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Abstract 

Flash floods represent one of the most common natural hazards in mountain catchments, and 

are frequent in Mediterranean environments. As a result of the widespread lack of reliable 

data on past events, the understanding of their spatio-temporal occurrence and their climatic 

triggers remains rather limited. Here, we present a dendrogeomorphic reconstruction of past 

flash flood activity in the Arroyo de los Puentes stream (Sierra de Guadarrama, Spanish Central 

System). We analyze a total of 287 increment cores from 178 disturbed Scots pine trees (Pinus 

sylvestris L.) which yielded indications on 212 growth disturbances related to past flash flood 

impact. In combination with local archives, meteorological data, annual forest management 

records and highly-resolved terrestrial data (i.e., LiDAR data and aerial imagery), the 

dendrogeomorphic time series allowed dating 25 flash floods over the last three centuries, 

with a major event leaving an intense geomorphic footprint throughout the catchment in 

1936. The analysis of meteorological records suggests that the rainfall thresholds of flash 

floods vary with the seasonality of events. Dated flash floods in the 20
th

 century were primarily 

related with synoptic troughs owing to the arrival of air masses from north and west on the 

Iberian Peninsula during negative indices of the North Atlantic Oscillation. The results of this 

study contribute considerably to a better understanding of hazards related with 

hydrogeomorphic processes in central Spain in general and in the Sierra de Guadarrama 

National Park in particular. 

 

Key words: paleohydrology, flash flood, tree ring, dendrogeomorphology, 

hydrometeorological triggers, Sierra de Guadarrama. 
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1. INTRODUCTION 

Flash floods represent one of the most common natural hazards in mountain 

environments (Borga et al., 2008, 2014). The process is characterized by high flow velocities 

and important sediment charge causing severe damage and socio-economic losses, especially 

along the channels and on alluvial fans. In headwater catchments, torrential processes are 

moreover the main geomorphic agent responsible for landscape evolution (Carling, 1986; 

Foulds et al., 2014). From a scientific perspective, the understanding of the temporal 

dimension of these processes as well as their climatic triggers and subsequent effects on the 

environment are still a challenge worldwide (Schneuwly-Bollschweiler et al., 2012), probably 

owing to the frequent occurrence of these processes in sparsely populated areas where 

archival data and systematic records are usually scarce (Mayer et al., 2010) or 

unrepresentative (Ayala-Carcedo, 2002). The lack of data on past activity therefore hampers 

the analysis of flash flood processes and calls for the use of alternative geomorphic approaches 

(Ibsen and Brunsden, 1996; Jakob, 2005). In this regard, paleohydrologic techniques allow to 

track the history of past (flash) flood events in ungauged catchments (Baker et al., 2002; Benito 

et al., 2003; Baker 2008), and consequently, to improve links between process dynamics, 

climatic conditions and related hazards (Kingston et al., 2007; De Jong et al., 2009; Merz et al., 

2014). 

In mountain catchments, trees are frequently present next to torrential channels and on 

their banks, and can thus be used to reconstruct past flood activity with dendrogeomorphic 

methods (Stoffel et al., 2010a). The systematic analysis of growth-ring series from trees 

disturbed by hydrogeomorphic processes (Stoffel and Wilford, 2012) typically yields valuable 

records of past events in ungauged mountain catchments with very high spatial and temporal 

accuracy (Shroder, 1980; Stoffel et al., 2010; Stoffel and Corona, 2014).  

Dendrogeomorphical techniques have first been applied in fluvial geomorphology 

(Sigafoos, 1964; Sigafoos and Hendricks, 1961). However, despite that the utility of botanical 
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evidence in paleohydrology has been recognized by many researchers (i.e. Baker 1987; Hupp, 

1988), tree rings have been used much less frequently as compared to other lines of evidence 

of paleofloods (e.g., slackwater deposits; Benito and Thorndycraft, 2004). The large potential 

of dendrogeomorphic tools for the assessment of frequency and magnitude of past events has 

been demonstrated in recent works (e.g., Ballesteros et al., 2011; Gottesfeld and Gottesfeld, 

1990; Gottesfeld, 1996; Ruiz-Villanueva et al., 2010; Schraml et al., 2013; St. George and 

Nielsen, 2003). Further research has focused on changes in the spatial geomorphic patterns of 

processes (Arbellay et al., 2010; Bollschweiler et al., 2008; Stoffel et al., 2008) and on the 

seasonality and related climatic drivers of hydrogeomorphic processes (Schneuwly-

Bollschweiler and Stoffel, 2012; Stoffel et al., 2011, 2014). 

Here, we present a case study focusing on the spatio-temporal reconstruction of past 

flash flood activity in the Arroyo de los Puentes stream (Sierra de Guadarrama National Park, 

Spanish Central System). We analyze 178 Scots pine trees (Pinus sylvestris L.) disturbed by past 

flash flood events and couple this data with a large local historical forest management and 

climatic dataset of the study site to (i) report on the flash flood history of the stream during 

the last 212 years, and to (ii) identify local meteorological conditions which most likely acted as 

triggers of flash flood events during the past 83 years for which meteorological records exist 

locally.  

2. STUDY SITE 

The study site is located in the catchment known as Arroyo de los Puentes and its 

tributaries, located on the northern slope of the Guadarrama Mountains (Sierra de 

Guadarrama National Park, Spanish Central System, 40° 47´ 37”N, 3° 55´ 14”O; Fig. 1). The 

catchment covers approximately 2.5Km2 and extends from the Bola del Mundo at 2258 masl to 

the alluvial fan area at 1500 masl. The average slope in the main channel is 9° (range: 7° - 18°).  

 

(FIGURE 1) 
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The upper part of the catchment is occupied by extensive accumulations of 

unconsolidated gneissic materials prone to gelifraction. Water circulation in the source area is 

mostly sub-superficial, although several well-defined channels exist. The most characteristic 

geomorphic features in the central part of the catchment (between 1800 and 1600 masl) are 

linked with torrential activity, such as levees, lobes and well-defined avulsion channels. In this 

channel segment (at 1660 masl), Majabarca stream joins the main channel and exhibits several 

trees affected by floods. In the lower part of the catchment (from 1550 to 1480 masl) the 

valley opens and the gradient decreases, creating an alluvial fan at the confluence of Arroyo de 

los Puentes with Arroyo de las Pintadas stream. The fan covers an area of approximately 0.03 

km
2
ha and its surface is crossed by several channels.  

The region is dominated by a Mediterranean climate with continental influence that could 

be considered as ‘humid continental with warm summers’ (type ‘Dsb’: Köppen-Geiger 

classification, Peel et al., 2007). The study zone also has some Atlantic influence in the regime 

of rainstorms and is characterized by mild summers and long, cold winters. Average annual 

precipitation is 1326 mm with maximum rainfall in April, May, October, November and 

December (AEMET, 2011). Mean annual temperature is 6.5°C at 1890 masl with mean monthly 

temperatures ranging from 2.9°C in winter to 9.9°C in summer, reaching up to 31.8° C in 

August and -20.3°C in December, as extreme values. 

The study area is located in Montes de Valsaín (hereafter, Valsaín Forest), an extensive, 

managed P. sylvestris L. forest (10700 ha). The forest is unique in the Mediterranean context 

owing to the extremely detailed record of forest management interventions started at the end 

of the 18
th

 century and its management in general over more than eight centuries (Donés and 

Garrido, 2001). 

 

3. MATERIALS AND METHODS 
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3.1. Geomorphic mapping and sampling strategy 

A geomorphic characterization of all of the features related to hydrogeomorphic 

processes in the studied catchment was carried out by combining aerial imagery (cell size: 0.25 

m), LiDAR data (cell size: 1 m) and field surveys. All geomorphic features were digitized using 

ArcGIS
TM

 version 9.3 (ESRI, Redlands, CA, USA, 2009). Disturbed trees – namely wounded, 

tilted, decapitated or buried trees – located along the channel banks and/or on the fan were 

sampled following standard procedures in dendrogeomophic studies as described in Stoffel 

and Corona (2014). Trees with possible disturbances by any process other than 

hydrogeomorphic (such as rockfall or human activities) were not been included in analysis. 

Trees were sampled with increment borers and two increment cores per tree were extracted 

with sampling positions being chosen according to the nature of the disturbance (Stoffel et al., 

2005a). Samples were taken at the contact between the scar edge and the intact wood tissue 

to make sure that the entire tree-ring record was obtained (Schneuwly et al., 2009a, 2009b). In 

parallel, undisturbed trees were also sampled in the upper and lower parts of the catchment 

to build a reference chronology and to identify pointer years for a reliable and precise cross-

dating with disturbed trees (Touchan et al. 2013). Tree-ring widths were converted into width 

indices by standardizing raw data using ARSTAN software (Cook, 1985).  

 

3.2. Tree-ring analysis and flash flood chronology reconstruction 

Samples were prepared and measured following standard dendrochronological 

procedures (Stoffel and Bollschweiler, 2008; 2009). Individual growth series were obtained for 

each tree and cross-dated with the reference chronology, both visually and through statistical 

procedures (Stoffel et al., 2005a, 2005b). Signatures of past flash flood activity were then 

identified on the increment cores and included injuries, callus tissues, compression wood, 

abrupt growth increase and/or growth suppression. Because Pinus spp. do not form tangential 
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rows of traumatic resin ducts (or TRD, Stoffel, 2008), the seasonality of flash flood events had 

to be based on the position of wound borders within the increment rings. 

For the separation of flood signals from noise related with other external processes 

affecting trees, we applied the weighted index value (Wit) as defined by Kogelnig-Mayer et al. 

(2011). This index considers the number and the intensity of growth disturbances (GDs) within 

each tree-ring series and the total number of trees available for the flash flood reconstruction. 

The Wit is calculated for each year of the reconstruction and considers differences in the 

intensity of tree reactions to mechanic disturbance related with past events. We screened 

recent publications to define appropriate thresholds for the identification of past 

hydrogeomorphic events (Corona et al., 2014; Schneuwly-Bollschweiler et al., 2013; Stoffel et 

al., 2011). In addition to the thresholds, we also visually analysed the spatial distribution of the 

affected trees along the channel and their relationship with geomorphic features (Lopez-Saez 

et al., 2011). 

Owing to the fact that the anthropogenic influence in the Valsaín Forest is far from being 

negligible, we also took account of the very detailed and precise official register of forestry 

works carried out in the catchment since 1940. This additional information allowed discarding 

doubtful signals in years when intense forestry interventions were realized in the sampled 

area. Consequently, criteria to define flash flood events was defined as follows:  

• Wit > 1: EVENT 

•  1> Wit > 0.5 without forestry work at the study area and more than 3 GDs: EVENT 

•  1> Wit > 0.5 with forestry work at the study area: NO EVENT 

•  Wit < 0.5: NO EVENT 

 

3.3. Hydrometeorological analysis of reconstructed flash floods 

Different historical archives have been screened to refine the (sub-) annually 

reconstructed dates of flash floods to the month or even the exact date. The sources analyzed 
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included the archives from the Valsaín Forest documentary centre, national and local 

newspapers, local literature and meteorological ephemerides from the Spanish Meteorological 

Agency (AEMET). For those events in which a precise dating was not possible, we considered 

all potential triggering situations with the highest (or majors) rainfall precipitation totals (>30 

mm) recorded throughout the year, but we also considered potential rain-on-snow processes. 

Subsequently, 1-, 3-, and 5-day cumulated rainfall totals were analyzed to determine the 

meteorological characteristics related with flash flood events at the study site. We also 

evaluated the monthly North Atlantic Oscillation Index (NAO) and synoptic situations 

prevailing before the occurrence of events.  

Hydrometeorological data exists at Navacerrada, a meteorological station located next to 

the source area of the study site (40° 47´N, 4° 00´W, 1894 masl; Fig. 1) for the period 1933-

2011. In addition, we consulted the time series from Segovia’s meteorological station (40° 

56´N, 4° 10´W, 1005 masl) for which daily data are available since 1894 (AEMET, 2011). Finally, 

for the definition of the large scale atmospheric flow and weather circulation patterns related 

with the reconstructed flash flood events, the Hess and Brezowsky Grosswetterlagen (GWL) 

weather classification system (Gestengabe and Werner, 2005; Parajka et al., 2010) was used. 

This catalogue provides daily information of patterns over Europe for the period 1881–2004, 

based on the mean air pressure distribution at both, surface level and 500 hPa level. In this 

study, we focused on 29 weather types classified into six different groups (, Gestengabe and 

Werner, 2005; Parajka et al., 2010): 

1. Zonal West: WA, WZ, WS, WW 

2. Mixed: SWA, SWZ, NWA, NWZ, HM, BM 

3. Mixed Central Europe (CE): TM 

4. Meridional North (N): NA, NZ, HNA, HNZ, HB, TRM 

5. Meridional Northeast and East (NE, E): NEA, NEZ, HFA, HFZ, HNFA, HNFZ 

6. Meridional Southeast and South (SE, E): SEA, SEZ, SA, SZ, TB, TRW 
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4. RESULTS 

4.1. Age structure of the forest stand 

The reference chronologies developed for the upper and lower parts of the study area 

covered the periods 1784–2011 and 1748-2011, respectively. The tree-ring growth indices 

showed for both sites narrow rings in 1829, 1889, 1950, 1972, 1986 and 1996 (Fig. 2). These 

narrow rings were used for the visual cross-dating of reference trees (undisturbed) with 

disturbed trees. Data on the pith age at breast height indicated that the 178 trees sampled at 

Arroyo de los Puentes stream were on average 150 years old (± 77 years). The oldest tree 

selected for analysis attained sampling height in 1680, whereas the youngest tree reached 

sampling position in 2000. At least 37 trees were living in 1800, hence the time period 

considered is well represented by the sampled depth. 

(FIGURE 2) 

 

4.2. Flash flood reconstruction 

A total of 212 GDs were identified in 287 increment cores, most of them in the form of 

scars (n=91, 42%). Among the other types of GDs, we observed 50 occurrences of reaction 

wood (23%), 42 trees exhibited an abrupt growth suppression (n=42, 19%), whereas growth 

releases (n=18, 8%) and callus tissues (n=11, 5%) were much less frequent. From all GDs, 43% 

were classified as very strong, 34 % as intermediate and 23% as weak reactions.  

 

Based on the number and intensity of reactions as well as the sample depth available for 

each year of the reconstruction, Fig. 3 shows the computed Wit index, which ranks between 

0.04 and 36.3. In 28 years, the Wit index exceeded the combined threshold of Wit >0.5 and GDs 

≥3 (Table 1). The historical forest management database indicated that the sampled area, 

divided into five forest management units, was subjected to periodically forestry interventions, 
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starting in the early 1940s. Table 2 shows the match between forestry activities as well as the 

reasons for the interventions. At least 3 years (1945, 1950, and 1996), categorized as potential 

flood events in Table 1, match with years of forestry interventions following “extraordinary 

events” in the study reach. In the case of 1945 and 1996, these “extraordinary events” were 

related to large snow falls which provoked widespread forest damage; but the nature of the 

extraordinary 1950 event is unknown.  

As a consequence of these records, the reconstructed flash flood chronology has been 

reduced to 25 reconstructed events at the study site. The most significant events, in terms of 

threshold values with a Wit > 5, took place in 1936 (Wit=36.3), 1954 (Wit=10.9) and 1999 

(Wit=5.18). In addition, three years showed events with indices ranging from 5 ≥ Wit ≥ 2, these 

were in 1813 (Wit=3.7), 1966 (Wit=2.2) and 1956 (Wit=2.0). Nine years showed a Wit comprised 

between 1 and 2 (i.e., 1802, 1869, 1880, 1900, 1926, 1952, 1973, 1984 and 2004), whereas in 

10 cases the Wit ranked between 0.5 and 1 (i.e., 1830, 1853, 1858, 1871, 1873, 1876, 1884, 

1906, 1933, and 1947). Considering the flash flood activity in the Arroyo de los Puentes 

catchment since 1802, the reconstructed frequency was 0.12 events/year. The partial 

frequency increased in 1870s with 5 flash floods in 10 years and between 1940s and 1950s 

with 4 events between 1947 and 1956 (Fig. 4).  

(FIGURE 3) 

(TABLE 1) 

(TABLE 2) 

(FIGURE 4) 

Fig. 5A illustrates the three main patterns of GDs distribution at the study site. During 

more than two-thirds of all events, GDs were limited to trees growing along the Arroyo de los 

Puentes stream, whereas disturbance signals were missing completely in its tributary (70% of 

all events, i.e., 1802, 1813, 1830, 1853, 1858, 1869, 1871, 1874, 1876, 1880, 1884, 1900, 1906, 

1936, 1945, 1947, 1950, 1956, 1973, 1984, 1996 and 2004). In four cases (17%; 1926, 1933, 
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1966 and 1944), GDs were observed in the Arroyo de los Puentes and the Majabarca streams. 

In three cases (13%, i.e. 1952, 1954 and 1999) GDs were only recorded in Majabarca stream. 

(FIGURE 5) 

 

4.3. Hydrometeorological triggers and synoptic situation 

The assessment of the seasonality of flash floods and/or the calendar-dating of 

reconstructed events was based on the intra-annual position of the damages in the tree-ring 

records, historical archives, contemporary newspaper reports, as well as on literature existing 

on flash floods in the wider study region. This approach allowed a realistic calendar-dating of 

seven 20th century flash floods (i.e., 1900, 1936, 1952, 1954, 1956, 1984 and 1999). By 

contrast, local documentation or indirect evidence of events could not be found for the events 

which occurred in 1906, 1926, 1933, 1947, 1966, 1973 and 2004.  

In the case of the calendar-dated flash floods, Table 3 shows the main 

hydrometeorological variables analyzed as well as the distribution of events throughout the 

year. It becomes obvious that flash floods are mostly limited to the moist seasons with 

reconstructed flash flood events occurring mainly in autumn-winter (October 1900, February 

1936, March 1952, November 1954, January 1956), and a unique flash flood in spring (May 

1984) and another one during summer (September 1999). For events without exact monthly 

date (Table 4), the most likely seasonality were October-November (7 potential cases), May-

April (5 potential cases) and March (1947). With exception of only two cases (1954 and 2004), 

all the events were related to a negative monthly NAO-index.  

(TABLE 3) 

(TABLE 4) 

Analysis of rainfall thresholds related with the likely triggers of reconstructed events 

(period with available data: n = 14) showed differences in precipitation which can likely be 

related to the seasonality of storms (Fig. 6). Despite the small sample used for analysis, we 
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observed that autumn and winter flash floods were clearly characterized by higher rainfall 

totals than those occurring in spring or summer. The thresholds for winter events were 54.2 

mm, 87.7 mm, and 143.0 mm for the largest 1-, 3-, and 5-day rainfall, respectively. Spring flash 

floods were characterized by rainfall thresholds of 32.4, 56.6, and 67.6 mm for the same 

durations, whereas events in autumn had thresholds of 67.9, 139.8, and 146.6 mm for the 

largest 1-, 3-, and 5-day rainfall totals, respectively. For the case of the unique summer event 

(1999), the triggering rainfall showed totals of 27, 27.3, and 35.8 mm for the 1-, 3-, and 5-day 

rainfall, respectively. The very small 1- and 3-day rainfall totals recorded at Navacerrada 

station located next to the source areas of flash floods may point to a short-lived, but intense 

storm as the trigger of the flash flood.  

The GWL weather classification system and analysis of the isobaric maps at 500hPa and 

surface level associated with the precipitation records triggering the identified events 

suggested different weather patterns (Figure 7). Meridional patterns were identified in three 

cases (i.e. 1952, 1984 and 1999), whereas zonal patterns were observed in two cases (i.e. 

1900,and 1954). Two more cases showed a deep low pressure system in Europe (i.e. 1936) and 

a mixed pattern affected by a north-west air masses (i.e. 1956). Therefore, the identified 

meteorological causes probably related to the reconstructed events are the following: frontal 

systems (69% of cases), combination of frontal systems and snowmelt processes (23 % of 

cases) and convective storms (8% of cases), respectively. 

(FIGURE 6) 

(FIGURE 7) 

 

5. DISCUSSION 

In this study we provide a 212-year chronology of flash floods based on tree-rings 

reconstructions performed in the ungauged Arroyo de los Puentes catchment located in the 

Sierra de Guadarrama National Park (Spanish Central System) and characterize the 
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meteorological triggers of those past flash floods. We report results derived from the analysis 

of 287 increment cores of 178 living P. sylvestris L. trees. The growth-ring records of these 

trees allowed the detection and dating of 212 GDs attributed to 25 flash flood events which 

occurred since 1802.  

The reconstructed flash flood chronology complements the existing flood record for the 

contributing highland catchment of the Eresma River and represents the longest and most 

continuous (annually-resolved), non-systematic record of flash flood activity and related 

climatic factors in this area. Results are therefore expected to greatly support the definition of 

flash flood hazard zones in an area characterized by intense tourist activity (e.g., the recently 

founded Sierra de Guadarrama National Park) and by a concentration of linear transport 

infrastructures (i.e. railway lines, roads, power lines and hiking paths).  

Our reconstruction points to a flash flood frequency of 0.12 events/year
 
in the Arroyo de 

los Puentes stream for the last 212 years. Individual event years match with the chronology of 

recorded (i.e., gauged) flood events in the Eresma River. We have successfully identified 

evidences of the two major lowland floods of 1956 and 1966 in the trees from one of the 

contributing highland catchments. Moreover, existing archives and local contemporary 

newspapers reports provide further evidence for extreme hydroclimatic conditions in the 

Eresma River and other parts of central Spain in 1936, 1956, 1966, 1984, and 1996 (see Table 

5). These years also appear, without any exception, in the dendrogeomorphic flash flood 

reconstruction in the Arroyo de los Puentes stream, and thereby indirectly confirm the 

robustness of the time series reconstructed in this study.  

(TABLE 5) 

Our results showed two periods with intense flash flood activity between 1870 and 1884 

and between 1947 and 1956. On the basis of historical literature from the 19th century, the 

first period with very frequent flash floods can be related to meteorological anomalies 

characterized by significant oscillations in atmospheric pressure, high snow cover in winter and 
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an excessive number (103) of intense precipitation events including storms (Breñosa and 

Castellarnau, 1884). The reconstruction from Arroyo de los Puentes is in agreement with 

observations from the Tagus basin (central Spain) where Benito et al., (2003a, 2003b) observed 

a similar increase in the frequency of flood events. The most intense event was detected in 

1936 (Wit = 36.38 and GDs = 25). This observation is also in agreement with other studies in the 

Spanish Central System (Potenciano, 2004; Ruiz-Villanueva et al., 2013), and hence confirm the 

extraordinary nature of this flash flood.  

In methodological terms, the preferred use of the Wit index value (Kogelnig-Mayer et al., 

2011) – instead of the Shroder index (Shroder, 1980) – was not only justified by the large 

amount of flood scars found in the trees along the channel (42%), but also was needed in view 

of the hypothetical influence of intense forest management on accidental growth anomalies in 

trees. The preferential weighting of strong signals (i.e., flood scars), as suggested by Stoffel and 

Corona (2014), did not only filter low-frequency noise in the time series more efficiently, but 

also yielded a reconstruction for which local flash flood events seem to converge with the 

dates of regional floods. Despite the convincing match between local flash floods and regional 

flood events, it is necessary to emphasize that dendrogeomorphic reconstructions of past 

geomorphic activity (of any nature) will always remain as minimum frequencies (Bollschweiler 

et al., 2011). Therefore, some events could remain missed even if efforts are undertaken to 

optimize sample depth to minimize noise and to maximize signals (e.g., Corona et al., 2012, 

2013, 2014; Schneuwly-Bollschweiler et al., 2013; Stoffel et al., 2013). This assertion is further 

underlined by the fact that internal scars (i.e., blurred or hidden injuries which can no longer 

be seen on the stem surface) cannot be detected easily in P. sylvestris L., as this species – 

unlike other conifers – does not form TRD around wounds (Stoffel, 2008), thus hampering the 

indirect dating of scars with seasonal precision (Stoffel and Hitz, 2008). Our study is also 

limited by the fact that we were unable to show the occurrence of repeated flash floods in the 

same year (Schneuwly-Bollschweiler and Stoffel, 2012). 
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Analysis of hydrometeorological triggers was based on 14 flash floods covering the span 

of the available precipitation records. The period of flash flood occurrence could be narrowed 

down in 7 out of 14 cases using historical archives and/or the intra-seasonal position of scars in 

trees. In 1956 and 1966, the exact date of events has been documented and could thus been 

used directly. The intra-annual position of injuries was most helpful for the precise dating of 

the 1936 and 1999 events. For the remaining events we used newspaper reports and local 

archives (see above). In case that the seasonality of flash floods was known, we assumed that 

events were triggered by the greatest rainfall recorded within the time window suggested by 

the intra-annual position of scars in trees and/or by archival records (Schneuwly-Bollschweiler 

and Stoffel, 2012). For the 6 remaining cases, neither direct nor indirect references to floods or 

intense rainfalls could be found, so that the analysis of potential triggers was extended to the 

entire year. As a result of the proximity of the Navacerrada station (only 900 m away from the 

source area of flash floods and located at a similar altitude) and the good quality of the data, 

the climate dataset analyzed in this study is highly reliable. Because the resolution of the 

precipitation time series was daily (and not hourly), we could not perform an intensity-

duration-frequency (IDF) analysis for each event, but still believe that the obtained 1-, 3-, and 

5-day rainfall thresholds presented in this study are reliable enough to understand average 

rainfall thresholds involved in the triggering of flash floods at the study site (Kundzewicz et al., 

2014). 

Our results suggest that daily rainfall threshold strongly depend on the season of flash 

floods. In that sense, flash floods occurring in spring were typically related to lower rainfall 

totals as compared to flash floods in autumn and winter. This observation also clearly points to 

the predominant role of snowmelt processes and soil moisture structure triggering flash floods 

in winter and spring (De Jong et al., 2009), confirming the conclusion provided by Marchi et al., 

(2010). In the case of the largest event on record (1936), we also demonstrate that, depending 

on the seasonality of flash floods, events will not necessarily be triggered by the most 
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important hydrometeorological event and/or the largest precipitation recorded during a year. 

The time series presented in this study also highlight the importance of independent, seasonal 

flood-frequency analyses to obtain reliable flood hazard assessments (Baratti et al., 2012; Merz 

et al., 2014). 

At the study site, flash flood events typically took place between autumn and spring, 

which is in agreement with findings from Ruiz-Villanueva et al. (2013) who obtained similar 

conclusions for headwater catchments in the western part of the Spanish Central System. The 

main synoptic situations related with the triggering of flash floods were cold Atlantic and 

continental air masses transported to the study site by low pressure systems generating 

synoptic troughs over the Iberian Peninsula (Tomás et al., 2004). In 84% of the cases, flash 

floods were related to negative monthly NAO indices, showing in six cases moderate to intense 

negative values (with NAO < -1). Our observations are in agreement with results from other 

mountain catchments in central Spain (e.g., Benito et al., 2003a, 2003b, 2005, 2008) and 

support the idea that intense hydrometeorological activity in central Spain is related to the 

antecedent NAO mode (Cortesi et al., 2012; Salgueiro et al., 2013; Trigo et al., 2004). The 

weather circulation patterns related with flash floods dated in this contribution confirm the 

casuistry associated with flash flood events in the study area, which was slightly weighted 

toward Meridional circulation patterns. The mixed Central European (TM) pattern was in 

addition responsible in the triggering of the most intense event defined in this study. Our 

results areconfirmed by observations obtained by Parajka et al. (2010) who related Meridional 

circulation patterns with precipitation events and related floods in northern Italy. However, 

the lower number of event defined in this study is presumably due to the nature of this study 

(local catchment rather regional study) and thus avoids to draw robust conclusions in this 

regard 

 

6. CONCLUSIONS 
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Flash flood activity in the Arroyo de los Puentes catchment (northern slope of Sierra 

Guadarrama) was reconstructed during the last 212 years using GDs from a large number of 

disturbed trees (P. sylvestris L.). The reliability of the presented flash-flood chronology was, 

therefore, supported by a large climatic and historical forest dataset. Despite the potential 

limitation related with the use of indirect proxies, this study is supporting the usefulness of the 

dendrogeomorphic approach for the understanding of past climate-floods in managed 

mountain areas. Our results describe the complexity of processes in the catchment, as both 

snowmelt and soil humidity have a major role as triggers of past geomorphic events. In 

addition, we detected that periods with more intense and frequent flash flood activity were 

related to negative NAO phases. Therefore, this study provide crucial data to gain a better 

understanding about the spatio-temporal patterns of flash flood occurrence and their links 

with climate in the Sierra de Guadarrama National Park.  
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Fig. 1. General scheme of the study area showing the distribution of the anthropogenic 

elements with respect to the main streams.  

Fig. 2. Reference chronologies of Pinus sylvestris L. for Arroyo de los Puentes stream, obtained 

at the high and low-elevation parts of the catchment; the series cover the periods 1784–2011 

and 1748-2011, respectively. Individual series were standardized and indexed. The vertical 

black lines indicate years characterized by narrow rings in both series (1829, 1889, 1950, 1972, 

1986 and 1996).  

Fig.3. Event-response histograms showing flash-flood induced growth responses from the 

sampled Pinus sylvestris L. trees. Blue lines show the total number of growth disturbances (Nº 

GDs), whereas the red lines indicate the percentage of trees responding to an event based on 

the weighted index value (Wit) of Kogelnig-Mayer et al. (2011). The horizontal lines denote the 

GDs (dotted line) and Wit (solid line) thresholds used for the reconstruction of past events 

whereas the grey shade in the back indicates the sample depth, i.e., the number of trees 

available for analysis in a specific year. 

Fig. 4. Flash flood chronology and 5-year moving average obtained at Arroyo de los Puentes 

stream. 

Fig. 5. Reconstructed patterns of past flash flood events. (A) Maps showing the location of 

trees present (black) at the moment of flash flood occurrence as well as those (red) showing a 

disturbance induced by the flash flood. Yellow dots are examples of trees impacted by the 

flash floods in 1936, 1952, and 1954: (B, C and D) Sedimentation and scar associated with the 

1936 event; (C and D) Impact scar related with sediment transported during the flash flood 

events in 1952 and 1954, respectively. 

Fig 6. One-day, 3-day and 5-day average rainfall thresholds related to reconstructed events 

according to the likely seasonal correspondence. Red lines indicate average rainfall thresholds 
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corresponding with events contrasted by historical archives. In summer season, we only found 

one event (1999) characterized by a 1-day rainfall threshold of almost 27 mm, 3-day of 

27.3mm and 5-day of 35.8 mm, respectively. Seasonality: winter (22nd-December to 22nd-

March); spring (23
rd

-March to 22
nd

-June); and autumn (23
rd

-September to 21
st

-December). 

Fig. 7. Synoptic situation (at surface level and 500hPa level) related with dated flash flood 

events at the central part of Spain: A) 13/10/1900 (WZ): zonal atmospheric circulation with low 

air pressure on the east of the Iberian Peninsula,–advection at the study site W; B) 29/02/1936 

(TM) Mixed Central Europe, depth low air pressure on France, –advection N; C) 31/03/1952 

(HNZ) meridional atmospheric circulation with depth low air pressure on the NW of the Iberian 

Peninsula ,–advection NW; D) 08/11/1954 (WZ) zonal atmospheric circulation with a trough on 

the Iberian Peninsula, polar air masses, –advection NW; E) 18/01/1956 (NWZ) mixed 

atmospheric circulation with a trough on the Iberian Peninsula ,–advection W; F) 14/05/1984 

(HFZ) meridional atmospheric circulation with low pressure on the Iberian Peninsula, Atlantic 

air masses, – advection N; G) 18/09/1999 (TRW) meridional atmospheric circulation with a 

depth low pressure on Britain, Atlantic air masses, –advection W. Maps from 

http://www.wetterzentrale.de (500 hPA, NCEP Reanalysis data) and the Spanish 

Meteorological Agency (surface maps; 

http://www.aemet.es/es/conocermas/fondos_digitales/boletines). 
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Table 1. Intensity reactions, nº of growth disturbances (GDs) and Wit value for each event assessed.  

Years Sample depth 
Growth disturbance 

N° GDs Wit 
High intensity Medium intensity Weak intensity 

1802 34   4 4 1.50 

1813 41 1 1 4 6 3.79 

1830 59 1  2 3 0.70 

1853 75 1  2 3 0.57 

1858 78 1  2 3 0.54 

1869 84  1 4 5 1.10 

1871 85  3  3 0.58 

1874 89  3  3 0.55 

1876 90  3  3 0.54 

1880 92  4 1 5 1.34 

1884 94 1 2  3 0.57 

1900 100 2 2 1 5 1.44 

1906 109 1 2 1 4 0.73 

1926 111 2 3  5 1.31 

1933 111 3  1 4 0.86 

1936 112 19 6  25 36.38 

1945 120 3   3 0.53 

1947 124 3   3 0.51 

1950 126 3   3 0.50 

1952 127 6   6 1.98 

1954 127 12  3 15 10.98 

1956 127 3 2 2 7 2.04 

1966 137 4 3  7 2.20 

1973 149 1 4 1 6 1.21 

1984 152 2 4  6 1.34 

1996 155  1 4 5 0.55 

1999 155 9 2  11 5.18 

2004 155 1 5  6 1.24 
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Table 2. Match between forestry actions, reasons for the works and responses in trees. Grey 

shading highlight years in which reconstructed disturbances in trees match with forestry work. 

Letters indicate the causes of the felling of trees during forestry actions in the catchment (E- 

extraordinary, R-regular, D-dead trees and I-insects,). 

 

Year 
Sample 

depth 

Growth disturbance 

Wit Cause High 

intensity 

Medium 

intensity 

Weak 

intensity 

1940 112  3 0 0.40 R 

1945 120 3 0 0 0.53 E 

1950 126 3 0 0 0.50 E 

1962 130 1 0 0 0.05 R 

1972 149 0 3 0 0.30 D 

1996 155 0 1 4 0.55 E 

2000 155 2 0 1 0.33 E and I 
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Table 3. Hydrometeorological triggers (in grey analysis based on Segovia station) related to reconstructed events matching with historical archives.  

 

Year Date Temp °C 

(max/min) 

Rainfall 

1-day 

Rainfall 

3-day 

Rainfall 5-

day 

NAO-

index 

GWL 

system 

References/Newspaper/indicator 

1900 13/10 15° / 7° 73 123 123 -0.57 WZ La Vanguardia-14/10/1900-pp2 

1936 29/02 5° / -° 36 47 91 -2.44 TM Seasonality based on anatomical interpretation 

1952 31/03 -° / 1.3° 101.8 143.5 276.9 -1.14 HNZ El Adelantado de Segovia-01/04/1952 

1954 8/11 5.8° / 5° 55 145.7 149.3 1.54 WZ ABC-07/11/1954-pp 039 

1956 18/01 -° / 1.2° 39 104.2 112.1 -0.76 NWZ Díez-Herrero et al., (2008) 

1984 14/05 2.2° / -° 27 38.5 38.5 -2.34 HFZ Morales and Ortega ( 2002) 

1999 18/09 12° / 7° 27 27.3 35.8 -0.54 TRW Seasonality based on anatomical interpretation 
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Table 4. Potential hydrometeorological triggers (in grey analysis based on Segovia station) 

related to reconstructed events not recorded on historical archives. 

 

  

Year Date Rainfall 

1-day 

Temp °C (max/min) Rainfall 

3-day 

Rainfall 

5-day 

NAO-index 

1906 12/05 27 15°/ 6° 39 79 -1.75 

12/11 30 8°/ 5° 49 64 0.7 

1926 23/10 27 17°/ 2° 52 52 -4.16 

1933 20/04 40 5°/ 3° 40 40 -0.23 

9/10 54 (12h) -°/ 3° 54 54 -2.03 

21/10 74 (12h) 10°/ 0° 82 82 -2.03 

1947 05/03 40 6.4°/ 1° 57 92 -1.2 

1966 03/10 104.9 9.2°/9° 132.5 136 -2.89 

07/11 94.7 0.8°/0.2° 302.5 321.1 -0.07 

1973 05/11 46.7 6°/ 3.8° 141.5 162.8 -0.26 

03/05 30.2 4° / 0.6° 73.6 73.6 0.37 

19/05 41.6 3° / 0° 106.8 128.7 0.37 

2004 23/05 31 10.2° / 6.6° 49.5 49.5 0.19 
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Table 5. Correspondence between reconstructed flash flood events at Arroyo de los Puentes stream and 

information about flood events in central Spain.  

Years 
N° 

GDs 
Wit References Date 

Selection of historical facts related with floods 

in central Spain 

1802 4 1.50 - - - 

1813 6 3.79 - - - 

1830 3 0.70 Potenciano (2004) 1/9/1830 Floods in Tagus and Jarama Rivers. 

1853 3 0.57 Ruiz-Villanueva et al. (2013) - Floods in Tagus basin. 

1858 3 0.54 Morales and Ortega (2002) - 
Strong damages in Fuentes Village because of 

overflows of the Duero river. 

1869 5 1.10 Potenciano (2004) - Tagus basin. 

1871 3 0.58 - - - 

1874 3 0.55 - - - 

1876 3 0.54 

Benito et al. (2003a) 

Benito et al. (2003b) 

Trigo et al. (2014) 

Potenciano (2004) 

December 

Floods and overflows in The Tagus and Jarama 

rivers in the Central and Southern sectors of the 

Iberian peninsula. 

1880 5 1.34 - - - 

1884 3 0.57 - - - 

1900 5 1.44 Morales and Ortega (2002) 11/2/1900 
Floods in Duero basin affecting to important 

cities like Salamanca, Soria, Burgos and Leon. 

1906 4 0.73 - - - 

1926 5 1.31 Potenciano (2004) November Tagus basin. 

1933 4 0.86 - - - 

1936 25 36.38 

Ruiz-Villanueva et al. (2013) 

Morales and Ortega (2002) 

Potenciano (2004) 

Benito et al. (2003b) 

Betewen 

January and 

February 

Several tributary streams of the high Tagus 

catchment and Arenal river in Gredos, suffer 

important floods. Towns along these streams are 

affected (e.g. Guadalajara, Aranjuez, Alcalá de 

Henares in the central Spain and Guisando and 

Candeleda in Gredos. The same occurs in the 

Duero basin affecting to Esgueva (Valladolid). 

1945 3 0.53 - - - 

1947 3 0.51 

Ruiz-Villanueva et al. (2013) 

Morales and Ortega (2002) 

Benito et al. (2003a) 

Benito et al. (2003b) 

Trigo et al., 2014 

- Tagus and Duero basins. 

1950 3 0.50 - - - 

1952 6 1.98 - - - 

1954 15 10.98 - - - 

1956 7 2.04 

Díez-Herrero et al. (2008) 

Morales and Ortega (2002) 

(Potenciano, 2004) 

January and 

March 

20.01.1956, floods in Eresma river affecting to 

Segovia city. Also in January references to floods 

in Jarama and Manzanares rivers close to Madrid 

city. In March, references to generalized floods. 

1966 7 2.20 
Ruiz-Villanueva et al. (2013) 

Díez-Herrero et al. (2008) 
29/03/1966 

Flood in Eresma river affecting to Segovia city. 

Dendrogeomorphic evidence was clearly visible 

in trees in Gredos area. 

1973 6 1.21 
Potenciano (2004) 

Ruiz-Villanueva et al. (2013) 
- 

Overflows in Alberche river (tributary of Tagus) 

affecting to Pepino village in Toledo. Also 

dendrogeomorphic evidence for this year in 

Gredos area. 

1984 6 1.34 

Ruiz-Villanueva et al. (2013) 

Morales and Ortega (2002) 

Benito et al. (2003a) 

15/05/1984 

Flood in Eresma river. Also references to floods 

in Tagus basin in this year (unknown date). 

Dendrogeomorphic evidence of floods in Gredos 

in this year. 

1996 5 0.55 

Ruiz-Villanueva et al. (2013) 

Díez-Herrero et al. (2008) 

Morales and Ortega (2002) 

Benito et al. (2003a) 

23/01/1996 
Floods cause of snowmelt in Eresma catchment. 

Also references to floods in Tagus basin. 

1999 11 5.18 
Ruiz-Villanueva et al. (2013) 

Morales and Ortega (2002) 

12/07/1999 

01/09/1999 

In July floods in the center area affecting towns 

and villages (Valladolid, Navas del Marqués and 
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 Vinuesa). In September floods in Voltoya river 

(Duero basin) and thunderstorm in the central 

mountain range. 

2004 6 1.24 - - - 
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• Paleohydrology improve the understanding of flash-floods in ungauged catchment 

• Dendrogeomorphology is the most suitable approach in mountain forested areas 

• We report the flash flood history of the mountain stream during the last 212 years 

• We identify the meteorological conditions acting as triggers of flash flood events 

 


