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Abstract: The interaction of light with metallic nanostructures is of increasing in-
terest for various fields of research. When metallic structures have sub-wavelength
sizes and the illuminating frequencies are in the regime of metal’s plasma frequency,
electron interaction with the exciting fields have to be taken into account. Due to
these interactions, plasmonic surface waves can be excited and cause extreme local
field enhancements (e.g. surface plasmon polariton electromagnetic waves). Exploit-
ing such field enhancements in applications of interest requires a detailed knowledge
about the occurring fields which can generally not be obtained analytically. For the
latter mentioned reason, numerical tools as well as a deeper understanding of the
underlying physics, are absolutely necessary. For the numerical modeling of light/-
structure interaction on the nanoscale, the choice of an appropriate material model
is a crucial point. Approaches that are adopted in a first instance are based on local
(i.e. with no interaction between electrons) dispersive models e.g. Drude or Drude-
Lorentz models. From the mathematical point of view, when a time-domain modeling
is considered, these models lead to an additional system of ordinary differential equa-
tion which is coupled to Maxwell’s equations. When it comes to very small structures
in a regime of 2 nm to 25 nm, non-local effects due to electron collisions have to
be taken into account. Non-locality leads to additional, in general non-linear, system
of partial differential equations and is significantly more difficult to treat, though.
Nevertheless, dealing with a linear non-local dispersion model is already a setting
that opens the route to numerous practical applications of plasmonics. In this work,
we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the
system of Maxwell equations coupled to a linearized non-local dispersion model rel-
evant to plasmonics. While the method is presented in the general 3d case, numerical
results are given for 2d simulation settings only.

Key-words: Maxwell’s equations, time-domain, discontinuous Galerkin, non-local
dispersion, hydrodynamic Drude model, nanophotonics, plasmonics



Une méthode Galerkin discontinue en domaine temporel
pour la modélisation numérique de l'interaction
lumiere/structure métallique aux échelles nanométriques
en présence d’effets dispersifs non-locaux

Résumé : L’interaction lumieére/nanostructures meétalliques est d’intérét crois-
sant pour plusieurs domaines de la recherche. Lorsque les structures métalliques
ont des tailles plus petites que la longueur d’onde et les fréquences d’illumination
sont proches de la fréquence plasma, les phénomenes liés aux interactions entre
électrons et champs incidents doivent étre pris en compte avec des modeles com-
portementaux appropriés. Du fait de ces interactions, des ondes plasmoniques
surfaciques peuvent étre excitées et conduire a des exaltations locales du champ.
L'exploitation de ces phénomenes d’exaltation dans les applications d’intérét néces-
site une connaissance détaillée du comportement des champs qui ne peut générale-
ment pas étre obtenue analytiquement. Pour cete raison, le recours a la modél-
isation numérique s’'impose presque toujours. Pour la modélisation numérique de
I'interaction lumiere/matiere aux échelles nanométriques, la sélection d’un modele
comportemental du milieu approprié est une étape cruciale. Une approche souvent
considérée en premiere instance consiste a adopter un modele dispersiflocal tel que
le modeéle de Drude ou le modele de Drude-Lorentz. Ces modeéles se traduisent par
la prise en compte d’équations différentielles ordinaires qui sont couplées aux équa-
tions de Maxwell instationnaires. Cependant, lorsque la taille des nanostructures
diminue dans l'intervalle 2 nm a 25 nm, des effets dispersifs non-locaux doivent
étre pris en compte. La non-localité se matérialise par un systeme d’équations aux
dérivées partielles possiblement non-linéaires qui s’ajoute aux équations de Max-
well. Dans cette étude, nous présentons une méthode de type Galerkin discontinu
en domnaine temporel pour la résolution numérique des équations de Maxwell 2d
couplées a un modele de dispersion non-local linéarisé pour des applications en
nanoplasmonique.

Mots-clés : équations de Maxwell, domaine temporel, Galerkin discontinu, disper-
sion non-locale, modéle de Drude hydrodynamique, nanophotonique, plasmonique.
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1 Motivations and goals

1.1 Physical background

Nanometer scale (or even sub-nanometer scale) metallic or metallo-dielectric devi-
ces enlightened at optical frequencies demonstrate interesting features that are
increasingly exploited in the area of nanophotonics. To be able to optimize the use
of these enhanced properties, an appropriate modeling is required, in particular, to
describe the reaction of the electrons in the metal subjected to an incident electro-
magnetic wave as precisely as possible. At the scales and frequencies considered in
this context, the classical description of the propagation of an electromagnetic wave
is not enough and the electric dispersion of the metal has to be taken into account.
First, the electrons do not react instantaneously to the applied electric field. Fur-
thermore, at sub-nanometer scales, it appears that quantum effects must be taken
into account: the electron behavior not only depends on the field at the position of
the electron (local response) but also on the neighboring field distribution (non-local
response). These dispersion effects manifest as the existence of a polarization of the
electron. The latter enters the modeling in the form of a polarization current in the
system of Maxwell equations. The space-time evolution of this polarization current
is governed by a set of differential equations which is itself linearly coupled to the
classical set of Maxwell equations. If one chooses to neglect non-local effects and
thus consider a local dispersion model, the additional equations form a system of or-
dinary differential equations. This type of model can yield a good description of the
dispersion effects in metals if the scales are not too small. But at very small scales,
one has to consider a non-local response of the electrons in the model [1]. In this
case, the equations governing the evolution of the polarization current are partial
differential equations. This type of model is at the heart of the study proposed here.

1.2 Numerical modeling issues

In the area of computational nanophotonics, there is currently a need for efficient
and accurate numerical methodologies since the geometries, scales and propaga-
tion media can be rather complex. In the literature, a large number of studies
are devoted to FDTD (Finite Difference Time-Domain) type discretization methods
based on Yee’s scheme. Despite their numerous advantages (efficiency and easy
implementation), these FDTD methods poorly perform when facing the modeling
difficulties that are inherent to nanophotonic applications, in particular in the pres-
ence of curved geometries. Indeed, the stair-casing effect resulting from the use of
a cartesian grid notably degrades the accuracy of these FDTD methods. Numerical
methods based on unstructured and possibly non-conforming meshes! are particu-
larly appealing in this context. This is especially the case for approaches based on

!The term non-conforming meshes is used by means of meshes with hanging nodes.
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a Discontinuous Galerkin (DG) formulation. So-called DGTD (Discontinous Galerkin
Time-Domain) methods mix the best of finite element and finite volume type discret-
ization methods, and are based on a local formulation on each elements of the mesh,
while the continuity constraint at the element boundaries is relaxed, thus requir-
ing an appropriate treatment of inter-element boundary integrals appearing in the
weak formulation. The latter leads to the definition of a numerical trace or numer-
ical flux (in the spirit of finite volume schemes). These DGTD methods are possibly
high order and are flexible enough to deal with heterogeneous media and complex
geometries. They are especially well-suited to parallel computations, therefore re-
ducing the computational costs when simulating three-dimensional problems. Their
use in the nanophotonic area is still limited but one can notice a growing interest
in this direction (see e.g. [2]-[3]). Noteworthy, all these studies adopt a diffusive
DGTD formulation based on upwind numerical fluxes. Besides, several studies have
already been conducted regarding the development of DGTD methods for dispers-
ive media, such as, [4], [5]. Furthermore one can find more studies focused on
numerical analysis aspects concerning dispersive media [6]-[7]. In the framework
of non-dissipative formulations [8], a DGTD method able to treat local dispersive
models for metallic structures has recently been designed and studied in [9].

1.3 Objectives of this study and related works

The present work is concerned with the design and numerical study of a DGTD
method for solving the system of time-domain Maxwell equations coupled to a lin-
earized fluid model that governs the non-local dispersive behavior of metals. The
problem statement in the three-dimensional (3d) case and the corresponding initial
and boundary value problem are described in section 2. As in [8]-[9], the proposed
DGTD formulation combines a centered numerical flux with a second order leap-frog
time integration scheme. This is detailed in section 3. From the theoretical view-
point, we conduct a stability analysis of the resulting DGTD method and show that
the method is stable under a CFL condition. Finally, this DGTD method is implemen-
ted in the two-dimensional (2d) case for the transversal electric mode formulation
of Maxwell’s equations and some validation test problems are presented. This is the
subject of section 5.

2 Problem statement and notations

This section introduces the underlying physics and models that will be numerically
solved later. Beginning with Maxwell’s macroscopic equations for electrodynamics,
the Drude dispersion model is presented afterwards. In order to improve the mod-
eling quality and taking interband effects into account, the Drude-Lorentz model
is briefly motivated. Since these dispersion models do not consider any electron
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interactions they remain absolutely local. For a certain dimensional range of nano-
photonic devices, non-local effects in terms of electron interactions have to be taken
into account. If those dimensions become even smaller down to a level where the
quantum mechanics (QM) behavior of electrons, i.e. tunneling through regions that
are classically forbidden occur, even semi-classical non-local models are not suf-
ficient anymore and full QM descriptions are required. In this work, we will not
consider dimensions where the latter descriptions are necessary and though stick
to effects that can be sufficiently modeled with a so called non-local hydrodynamic
fluid model.

As this work is mainly concerned with non-local dispersion models, the local
dispersion effects are kept shortly while focusing on the physics which cause the
non-local dispersion of metals in a frequency regime around and beyond the plasma
frequency. Then, the hydrodynamic modeling that governs the electron coupling is
presented and we derive the linearized fluid model from a general non-linear hydro-
dynamic model. Maxwell’s equations together with the latter mentioned linearized
fluid model lead to a new system of partial differential equations (PDEs). In order
to characterize this PDE system, we show its hyperbolicity and analyze the energy
evolution in time. As the numerical treatment is here restricted to the 2d case (in
a sense of an invariance in one given direction), it appears that non-local effects do
only occur in the so called TE (transverse electric) mode and thus the TM (trans-
verse magnetic) mode can be left out. This section closes with a proper definition
of the here considered boundary value problem and a comparison of the local and
non-local models. Additionally, a renormalized form of the model problem is derived
for the purpose of the implementation.

2.1 The system of Maxwell equations

The complete set of macroscopic Maxwell’s equations describing the spatio-tempo-
ral evolution of electromagnetic waves are given by (see for example [10])

/E(r,t) ds = —/atB(r, t)-dA, (1a)
OA A
/H(r,t) ds = /((%D(r,t) +J(r,t)) -dA, (1b)
O0A A
/D(r,t) “dA = /p av, (1c)
ov \Y
/B(r,t) “dA =0, (1d)
ov
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with

Q) : 3d domain,

df) : boundary of (2,

V:VCcQ, A:=09V,

O : partial time derivative with respect to ¢,

(2)

a-b : scalar product of a and b,
reR3 teRT,
E,D,H,B,J:R3 xR — R3,
p:R¥xR—R.

Here, E and H represent the electric and magnetic field, respectively. The magnetic
flux density is denoted by B as well as the electric displacement and current dens-
ity by D and J, respectively and the charge density by p. The infinitesimal spatial
elements ds,dA, and dV represent the vectorial line element, the vectorial surface
element where the normal vector points outwards the volume V and the volume
element, respectively. As Maxwell’s equations are a set of equations that were indi-
vidually discovered before (without the electric displacement), they are commonly
known as Faraday’s law, Ampeére’s law, Gauss’s law and the absence of magnetic
monopoles for (1la), (1b), (1c), (1d), respectively [10]. Applying Stokes’ theorem
to (1a) and (1b) and the theorem of Gauss to (1c) and (1d), (1) can be written in
differential form

V x E = —-9;B, (3a)
VxH=0D+1J, (3b)
V-D =p, (3¢)
V-B=0, (3d)

where V x A, and V- A denote the curl and the div operator applied to a quantity
A. These equations are supplemented by material laws linking D to E and B to H
through the introduction of

D =¢E + P, (4a)
B = uoH + M. (4b)

where ¢y, and jo are the vacuum permittivity and permeability, P : R? x R — R3
the polarization and M : R?® x R — R3 the magnetization. At this point, it may
be mentioned that (4a) is of high interest for this work. Throughout the following
derivations non-magnetic dispersive materials will be assumed because all concepts
are applied to non-magnetic metallic structures. The magnetic polarization will
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thus be considered to be zero. Further, the polarization P can be split into different
contributing parts. Since metals consist of a rigid ion grid that is built of positive ion
cores together with the locally fixed bound electrons (d-band) and the freely moving
valence electrons (s-band), essentially the polarization of metals can be described
by two mechanisms: on one hand the polarization of the free valence electrons P
and on the other hand dipole polarizations due to the local displacement of bound
electrons which is also known as background polarization P, [11].

2.2 Nanoplasmonics

The plasmonic effect of nanoparticles is of increasing importance for various applic-
ations. For example in tumor therapy, nanoparticles are used to burn tumor cells
without the necessity of a surgery. As nanoparticles can cause extreme local field
enhancements in the range of 10* orders of magnitude, they allow to heat up tumor
cells efficiently while the exciting fields and the radiation exposure for the surround-
ing tissues remain at low levels compared to classical radio therapy [12]. Also, nano-
plasmonic effects are more and more used in terms of extreme light confinement,
perfect lenses and photonic waveguides [13]-[14]-[15]. However, the consideration
of plasmonic effects becomes necessary as soon as the electromagnetic skin depth
is larger than the particles’ dimensions itself. Thus, the fields can completely penet-
rate the particle and excite resonant oscillations [16]. Nevertheless, if the particle
dimensions reach regions where electrons can show their full quantum nature [17],
the hydrodynamic model which is used in this work is not applicable anymore and
QM wave functions have to be completely taken into account. Since every metal,
e.g. gold, copper, or an alkaline metal has different characteristics or material prop-
erties, dimensional arguments where nanoplasmonic effects should be considered
or not are intrinsically limited. As a rule of thumb and often mentioned in literat-
ure [17], plasmonic effects for nanostructures should be taken into account when
dimensions in the range of ~ 1 nm - 25 nm occur while the incident wavelength is
usually comparatively large and considered as plane wave [18].

2.3 The Drude model

The Drude model is a first step on the way to describe the dispersive behavior of
metals. It assumes the electrons inside the metal to behave identically and be un-
coupled, also known as the free electron gas. Further, this model assumes each
electron to behave as a simple mass oscillator driven by an electrical field. The
induced polarization due to the frequency-dependent electron movement leads to a
frequency-dependent polarization (dispersion) [19]. Writing the equation of motion
for a single electron in the form of

—eE(t) = meOux(t) + mevy:0ix(t), (5)
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and with P (t) = —nex(t), we have

€2n

EQE(t) = 8ttPf(t) + 708,5Pf(t). (6)
Me€o

Here, e and m, are the elementary charge and mass of an electron, respectively;
x : R — R3 denotes the spatial displacement of one electron with respect to the
time t. ~. is the characteristic collision frequency defined by the inverse of the re-
laxation time of the free electron gas 7, and n the electron density of the gas. Typical
values for 7. at room temperature are in the order of v, = 100 THz for non-noble
metals [19]. As the electrons are described in a free electron gas, the macroscopic
polarization appears due to the displacement of charges. For simplicity purposes,
the polarization due to free electrons Py is represented by P in the following. With
a harmonic time dependence E(t) = R {E exp(—iwt)}, where i is the imaginary unit
and underlined quantities are phasors, the Drude model yields

neQ

P=- (7)

—E.
me(w? + iyew) ™

Taking the polarization obtained in (7) together with (4a), the electric displacement
can be written as

D=1+ x)E+P,

———
€0
- ne? (8)
= 0c oo me(w2 + Z’}/CW) =
= epe(w)E,
with
(w) “ (9)
e(w) ==€oo — 54—,
v W fiyw
where w, = aije is the plasma frequency of the free electron gas and y; the polar-

ization due to bound electrons [19]. Since (9) is a complex number, it is appropriate
to split the complex permittivity into real and imaginary part in order to discuss
the behavior of metals in different frequency ranges with respect to the plasma
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frequency. Separating (9) into e(w) = e1(w) + ie2(w) leads to

(A.}z ’7(.(}2
e(w) = €s0 — P4 P , 10a
W)= i T ) (102
wp
= — 10b
e1(w) = €00 T (10b)
YeWp
eo(w) = ———<. (10c)
“ = )

2.4 The Drude-Lorentz model

The previously discussed Drude model provides a first approach for describing the
dispersion of metals. Unfortunately, this description is not very accurate for noble
metals in a frequency regime close to the plasma frequency w,. In this regime, the
influence of interband effects because of bound electrons (d-band) increases and
has to be taken into account. Without using a full QM model, the Drude-Lorentz
model is a semi-classical extension of the classical Drude model. The Drude-Lorentz
model extends the Drude model with an additional spring term meng that repres-
ents the binding force of each electron to the positive ion cores. Since wy is a global
parameter for each material, all electrons are assumed to behave equally and in-
dependently. Adding the Lorentz term for bound electrons to (5), the equation of
motion reads

—eB(t) = meOux(t) + meye0ix(t) + mewix(t). (11)

Applying the harmonic time dependence as we did for (5) yields

c (12)

= me(w? + iwye — Wg)i’
where 7, is a damping factor for the electron oscillation around the ion. In a purely
mathematical sense, the Drude-Lorentz model adds an additional pole by means of
improving the fitting curve in comparison to the experimental data [9]. However, it
is still based on physical considerations by taking QM effects into account in terms of
the damping constant . and the oscillation frequency w;. Thus, the Drude-Lorentz
model provides a second order approach of the local response for metals where the
free electrons are considered as a free electron gas including some binding forces
to the ions.

The overall permittivity in the frequency domain of the local Drude and Drude-
Lorentz model according to (10), (12) and by including the residual polarization
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P = c0excE, is expressed analogously by

(oo}
wp wp
Etot = €oo — — Ae 13a
fol =00 T 2 ¥ iyw w? + iwye — w?’ (13a)
and separated into real and imaginary part
2 2/ 2 2
61(w> =&o0 — pr 5 Wb(w _wb)g )
w? 4 2 Y2w? + (w? — wp)? (13b)
2 2
YeWp Wh Yew

LR R W o e

where Ac is a weighting factor for the Drude-Lorentz impact. As a matter of com-
pleteness, it may be mentioned that a higher order fitting approach, such as Padé
approximation [9], in order to better fit measured values e.g. by Johnson and Christy
[20], is also possible. It may be pointed out that the presented models so far as well
as higher order models remain in the scope of local responses and will not physically
include any electron interactions. Although, non-local effects are naturally included
in any experimental data.

2.5 Hydrodynamic modeling of the electron response

The assumption of an ideal free electron gas faces its limits when it comes to even
smaller geometries with dimensions beyond tenth of nanometers [21],[17]. A cube
with an edge length of 10 nm, for instance, would hit the critical regime. But also
two thick nanowires being placed narrowly with a gap size in the range of ~ 1 nm
- 5 nm would show a different behavior if electron interactions were considered.
Among others, QM codes are available which take the full wave character of elec-
trons into account. Although these solvers provide a very accurate model of the
underlying physics, the computational effort is so heavy that it makes realistic geo-
metries unaffordable. Another approach in order to include quantum tunneling for
narrow gap structures is the Quantum-Corrected Model (QCM) that adds a tunnel-
ing term to the local Drude model. This term scales with the gap size and converges
to the purely classical Drude model for larger distances (> 5 nm) [22] until it van-
ishes completely.

Within this work the focus is put on a non-local model in terms of an electron
fluid moving against a positive ion background similar to the one fluid description
for plasmas [23]. This approach includes inter-electron coupling modeled by a hy-
drodynamic pressure (Coulomb interactions in a Fermi gas) [24]. As an interesting
fact it turns out that starting from the hydrodynamic model and finally neglecting
the non-local impact, the resulting polarization is equivalently described as the local
Drude model (6). In addition to the hydrodynamic model, different approaches with
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the purpose of describing the non-local response can be found in literature [25].
Our work does only consider a linearized model as shown below. Nevertheless, vari-
ous publications exist on SHG (Second Harmonic Generation - also called frequency
doubling). This is a non-linear optical process, in which photons with the same fre-
quency interacting with a non-linear material are effectively combined to generate
new photons with twice the energy, and therefore twice the frequency and half the
wavelength of the initial photons. SHG, as an even order non-linear optical effect,
is only allowed in media without inversion symmetry. It is a special case of sum
frequency generation.

2.5.1 The linearized fluid model

In the following part, the Linearized Fluid (LF) equation for electron gas is de-
rived from the general non-linear case. The general fluid equation together with the
quantum pressure term on the right hand side in (14a) allows different models for
the electron interactions. Thus, the choice of this term has to be taken carefully in
order to correctly include the underlying physics. Detailed descriptions of this term
can be found in [26] while a relatively simple approach is going to be considered in
the scope of this work. With the electron mass m. and a damping constant v the
hydrodynamic electron description reads

me(0y +v-V)v=——cE+v xB|]-mgv -V <6g[n]> , (14a)

on
together with the continuity equation
0=0mn+ V- (nv), (14b)

where v : R? x R — R3 represents the fluid velocity and the last right term of (14a)
is the QM influence briefly mentioned above. Linearizing the velocity, magnetic, and
density fields around {v¢, Bo,no} leads to

v(r,t) = vy + vi(r,t),
B(r,{) ~ By + Bi(r, 1), (15a)

n(I’, t) R ng+ TZl(I', t)’
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where we consider vo = By = 0yng = 0 since the fluid is considered to be non
moving, without any static magnetic fields, and with a constant density that can
locally change due to n4(r,t). Further, the second term on the left hand side and the
magnetic term on the right side of (14a) vanish due to (15a) and by neglecting higher
order terms. Inspired by [27], the pressure term and the equation of continuity
simplify to

v (59[”]> A m,ﬁ?ivnl, (15b)
on 1o
ﬁtnl = —nov Vi, (150)
and thus for (14a)
me0iv = —eE — meyv — m662iVm. (154)
ng

The choice of the quantum related parameter ( is a crucial point in this model. For
the moment, this parameter is left arbitrarily even though it is fairly often set to
\/3/751)17 with the Fermi velocity vp [26]. Where the LF equation still distinguishes
between ny and n; the subscript for the velocity vector has already been ignored
by means of vi; — v. Differentiating (15d) with respect to the time ¢ and inserting
(15Db), (15c) yields

MeOuv = —ehE — meyOpv + meB2V(V V), (16)

where permutability of the time and the spatial derivatives is assumed. Multiplying
by —ne, where n will denote n;, gives

0= 0ud + 70, — B*V(V-J) — wieodE, (17)
where J = —nev is the current density of the unbound electrons in the fluid. Ac-
cording to subsection 2.3, the polarization P = —nex is defined as the displacement

of the charge density and thus
P = —nedyx = —nev = J. (18)
Together with (17), the polarization relation reads
0 = 0P + y0uP — B0, V(V - P) — wleodiE. (19)
Integration with respect to the time finally yields

0= 0uP +79,P — B°V(V-P) — w’eE. (20)
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This integration assumes (20) to be fulfilled for any initial time ¢ = Ty. It is quite
interesting to compare the last equation with the results previously obtained with
the local Drude model. Although the physical considerations are seriously different,
the local response (6) is only extended by an additional term —3%V(V - P) for the
linearized non-local fluid model. Nevertheless, together with Maxwell’s equations,
this term complicates the system of PDEs significantly. While the polarization was
simply described by an ODE (6), the non-local model requires the additional solution
of a PDE (20). For the rest of the work, we will stick to the formulation given in (17).

2.5.2 Analysis of the linearized non-local model

After having found a description of the polarization of bound and free electrons, the
entire considered physics is modeled by Maxwell’s equations for the electrodynamic
contribution, the remaining background polarization P, = P; for the bound elec-
trons and the LF model for the free electron gas. This total system of PDE reads

V x H = §,D,
V x E=—pydH, (21a)
0D = gpesc E 4+ J,
wre B = 0pJ + 703 — B°V(V -J), (21b)

where all currents are considered as a charge displacement in terms of polarization.
In general, PDE can be cathegorized into three categories: elliptic, parabolic or
hyperbolic. In order to show the hyperbolicity of Maxwell’s equations, Ampere’s
and Faraday’s law can be written in a conservative form. Leaving out unbound
polarizations and currents for a moment, i.e. J = 0 in (21), (3) reads

0= 9,Lu+ V-F(u), (22)
with
o (5,
3
V-F=)> N,u, (24)
a=1

where L contains the material properties {epeno, 1o}, N® represents the curl operator
of system (21) and « the spatial coordinate. As all materials are considered to be
constant in time, system (22) can be rewritten as

0=0u+L"'V -F(u). (25)
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After having written Maxwell’s equations in a conservative form, the following defin-
ition provides a criterion to investigate the hyperbolicity of (22).

Definition 1 [28] A first order operator

L=0+) A%, +B, (26)

is said to be hyperbolic if the corresponding symbol € — A(£), with A(¢) = > €,A%,
0%

satisfies

sup || exp(i.A(§))]| < +oo0. (27)
EeRd

The system Lu = 0 with £ and operator (whatever B is) that satisfies the latter
mentioned condition is called a hyperbolic system of first order PDEs.

Definition 1 provides a criterion for the hyperbolicity of system (22). Defining, V¢ €
R? with & = (&1,8,8)7 , [ € [|=1

A(E) = L7 (&N + &N? + &N?) | (28)

and claiming all eigenvalues )\, of A to be real is indeed equivalent and easier to
show than Definition 27. Thus, we diagonalize matrix A by means of

A =S7'DS, (29)
with

S:(Vl,...,ljﬁ), (30)

}D):diag{Al,...,)\G}, (31)

where v, € C*! and ), € C are the eigenvectors and corresponding eigenvalues of
A, respectively. Here, C denotes the set of complex numbers. Evaluating (29) gives

¢ £
o 0 0 e~
00 0 B 0 -

£ 3

PO L N 0

U 0 o |
-2 0 & 9 0 0

258 0 0 0
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and thus for the eigenvalues

A =10 0 —cl&l —cllgll cllel cllgl}, (32)

with the speed of light ¢ = 1/,/1100é. The first two eigenvalues are the electro-
static modes and the remaining four correspond to forth and backwards traveling
waves. Extending Maxwell’s equations to system (21b) does not necessarily pre-
serve the hyperbolicity as shown above and claims further investigations. Including
the unbound polarization P; leads to a second order PDE because of the double
differential operator V(V -) which is applied to the polarization due to the fluid de-
scription. This can be overcome by introducing an auxiliary quantity ¢ in order
to transform (21b) to a first order PDE system. The resulting system of PDEs is
equivalent to (21) rewritten as

o0t H+V X E =0,
€00 E—V x H = -7,

(33)
0 — B?°VQ = wf)EOE —d,
0:Q—V-J=0,
and for the conservative form (22) yields
T
u=(E H J Q) , (34)

for the vector of unknowns, where (- ) denotes the transposed matrix. () is a scalar
field and indeed represents the charge density. In fact, the fourth equation in (33)
is the continuity equation and reduces the order of (33) to a system of linear PDE.
Analogously to (22) for the hydrodynamical model, the matrix A that corresponds
becomes

AE(&) @6><4

) 8%
Al©) =] Osxg Osxs B2 ; (35)

RS

O1x6 18283 0

where A(¢) € R19%10 O contains only zeroes. Solving the eigenvalue problem for
(35) gives the previously seen electromagnetic and four additional waves

A(le =10 0 0 0 —cligll —cliel clell cliel -8 B} (36)

Since the underlying physics of the non-local contribution is hidden in the quantum
related parameter (3, it is kind of straightforward that the eigenvalues depend on
5. More important for the analysis of the hyperbolicity, however, is the fact that
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Figure 1: Boundary interface between two arbitrary media €2; and €2;. The surface
normal and field quantities in each domain are denoted by ni> and E;2,H;2,J1 2,
respectively.

all eigenvalues )\,, € R remain elements of the real number set. Thus, according
to Definition 1 the system (33) is also hyperbolic. Analogous to the electrodynamic
case, the two new eigenvalues that depend on beta can be interpreted as the speed
of hydrodynamic waves. Those waves are the propagating bulk plasmons that occur
due to non-locality.

2.5.3 Boundary value problem

So far, we have not dealt with any spatial domain limitations, i.e. boundaries. We
will now set up a boundary value problem where the junction from a dispersive
to a non-dispersive regime will be a central point. For the numerical treatment,
boundary conditions need to be specified. The boundary conditions at an interface
between two different media for the E and H fields are given by

nio X (E2 — El) = 0, (37)
np2 X (Hy — Hy) = Jj, (38)

where nj, is the surface normal pointing from medium 1 to 2 and J; the surface
current. Figure 1 illustrates the interface between two different media. Since
our metals are not perfectly conducting materials, the surface current and dens-
ity Js = 0 has to be zero [10]. These interface conditions would be adequate for a
local dispersion model where no bulk plasmons can appear. For the non-local dis-
persion, this is not the case anymore and bulk plasmons can be excited [21]. This
however leads to the requirement of an artificial boundary condition. As in our work
the free electrons of a metal are described by a hydrodynamic model and quantum
effects like tunneling are left out, it is physically reasonable to prohibit that elec-
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Figure 2: BVP for the non-local dispersion model according to Figure 3. ) repres-
ents the domain around the dispersive nanostructure e.g. vacuum while w is the
dispersive domain where polarization currents are allowed. The boundary 052 illus-
trated the junction to the infinite space. In terms of numerics, this boundary is of
high importance, because the infinite space must be truncated and approximated
with an open boundary.

trons escape while they can freely move inside a metal. Motivated by this, Moreau
et al. propose in [1] the boundary condition
nyy-(Jo—J1) =0, (39)
with
J, =0, (40)

for the current density, where J, are the currents outside the dispersive regime.
Taking a look at Figure 2, the entire boundary value problem for the non-dispersive
regime () reads

Loju+V-F(u) =0 onQxR", (41a)
D(u) =0 on 9N x R, (41b)

where D handles the boundary conditions on 0f2. Let us consider a dispersive media
in w. One has analoguously

Lgomug + V-Fg(ug) = Bguy onw x R, (42a)
n,oJ,=0 on dw x RT, (42b)

n,o x (Eqg —E,) =0 on dw x RT, (42c)
n,ox (Hp—H,)=0 on dw x RT, (42d)

where the index d distinguishes the conservation law for the non-dispersive and
dispersive regime according to section 2.5.2.
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2.6 Energy preservation

Energy preservation can be understood as a figure of merit of a physical model
as the total energy stored in a physically motivated system must never increase.
Additionally, this property should be consequently kept when it comes to numerical
algorithms. Defining the energy as

1
£(t) i=5 {nowZeol Hl2a() + coocBBl3a g + 1912200y + B21QUs) b (43)

assuming that each field quantity shows a sufficient regularity in space and C'! in
time, (43) together with (33) leads to

OE(t) = — wleg /(v x E)-H d’r

Q

+ gow}, /(VxH)-Ed3r—/J-Ed3r
Q Q
+eow§/E-J d3r—7/J-J d3r+52/VQ-J d’r
Q Q Q

(44)

+B2/QV-J d’r,
Q

==Y 2) <0,

where we have assumed that 02 is a perfectly electric conducting boundary and
that currents vanish outside {2, meaning vanishing surface integrals in

/(V><E)-Hd3r:/(vxH)-Ed3r—/(HxE)-nd2r,

Q Q o0

(45)
:/(VXH)-Ed3r,
Q
/(VQ‘J—I—QV-J)d3r:/QJ‘nd2r:0, (46)
Q oN

where n denotes the surface normal pointing outwards 0{2. The result obtained in
(44) shows the strict preservation of the energy 9,£(¢) = 0 for a collision free model
and does also drive dissipation if collisions (damping) are taken into account.
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2.7 Mode splitting in the two-dimensional case

Considering a 2d computational domain in the z,y plane infinite in the z-direction,
without any z dependency of the fields, all derivatives with respect to z vanish.
Thus, as shown below, the total solution of (21b) can be separated into two inde-
pendent sets of equations. Each set provides a solution where either the electric or
magnetic field has only one spatial component and the corresponding magnetic or
electric field is only polarized in the perpendicular plane, respectively. These solu-
tions are also known as TM and TE modes of the electromagnetic field. Expressing
the differential operators and field values component-by-component and crossing
out the y derivatives, (21b) can be expressed as

wie00iEy = OpJy + 70t Ty — B0z Jz + OuyJy + OreJ:),
wieod By = Oy Jy + 0y Jy — B*(OyaJn + OyyJy + Bye Jz), (47)
wfﬁoath = Oy, + 0 J, — 52(@&% + %Jy + B?\Z\Jz)a

while Faraday’s and Ampere’s laws become

821EZ - \SXE?J
BX\E@’ — 0B, | = _N()atHa (48)
OBy — Oy,
oyH, — O H,
O Hy — 0,H, | =e0eccOE+J. (49)
Oy Hy — 0y H,

Seperation into differently polarized modes leads to

ayEz = — O Hy,
—O0p 2z = —po0p Hy,
0. Hy — OyH,; = coeac Ot E, + J,
wieo Ex = Oy + 0u ).,

(50)

for the TM mode and similarly for the TE mode

OyH, = c0e0c Ot By + Jp + Js,
—0,H, = c0ecOs By + Jy + Ty,
8,Ey — 0, Ey = —puo0:H, (51)
wie0Oh By = OpJy + 10pJy — B*(OueJz + Orz ),
wieoO By = Oy Jy + 10¢Jy — B2 (Oyady + OyyJy).

Obviously, system (50) has a z polarized electrical field E = F,e, with the corres-
ponding transverse magnetic field H = H,e, + Hye,, where e,,u € {z,y,z} are
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the cartesian basis vectors. Equally, the solution for (51) shows a magnetic polar-
ization in z direction H = H,e, with the corresponding transverse electric field
E = E,e, + Eye,. This is a remarkable result because only the TE mode is able
to excite a non-local polarization in the 2d case while the TM mode remains totally
local. For the purpose of studying non-local effects, it is sufficient to consider (51)
regardless to (50).

2.8 Comparison of the local and non-local model

Local versus non-local modeling of the dispersion caused by electron interaction
with the incident wave has been discussed in the previous sections. In the following,
a direct comparison of both models is made. Most of the results have been presen-
ted in [21] by using a 2d infinitely long nanowire as a benchmark example. While
local dispersion models show exactly one resonance peak for this geometry, the non-
locality causes more resonances due to bulk plasmons. These confined longitudinal
modes are excited because of the electron-electron coupling within the Fermi gas.
That effect is brought by the V(V - ) term in the fluid equation and weighted with the
quantum related parameter 5. In order to compare the underlying physics of both

z -
PEEC VG E—
E
N\N\N» -
TE E

Figure 3: Infinitely long nanowire is illuminated by an electric field that is polar-
ized perpendicular to the cylinder axis. Due to the translational invariance in the 2
direction, the 3d geometry is reduced to a 2d problem.

models, it is reasonable to select a simple model for which an analytical solution
exists. For this purpose, the above mentioned geometry has been chosen. The ana-
lytical solution is obtained for a harmonic time dependency and thus system (21b)
reads

2

VXVXE-= %E+ iwpod, (52a)
z‘wwzeoﬂ = B*V(V-J) +w(w+iv)d, (52b)
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where c is the speed of light in vacuum and w a given pulsation. For the moment, the
background polarization P, is left out, but could be easily taken into account [19].
The V(V -) term can be split into a V x V term and a Laplacian term by the help of
V(V-A) =V xV x A—V?A. However, some authors [29]-[30] consider a curl-free
approximation for E that leads to a curl-free J in consequence. As a matter of fact,
spurious resonances will appear because that assumption is only made in (52a) and
not enforced for the solution of E and J as discussed in detail in [21] (splitting the
fields in a div and curl free field and solving both cases separately). According to
the previously defined boundary value problem, the curl-free approximation does
also require an artificial boundary condition (n x J) as summarized in Table 1. The

Table 1: Summary of the three different response models. V is the volume of the
nanostructure and 0V its boundary. L is the differential operator in (52b). (Taken
from [21]).

reV redVv r¢Vv
Vxd L; nJ| nxJ J
Local =<0 0 0 =<0 0
Non-local <0 | BV(V)| o <0 0
Non-local, curl-free 0 CRAvE 0 0 0

analytical solution for a dispersive infinitely long wire can be calculated with an
extended Mie theory developed in [31] where the calculated figure of merit is the
extinction cross-section o.,;. According to [21], the cross-section is given by

2 o
Ceat = =7~ > Ra,}, (53)

n=—oo

where a is the radius of the wire, ky = w/c the vacuum wave vector and a,, the
Bessel-function expansion coefficient for the scattered fields. Taking a look at Fig-
ure 4, the question arises if and which additional resonances of the non-local models
are physical or not. Indeed, the resonances labeled with P2 for the non-local model
without the curl-free assumption (green line) are physical. These resonances exist
due to bulk plasmons that do not exist in the local model and thus cannot be seen
in the blue dashed curve. Contrarily, the curl-free assumption leads to spurious
resonances for frequencies which are lower and beyond the plasma frequency w,.
Although resonances above the plasma frequency are quite physical in the non-local
case, they appear at different frequencies for the curl-free model with respect to
the full hydrodynamic description. In addition, a blue shift for the non-local models
appears with respect to the local one. Even though this blue shift appears in theory
as well as in experiments, the physical explanation is not obvious. Two main effects,
quantum confinement of single-particle states and confinement of collectives modes,
might cause the frequency shift and are extensively discussed for nanospheres in
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Figure 4: From [21]. Extinction cross-sections o.,; as a function of frequency for
TE-polarized light normally incident on a metallic cylinder in vacuum. Parameters
for Au as in [32] fuw, = 8.812 €V, Ay = 0.0752 ¢V, and vr = 1.39 m/s. Inset: frequency
shift of the maximum o,;(w) for non-local against local response, as a function of
radius.

[33]. Both enter the calculations through the pressure term in the non-local fluid
description and cannot easily be distinguished within the semi-classical theory. Al-
though the underlying physics may interact in detail, it is sufficient for this work to
be aware of the occurring blueshift and bulk plasmon resonances due to non-locality.

2.9 Renormalization

We now want to normalize system (33) in order to simplify the equations and to
focus on the quantities that change within space. Defining the vacuum impedance
and speed of light

Zo= |22, (54)
€0
! (55)
Co = ;
v HOE0
and substituting the original quantities by
~ 2
{H7 E,J, Q7 Ev 627 % (-Jp} = {ZOH7 E, ZyJ, COZOQa cot, %7 l? wp} ) (56)
CO co Co
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yields for system (33)

OH+V xE =0,
txcOiE—V xH= -7,
;3 — B?°VQ = i,’E — 4],
9Q —V-J=0.

(57)

This renormalized version of system (33) is not used in the following development
of the DGTD scheme, but is has been adopted for the actual implementation.

3 DGTD scheme

The previous section presented and discussed the physical framework we consider
in this work. Since many applications in nanophotonics have complicated struc-
tures, numerical treatment is unavoidable. With a numerical solver; it is essentially
possible to simulate arbitrary structures. As we are dealing with hyperbolic equa-
tions, we have a system of PDEs that contain partial derivatives in space and time.
In this section we first describe a spatial discretization approach of this system
based on a discontinuous Galerkin (DG) formulation. In the DG framework, numer-
ical fluxes? have to be introduced as the method naturally leads to discontinuities.
This work only considers centered fluxes but further extensions to other fluxes could
be considered. The obtained semi-discrete system is then time integrated using an
explicit scheme. A stability analysis is outlined for the semi-discrete scheme and the
fully-discrete one, afterwards.

3.1 The discontinuous Galerkin method

The DG method was firstly proposed in the context of neutron transport problems by
Reed and Hill in [34]. In the following years, the method has become very popular
and has been applied to a vast field of computational physics and engineering topics.
A very popular example is the field of computational fluid dynamics. Although most
publications on DG are journal papers, the book of Hesthaven and Warburton [35]
gives a comprehensive study of the DG method.

DG is a local method which makes it very flexible in terms of hp-adaptivity and
non-conformal grids [36]-[37]. Additionally, the associated mass matrix is strictly
block diagonal due to the local formulation and allows an efficient explicit time
integration which is not the case for continuous finite element method (FEM) in
general. One of the drawbacks is the increasing amount of discrete unknowns that
logically arise due to the discontinuity between two elements.

2The term numerical flux will be explained later.
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We now want to apply the DG method to system (33). This is done in the following
steps. Defining a weak formulation, choosing an appropriate space for the basis
functions and eventually evaluating the resulting integrals. Although the following
derivations are done with scalar test functions (as used in the implementation), we
will use vectorial test functions for the subsequent stability analysis. Indeed, the
equivalence of both formulations is guaranteed and this choice is only made for the
sake of clarity.

3.2 Weak formulation

The weak formulation of system (33) is derived in the following. First, weak dif-
ferential operators are defined and a polynomial ansatz space, subsequently. By
taking the ansatz space as a basis for the approximation of the field quantities and
as a basis for the test functions, the resulting integrals of the weak operators are
evaluated. Again, we want to emphasize that the local polynomials cause the main
difference between the continuous FEM and the DG approach.

3.2.1 Weak operators

The weak formulation of a differential operator reduces the required regularity of
the field quantity. For the following derivations, we will denote an arbitrary vectorial
field by A : R? x R — R? and scalar fields by ¢, : R? x R — R. Taking the well
known vector analytical identity

V x (pA) = ¢V x A — A x V¢, (58)

and integrating over an arbitrary three dimensional domain {2 yields

/VxA¢d3r:/Vx(¢A)d3r+/A><V¢d3r, (59)
Q Q Q

and together with Stoke’s theorem
/VxA¢d3r:/AxV¢d3r+/(n><A)¢d2r. (60)
Q Q oN

Proceeding analogously for the grad operator leads to

V(gy) = oV + Vo, (61)
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integrating over 2

Vipo dr = | V(oop) d®r — [ ¥V dr, (62)
[oredn= [rend]

and together with the gradient theorem

Vo dr = — [ YV &Br+ [ ¢y d°r. (63)
[esedems [iodes ]

Finally, the weak div is given in (66) by
V- (pA)=9¢V-A+A-Vo, (64)

with the integration over 2
/V-A¢> d’r = /V-(¢A) d3r — /Aw d’r, (65)
Q Q Q

and the use of Gauss’ theorem gives

/V-A¢d3r:—/A-V¢d3r+/¢A-nd2r, (66)
Q Q ]9

where we claim A, v, and ¢ sufficiently regular. The weak formulation of the hydro-
dynamic fluid model reads

/H x V¢ d®r + /¢(n x H) d’r = 6,5/50500E¢ d3r + /J¢ dr, (67a)
Q o0 Q Q

/E x Vo d®r + /¢(n x E) d*r = —8t//LOHqS d3r, (67Db)
Q oN Q

for the Maxwell part, and for the hydrodynamic contribution

— / QVeo d’r + / #Qn d’r = 9, 612J¢ d’r (67¢)
Q o0 Q
2
+ %w dr — Eg’;p Eé d°r,
Q Q
—/J-wd3r+/¢J-nd2r=at/Q¢d3r. (67d)
Q o0 Q
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Here, we assume 3 # 0. Further, the test function should provide sufficient regu-
larity, for example ¢ € H'(2). For the field quantities E,H,J and (Q we assume a
functional space V with sufficient regularity.

3.2.2 Polynomial ansatz space

Spatial discretization with the DG method requires or yields from a special choice of
polynomial basis functions. The main difference between continuous FEM and DG is
the absolutely local basis functions that are nonzero for one element only. In other
words, each finite element, provides a set of basis functions and does not overlap
with its neighbors. Due to the latter mentioned property, continuity of the fields
is not enforced and discontinuities at the cell interfaces may arise. The treatment
of those discontinuities provides an additional parameter for the design of the final
algorithm. As we will see later, the discontinuities are only important for the surface
integrals in (67) and are modeled by introducing numerical fluxes.

Depending on the chosen mesh, different polynomial bases are possible and
more or less convenient. For instance, Legendre polynomials are one possibility
for hexahedral meshes [38]. In our case, a tetrahedral mesh is used in combination
with Lagrange polynomials. However, the actual polynomial basis is not of high im-
portance at the moment since the following derivations are done for general meshes
and basis functions. Nevertheless, it is necessary to be aware of the local basis V¥
for each subspace i.e. mesh cell €);. This basis depends on a characteristic mesh
size h of each mesh. The complete computational domain is thus

o= J @, (68)
VieNq
with
Sig = Q; N Qq, Vi,q € NQ, (69)

where N, is the set of element indices of the subdivision of 2 and element 7 and ¢
are assumed to be neighbors. Figure 5 illustrates one mesh cell §2; for a hexahedral
mesh. According to the upper arguments, the ansatz space is defined as

VP(Q) = {v € L2(Q), vl € Pp(h), Vi € Na}, (70)

where P,(€2;) is the space of polynomials of maximum degree p on ;. Choosing the
basis functions ¢;;, V?({2) can be interpreted as

¢j(r), rc Qi

, Vie Ng| . (71)
0, re¢q “

VP(Q) = Span [gbw(r) : {
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Figure 5: The colored cube illustrates one finite element in the spatial domain. All
basis and test functions ¢;; from an element (); are only non-zero on ;.

Here, ¢;; denotes the basis function associated to the degree of freedom j of element
i.

3.2.3 Semi-discrete weak form

Having a look at system (67), we remark that all spatial derivatives have been taken
away from the unknowns and affect the test functions ¢ only. Together with the
previously defined ansatz space the field quantities can be expressed as

3 B
Alg, (1) = Ai(t) =D ) A¥(t)dijeu, A € {H,E, T} (72a)
u=1 j=1
P; ’
Qlg, (1) = Qi(?) = ZQz’j(t)¢z'j, (72b)
J=1

where u is the spatial dimension and P; the number of degrees of freedom (DoFs)
for the i-th element. A finite element €); is illustrated in Figure 5. The expressions
in (72) are polynomial approximations on each cell. Due to the i dependency of V7,
those fields implicitly depend on h, also. As it is shown below, the results can be
expressed as a matrix vector multiplication of a certain matrix with a vector that
contains the DoFs. The final weak formulation now reads: for all i, j, k, and « find

RR n° 8726



36 N. Schmitt, C. Scheid, S. Lanteri, J. Viquerat and A. Moreau

E;Jj, Hi“j7 Jis» Qij such that
/ H, x V¢, dr + / bir(n x HY) d*r = 0, / c0escEii, dr (73a)
+/Ji¢ik d’r,
Q;
/ E; x Vo, d®r + / bir(n x Ef) d°r = —9; / poH;pg, dr, (73b)
Q; 09, Q;

for the Maxwell part and for the hydrodynamic contribution

1
- / QiVou dr + / 630 d’r = 0, / it P+ / T ' (730)
Q; 0Q; Q; Q;

2
Eow,
- szEi@bik dgr,
Q;
— / Ji Vo dr + / G dr -n d’r = 0, / Qi d°r, (73d)
is fulfilled. Here, we used the relation on €2;

Gijbik, =1
iy — , (74)

¢zg¢lk {07 i 7& I

yielding from (71). The additional ( - )* emphasizes the field values on the boundary
0€2; and will become clearer when the flux matrices are evaluated. We want to use
this notation because of the possible discontinuity between two elements. Indeed,
the field value at the interface is not naturally defined.
3.3 Mass matrix
Let us now have a look at the integrals of the form
3 P
a) ) Algieudn dr, (75)
g, u=lj=1

where « is a generalized material parameter. Rewriting this expression in matricial
form we define a vector containing DoFs by means of A; € R37*! with {A;};1y-p, =
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AZ This leads to the definition of

(M)} = /O‘%% d’r, (76)
Q;
M = diag {(M7)"", (M7)", (Mf)"}, € R*0, (77)

This matrix is called mass matrix and shows block diagonality in the DG framework.
Block diagonality is a very important property that makes explicit time domain in-
tegration computationally affordable and is one of the main advantages of the DG
method. Classical FEM do not provide this property and are therefore numeric-
ally more expensive for transient electromagnetic problems in time domain. In our
case, we furthermore assume that the material parameters are constant per cell.
Thus (77) can be rewritten in the following form

M; = « diag {(MZ)U1 5 (Ml)u2 s (Ml)us} , € RSPiX?)Pi- (78)

3.4 Stiffness matrix

While the mass matrix does not involve any spatial derivatives, the stiffness matrix
carries the inner part of the original differential operators’ weak form. In other
words, the spatial derivative is split into an inner stiffness and outer flux matrix.
For the weak curl operator, the stiffness part reads

3 P
/Ai X V¢zk d31‘ = /ZZA?]gszeu X V(bzk d3I‘, (79)
Q Q; u=1 j=1
(Si)gj = /éf)ijeu x Vi, d°r, (80)
Q;
Si = diag {(S;)"*, (Si)"2, (S;)"#} € R33P, (81)
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Analogously for the grad term

P;
/ind)ik d’r = / Qiji; Vi d’r,
Q Q, 771
P (82)
= ZQij/¢ijv¢ik d’r,
Jj=1 Q;
(Gi); = /¢ijau¢ik d’r, (83)
Q;
(Gi)™
Gi= [ (Gy)* | e R¥*A, (84)
(G:)™
and finally for the div term
3 P
/Ji-VqSik d’r = /Z Jisbijeu Vi d’r, (85)
Q; Q u=1 j=1
P;
=3 Jteu- /d)ijV(bz‘k d’r,
u=1j=1 &,
(Di)y,; = /¢ij8u¢ik d’r, (86)
Q;
D; == (D)™ (D)™ (D;)*) € RF<3H, (87)

3.5 Flux matrix

One of the special but also crucial points for the DG method is the definition of the
field quantity at the boundary of neighboring cells. Centered fluxes, for example,
usually have the advantage to be energy preserving. Those fluxes average the field
quantities of the contributing elements at the cell interface s;; pointing from ele-
ment ¢ to element ¢ according to (88) and Figure 6 and 7. Another possible approach
are upwind fluxes analogously to finite volume schemes where the boundary value
is defined with respect to wave propagation direction. These fluxes cause numerical
dissipation while spurious solutions are damped in time. Many different fluxes are
generally imaginable and a few of them are analyzed in [35]-[38]. Throughout this
work we will only consider centered fluxes (also known as centered DG). Defining
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Figure 6: Interface in between two neighbor elements with respect to the cell €);.
The surface normals n;, point orthogonally to the boundary 0€2;.

the average

A* — A+ A,

i T T 9 (88)

on the interface between element i and ¢ of the general field A, yields for Ampere’s
and Faraday’s laws

Ny
A, + A
/ bir(n x A¥) d’r = g /gzbik <niq X ——5— q) d?r
o, =ls,,

_ (89)
1 s
=3 Z/ dik (ig X Aq) + dir, (mig x Ag) | d’r,
q:lsiq self flux neighbor flux
where s;, is the surface shared by element 3 i and ¢ with

Ng

891' = U Siq; (90)
q=1

30nly conformal grids are considered.
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Field Value

Transition between two domains

Figure 7: A discontinuity can appear at any shared boundary of (); and €2;. The not
filled circles are the fields of each cell at the interface while the ’'global’ field value
is marked by the black dot. This sketch illustrates only the principle without any
coordinate axis or determined dimensions.

with the number of neighbors N{. Let us derive the matrix form of the self flux *

Né 3 N,
1 d 2
33 [ Do max e D Ao | ar
q:lsiq u=1 7j=1

i (91)
1 Ng 3 N
=5 > / DN Ao (nig x eudi;) d’r,
q=1g.  u=1j=1
iq
((IFCurl );‘Sq);k = /¢zk¢z‘] (niq X eu) d2r7
b (92)

((Fcurl )?Q);Lk - /Qsik(bqj (niq X eu) d2I'.

Siq

Here, (Feun ) fq represents the contribution yielding from the element itself while the
contribution of each neighboring element is provided by (F¢, )?q. N, is the number
of DoFs per face. The boundary integral for () has a different structure and leads

“The derivation of the neighbor flux is then similar.
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with the central flux to
Ng
[oamte=3t fon(25%)
2%, =L,

N
722@1] /¢zk¢zgnzq d’r

q=1 j=1 93)
self flux
'L Nq
T3 ZZQQJ/¢zk¢anzq d’r.
q=1 j=1

neighbor flux

continuing in the same manner as before yields

((Fgrad /QSZ;@(;SZ]nzq d r,
(94)
((Fgrad /¢zk¢anzq d r.
Siq
Evaluating the flux terms for the polarization current leads to
N J;+J
/ i d; -n d’r = Z/%k ( : q> ‘nq d’r,
o0, q=lg;
Y Z Z Z /¢zk¢z]eunzq d’r
q 1 u=1j=1 (95)

self flux

1 N: 3 N
QZEIZJU /¢’Lk¢q]eun1qd r,
=1 u=1j=1 /

neighbor flux
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and thus for the matrix notation

((Faiv )fq);k = /¢ik¢ijeuniq d’r,
(96)
(Fan )2)l = [ éndusenns &

Siq

From now on, the flux matrices acting on the electric and magnetic fields will be
denoted by F, , those which act on the polarization charge density by [Fg.q and
finally for the current density Fg;, .

3.6 Semi-discrete stability

In order to study semi-discrete stability, it is more convenient to use a formulation
with vectorial basis functions. Both formulations are equivalent if the vectorial basis
is chosen as

bij = dijeq. (97)

Defining a notation for the average on the interface between element ¢ and ¢ of a
field quantity A by means of

A, + A
{A}iq = Tq , (98)

Siq
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the weak form with vectorial test functions reads

80800875/EZ‘ ¢1E d31‘ = /HZ . (V X ¢2E> d3I‘
Q;

Q;
Nq
-3 / P ({H}iq X nz'q) d’r (99a)
a=1g,
- /-L"G%E d’r,
Q;
Moat/Hi O d’r = /Ez (VX ¢im) d®r
Qi Q;
N, (99b)
+Z/¢1H <{E}iq X nz‘q) d21'7
qzlsiq
R LARCES:
Q; Q;
Nq
+ﬂ22/{Q}@-q iz *Miq d°r (99¢)
qzlsiq
+W]2;50/Ei'¢iJ d’r — V/Ji'ﬁbu d’r,
Qi Q;
8t/QZ¢ZQ d’r = — /Jz"V@Q d’r (99d)
Q; Q;
Nq
+ Z/¢i@ {J}, g dr (99e)
g=1 i

Here, {¢ig, b, 93} : R® — R3 and ¢, : R? — R are appropriate test functions.
Testing (99) with

{oiE, dimt, 0i3, dig} = {Ei, Hy, 35, Qi } (100)

and defining the semi-discrete energy on each element ¢2; analogously to the ana-
lytical definition in (43) as

1
£t =5 [Howpeol Hill%, + ooty Eilld, + 19:l18, + 521Q:118,]
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leads to the power per cell
Ny
HE(L); = %2)602/ [Hl <{E}iq X niq) —E;- ({H}iq X niq)} d%r
q=18iq

+ wleo / [E;-(VxH,;) —H;-(VxE)] d°r

& (101)
N(Z

1623 (1@ Jivmig + Qi {3}, +nig) r
q=1

g / Ve (@) dr — |33,
Q;

Integration by parts of one half of E; - (V x H;) and H;, - (V x E;), respectively, and
applying Gauss’ theorem to the last integral of the div term yields

N,
1 q
8t8(t)i = 5&)360 Z/ [HZ . (Eq X niq) — Ez’ . (Hq X niq)] d21‘
q=1
iq

(102)
Nq
FBY [(@uimig QI ni) e 3R,
q=1 i
where || ||, denotes the £2(Q2) norm for Q = ;. Summing over all elements i

and assuming a boundary value problem as presented in subsection 2.5.3, the total
power reads

HE(t) = =13 . (103)

Thus, the semi-discrete stability is guarantied and a decrease of energy is observed
for lossy media. The term lossy refers here to the friction of electrons due to ~.

4 Time discretization with the leap-frog scheme

The DG method is used for the spatial discretization and leads to the system (73) of
ODEs. These ODEs are still continuous in time where the time dependency appears
in the fields E}(t), H5(t), J{5(t) and Q;;(t). Since our goal is the numerical solution
of the entire system of PDEs, the time has to be discretized as well. In our case, we
will introduce a staggered time grid where the electric field as well as the charge
density are allocated on the primary grid and the magnetic field as well as the

current density on the dual grid, respectively. The latter is shifted in time by %
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with respect to the primary one. This approach was firstly proposed in the context
of FDTD methods for Maxwell’s equations in [39] and is also known as leap-frog
scheme. Applying a second order leap-frog scheme to system (73) and using again
vectorial test functions as in (99) leads to

At
Ny (104a)

—Z/¢iE' <{H”+%}iq X niq> —/J?Jré i,

Siq Q’L

EML _Er 41
€0€oo/H'¢iE: H, > (V X ¢p)

H. —H.
H0/1N1'¢iH:_/E?+1'(VX¢iH)
' (104b)

=3 [ome ({1}, <)

3
+
[

[P o = Q/ QY 6

Nq
+ﬁ22/{Q”+1}iq i3 " nig (104c)
=1g;,

3 1
JT'H_i +Jﬁ+§
oo [ B g -y [T g,

Q; Q;

N,
Q;H_l . Q? nad q o
/At¢iQ = _/Ji ’ 'V¢1Q+Z/¢1Q {J +2}iq "Dig. (1044d)
Q 1=Lsig

Q;

Here, all integrals over the domain (2; and 0f2; are evaluated with respect to the
measure d’r and d’r, respectively. However, those measures are omitted in the
following derivations for the sake of simplicity. Taking this fully-discrete scheme as
a starting point, we would like to study the stability of this scheme. The latter is split
into two parts; bound of the energy and positivity. Here, bound can be interpreted
as an increase of the energy at each time step by means of the transition from ¢, to
thy1 witht,41 =t, + At.
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4.1 Bound of the fully-discrete energy

The evolution in time of the discrete energy is studied now. We will proceed in a
1

similar way as for the continuous physics in (44). Naively defining S: ™2 With some
arbitrary coefficients for the energy norm by means of

1 1 1 1 1 1
g2 = 5 a/H;”? H +b/Ey+1-E? —|—c/J?+2 gt
Q;

i QZ’ (105)

+d/Q?“~Q? :

Q;

and adapt these constants later in order to obtain the decrease of the discrete en-
ergy. Let us define an artificial time level for quantities allocated on the dual time

1 3
grid e.g. H?+2 and H?+2 as

n+3 ntx
Ai 2+Ai 2

5 (106)

Using this definition together with the energy defined in (105), the energy difference
between time step n + % and n + % reads

3 1 3 1
oot -er) <o [ (w7 om)
Q

i

N

+b [ (BB - BT

Q;
+2¢ / (J’j+§ —J;.H%) - gl
Q;
+d [ (QFF- QT - QIT-QY). (107)
Q;

With an appropriate choice of the test functions at the time level ¢, and evaluating
the equations of (104) at the time levels 1, 41 and ¢, 43 according to
2 2

° 1 . 3 +1
(104a) at time tn+% and tn+% with E]'",

[n+1]

7 7

* (104Db) at time ¢, with H
« (104c) at time #,41 with I/,

* (104d) attime t,,, 1 and ¢, s with Q;",
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(107) can be written as

3 1
s S / [bAt H (v B oS (v~ HE”*”)]
E0€0 Ho

+ Z/ [ ﬁ;HEnJrl] . <{En+1}iq X niq) _

At . [n+1] ,
be(]eoo E; <{H }iq X Mig

- / lcatg?Qrr1v -3 4 anual™Y vt

Q;
+ At Z/ |:Cﬁ2 {Qn—i—l}zq Jz’n-‘rl n;, +d Q?-i-l {Jn-‘rl}iq 'niq}
qevigiq
At n n
—b /JZ[ gy cwggoAt/Ey“ - gt
E0€00
- cht/Jl["H] -JZ[-nH].
Q;

Integrating by parts and setting d = ¢3? and b = agoEOO finally leads to

3 1 E? [n+1]
&‘n+§ - n+2 = Z/ [H[nH <q X niq) — E?H' (Hq2 X niq>]

qevls

+eg?ary [ (Qpralny, + Qrral g,

qGVisiq

At
_ /J[n+1] En+1 + cw 60At/E?+1 _J£n+1]
Mo
Qz Qi

B C,YAt/JZ[nH] gl
Q;

Choosing the relation between a and c appropriately as a = c,uowgao and summing
over all cells gives the total energy difference

ETs — £ < AL J|2. (108)
This is indeed a remarkable result because the purely centered DG scheme does

not unphysically increase the energy for the coupled problem of Maxwell together
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with the non-local dispersion model. Additionally, the scheme is energy preserving
if electron collisions are neglected.

4.2 Positivity of the fully-discrete energy

We now want to study the positivity of the fully-discrete scheme. Therefore, we
make some assumptions concerning the mesh properties. The underlying mesh is
supposed to be tetrahedral and quasi-uniform. Defining the fully-discrete energy for
each element ¢

1 1 1 1
gt = 5 |Howpeo / H 2 H " 4 eedw? / E/tLEP (109)

1 1
+/J:L+2_J;'L+2 +IB2/Q?+1Q? ,

testing (104a) and (104d) with EI and Q7, respectively, gives

At 1

JErtE = 20| B cE
E0€00

Q; i

Ny L
—Z/E?- <{H"+5}. xniq> —/JZ-”?-E? +|EFI3, (10
0=l “

%

N(I
n 1 EY
Jarriqr=ac|- [arvare Y [r{smd) ng |+ jik, a1
q=1g Zq

We now have to plug these two expressions into the discrete energy given in (109).
The following lemma linking the £2(£2;)-norm of the differential operators applied to
a vector field A and a scalar field ¥, respectively with the field values’ norm. These
relations are very helpful for the following derivations concerning the positivity and
bound of the discrete energy.

Lemma 2 Let {); be a mesh cell and h; its size. Then, 3C' > 0 independent of h;
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such that

C
HV X AHSL < }THAHQM (112)

C

C
[V -Allg, < EHA”Q“ (114)
1Al < || (115)

Sig = \/}71 Qi»

hold for A and ) polynomial in 2;. [40]

With the relations provided by Lemma 2 and the Cauchy-Schwartz inequality, the
following integral bounds can be derived. After some calculations, the final bounds
read

C
[A-(VxB)+B-(Vx4)| < - |Ala]Blo. (116)
2; ’
C
AV 4 UV A< Al ¥, (117)
; ’
C
A~ (B x nig)| < | All[Bla,. (18)
C
A ngy| < [ ]o, Ao, (119)
iq
[ A-B| < [AlaBla. (120)
2

In the following, the superscripts for the time level are neglected. The magnetic

field H; and the current density J; are thus evaluated at the time ¢, 41 while E;
2

and @; remain at ¢,,. Applying the latter integral bounds to (109) together with the

classical inequality ab < §(a2 + %) and the assumption of a quasi-uniform mesh that
allows the generalization of h; to h with a readjustment of C [8], leads to the energy
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at time ¢, +1

+1
&7 2 [, + coucflIBilln, + 13:l13, + B21Qil,
AtCegw?
= = | IBll, + R, + 7 (IR, + 1 )13,)

gevint

2h
30 (I, + 13 + 2 (Bl + 13:02,)

qeviext
AtC3?
== (1R QIR + 2 (IQilid, + 13413, )
qevgnt
+ 3 (IQila, + 13013, | - (121)
qevlgxt

Here, we have split the set V; of all interfaces of element 7 into two subsets V; = V{”tU
vet (V" V" = () where V™ contains the inner interfaces and V&* the interfaces

that intersect with the boundary of the computational domain 2. Summing over all
cells together with the assumptions according to [8] and adjusting C yields

C Ategw? 1
nty > |1 2P (g4 2
&z 7 <+4

1L,

[ 1 CAtEQUJQ 1
e~ St - O (5 1Y |y
1 , CAtp? 1 9
+ 1 gt - S5 (24 ) | IR
[ CAt 1
w15 (24 1) ] neie. (122)

Thus, the discrete energy will be positive definite if all the coefficients in front of
the || - ||q terms are positive. Inspired by this argument, we introduce a stability
criterion for the time step At in the time stepping scheme proposed above.

Proposition 3 (Positivity of the energy)
The energy defined by (109) is positive under the following condition

At in ! £0%00 ! b (123)
an = 9w220C" 2h + 9C" 2hegw? + 952C" 9C |

where C is a generic constant independent of At and h.
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Proposition 3 is commonly known as a CFL type criterion.

5 Numerical results

This section is dedicated to numerical results. Beginning with a validation test
case in order to guarantee the correct implementation of the numerical scheme
(104), the computational results of an infinitely long wire are given in a second
part. Subsection 2.8 has already discussed this geometry in an analytical manner.
Some of the previous aspects are retrieved in the numerical results. Appendix B
provides some supplementary numerical results for further setups of infinitely long
2d examples.

5.1 Implementation

The DGTD method for the non-local dispersion model presented previously has been
implemented in a 2d setting for the TE Maxwell equations. From now on, we will
use the notation DGTD-P, for used basis functions of the polynomial degree p. Due
to the second order accuracy of the leap-frog time integration scheme, numerical
simulations have been limited to p < 2. All routines were implemented in Fortran
without putting a special effort into performance aspects. The implementation does
not provide any parallelization. Although HPC aspects might be of high importance
due to the strong  dependency of the CFL criteria, it is not as crucial in 2d as it
would be in 3d. Several test cases have been used in the scope of this work. As
a test of the spatial discretization and the functionality of the algorithm, we want
to compute the field solutions in a cavity that is artificially filled with dispersive
metal. After having verified the algorithm’s functionality, we stepped further to
more applied and physical test cases.

5.2 Dispersive cavity

As a first test case, we want to consider a cavity that is completely filled with dis-
persive material. Although this is a rather unrealistic test case, it is a simple pos-
sibility to test the basic functionalities of the code. The main purpose of this test
case is to eliminate as many possible error sources as possible. Of course, analytical
solutions for some physically more reasonable geometries exist. For example, the
nanodisk, previously discussed in subsection 2.8, would be possible. However, this
would require open boundaries and thus many other possible error sources.

5.2.1 Analytical background

Our test case is inspired by [41] and combines the analytical solutions of the electro-
magnetic and hydrodynamic quantities of a vacuum filled and fully-dispersive cavity,
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respectively. In order to compensate the actual coupling of both equations, an arti-
ficial test current density is introduced. This current density is computed with the
analytical solution of the unperturbed equations (124) and (127). In a first step, the
analytical solutions of the homogenous systems are required. The boundary value
for Maxwell’s equations thus reads

V X E+ ppoH =0, (124a)
V xH —¢y0,E =0, (124Db)

on the square domain Qg = {(z,y) € [0, a] x [0, a]} with the PEC boundary condition

no, x E=0 ondQnxRT, (125)

O

for a > 0 given. Switching into the frequency domain and retransforming the com-
plex solution gives the electric and magnetic field solution

ES(x,y,t) = Im cos(Tmx) sin(x,y) cos(zt), (126a)
Lt
Ey(z,y,t) = _Im sin(x,x) cos(Tmy) cos(zt), (126b)
Tt
H(z,y,t) = cos(xmx) cos(Tmy) sin(zt). (126c¢)

Here, z,, = 7 is the wave number for a square cavity of side length a, which is

deduced from the PEC boundary condition. As we are only considering the TE; ;
mode, the signal frequency is given by fo = ac—\% where c is the speed of light. Sub-

sequently, the angular frequency of the time evolution is determined by z; = ”T\/i
Analogously to the electrodynamic case, we can define a homogenous hydrodynamic
problem that is essentially a wave equation. The reduced problem reads

B2VQ — 9,3 =0, (127a)
V-J-8,Q=0, (127b)

on the same domain Q5 (but filled with §) and the boundary conditions

no.-J =0, on €907 x RT, (128)
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Figure 8: Boundary value problem for the artificial test case. (2 is either filled
with vacuum for the electromagnetic equations or with dispersive material for the
hydrodynamic part.

that make exciting currents impossible. The derivation is similar to the one above
and leads in time domain to

T2, y,t) = B2I™ Sin(2ma) cos(zmy) cos(zt), (129a)
Tt
a _ Q-Tm .
Jy(z,y,t) =B o cos(Tmx) sin(xmy) cos(zt), (129Db)
Q%(x,y,t) = cos(zmx) cos(Tmy) sin(zt). (129c)

Figure 8 illustrates the spatial domain ¢)5. The superscript a is introduced in order
to distinguish the numerical and analytical solution on [0,a] x [0,a]. The resulting
formulation of the test case then reads

V x E + po0H = 0, (130a)
VxH=-egdE=J-1J° (130b)
B2VQ — 0J = 7T — eqw2E — 7J* + g E?, (130c)
V-J-9,Q=0. (130d)

In the discrete case, the analytical solutions have to be evaluated at the time level
corresponding to the time stepping scheme according to Appendix A.2.

5.2.2 Numerical results

As the actual computational results are rather unphysical, we want to focus on the
convergence behavior of the algorithm. Defining an error norm ||E — E%||? on the
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domain (2 by

IE—E“& = Y 1B — E*|Z2(q,, (131)
i€ENq

allows the evaluation of an error between the numerically computed and analytical
solution. Here, N denotes the partition of Q in cells ;, and E; the numerical
solution. The shape of the mesh is sketched in Figure 10 where h is the shortest
size of a triangle. Figure 9 illustrates the convergence behavior and for the runs
corresponding to Table 2. These results confirm that we have a scheme of order 1
for P; and an order 2 scheme for Ps, that corresponds to usual rates of convergence
obtained for DGTD schemes based on a centered flux.

. ‘ ‘ ‘ ‘ ;
107% /
= | §
Eﬂl()_lo 8 E
a | ]
Tt
g -1

10-12 , | +§ =2 ,

| | |
10—2 10—1.8 10—1.6 10—1.4
log(h)/10~8

Figure 9: £2(Q)-error for DGTD-P; and DGTD-P,. The convergence rate is 1 and 2
for DGTD-P; and DGTD-Ps,, respectively. Higher polynomial grades are reasonable
since a second order time integration scheme is used. The convergence order can

be obtained by p = log(ha)/log(h1) ____ Here hy and hy are two values for h
log(|[E—E2||o")/ log(|[E-E2||5?)
with he # hy.

Table 2: Simulation Parameters for the artificial test cavity. Here, a denotes the
length of the cubic domain (25, h the mesh size according to Figure 10, f the fre-
quency of the TE;; mode, and A the corresponding wavelength. The used time
integration scheme was of second order.

a/ nm h/ nm f/PHz | A/ nm
10 0.1,0.05,0.025,0.0125,0.0083 | 21.21 14.1
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J'n=0
< Erxn=0

Qn, 000
! L L L !

Figure 10: Mesh and boundary conditions for the discrete boundary value problem
of the artificial test case. The boundary conditions are imposed via the numerical
fluxes of the electric field E and the current density J at the boundary 99)g.

5.3 Nanodisk

Now, we want to discuss the computation of an infinitely long wire, i.e. a nanodisk.
We have chosen this example in order to compare our results in time domain with
the FDTD solutions given in [21]. In a first step, a numerical discussion on precision
and computational time with respect to the interpolation degree p is given. Physical
aspects like the excitation of surface and bulk plasmons are discussed afterwards.
In order to guarantee the same experimental setup, we have taken the physical
parameters and excitation frequencies from [21] that are summarized in Table 3. A
sinusoidal modulated gaussian pulse is used for illumination by means of a plane
wave. The temporal modulation is determined by

—T 2
(Bine(t), Hino(t)} 5 sin(welt — 7)) exp (— (t = > ) , (132)

for an incident TE wave that is linearly polarized in x and z direction for E and H,
respectively. The illumination is consequently oriented in —e,. Table 4 shows the
chosen parameters for the excitation signal for the runs with w. below and above
the plasma frequency. We have used a triangular mesh generator, namely Gmsh.
Figure 11 shows the resulting mesh while all runs for P; and P; use the same mesh.
It is very important to provide a sufficiently small mesh size in the dispersive regime
due to the small wavelength of the bulk plasmons. As a rule of thumb, we suggest
to take a 100 times smaller mesh than for the non dispersive case. On the boundary
of the domain, we apply an absorbing boundary condition and the incident field
is orthogonally induced from above. For switching from the local to the non-local
model, the parameter 3 is set from 0 to the value given in Table 3. The relative
permitivity e is set to 1 everywhere.

In the following part, numerical aspects of the implemented DGTD-P, method
with p € {1,2} are discussed. Within this work we will limit those aspects to visual
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Figure 11: Triangular mesh for a 2 nm dispersive nano disk. The dispersive regime
requires a very strong refinement with respect to the usual mesh size for Maxwell’s
equations. This is mainly caused by the comparatively short wavelength of the bulk
plasmon. The total amount of mesh cells counts 6338 triangles.

effects that can be seen in a 2d plot of the computed fields. Nevertheless, it would
be of high interest to compare the numerical solutions with Mie theory.

As a figure of merit, we will use the absolute value of the discrete Fourier trans-
form (on the fly) of the computed field quantities. Visualizing the transformed fields
at the frequencies w.; and w.2 allows a comparison with frequency domain solu-
tions. Figure 12 shows the results for a polynomial degree of P; and P,. Our solu-
tions show a good visual agreement with the mode patterns published in [21] for the
DGTD-P;3 run while the solution for DGTD-P; is rather blurry. A mesh refinement
would improve the quality of the DGTD-P; solution. A computation with the grid in
Figure 11 together with a total integration time of 5- 10715 s takes about 2 min with
the DGTD-P; method. Increasing the polynomial order to 2 leads to a computational
time of around 10 min. As our code is designed for the non-local model, local Drude
solution can be obtained by setting 5 = 0. Thus, computations for the local and
non-local cases show the same computational time. It may be mentioned that the
implementation is neither optimized nor parallized. This will be done for the 3d case
in a future work. However, the gain in accuracy for DGTD-P; is obvious even for a
rather coarse mesh compared to the wavelength of the bulk plasmon.

However, the gain in accuracy for DGTD-P; is obvious even for a rather coarse
mesh compared to the wavelength of the bulk plasmon. Further, possible improve-
ments are PML boundary conditions [42] or curvilinear elements [43].

Table 3: Physical parameters for the hydrodynamic model. w! and w? are the two
central frequencies of the excitation signal.

Wp Ye B We,1/Wp | We2/wp
13.39-10" rad/s | 0.1143-10% rad/s | 1.1349-10° m/s | 0.6503 | 1.1963
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(a) Fourier transformed field plot of |E, |
computed with DGTD-P; for the local
Drude model. The surface plasmon mode
is observable. Also, the mode can pen-
etrate into the dispersive regime because
we,2 is higher than the plasma frequency.

(c) Fourier transformed field plot of |E,|
computed with DGTD-P; for the non-local
dispersion model. The fourth resonance of
the bulk plasmon mode is observable.

(b) Fourier transformed field plot of |E,|
computed with DGTD-P, for the local
Drude model. The solution is slightly
smoother compared to DGTD-P;. How-
ever, the gain in accuracy is not too obvi-
ous.

(d) Fourier transformed field plot of |E,|
computed with DGTD-P, for the non-local
dispersion model. The solution in the dis-
persive regime is significantly smoother
and the maximum amplitude is reduced by
factor 2.5.

57

Figure 12: Field solutions of a dispersive nanodisk with a radius of 2 nm. The plots
show the Fourier transformed time domain solution of |E,| for the local and non-
local dispersion model with. All computations were done for w.2 = 1.1963w), for
DGTD-P; and DGTD-Ps, respectively.
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Table 4: Simulation parameters of the illuminating field for the runs below and
above the plasma frequency. Here, the subscript ¢ links «; to the computational run
with w.;, fori =1, 2.

Trnaz a1 az Ty T
5-100% s [ 21005 [ 1-107%s [ 1-1077s [ 1-1077s

5.3.1 Physical discussion

After having discussed the numerical framework, its limits and its validation, we
now want to have a look on the physical interpretation of the computed results. The
following computations were all done with the DGTD-P; method and the same para-
meters as above. We basically compare the results for the local Drude model with
the non-local hydrodynamic model. For the angular frequency w,. i, we would ex-
pect small differences between both models. As this frequency is below the plasma
frequency, only surface plasmons can be excited. Figure 13 shows the Fourier trans-
formed field solutions for the F, and £, component. Both field patterns have more
or less the same shape. However, the local model allows a very small penetration
that is almost not visualizable. In contrast, the non-local solution makes penetration
easier and we can see the strongest penetration in the direction of the incident field
polarization. This is fairly reasonable since the plasmon gets excited due to the elec-
tric field. In other words, the electrons get pushed by the incident field. We want
to emphasize that the shown field distributions correspond to the absolute value of
the discrete Fourier transform. What seems to be a quadrupole field is in reality a
dipole field.

Let us switch to the second angular frequency w.» that is clearly above the
plasma frequency and corresponds to the fifth bulk plasmon resonance according
to the cross-section calculations in [21]. Figure 14 shows the obtained field plots.
Again, the local Drude model excites a surface plasmon. This plasmon has a lower
amplitude as for w. 1. Since w.; was exactly chosen to be at the resonance peak,
this is not surprising. For the non-local model however, we can see a completely dif-
ferent field pattern. The surface plasmon is still slightly observable but the solution
is dominated by the bulk plasmon. Analogously to the result below the plasma fre-
quency, the excited bulk plasmon reaches the highest amplitudes where the surface
normal is tangential to the incident field. As a last remarkable result, we want to
have a look at the scattered field due to the excited resonances. The probable most
appropriate way to study the resonance behavior of a nanostructure might be the
evaluation of the cross section. Since this has not been implemented in the code
yet, it is still possible to observe the time evolution of the electromagnetic field at
a determined point in the computational domain. In our case, the field monitor was
placed at the point (z,y) = (0 m,4.5-107'% m) for the E, component of the electric
field. Figure 15 shows the observed results. The blueshift of the surface plasmonic
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(b) |E,| for the non-local dispersion model.
(a) |E.| for the local Drude model. The sur- The surface plasmon mode is clearly observ-
face plasmon mode is clearly observable. Al- able. Due to the electron interaction of the
though the local model allows a penetration, non-local model, the surface plasmon is able
it is hardly seeable due to the very short pen- to penetrate the surface easier than for the
etration depth. local model.

(d) |Ey| for the non-local dispersion model.
(c) |Ey| for the local Drude model. The sur- The surface plasmon mode is clearly observ-
face plasmon mode is clearly observable. Al- able. Due to the electron interaction of the
though the local model allows a penetration, non-local model, the surface plasmon is able
it is hardly seeable due to the very short pen- to penetrate the surface easier than for the
etration depth. local model.

Figure 13: Field solutions of a dispersive nanodisk with a radius of 2 nm. The four
figures show the Fourier transformed field solutions of |E,| and |E,| for the local
and non-local dispersion model. All computations were done with DGTD-P; at w,. 1.
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(a) |E;| for the local Drude model. The
surface plasmon mode is still observable al- (b) |E,| for the non-local dispersion model.
though the amplitude has reduced by a factor Due to nonlocality, bulk plasmons are ex-
of 16. Since the frequency is now higher than cited that penetrate into the inner of the disk.
the plasma frequency w,, penetration is pos- Here, we can clearly see the fifth order res-
sible. onance.

(c) |Ey| for the local Drude model. Similarly
to the F, component, the maximum field in-
tensity is reduced with respect to the the il-
lumination with w. ;. Since the frequency is (d) |Ey| for the non-local dispersion model.
now higher than the plasma frequency w,, Due to nonlocality, bulk plasmons are excited
penetration is possible. that penetrate into the inner of the disk.

Figure 14: Field solutions of a dispersive nanodisk with a radius of 2 nm. The four
figures show the Fourier transformed field solutions of |E,| and |E,| for the local
and non-local dispersion model. All computations were done with DGTD-P; at w,. 2.
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response for the non-local model is clearly observable and thus agrees with discus-
sions in [33] and [21].

0.2

0.1}

E, /a.u.
(=)

—0.1+ -

02| —— local |

—— non-local
| | | | | | | | | | |

—0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t/s 10718

Figure 15: E, component of the electric field at the point (z,y) = (0 m,4.5- 10719 m).
The excitation signal is almost zero aftert = 1-10~'° s and only the emitted field due
to the excited plasmon can be observed. A blue shift of the resonance frequency
w.r.t. the local model can be observed for the non-local model.

6 Conclusions

We have studied a non-local dispersion model in the context of nanophotonics. The
considered dispersion law is a linearized version of a non-linear hydrodynamic mod-
eling of the electron gas for metals. As a matter of fact, the resulting coupled
problem of Maxwell’s equations together with the non-local dispersion model is still
hyperbolic and the total energy is bounded.

The spatial discretization of the coupled system with the DG method led to a
stable semi-discrete scheme. Discretizing this semi-discrete scheme in time with a
second order leap-frog scheme, finally led to a fully-discrete formulation. Due to
the explicit time integration scheme, a stability criterion was derived. This criterion
was given as a CFL type criterion.

In order to verify our 2d implementation, we first considered a rather unphys-
ical test case that allowed a verification of the spatial discretization. After having
successfully tested the implementation, we considered an infinitely long nanowire.
The computed time domain solutions were Fourier transformed and compared to
frequency domain solutions afterwards. Our results show a good agreement with
earlier published articles.

With this code, a time domain solver for the linearized hydrodynamic model is
available now. One of the main advantages is the possibility to illuminate with ar-
bitrarily shaped signals. Although frequency domain solvers are generally able to
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treat arbitrarily time signals, the computational costs increase dramatically for very
short pulses and thus time domain algorithms are more appropriate.This allows new
insights into the behavior of nano particles. Future works could extend this work
in many directions. For example, more sophisticated electron gas models, e.g. non-
linear hydrodynamic approaches that govern SHG or even higher order harmonic
generation are possible. Also, from a more numerical point of view, a 3d imple-
mentation, curvilinear elements, parallelization and higher order time integration
schemes are natural paths for furture works.

Acknowledgment. Many thanks to Prof. Dr.-Ing. Thomas Weiland and Dr.-Ing.
Wolfgang Ackermann for the fruitful discussions about the results of this work.

Appendix

A Discontinuous Galerkin method

A.1 Semi-conservation law formulation

The DGM will be applied to the hydrodynamic model. Differently to the previous
formulation system (33) is written in a multidimensional conservative form.

f(u):=(f, £, £), (133)
f, =N, u, (134)
wi=(E, ... Ho ... Jo ... Q) (135)

where N; are the matrices that represent the topological curl , div and, grad of system
(33). Hence, (33) can be generally expressed as

OLlu+ V- f(u) = Bu, (136)

where
V-f(u) = 0.f, + 0,f, + 0.£. (137)
= N;0,u, + N,0yu, + N, 0, u,. (138)

After having applied the projection to a scalar test function ¢, the upper system
reads

at/me d3r + /v~f(u)¢ d’r = /Bugb dr. (139)
Q

Q Q
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With V- (pA) = ¢V - A + A - V¢ and sufficient regularity for ¢. This yields

6t/Luqb d3r + / ¢f*(u) - n d’r — /f(u) Vo d’r = /Bugb dr, (140)

Q 0o Q Q

where the matrices L and B contain the material properties. The mass matrix for the
first term on the left hand side is now derived. Let us first define two new vectors
and recall the dimensions

L,B e RIOx10 (141)
Pi Pi r
= Y by o S apdip| , €ROX (142)
=1 j=1
= (e ... gp), €ROFL (143)

Now, the mass matrix is derived by inserting the approximation from a finite func-
tional space u

/ Lug;, d°r — [ Lag;, d’r, (144)
Q; Q,

and thus for each element €);

/Lﬁ@k d’r = M'a,, (145)

Q;
((Mﬁ)l)kj = /al¢ij¢ika lex,yz (146)

Q;
M,
M,
. MQS

ME = y . (147)
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This steps are performed analogously for B. For the stiffness term

/ f(u)- Vi, d’r — / [N, @; 0z dir, + Nyw;0ydir, + N, w;0,1] d’r,

/Naui8a¢ik d’r = N, / W00 dr = NS,
Qi Qi

((5)0)y; = /¢ijaa¢ij d’r,
Q.
8¢ = diag ((80)g, .- (87),)
S = N,S7 + N, SY + N.§7,

where N, is N, ’stretched’ by I € RF*F . For the flux we get

/ Gixf* (1) -0 dr = / bt £ (Wng + £ (W + £5(w)ns] dr,

with a central scheme

*| _ fa:i + favq

sig = 5 ya € {x,y,z}.

Thus, the surface integral reads

(l'L fll
[ eusitw r—z/@ i T oy,
o0,

1 q
- Z / bir (Nathi + Nytig) n, d%r,
=1g
iq

1 _ 1 _
=3 E /qbikNaum?q d2r—i—§ E /qbikNauqn?q d’r.
=lg;, a=lg;,

self flux neighbor flux

(148)

(149)

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)
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We get for the self flux

((F Z/¢zk¢z]n d’r, (158)

N, (4F;) (159)
'F; = diag { ({Fi), - (5F0), } (160)

and for the neighbor flux

((SFD),) /@mqmzq d’r, (161)
;»ZN (°F) @ (162)

The external flux matrices are off-diagonal and their position in the system matrix
depends on the grid (they have to be multiplied with the corresponding u, parts of
the u vector that contains all DoFs. Adding up the flux matrices F = F, + [, + I, to
one general flux matrix allows to write the total system with mimetic operators in
the form of

Myp o = (S — F + Mg) @, (163)
or equivalently
Ot =M ' (S —F + M) G (164)

However, this formulation is equivalent to section 3.2 in the linear case. The advant-
age of this formulation becomes clear when a time integration scheme is applied to
(164). Since this formulation is obviously of the form

ox = f(x,1), (165)

any time integration scheme for ODE can be generally applied. Of course, it obliges
to the schemes’ designer to guarantee stability and convergence.
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A.2 Semi-discrete formulation for normalized fields

Considering system (73) for all cells simultaneously in one complete system of ODE
gives

Sh + Foun h = 206000 Me + Mj, (166a)
Se + Feyn € = — o0 Mh, (166b)
1 e Ve 50%2,
—Gq + Fgrad 9 = 50:Mj + -Mj — ——Me, (166¢)
B p p
—Dj + Fyiv j = diq, (166d)

where the vectors of the DoFs a € {h,e,j,q} contain the DoFs of all cells. The
matrices M, S,G,D, and Fey ,Fgrad , Fgiy are build in accordance to subsections
3.3, 3.4, and 3.5, respectively. If we now take into account the normalization as
presented in section 2.9, the upper system reads

Sh + Feyy h = £,,0;Mé + Mj, (167a)

Sé + Feyn € = —0;Mh, (167Db)

~Gq + Fyraa 4 = iagMj + le — cijé, (167c)
B2 B2 3

—Dj + Faiv j = O;M@q. (167d)

A.3 Fully-discrete formulation for normalized fields

Using the second order leap-frog scheme for the time integration finally gives the
following update equations

At At
el = e 4 Tt 4 —M [Sh"Jr% + Feur h"*ﬂ : (168a)
o o, ¢]
ht s — hts — AML [Sen-i-l T Foyn hn—H} ’ (168Db)
q”+1 = qn+1 + AtM! [—GJnJr% + IF‘grad hn+1} ) (168c)

2
-n—&-g 2— VAt -n—i—% QMPAt n+1

- = + —£
J 2+ AL 2+ AL (1684)
262At M1 [_an—f—l + Fqn-‘rl] )
(2+~At)

Here, we disregarded the tilde over each quantity.
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B Additional numerical examples

Some additional computational results are presented in the following. The first ex-
ample is an infinitely long nanowire that is rectangularly shaped. Subsequently, two
nanodisks that are sufficiently narrowly placed in order to allow some mutual coup-
ling were computed with two different distances. The last presented geometry are
two mutually coupled rectangles, similar to the precedent case with two nanodisks.
All computations were done with the same setup as in section 5.3 at w. = we 2.

B.1 Rectangular nanowire

For the rectangular nanowire, an edge length of [ = 4 nm is chosen. Analogously to
section 5.3, the illumination is still from above with all the parameters. The resulting
Fourier transformed field patterns are illustrated in Figure 16 for the |E,| and |E,|
component of the electric field.

Since the illuminating field does only have an electric field component in e,
direction, bulk plasmons are mainly excited in the same direction. The interesting
pattern of |E,| is a bit surprising to us since we rather expected a vanishing electric
field in e, direction. A possible explanation could be the retarded excitation of
the bulk plasmon w.r.t. the incident direction of the illumination. This causes a
bulk plasmon wave front that is not parallel to the square edges and thus causes a
gradient in e, direction of the charge density ). Having a look at the system (33)
explains the excitation of e, polarized electrical fields due to the V(Q. Interfering
waves in the middle of the square could explain the F, at the edges.

In any case, an increase of the physical simulation time smoothens out the Four-
ier transformed solutions due to a longer (in time) Fourier transformation.

B.2 Coupled nanodisks

Bringing two nanodisks closely together should allow some mutual coupling of the
disks. We can indeed observe this effect by placing two identical disks of the same
size as in section 5.3 with a center distance of dgisks,1 = 4.6 nm and in a second run
of dgisks,2 = 4.2 nm. Regarding to the discussions in chapter 2, those results have to
be taken with care. Since we have reduced the distance between the surfaces of our
nano obstacles below 1 nm, QM effects may be taken into account. Nevertheless,
it is nice to see how the mutual coupling affects the characteristics of two particles
in terms of the frequency response. Figure 17 shows the Fourier transformed field
pattern of two nanodisks with the distance dgisks,1. The mode pattern of each in-
dividual disk is slightly asymmetric with respect to Figure 14. Once the disks get
even closer, see Figure 19, this effect increases. The coupled disks behave more and
more as one nano particle of a bigger size and experience a resonance shift similar
to the one shown in Figure 15, see Figure 18.
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(a) Fourier transformed solution of |E,,| com-
puted with DGTD-P, for a nanosquare. Since
the illuminating electrical field is polarized
in e, direction, the excited bulk plasmon is (b) Fourier transformed solution of |Ey| com-
mainly excited in e, direction as well. The puted with DGTD-P, for a nanosquare. The
finite simulation time causes the varying pat- electrical field in e, is probably excited be-
tern in e, direction for in the Fourier trans- cause of the retarded excited bulk plasmon
formed solution. (see main text).

(c) Fourier transformed solution of |E,| com- (d) Fourier transformed solution of |E,| com-
puted with DGTD-P, for a nanosquare. Here, puted with DGTD-P;, for a nanosquare. Here,
the computation time is two times longer the computation time is two times longer
compared to Figure 16a which leads to a compared to Figure 16b which leads to a
smoother pattern. smoother pattern.

Figure 16: Electric field pattern for a nanosquare. The upper plots show the Four-
ier transformed time domain solution for a total simulation time T}, = 5-107° s
while the lower plot’s run took lasted 7T},.; = 10-107' ns. All computations were
performed with DGTD-P; at w, 2.
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A careful look to the signal time evolution of the E, signal in Figure 18 gives rise
to the assumption that the coupled system has more than one strong resonance.
Thus, the coupled nanodisks have their individual mode plus a contributing coupled
mode with a lower frequency, observable as a beat on E,.

(a) |E;| for the non-local dispersion model. (b) |E,| for the non-local dispersion model.
The mutual coupling causes an asymmetric The mutual coupling causes an asymmetric
mode pattern compared to the single disk mode pattern compared to the single disk
pattern. pattern.

Figure 17: Field solutions of two dispersive nanodisks with a radius of 2 nm. The
distance between both centers measures dclh-sk = 4.6 nm. Each individual disk shows
a small asymmetric mode pattern compared to the single disk case. All computations
were done with DGTD-P, at w, .
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Figure 18: E, component of the electric field at the point (z,y) = (0 m,4.5- 10719 m).
The excitation signal is almost zero after t = 1-107'° s and only the emitted field
due to the excited plasmon can be observed. A red shift of the resonance frequency
for the coupled nanodisks can be observed. This red shift increases for a smaller
distance. Additionally, a beat occurs probable because the coupling allows more
resonances. (The beat is more obvious for longer simulations.)

(a) |E;| for the non-local dispersion model. (b) |E,| for the non-local dispersion model.
The asymmetry increases due to the shorter The asymmetry increases due to the shorter
distance between both disks that yields to a distance between both disks that yields to a
higher mutual coupling. higher mutual coupling.

Figure 19: Field solutions of two dispersive nanodisks with a radius of 2 nm. The
distance between both centers measures d}hsk = 4.2 nm. Each individual disk shows
a small asymmetric mode pattern compared to the single disk case. All computations
were done with DGTD-P; at w, 2.
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