and the application of the Borrel-Cantelli

lemma concludes the proof.

Corollary 1. Assume the hypotheses of Theorem 3 on Xn, PX and S. Then,
if the sequence of radiuses rn satisfies (8), the estimator Ĥrn is e.a.s. a
d−dimensional manifold and a polyhedron.

The proof is a consequence of the fact than d + 1 points drawn from
a probability measure which is absolutely continuous with respect to the
Lebesgue measure necessarily span Rd a.s.

Lemma 5. Assume the hypotheses of Theorem 3 on Xn, PX and S. Assume
that the sequence of radiuses rn satisfies (8). There exists e.a.s. a finite
number σ1, . . . , σN∂

of (d− 1)−dimensional polyhedrons such that:

i) ∂Ĥrn =
⋃N∂

i=1 σi,

ii) for all i ∈ {1, . . . , N∂} there exists a set of d observations {X1,i, . . . , Xd,i} ⊂
Xn and a unique unit vector vi, normal to σi and outward to Ĥrn, such
that

ii-a) σi ⊂ H({X1,i, . . . , Xd,i}),
ii-b) there exists i∗ such that {X1,i, . . . , Xd,i} ⊂ B(Xi∗ , rn),

ii-c) for all j such that {X1,i, . . . , Xd,i} ⊂ B(Xj , rn), for all k such that
Xk ∈ B(Xj, rn), for all x ∈ σi, we have 〈x−Xk, vi〉 ≥ 0.

Proof. Point i) is a direct consequence of Corollary 1.
For all x ∈ ∂Ĥrn , there exists an index ix such that x ∈ ∂H(B(Xix , rn) ∩

Xn) and therefore there exist Ai := {X1,ix , . . . , Xd,ix} ⊂ B(Xix , rn)∩Xn, such
that x ∈ H(Ai).

Let i ∈ {1, . . . , N∂} such that x ∈ σi. Necessarily, σi ⊂ H(Ai); otherwise
there would be more than d observations belonging to a (d−1)−dimensional
plane, which is a.s. impossible. This proves point ii− a).
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Choosing i∗ = ix then proves point ii− b).
Now, Let us define vi as the unit vector, orthogonal to the plane which

contains the Ai, and pointing outward H(B(Xix , rn) ∩ Xn). Then, for all j
such that Xj ∈ B(Xix , rn)∩Xn, we obviously have 〈y−Xj , vi〉 ≥ 0, ∀y ∈ σi.

Point ii-c) than holds in a same manner, σi being a face of ∂Ĥrn .

Lemma 6. Assume the hypotheses of Theorem 3 on Xn, PX and S. Assume
that the sequence of radiuses rn satisfies (8). Then, e.a.s., for all x ∈ ∂Ĥrn,
for all i ∈ {1, . . . , N∂} such that x ∈ σi, for all z ∈ ∂S satisfying ‖x− z‖ =
d(x, ∂S), we have 〈vi, uz〉 < 0.

Proof. Let ρ0 > 0 be large enough. Let

ρn = 2ρ0

(
lnn

n

) 1
d+α

,

εn = ε0

(
lnn

n

) 2
d+1+2α

,

where ρ0 > 0 is large enough so that, according to Lemma 1, e.a.s., for any
x ∈ S, we have B(x, ρn)∩Xn 6= ∅. The number ε0 > 0 is chosen large enough
so that, in view of (10),

dH(∂Ĥrn , ∂S) ≤ εn, e.a.s. (29)

Let us proceed by contradiction. Suppose that there exists i ∈ {1, . . . , N∂}
and x ∈ σi such that 〈vi, uz〉 ≥ 0. According to Lemma 5 there exists Xi∗

and {X1,i, . . . , Xd,i} ⊂ B(Xi∗) ∩ Xn such that σi ⊂ H({X1,i, . . . , Xd,i}).
In a first step, let us prove that we e.a.s. have

〈vi, uz〉 ≥ 0 =⇒ 〈Xi∗ − x, vi〉 > rn − 2ρn. (30)

Once again we proceed by contradiction and suppose that 〈Xi∗ −x, vi〉 ≤
rn − 2ρn. Let y = Xi∗ + (rn − ρn)vi; we have B(y, ρn) ∩ Xn = ∅. In view of
Definition 7, the triangle inequality and (29), we have,

Xi∗ ∈ B(z, rn + εn) ∩B
c(O−

z , RS), e.a.s.

That implies

Xi∗ ∈ B(z, rn + εn) ∩ {t, 〈t− z, uz〉 ≥ −en}, en =
r2n
2Rs

(1 + o(1)).
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Noticing that ||Xi∗ − y|| ≤ rn and 〈y − Xi∗ , uz〉 = (rn − ρn)〈vi, uz〉 ≥ 0,
we obtain:

y ∈ B(z, 2rn + εn) ∩ {t, 〈t− z, uz〉 ≥ −en}.
Therefore ||O+

z − y|| ≤ RS + e′n with e′n ∼ 5r2n
2RS

(see Figure 7). Let now

ỹ =

{
y if y ∈ S
argmin{w ∈ ∂S, d(w, y)} if y /∈ S

The previous considerations imply that ||ỹ − y|| ≤ e′n, that is there exists
ỹ ∈ S such that B(ỹ, ρn − e′n) ∩ Xn = ∅ which is, e.a.s., impossible. That
proves (30).

Figure 7: Xi∗ ∈ B(z, rn + εn) ∩Bc(O−
z , RS) ⇒ d(y, O+

ϕrn(x)
) ≤ RS + e′n)

But now (30) implies that, for any k and l, ||Xk,i −Xl,i|| ≤ 4
√

ρnrn − r2n
(see Figure 8). Therefore, for all k, ||x−Xk,i|| ≤ 4

√

ρnrn − r2n. Finally, when
n is large enough we have: {X1,i, . . . , Xd,i} ⊂ B(X1,i, rn) and ||x∗ −X1,i|| ≤
4
√

ρnrn − r2n ≪ rn − 2ρn which is e.a.s. not possible according to (30).

5.2 Proof of Theorem 4

Let us introduce the function

ϕrn :

{

∂Ĥrn −→ ∂S
x 7−→ argminy∈∂S ‖x− y‖
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Figure 8: 〈Xi∗ − x∗, ux∗〉 ≥ rn − 2ρn ⇒ ∀i, j, ||Xk,i −Xl,i|| ≤ 4
√
ρnrn − r2n

Proving (11) now boils down to proving that ϕrn is well-defined, contin-
uous, bijective, and that ϕ−1

rn is continuous.
First, from Proposition 7, for any x such that d(x, ∂S) < RS, there exists

a unique y ∈ ∂S that realizes min ||x− y||. Moreover, the assumptions being
the same as they are for Theorem 3, inclusions (22) and (23) hold, hence, for
n large enough, ∂Ĥrn ⊂ ∂S ⊕ RS

2
B e.a.s. Therefore the function ϕrn is e.a.s.

well defined.
Now, let us prove that the application

ϕ :

{
∂S ⊕ RS

2
B −→ ∂S
x 7−→ argminy∈∂S ‖x− y‖ (31)

is continuous, which will obviously imply the continuity of ϕrn. Let 0 < ε ≤
RS/4, and x ∈ Rd such that d(x, ∂S) < RS/2. From (31), for x′ ∈ B(x, ε),
we have d(x′, ∂S) ≤ ||x′ − ϕ(x)||, i.e. ϕ(x′) ∈ B(x′, ||ϕ(x)− x′||). Since balls

of radius RS roll freely inside S, we have B̊(O+
ϕ(x), RS) ⊂ S̊, which implies,

ϕ(x′) belonging to ∂S, that ϕ(x′) /∈ B̊(O+
ϕ(x), RS). From this we deduce, as

represented on Figure 9, that ||ϕ(x′)−ϕ(x)|| ≤ 4ε. This proves the continuity
of ϕ.

From the inclusions (22) and (23), there exists a constant a such that
Ĥrn∆S ⊂ ∂S ⊕ ar2nB e.a.s. Let x ∈ ∂S ∩ Ĥc

rn (respectively x ∈ ∂S ∩ Ĥrn),

and y = x+ ar2nux (resp. y = x− ar2nux). We have y ∈ Ĥrn (resp. y ∈ Ĥc
rn)

e.a.s., hence according to Propositions 2 and 7, [x, y] intersects ∂Ĥrn at a
point x∗ that satisfies ϕrn(x

∗) = x. Therefore ϕrn is surjective.
Let us now prove that ϕrn is injective. Arguing by contradiction, let us

suppose that there exists two points, x and y in ∂Ĥrn such that ϕrn(x) =
ϕrn(y) = z. Then, from Proposition 7, x, y and z belong to the same line
directed by uz.

Let us now consider different cases. Let us recall that, in view of Definition
12, a point in ∂Ĥrn belongs to a face σi with outward unit normal vector vi.
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Figure 9: ||x− O+
ϕ(x)|| ≥ RS/2 and ε ≤ RS/4 ⇒ sin(α) = ||x′−x′′||

||O+
ϕ(x)

−x′||
≤ 4ε

RS
⇒

l′ ≤ 4ε

i) The first one is when [x, y] ∩ ∂Ĥrn = [x, y]. In this case, consider the
point x∗ = (x+y)/2. Then, x∗ belongs to a face σi ⊂ ∂Ĥrn that contains
the vector uz. This last point implies that 〈vi , uz〉 = 0, which is, e.a.s.,
impossible according to Lemma 6.

ii) The second case is when [x, y] ∩ ∂Ĥrn 6= [x, y] and [x, y] ∩ Ĥc
rn 6= ∅.

There exists z∗ ∈]x, y[∩Ĥc
rn . Let us define the closed half line ∆∗ =

{z∗ − λuz, λ ≥ 0} and the point z̃ = argmin{||t − z∗||, t ∈ Ĥrn ∩ ∆∗}.
Recall that uz̃ = uz. Note that z̃ ∈ ∂Ĥrn , and that, for 0 < ε < ||z̃− z||,
z̃ + εuz ∈ Ĥc

rn . Thus, in view of Lemma 3, there exists a face σi ⊂ ∂Ĥrn

(with normal vector vi) which contains z̃ such that 〈vi , uz̃〉 = 〈vi , uz〉 ≥
0. This is impossible according to Lemma 6.

iii) The third case that is [x, y] ∩ ∂Ĥrn 6= [x, y] and [x, y] ∩ ˚̂
Hrn 6= ∅ can be

solved as the previous one. Namely There exists z∗ ∈]x, y[∩H̊rn . Let
us define the closed half line ∆∗ = {z∗ + λuz, λ ≥ 0} and the point
z̃ = argmin{||t− z∗||, t ∈ Ĥrn ∩ ∆∗}. The conclusion is the same as in
the previous case.

We have proved that ϕrn is e.a.s bijective and continuous. It then remains
to prove that ϕ−1

rn is e.a.s continuous. For a given point x ∈ ∂S let us denote
x+ = x + RS

2
ux and x− = x − RS

2
ux. Due to the inclusions (22) and (23),

the line segment [x+, x−] intersects ∂Ĥrn at a unique point ϕ−1
rn (x). Let

k ∈ {1, . . . , N∂} be the number of faces in ∂Ĥrn containing ϕ−1
rn (x) (as in

Definition 12). Renumbering the faces for the ease of reading, we have

0 = d([x+, x−], σ1) = . . . = d([x+, x−], σk),
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and
0 < d([x+, x−], σk+1) ≤ . . . ≤ d([x+, x−], σN∂

).

From Lemma 6, for all i ≤ k, we have 〈−vi, ux〉 > 0 e.a.s. Let us then define
e0 = maxi≤k{1/〈−vi, ux〉} > 0.

Let ε > 0. For z ∈ ∂S ∩B(x, ε), let z+ = z + RS

2
uz and z− = z − RS

2
uz.

Proposition 5 and the triangle inequality imply that,for all λ ∈ [−RS

2
, RS

2
],

‖zλ−xλ‖ ≤ 3ε/2 where xλ = x+λux and zλ = z+λuz. From this we deduce

dH([x
+, x−], [z+, z−]) ≤ 3

2
ε. (32)

Now, choose ε < 2
3d([x+,x−],σk+1)

. For all z ∈ ∂S ∩ B(x, ε), the line segment

[z+, z−] does not intersect any σi for i > k. The application ϕrn being e.a.s.
bijective, the segment [z+, z−] intersects ∂Ĥrn at a unique point ϕ−1

rn (z) ∈ σi
for some index i ≤ k. The inequality (32) then implies that

‖ϕ−1
rn (z)− ϕ−1

rn (x)‖ ≤ 3ε

2〈−vi, ux〉
≤ 3e0ε/2,

which proves the continuity of ϕ−1
rn . Thus (11) is proved.

The proof of (12) is now straightforward. It suffices to define ψrn : Ĥrn →
S, the natural extension of ϕrn to Ĥrn, as follows:

i) if x ∈ S ⊖ (RS/2)B then ψrn(x) = x,

ii) if x ∈ S \ (S ⊖ (RS/2)B) then ψrn(x) = x′ − 2||x′−z||.||x′−x||
RS

ug(x) where

a) g(x) = argmin(d(x, ∂S)),

b) x′ = g(x)− RS

2
ug(x),

c) z = ϕ−1
rn (g(x)).

It is easy (and left to the reader) to prove that ψrn is e.a.s. an homeo-
morphism from Ĥrn to S. This concludes the proof.

6 Numerical simulations

The aim of this section is to validate the efficiency of our method in the case
of some given examples for which the support and density are prescribed.
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6.1 Simulated data

First we present numerical simulations on some “toy” examples. The obser-
vations have been generated as follows.

1. 500 realizations uniformly drawn on the star shape

S = [−1, 1]2 \ (
4⋃

i:1

B(Ci, 1)), Ci ∈ {(−1,−1), (−1, 1), (1,−1), (1, 1)} .

In this case S only satisfies the assumptions of Theorem 1.

2. 500 realizations drawn on an asterisk shape with the following distribution:

X = (cos(θ)x+ sin(θ)y, cos(θ)y − sin(θ)x),
P(θ = kπ/4) = 1/4, k ∈ {0, 1, 2, 3},
(x, y) →֒ U([−1, 1]× [−0.05, 0.05]).

In this case the assumptions of Theorem 2 are satisfied.

3. 500 realizations drawn in S = B(0, 1) \ B(0, r) with the following distri-
bution:

X = (r cos θ, r sin θ), θ →֒ U([0, 2π]), r →֒ U([r, 1]).

The results for different values of r are presented ; r = 0.9, r = 0.5 and
r = 0 (respectively denoted 3 − a), 3 − b) and 3 − c). In this case, the
assumptions of Theorems 3 and 4 are fulfilled.

Figure 10 presents three series of results: the Devroye-Wise estimator
for the best radius according to support estimation, the Devroye Wise es-
timator for the best radius according to the boundary estimation and the
Local-Convex-Hull estimator for the best radius according to the support
estimation.

It can be noticed that, the boundary of the Devroye-Wises estimator
with the best radius according for support estimation does not accurately
estimate the boundary. Also, the Devroye-Wise estimator with the best
radius for boundary estimation overfills the support. On the other hand the
Local Convex Hull estimator, with the best radius for support estimation
provides much better estimations of the support and its boundary.
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Devroye-Wise Devroye-Wise Local-Convex-Hull
best radius for best radius for best radius for

Support. Boundary. Support.
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Figure 10: Comparison of the estimators for the different examples

6.2 Application to a real data

Here the method is applied to a set of 5323 locations of epicenters of earth-
quakes with a magnitude greater than 6. In this example we have slightly
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changed the estimator in order to take into account the fact that we are work-
ing with spherical coordinates. The location Xi of each epicenter is given on
the sphere S

2. On Figure 11 we represent the modified estimator:

H̃r =
⋃

i

H(p(B(Xi, r) ∩ Xn)),

where p returns to each point of S2 its latitude and longitude.
In order to remove the noise from the data we also computed this estima-

tor on the 4000 epicenters where the estimated density is the highest. The
density was estimated with a nearest neighbor density estimator (see [23]).

Figure 11: Results for seism epicenters : support estimation in yellow, sup-
port estimation for the 4000 epicenters of highest density in red.
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