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MORGAN J SPICER. Assessment of Sex Differences in Basic Renal Mitochondrial Bioenergetics. 

(Under the direction of DARIA ILATOVSKAYA). 

Kidney diseases are closely linked with mitochondrial dysfunction, oxidative stress, and 

inflammation. Furthermore, it is established that sex plays an important role in the onset, 

development and severity of renal diseases. Recently, it has been revealed that sex hormones 

are implicated in mitochondrial bioenergetics. Despite information accumulated regarding the role 

of mitochondria in renal disease states, little is known about the bioenergetics of renal 

mitochondria in normal physiology, and no studies looked at sex differences pre-disease onset. 

We hypothesized that there are sex-related differences in renal mitochondrial bioenergetics in 

young, healthy rats. To test this hypothesis, we utilized renal tissue and live mitochondria isolated 

from healthy Sprague-Dawley rats 10-11 weeks of age.  Assessment of oxygen consumption 

rates from male and female renal mitochondria revealed that female mitochondria have lower 

respiration vs male mitochondria in a pyruvate/malate containing buffer which stimulates ETC 

Complex I. Sex differences were de-accentuated in a succinate-based buffer which stimulates 

ETC Complex II. Next, female mitochondria displayed similar membrane potential in the cortex, 

but higher membrane potential in the medulla vs males. Analysis of renal cortical electron 

micrographs revealed lower density and number of female mitochondria in renal proximal tubules, 

as compared to males; however, female mitochondria were larger in size. Furthermore, female 

renal mitochondria displayed higher ROS levels and lower antioxidant capacity, while the activity 

of superoxide dismutase (SOD) was significantly higher in female renal cortex vs in male cortex. 

The link between mitochondrial ROS production and calcium handling prompted the quantification 

of mitochondrial calcium uptake and mitochondrial permeability transition pore (mPTP) opening. 

We observed that although male and female renal mitochondria have similar amounts of calcium 

uptake, the mPTP opens earlier in female mitochondria. Taken together, these data suggest that 
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female renal mitochondria are potentially more sensitive to oxidative stress, which allows for faster 

mPTP opening and elimination of dysfunctional mitochondria. Observed sex-related 

discrepancies in renal mitochondrial function prior to the onset of disease could be contributing to 

renoprotection generally observed in females pre-menopause.  
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 CHAPTER 1 - Introduction and background 

Kidney structure and function. Like all major organs, the kidneys are integral to the function of 

the body as a whole. They play a vital role in both the filtration of toxic metabolites and waste 

products from the blood, as well as in recapturing the nutrients from that filtrate in order to maintain 

homeostatic balance1. The physiological structure of the kidney is conducive to these filtration 

processes; each kidney is comprised of anywhere from 800,000 to 1,000,000 nephrons, the 

functional unit of the organ. Furthermore, the kidney contains two distinct regions, the cortex and 

the medulla, which are each responsible for different functions1. Blood flows into the kidney via 

the renal artery, where it is first filtered by the first portion of the nephron, the glomerulus. Filtrate 

flows through the glomerulus into the proximal tubule and the Loop of Henle, then into the thick 

ascending limb, the 

distal tubule, and the 

collecting duct. From 

here, the filtrate 

passes back into the 

renal medulla via a 

larger medullary 

tubule into a medullary 

collecting duct1.  

 

Figure 1. A schematic 

of the nephron, the 

functional unit of the 

kidney. Image used with permission from Guyton and Hall Textbook of Medical Physiology.  
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Prevalence of renal diseases and associated sexual dimorphisms. Given the complexity of 

kidney structure and the vast number of functions performed by the organs, it is not surprising 

that kidney disease is among the top causes of death in the United States as well as worldwide2,3. 

In fact, over 10% of the global population suffers from chronic kidney disease (CKD), and more 

than 15% of the adult population, or 1 in 7 adults, in the United States4. Notably, kidney diseases, 

including CKD, display sexual dimorphisms. Slightly fewer males present clinically with CKD (12% 

as opposed to 14% in females), but males undergo progression to end-stage renal disease 

(ERSD) more frequently4, and suffer from higher pre-dialysis mortality rates than females5. In fact, 

female sex has been proposed as a protective factor against CKD-related hospitalization6. CKD 

is known to frequently transition from AKI, and indeed female sex has been found to also be 

protective against the extent of renal damage accumulated during acute kidney injury6. The 

renovascular disease hypertension is no exception to the trend of reduced severity in females; 

studies have shown that women present with slower rates of renal decline over time as compared 

to men7,8. Recently, a meta-analysis by Tejpal et al. has shown that female sex is protective 

against Covid-19-related renal outcomes, with women experiencing significantly less Covid-19-

induced AKI than in men9. Even in the absence of renal disease, structural damage increases 

and glomerular filtration rate (GFR) decreases with age, but both more severely in males10. Some 

of the age- related renal protection observed in females has been to preservation of nitric oxide 

(NO) signaling, which is heightened by the presence of estrogens10. Even before age-related 

dimorphisms, sex-specific differences exist in the protein composition and function of kidneys. 

Female mice have been shown to excrete sodium loads earlier than mice, in part due to their 

heightened expression of transporters such as sodium/hydrogen ion exchangers, sodium/chloride 

cotransporters, and epithelial sodium channels11. Mice have also shown differences in sensitivity 

to the pressure-natriuresis relationship in response to the peptide hormone angiotensin II in both 

age and sex12.  
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Important to note for these studies is the use of young females. In humans, the trend of female 

sex to be protective compared to age-matched males exists generally until menopause, where 

the sex discrepancies either cease to occur or display inversion of phenotype5,13,14. Administration 

of estrogen via hormone replacement therapy is shown to restore the sex-specific trends, 

however, clarifying that sex plays a role in renal function both in a normal physiological state as 

well as in disease5  

 

Renal oxygenation and blood flow. Regardless of health status, the kidneys have a high 

metabolic load. Approximately 22% of the cardiac output is allocated to the kidneys, where blood 

flows from the renal artery into the interlobar arteries and subsequently the afferent arterioles 

which supply the glomerular capillaries1. This structure means that the cortex has an overall 

higher oxygenation level than the medulla, as it is more rapidly supplied by the oxygenated blood 

entering the kidney15. The medulla is supplied with oxygen via bundles of vessels called 

descending vasa rectae, which allows for the continuation of active transport in an otherwise 

poorly-oxygenated area16,17. Differences are thus to be expected in the bioenergetics of cortical 

and medullary mitochondria, as the regions have unique homeostatic balances. A schematic 

which illustrates renal blood flow and well as relative oxygenation rates across the nephron is 

shown in Figure 2.  

The complexity of renal blood flow marks the kidney as a susceptible site for hypoxic damage. In 

fact, dysfunction in renal oxygenation is implicated in a number of kidney diseases.  Acute kidney 

injury (AKI) is often caused by disruption to renal blood flow, resulting in ischemia-reperfusion 

injury17. These hypoxic renal vasculature functional alterations are also thought to be involved in 

chronic kidney disease (CKD)18-20. Dysfunctional oxygen handling and thus reduced oxygenation 

in the kidney have been shown to be associated with the progression of hypertension, as well21. 

In fact, the alteration of renal microvasculature caused by hypertension is a major causative factor 
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in the development of end-stage renal disease (ERSD)21. Renal hypo-oxygenation has also been 

linked to diabetic nephropathy, via hyperglycemia-induced dysregulation of nitric oxide 

availability, which subsequently alters renal oxygen homeostasis22. In summary, disruption to 

renal oxygenation is responsible for a large incidence of renal disease. 

 

Figure 2. Schematic of 

renal blood supply and 

oxygenation. Figure used 

with permission from 

Scholz, H., Boivin, F.J., 

Schmidt-Ott, K.M. et al. 

Kidney physiology and 

susceptibility to acute 

kidney injury: implications 

for renoprotection. Nat Rev 

Nephrol 17, 335–349 

(2021).  

 

Even prior to the onset of 

renal disease, sexual 

dimorphism is seen in 

renal oxygenation and 

hemodynamics. Male and 

female kidneys have the 

same number of glomeruli, but there are differences in the hemostatic pressure of each due to 
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the larger amount of surface area in males; the glomerular vascular resistance is higher in 

females23. Males are known to have higher blood pressure, higher extracellular volume, and 

higher sensitivity to the blood pressure-regulating hormone angiotensin II. It is important to note 

that differences in tissue oxygenation have been shown to affect mitochondrial function24,25. The 

kidney displays sex differences in oxygenation, so it logically follows that sexual dimorphism 

exists in mitochondrial function.  

 

Mitochondrial function across kidney disease and sex. In addition to the known link between 

tissue oxygenation and mitochondrial function, the number of renal pathologies linked with 

dysfunction in renal oxygenation suggest that perhaps the organelle primarily responsible in the 

consumption thereof may be involved. An emerging target that seems to be central to the origin 

of kidney pathologies is the mitochondrion. Mitochondrial dysfunction is implicated in 

glomerulosclerosis, whereby respiration is decreased, and gene expression of Sod2 as well as 

other respiratory chain genes is suppressed26. Glomerulosclerosis is also linked with 

dysregulation of the pro-fibrotic TGF-ꞵ signaling, caused in part by an isoform of the protein IHG-

1 which localizes to the mitochondria27. Diabetic nephropathy displays downregulation of the 

expression of the protein PGC1-α, the master regulator of mitochondrial biogenesis, in renal 

podocytes28. Reduction in mitochondrial reserve oxygen consumption capacity was also reported 

in diabetic nephropathy29. Downregulation of the mitochondrial inner membrane protein MPV17 

has been shown to be linked with the development of diabetic nephropathy-induced 

glomerulosclerosis, despite the normal functions of the protein remaining unknown30. The 

cardiorenal disease salt-sensitive hypertension shows mitochondrial dysfunction in the forms of 

reduced mitochondrial membrane potential, ATP production, superoxide dismutase 2 activity, and 

oxygen consumption rates in the kidney31,32. Other renal pathologies have shown renal 

mitochondrial dysfunctions which range from alteration to mitochondrial bioenergetics, to 
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downregulation of mitochondrial biogenesis and upregulation of the fusion and/or fission 

processes33-39.  

 

Mitochondria are critical for all organ systems, so the question remains as to why it is that their 

dysfunction presents clinically with such a large number of renal pathologies. Mitochondrial 

function in renal disease is becoming well-defined, and renal disease has been well-demonstrated 

to possess sexual dimorphisms. Despite this, investigation of the sex discrepancies in renal 

mitochondrial function have yet to be defined in a normal physiological state.  

 

Sex-related mitochondrial discrepancies have been studied in nearly all of the body’s organ 

systems. It has been shown that sex is a factor for mitochondrial oxidative stress in cardiac cells, 

where female sex was shown to have lower expression of pro-apoptotic genes in rats of all ages, 

as well as higher expression of oxidative phosphorylation-related genes in older rats40. Cardiac 

mitochondria in males have displayed higher respiration rates as well as membrane potential 

compared to females, and even differences in response to cardiotoxicity. Mitochondria in the brain 

of female rats have been shown to accumulate less oxidative stress over time and maintain higher 

antioxidant capacity than their male counterparts41. Another similar study by Gaignard et al. 

claimed that these brain mitochondrial sex differences were ameliorated in females following 

ovariectomy42. Mitochondria isolated from the female liver generate less than half the amount of 

peroxides as compared to males, in addition to having higher levels of mitochondrial superoxide 

dismutase and glutathione peroxidase43,44. Liver mitochondria from females have also been 

demonstrated to be more differentiated than in males, as well as more efficient at making ATP45. 

In skeletal muscle, female mitochondria again displayed higher oxidative phosphorylation and 

antioxidant capabilities than in males, and also resisted dysfunction induced by a high-fat diet46,47. 
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The mitochondria of both white and brown adipose tissues are no exception: female white adipose 

tissue contains more functional mitochondria than in males48. Furthermore, administration of 

estrogens on white adipocytes induced greater mitochondrial biogenesis and differentiation, while 

testosterone had the opposite effects48. Brown adipose tissue mitochondria displayed higher 

oxygen consumption as well as density, and more differentiation49. Notably, in a recent, 

comprehensive review of what is known about gender dimorphism in mitochondria, there is no 

mention of renal mitochondria50. In order to fill the existing gaps in knowledge regarding the sex 

differences in renal mitochondrial bioenergetics,  it is key to assay the essential functions of these 

organelles.   

 

Mitochondrial structure and functions. As displayed in Figure 3, the mitochondrion is an 

organelle composed of two dynamic membranes which surround its own set of DNA, and is 

frequently referred to as the “powerhouse of the cell” due to its function in producing energy in 

the form of ATP through a process known as oxidative phosphorylation or cellular respiration51. 

 

Figure 3. A diagram displaying the 

membrane compartments in the 

mitochondrion. Used under a Creative 

commons license from Kühlbrandt, W. 

Structure and function of mitochondrial 

membrane protein complexes. BMC 

Biol 13, 89 (2015).  

http://creativecommons.org/licenses/by/4.0/ 



20 
 

 Oxidative phosphorylation is the sum of a series of reactions involved in the consumption of 

oxygen to generate CO2, water, and energy in the form of ATP. These reactions occur via proteins 

in the electron transport chain, which is located in the mitochondrial inner membrane51. Electrons 

from NADH are transferred to Complex I, and those from FADH2 are transferred to Complex II. 

Electrons from both complexes are then shuttled through cytochrome c reductase, or Q. From 

here, electrons are transported to Complex III and then through cytochrome c. Following 

cytochrome c, electrons are shuttled to Complex IV, where they are then pumped into the 

mitochondrial matrix and used up in the generation of water from hydrogen and oxygen 

molecules. The energy from the electrons is used to generate a proton gradient in Complexes I, 

III, and IV, which summarily forms the mitochondrial membrane potential (Δψmito). Because of 

this higher concentration of protons in the mitochondrial intermembrane space, the gradient flows 

downwards through Complex V, where the proton movement powers the generation of ATP from 

ADP, as is shown in Figure 451.  

Figure 4. A schematic of the electron transport chain. Reprinted with permission from 

https://www.ncbi.nlm.nih.gov/books/NBK526105/ https://creativecommons.org/licenses/by/4.0/ 
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Mitochondria are dynamic organelles that undergo a variety of shape-changing processes, 

mainly, the biogenesis of new mitochondria, as well as fission and fusion. The master regulator 

of mitochondrial biogenesis is the protein PCG1-α, which, when activated, stimulates the 

formation of new mitochondria via translocation from the cytoplasm to the nucleus and 

subsequent activation of nuclear genes52. Regarding dynamics, proteins such as mitofusins 1 and 

2 (MFN1 and MFN2) allow for the joining of two mitochondrial outer membranes together, and 

OPA1 allows for the fusion of the mitochondrial inner membrane53. Proteins responsible for 

mitochondrial fission include DRP1, which is involved in GTP-dependent fission of the 

mitochondrial outer membrane,  and its receptors FIS1 and MFF, which are thought to be involved 

in the recruitment of DRP1 to the outer membrane52,54. Assessment of mitochondrial dynamics 

provides valuable information about mitochondrial bioenergetics: for instance, fusion is normally 

known to be coupled to respiration55. This is because the presence of GTP (and thus ATP) is 

required for the activation of OPA1, so levels of GTP are linked to levels of fusion [24970086].  

Figure 5. A schematic overview of the biogenesis, fission, and fusion processes mitochondria 

undergo. Used with permission from Westermann, B. Mitochondrial fusion and fission in cell life 

and death. Nat Rev Mol Cell Biol 11, 872–884 (2010) 
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Fission, conversely, is generally performed in order to mitigate damage; the separation of a 

damaged portion of mitochondria from a healthy one can salvage the damaged organelle and or 

induce healthy, regulated levels of mitophagy to degrade the nonfunctional portions of the 

organelles52.  

 

Mitochondria and energy metabolism in the kidney. Mitochondria are dynamic organelles, 

and in the kidney their distribution and activity are varied across segments of the nephron. For 

instance, the proximal tubule is the most abundant in mitochondria, due to the fact that a majority 

of the kidney’s filtrate reabsorption and sodium handling occur there56. Proximal tubules primarily 

rely on aerobic respiration, mainly utilizing high ATP-yielding ꞵ-oxidation of fatty acids produce 

energy, and are also capable of gluconeogenesis56,57. In the passive transport environment of the 

glomerulus, there are significantly fewer mitochondria present. The distal tubules, however, 

primarily utilize glycolysis to produce ATP, and thus are relatively rich in mitochondria56,57. In fact, 

both the distal tubules and the thick ascending limb are also able to undergo anaerobic 

metabolism of glucose into lactate56,57.  

 

Mitochondria are known to be one of the largest sources of reactive oxygen species (ROS) 

production in the cell. ROS are known to be involved in the development of many diseases, such 

as hypertension, neurological diseases, cardiovascular injury, and cancer58. The kidney is no 

exception to ROS-mediated damage: ischemia-reperfusion AKI, CKD, diabetic nephropathy,  and 

salt-sensitive hypertension all have strong correlations with high levels of oxidative stress59-61. 

Despite the number of disease states associated with excess ROS production, a normal 

physiological concentration of ROS (termed “mild oxidative stress by Frank et al.) causes 

degradation of damaged mitochondria via the process of mitophagy62. Removal of the damaged 

organelles helps to prevent buildup of oxidative stress and thus can keep the cell in a healthy 
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state. For this reason, there exists a delicate balance of ROS accumulation in the cell: small 

amounts can be beneficial, but excess lead to mitochondrial damage and subsequently target 

organ damage and disease62.  

 

In summary, the high metabolic load of the kidney means that a number of renal cell types in both 

the cortex and the medulla have high numbers of mitochondria, as well as many downstream 

processes such as filtrate reabsorption and ion transport which rely on the energy production and 

other functions of mitochondria. The sexually dimorphic nature of mitochondria in other organs 

paired with the observed sex-specific trends in renal disease onset and severity suggest that 

mitochondrial sex differences may a contributing factor. Given the involvement of mitochondria in 

the progression of a number of renal diseases, it is surprising that there is a lack of data regarding 

mitochondrial function in the healthy kidney or between sexes. Furthermore, many nephron 

segments are rich in mitochondria, a major source of ROS in cells. Although low levels can lead 

to protective mitophagy in cells, an excess of ROS are implicated in many renal diseases. In 

accordance with the observed reduction in severity and progression of renal diseases displayed 

in females, and presented with the fact that low levels of ROS are involved in a plethora of 

mitophagic signaling events prior to reaching disease-causing levels, we hypothesized that 

female renal mitochondria have higher sensitivity to oxidative stress.  
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CHAPTER 2 - Materials and methods 

2.01 Animal model and experimental protocol  

Male and female Sprague Dawley rats were originally obtained from Charles River 

Laboratories(Crl:CD(SD) stock # 001). Animals used for the experiments discussed henceforth 

were between 10 and 11 weeks of age (70-77 days), and experimental groups consisted of male 

and female renal cortices and medullae. They were placed on a 5v75 PicoLab diet (LabDiet 

Advanced Protocol, #0039980) with ad libitum food and water access, and all were exposed to 

the same 12hr day/night light cycle. This protocol was approved by IACUC (#2021-1044). In 

accordance with ARRIVE guidelines, the study design is outlined below in Figure 6. The number 

of rats used was based on a priori statistical analyses performed with the assistance of the MUSC 

biostatistics care, and n of animals is reported in each analysis that was performed. No exclusion 

criteria were set prior to the study. Animals used for the studies were randomized between litters, 

and confounding factors such as cage location were accounted for in the randomization.  

Figure 6. A depiction of the animal protocol and experimental groups used for the sets of 

experiments detailed in Sections 2.02-2.11. SDF - female Sprague Dawley rat, SDM - male 

Sprague Dawley rat.  
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2.02 Kidney flush procedure 

At the respective endpoints of the experiment, rats underwent a kidney flush procedure. Animals 

were anesthetized with 5% isoflurane in the induction chamber and then 1.5-5% via the nose 

cone for the surgical procedure. An abdominal midline incision was made, and organs were 

moved to the side to then allow dissection of the abdominal aorta above the left kidney. The 

mesenteric and celiac arteries were then isolated, and loose ties using 4-0 silk threads were 

placed around those vessels. Then, below the left kidney in the abdominal region, the abdominal 

aorta is isolated and two loose ties with 4-0 silk are placed. The vessel was then clamped, and 

the lower tie was tightened. A hole was made in the aorta and the catheter was threaded in, with 

the upper tie used to hold the catheter in place. A schematic of the procedure is shown in Figure 

7. The vessel clamp was removed, and blood was collected first into heparin-containing 1.7 mL 

tubes, followed by the kidneys being flushed at 3 mL/min until blanched with a solution of 40 mL 

of PBS and 200 ul of heparin to 

prevent clotting. Kidneys were 

subsequently removed and placed 

immediately into PBS on ice.  

 

Figure 7. Schematic of the kidney 

flush procedure. Figure used with 

permission from Ilatovskaya, D. V., 

& Staruschenko, A. (2013). Single-

channel analysis of TRPC channels 

in the podocytes of freshly isolated 

Glomeruli. Methods in molecular biology (Clifton, N.J.), 998, 355–369. 

https://doi.org/10.1007/978-1-62703-351-0_28 
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2.03 Isolation of renal mitochondria 

Freshly harvested kidneys that underwent the flushing procedure as described above were first 

mechanically separated into cortex and medulla sections on ice. The following protocol was 

adapted from previously described methods by Frezza et al63. From here, tissue was minced 

briefly on ice with scissors and rinsed with chilled PBS, then minced more thoroughly using a 

razor blade in approximately 2 mL of ice-cold mitochondrial isolation buffer containing 200 mM 

sucrose, 10 mM Tris-MOPS, and 1 mM EGTA/Tris, pH 7.4. The minced tissue and buffer solution 

(approximately 3 mL) was poured into a 5 mL dounce and homogenized with 5 strokes of a 

Heidolph homogenizer at 1600 RPM.  The cortex and medulla solutions were centrifuged at 1,000 

x g at 4°C to remove debris, and the resulting supernatant was removed and placed into new 1.7 

mL tubes. Again, the supernatant was centrifuged at 7,000 x g at 4°C, this time leaving pelleted 

mitochondria at the bottoms of the tubes. The supernatant was pulled off the pelleted 

mitochondria, which were then resuspended in 200 ul of isolation buffer and centrifuged again at 

7,000 x g. The pelleted mitochondria were resuspended with 100μl of mitochondria isolation 

buffer. The final product was assessed for viability by loading a small aliquot of isolated 

mitochondria (approximately 10-15 ul) with 150 nM TMRM, and observation at 40x (Numerical 

Aperture: 0.75)  under a fluorescence Nikon Eclipse Ti-2 microscope (objective: #OFN25) for 

detection of membrane potential. Isolated mitochondria were used immediately for functional 

experiments as described in Figure 8 and Sections 2.05, 2,06, and 2.08. Samples that were to 

be stored for later use in experiments such as in Section 2.11 were snap-frozen with liquid 

nitrogen and stored at -80°C. 
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Figure 8. Illustration of the mitochondria isolation procedure. Excised renal cortex and medulla 

were minced, mitochondria were isolated via differential centrifugation. a small aliquot of the 

isolated mitochondria were loaded with TMRM to label membrane potential and viewed to assess 

viability. The remaining mitochondria were used as described in Sections 2.05, 2.06, and 2.07 for 

spectrofluorimetry or oxygen consumption rate experiments.  

 

2.04 BCA assay for sample protein quantification  

A Pierce BCA assay (ThermoFisher, IN) was used for Methods detailed in Sections 2.05, 2.07, 

and 2.11. In it, standards of 2000, 1500, 1000, 750, 500, 250, 125, 25, and 0 μg/mL are diluted 

from the supplied 1 mL ampule of Albumin Standard. Samples to be analyzed are diluted 1:20 in 

the supplied Working Reagent, and 100 μL of each standard and sample are pipetted  in duplicate 

into a 96-well plate (Costar, #3916). After the Working Reagent was added, the plate was 

incubated at 37°C for 30 minutes, then absorbance was read at 562 nm in the Tecan reader. 
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Sample values were calculated by using a standard curve generated from the known 

concentrations of the standards, and then adjusting for dilution if necessary.  

 

2.05 Oxygen consumption rate measurements in isolated mitochondria 

Quantification of oxygen consumption rates using the Seahorse XF platform is an established,  

rigorous way to measure mitochondrial respiration64-66. For oxygen consumption rate (OCR) 

measurements, 2 to 10 ug of freshly isolated mitochondria from each experimental group were 

placed into a pH 7.2 buffer containing 70 mM sucrose, 200 mM mannitol, 10 mM KH2PO4, 5 mM 

MgCl2, 2 mM HEPES, 0.2% BSA v/v, 1 mM EGTA 5 mM malate, 5 mM succinate, and 5 mM 

glutamate (MAS buffer) and loaded into Cell-Tak coated 96-well Seahorse XF96 plates (Agilent, 

CA; #102416-100) that were allowed to adsorb at RT for 20 minutes. The loaded plates were then 

spun at  1,000 x g for 1 minute to secure the mitochondria. Samples were plated and subsequently 

run on the Seahorse XF96 analyzer located in the MUSC Core Metabolomics Facility. Oxygen 

consumption rate (OCR) was measured at baseline for ten minutes and after the addition of 5ul 

of 10 mM of ADP, oligomycin, FCCP, and a rotenone+antimycin A cocktail, with the addition of 

each drug occurring in 15-minute intervals. An increase in observed OCR following the addition 

of adenosine diphosphate (ADP) is used to assess the viability of the mitochondria. Oligomycin 

is an ATP synthase (Complex V) inhibitor, and the addition quenches OCR below the basal level, 

which allows for calculation of ATP-linked respiration. FCCP is an uncoupling agent which 

disrupts the proton gradient, so the addition allows analysis of maximal respiration (beyond what 

would be observed physiologically). Finally, a cocktail of rotenone and antimycin A, which inhibit 

Complexes I and III, respectively, is added to quench all mitochondrial respiration in the sample. 

By subtracting this value from the basal rate, the non-mitochondrial oxygen consumption can be 

calculated. A graphical summary of the added drugs, their effects, and what pieces of data can 

be measured is depicted in Figure 9.  
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2.06 Oxygen consumption rate measurements in isolated renal mitochondria with different 

substrates 

The experimental conditions follow those described in Section 2.05, however instead of the MAS 

buffer used in that protocol, one set of isolated mitochondria (male and female, cortex and 

medulla) was placed in a solution ideal for mitochondrial function containing 70 mM sucrose, 200 

mM mannitol, 10 mM KH2PO4, 5 mM MgCl2, 2 mM HEPES, 0.2% BSA v/v, 1 mM EGTA 5 mM 

malate, and 5mM pyruvate, to stimulate ETC Complex I; the other set was placed in a nearly 

identical buffer which omitted the malate and pyruvate, and instead contained only 5 mM 

succinate as substrate, to instead stimulate Complex II. Data were normalized to the protein 

concentration in each sample as calculated from a BCA assay as described in Section 2.04.  

Figure 9. Oxygen Consumption Rate Measurement Schematic. The mitochondrial respirometry 

parameters that can be calculated after the addition of each drug are shown.  
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2.07 Polymerase chain reaction quantification of respiratory genes in renal mitochondria 

Renal mitochondria were isolated as previously described32, and TRIzol Reagent from Life 

Technologies was used per the manufacturer’s instructions for the subsequent purification of 

RNA. Isolated RNA was reverse transcribed using the High-Capacity cDNA Reverse Transcription 

Kit with RNase inhibitor from Applied Biosystems. This kit utilizes a 20 µl mix consisting of 10 µl 

each of Master Mix and isolated RNA. Primer pairs were designed using Primer Express Software 

v3.0 (Applied Biosystems), in order to complement the sequences of the target genes obtained 

from the Ensembl genome browser. Synthesis of the designed primers was performed by 

Integrated DNA Technologies (Coralville, IA), and primers were reconstituted to a 10 µM working 

solution before use. The epMotion 5075 Liquid Handling Robot from Eppendorf was used to plate 

the reactions into a 384-well plate (Applied Biosystems), with 2 ng of cDNA being used per 

reaction. The reactions were carried out with default settings in the 7900HT Sequence Detection 

System (Applied Biosystems) for 40 cycles, and non-template (water) controls were used in 

conjunction with triplicate repeats for each reaction, as described previously32. 

 

2.08 Spectrofluorimetry of isolated renal mitochondria 

Isolated mitochondria from Section 2.03 were placed in a 1:10 ratio into chilled buffer pH 7.5 

containing 120 mM KCl, 10 mM sucrose, 2 mM KH2PO4, 2 mM MgCl2, 10 mM HEPES, 5 mM 

glutamate, and 5 mM malate (KCl buffer). For membrane potential measurements, 1 ul of 15 µM 

TMRM was added per 500 ul of mitochondria and KCl buffer. For hydrogen peroxide 

measurements, 2 µl of 10 mM Amplex Red and 1µl of HRP enzyme was added immediately 

before pipetting to the mitochondria and KCl buffer solution. For MCLA, 1 µl of 10 mM MCLA dye 

was added per 500 ul of mitochondria and KCl buffer. Then, 100 μl of the solution was immediately 

pipetted into an average of 8 wells of a black-bottom 96-well plate (Costar, #3916) and run in a  
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plate reader for fluorescence or luminescence, where appropriate. TMRM samples were read for 

ten minutes at an excitation of 560 nm and an emission of 600 nm. Amplex Red samples were 

read for 20 minutes, with an excitation 571 nm of and an emission of 585 nm. Both TMRM and 

Amplex Red experiments were run on the Tecan Infinite 200 Pro reader. MCLA is a luminescent 

dye, and luminescence was read on the Synergy H1 reader. TMRM and MCLA assays collected 

data for ten minutes, and Amplex Red assay collected data for 20 minutes, with data points being 

collected continuously. Data were normalized to total protein per sample as calculated by the BCA 

assay in Section 2.04 for all three dyes. For Amplex Red, which forms an enzymatic curve instead 

of linear, data were integrated using Origin 2019 software, and the area under the curve was used 

for statistical analyses. 

 

2.09 Analysis of superoxide dismutase activity in isolated renal mitochondria 

Samples weighing approximately 25 mg each of male and female renal cortex and medulla were 

homogenized in a cold, pH 7.2, 20 mM HEPES buffer containing 1 mM EGTA and 210 mM 

mannitol, and 70 mM sucrose per gram of tissue, then centrifuged at 1500 x g at 4°C for five 

minutes to remove cellular debris. The supernatant, stored on ice, was then pipetted in 10 μL 

volumes into a clear 96-well plate. To this, 200 μL of the Radical Detector (Cayman Chem, MI) 

was added, and samples were briefly mixed. To initiate the reaction, 20 μL of xanthine oxidase 

(Cayman Chem, MI) was added to each well, and the plate was allowed to incubate on an orbital 

platform shaker for 30 minutes before the absorbance was read at 450 nm by a Tecan plate 

reader. Data were analyzed using the included standards of 0.000, 0.005, 0.010, 0.020, 0.030, 

0.040, and 0.050 in combination with the equation 𝑆𝑂𝐷 (𝑈/𝑚𝑙)  =  [({𝑠𝑎𝑚𝑝𝑙𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑎𝑡𝑒 −  𝑏} ÷

𝑠𝑙𝑜𝑝𝑒) ×  (0.23 ÷ 0.01)] × 𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 to linearize the enzymatic curve and calculate sample 

values. A linearized rate is calculated by graphing the known concentrations of the standards, 

from which the y-intercept of the graph is subtracted. This value,  (𝐿𝑖𝑛𝑒𝑎𝑟 𝑟𝑎𝑡𝑒 −  𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡), 
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is then divided by the slope. To account for the 10 ul added to the 230 ul volume of the plate wells, 

it is multiplied by the fraction 0.23/0.01. Finally, this number is multiplied by the dilution of each 

individual sample to give the SOD activity in calculated Units/mL (U/mL). Data were analyzed with 

two-way ANOVA and Holm-Sidak post-hoc tests.  

 

2.10 Proximal tubule electron microscopy and image analysis 

Freshly isolated 1 mm3 samples of male and female cortices were fixed with 2.5% glutaraldehyde 

in a phosphate buffer overnight. Then, they were rinsed in a 2x buffer for fifteen minutes, 

incubated in 2% osmium tetroxide on a rocking platform shaker for 1hr, and placed through an 

ethanol dehydration series up to 100%. When dehydration was complete, samples were placed 

into propylene oxide to allow penetration of the reagent Embed 812 (Electron Microscopy 

Sciences, #14120) in subsequent ratios of 1:2, 2:2, and 3:1 for 1 hour each. Samples were placed 

into pure plastic overnight on a rocking platform shaker, then placed into molds and allowed to 

polymerize in the oven overnight. Hardened blocks were sectioned at 0.5 um slices, mounted on 

glass, and stained with 1% toluidine blue. The sections were then observed for determination of 

appropriate areas to slice, and the block was trimmed accordingly. The new sections were placed 

on a 200-mesh cu grid and stained for 10 minutes with uranyl acetate, followed by a rinse step 

and subsequent stain with lead citrate. Final sections were imaged on a JEOL 1010 transmission 

electron microscope set to 80 kV. Images at 20000x magnification (pixel to nm ratio set to 1:0.145)  

were analyzed using FIJI software as distributed by NIH67; analysis parameters included mean 

gray value (density), area, number of mitochondria per field, and health scores from 1-5, with a 

score of 1 representing a perfectly healthy mitochondrion and a score of 5 representing a severely 

damaged mitochondrion. To prevent bias in mitochondria analysis, all analyses were carried out 

blinded to both sex and renal region of each image. Any mitochondria which were not completely 

visible in the image field were excluded from analysis. Mitochondria were selected manually using 
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the ROI freehand tool, and the measurement parameters in the FIJI software included Mean gray 

value, shape descriptors, and circularity. The brightness for each image in the software is within 

the range of 0 to 255. To convert the mean gray values into the density that is used for analysis, 

the mean gray value is first subtracted from 255. For each image, a representative “background” 

selection is made, which is also subtracted from 255. From here, the background value is 

subtracted from each sample value to generate density. Data were analyzed with two-way 

ANOVA and Holm-Sidak post-hoc tests.  

 

2.11 Renal mitochondrial Western blotting  

Western blot samples consisted of a 1:10 ratio of snap-frozen mitochondria from male and female 

renal cortex and medulla in radio-immunoprecipitation assay (RIPA) buffer. Samples were run in 

4-20% polyacrylamide gels (Bio-Rad, #5671095) for 5 minutes at 50v, then for 75 minutes at 

120v. Proteins were transferred to nitrocellulose membranes using a 2.5A, up to 25v, 7 minute 

transfermode on the TransBlot system from Biorad, Inc. Membranes were stained with Pierce 

stain (Thermo Scientific, IN; #786576) to detect total protein of the samples before blocking in 5% 

skim milk in Tris-buffered saline with Tween 20 (TBST: 20mM Tris, 150mM NaCl, 0.1% Tween 

20, w/v, pH 7.4) for one hour. After blocking, membranes were incubated in primary antibodies 

overnight at 4°C. Primary antibody was then decanted, and a wash step consisting of three 5-

minute washes in TBST on a low speed orbital platform shaker was performed. Secondary 

antibody was then added and allowed to incubate at room temperature on a low speed orbital 

platform shaker for one hour, followed by an additional wash step consisting of three 5-minute 

washes in TBST. Proteins were detected using SuperSignal West Pico PLUS reagent (Thermo 

Scientific, IN) and imaged with a Li-Cor Odyssey XF system to detect chemiluminescence of the 

HRP conjugate on the secondary antibody to the target protein. The catalog numbers and 

dilutions of the antibodies used can be found in Table 1. 
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Abbreviation Target Protein Name Vendor,  

Catalog Number 

Species Dilution 

MFN2 Mitofusin 2 Proteintech, 

#12186-1-AP 

rabbit 1:1000 

OPA1 Mitochondrial dynamin-like 

GTPase 

Fisher, #PA5-

79771 

rabbit 1:1000 

SOD2 Superoxide dismutase 2 SCBT, #SC-

137254 

rabbit 1:500 

HRP Anti-rabbit (conjugated with 

a luminescent horseradish 

peroxidase tag) 

Fisher, #31460 goat anti-

rabbit 

1:5000 

 

Table 1. List of antibodies used for Western blots.  

 

2.12 Renal mitochondrial calcium uptake measurements 

Freshly isolated live mitochondria from male and female cortex and medulla were plated in a 96-

well plate in wells containing 1 µl of 5 µM membrane-impermeable Calcium Green dye (Thermo 

Scientific, C3737), and a buffer of pH 7.5 containing 120 mM KCl, 10 mM sucrose, 2 mM KH2PO4, 

2 mM MgCl2, 10 mM HEPES, 5 mM glutamate, and 5 mM malate (KCl buffer). Using the injection 

feature on the Tecan Infinite 200 Pro plate reader, 5 ul of 250 uM CaCl2 solution was injected into 

each well, and fluorescence reads were taken at 520 nm. CaCl2 injections occurred sequentially 
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every 15 read cycles, and the end point of the experiment occurred after 11 injections. A 

schematic of this procedure is displayed in Figure 10. Fluorescence data were normalized to the 

total protein of each sample as calculated by BCA assay. To confirm that the observed decreases 

in Ca Green fluorescence are due to mitochondrial uptake, the drug Ru360, an inhibitor of 

mitochondrial calcium uptake, is used as a control by adding 5 µl of 500 mM stock to the 

mitochondria and buffer. Data were plotted, and the area under the curve for injection numbers 4 

and 5 was integrated using Origin 2019b software. Following this, 2-way ANOVA with Holm-Sidak 

post-hoc tests were utilized on the integrated data to determine significance.  

 

Figure 10. Schematic of the mitochondrial calcium uptake assay. Calcium green dye fluoresces 

when bound to calcium ions, causing increases in fluorescence when calcium chloride solution is 

added. As mitochondria absorb the calcium, it the ions dissociate from the membrane-

impermeable Ca Green dye, which causes fluorescence readings to decrease and stabilize. He 

opening of the mPTP can be visualized at the point where fluorescence readings continually 

increase. Data were analyzed with two-way ANOVA and the Holm-Sidak post-hoc test.  
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2.13 Quantification of renal antioxidant capacity  

An Antioxidant Assay kit from Cayman Chemical (709001) was utilized for the measurement of 

total antioxidant capacity of renal tissues. Approximately 10-15 mg of cortical or medullary tissue 

from male or female kidney for each sample was homogenized via sonication over ice. Following 

this, homogenate was centrifuged at 10,000 x g for 15 minutes at 4°C to pellet debris. The 

resulting supernatant was then diluted in a 1:50 ratio for use. Each well on the plate contained 10 

µl of sample or standard, 10 µl of metmyoglobin, 150 µl of Chromogen, and 40 µl of Hydrogen 

Peroxide Working Solution for a total of 210 µl per well, with all samples and standards run in 

duplicate. Standards of Trolox in concentrations of 0.0, 0.068, 0.165, 0.203, 0.270, 0.338, and 

0.495 were plated and used later to generate a standard curve. Absorbance was measured at 

750 nm on a Tecan Infinite 200 Pro plate reader following a 5 minute shaking incubation at room 

temperature. A linear regression was performed using Standard values, and sample antioxidant 

concentrations were calculated using the equation 𝐴𝑛𝑡𝑖𝑜𝑥𝑖𝑑𝑎𝑛𝑡 (𝑚𝑀)  =

 [{𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 −  𝑏} ÷ 𝑠𝑙𝑜𝑝𝑒] × 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛.  

 

2.14 Statistical analyses 

Data were analyzed using one-, two- or three-way ANOVA and the Holm-Sidak post-hoc test, 

where appropriate for each dataset. Statistical test information is also located in the figure legend 

of each section. Data are displayed as box-and-whisker plots, with the box representing standard 

error, the whiskers as 1x standard deviation, and the line as the median. Statistical significance 

was designated as values with p < 0.05. Outliers were tested for using the Grubbs test, and 

removed if p < 0.01, where applicable. These box plots and values were generated by Origin 

2019b software. N and n values are displayed on graphs, where N represents the number of 

animals used (biological replicates), and n represents the number of technical replicates.  
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CHAPTER 3 - Characterization of basal bioenergetic profiles in male and female renal 

mitochondria  

Introduction 

Oxidative phosphorylation in the kidney. 

The kidney is among the body’s most metabolically active organs, with an energy expenditure 

similar to that of the heart in a resting state in healthy adults68. The kidney’s demand for energy 

arises from its functions in filtering blood to remove waste products, maintaining electrolyte 

homeostasis, regulating acid-base balance, reabsorbing nutrients, and regulating blood pressure. 

The energy needed for these processes is supplied largely from the process of oxidative 

phosphorylation performed by mitochondria, and indeed the kidney is the second-highest organ 

in both oxygen consumption and also total mitochondrial content, following the heart69,70.  

 

Mitochondria supply the energy for renal functions directly, as ATP is the universal currency of 

energy in the cell, and also by providing ATP for the plethora of Na+/K+ ATPases found in the 

basement membranes of epithelial cells of the renal tubules71. These ATPases facilitate the 

development of a sodium ion gradient which is greater in the lumen than in the cell and 

intracellular space. Other transport proteins such as sodium glucose transporters (SGLTs), 

sodium phosphate transporters (NPTs), sodium bicarbonate exchangers (NBCs), sodium chloride 

cotransporters (NCCs), sodium channels such as ENaC (Epithelial Sodium Channel),  and others 

couple non-sodium molecules to the sodium gradient to allow for reabsorption into the cell and 

thus into the body, as displayed in Figure 1171. 
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Figure 11. A schematic displaying a summary of sodium transport and the various proteins which 

facilitate it, as well as the molecules coupled to sodium transport, along the nephron. Reprinted 

with permission from CJASN.  

 

As stated previously, kidney cells have both an extremely high energy demand and a high number 

of mitochondria to meet that demand69,70. Because of the fluctuating metabolic needs of the 

kidney, it is important for the mitochondria to have a high degree of plasticity to adjust to the 

changing energy requirements52. Therefore, it is very important for the kidney cells that 

mitochondria have ways of adjusting their energy output to maintain a homeostatic balance; one 

method is by the alteration of biogenesis and dynamics, that is, fission and fusion52.  
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Many renal and cardiorenal disease states are linked to mitochondrial dysfunction, for example, 

salt-sensitive hypertension31,32, glomerulosclerosis26,27, diabetic nephropathy28-30, tubulopathies 

such as Fanconi syndrome72, and a number of other renal disease states37-39. Not only do renal 

diseases often display mitochondrial dysfunction, but they also present clinically in a sexually 

dimorphic manner. Female sex has been found to be protective against AKI and hypertension, 

and against the progression of CKD6,7.  

 

Despite this disease presentation, as well as sexual dimorphisms in normal kidney function, little 

is known about the differences in renal mitochondrial function in males and females. What is 

known includes that both estrogens and androgens do have effects on mitochondrial function: 

estrogens have been shown to attenuate tubular damage via altering the oxidative state of 

mitochondria73, and female mice and rats are able to retain some forms of respiration in the 

presence of nephrotoxins compared to their male counterparts74. Androgenic effects on renal 

function have also been reported. For example, low doses of testosterone have been 

demonstrated to attenuate damage in renal ischemia-reperfusion injury75. These data oppose 

another study by Peng et al. which showed that administration of testosterone induced apoptosis 

and necrosis in tubular epithelial cells76. Interestingly, it has been shown that androgen receptors 

localize to mitochondria in other organs such as skeletal muscle and sperm cells77,78. Estrogen 

receptors have also displayed this nonclassical localization78,79, but the question of whether this 

occurs in the kidney has not been answered yet. 

 

In order to help fill this gap in knowledge regarding the sexual dimorphisms of renal mitochondria, 

we designed experiments to test the bioenergetic capacity of these organelles in renal male and 

female samples. First, we measured respiration rates of isolated renal mitochondria from male 

and female cortex and medulla, and then refined our baseline respirometry experiments to include 
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differential substrate feeding as well. From here, we examined expression of the ETC-related 

genes which are involved in mitochondrial respiration, and assessed mitochondrial membrane 

potential. Next, we investigated mitochondrial dynamics by analyzing both expression of 

dynamics-related proteins MFN2 and OPA1, as well as electron micrographs of proximal tubular 

mitochondria. These experiments helped to establish bioenergetic profiles of the mitochondria in 

male and female cortex and medulla.  

  

Results 

Comparison of the oxygen consumption rates of isolated male and female renal 

mitochondria. 

One of the primary functions of the mitochondrion is the production of energy in the form of ATP 

through a process called cellular respiration80. The rates of respiration, which can be measured 

by examining the oxygen consumption rate of isolated mitochondria, are often tied to the health 

of the mitochondria81. In order to determine discrepancies in mitochondrial respiration the oxygen 

consumption rates were measured in the isolated mitochondria from each experimental group as 

defined in Protocol 2.01: male and female renal cortex and medulla. This allowed us to collect 

vital information about the bioenergetics from each group as displayed in Figure 12.  The oxygen 

consumption rate (OCR) was measured by the Seahorse XF96 analyzer, the method of which is 

displayed in Figure 9. All data shown below are in experimental groups according to Protocol 

2.01. The male mitochondria from both cortex and medulla have overall higher rates of respiration 

than both groups of female mitochondria, as seen in Figure 12. Male groups displayed higher 

basal OCR (Units shown are pmol/min/mg protein. Male cortex = 39.45 ± 1.12; female cortex = 

26.57 ± 0.88; male medulla = 30.56 ± 0.74; female medulla = 21.69 ± 0.57 ), ADP-stimulated 

OCR (male cortex = 15.82 ± 0.79; female cortex = 12.79 ± 0.51; male medulla = 17.32 ± 0.80; 

female medulla = 11.85 ± 0.47), ATP-linked OCR (male cortex = 30.15 ± 1.07; female cortex = 
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24.60 ± 0.63; male medulla = 23.65 ± = 1.22; female medulla = 21.02 ± 0.47), Leak OCR (male 

cortex = 16.56 ± 0.63; female cortex = 11.01 ± 0.47; male medulla = 12.86 ± 0.43; female medulla 

= 8.59 ± 0.24), Max OCR (male cortex = 52.05 ± 2.33; female cortex = 32.56 ± 1.24; male medulla 

= 40.29 ± 1.23; female medulla = 25.05 ± 0.77), and spare capacity (male cortex = 14.34 ± 1.29; 

female cortex  = 5.86 ± 0.58; male medulla = 11.64 ± 0.74; female medulla = 4.86 ± 0.57) than 

female cortex and medulla groups, as are shown in Figures 12 and 13. We report that cortical 

respiration was higher than medullary respiration for basal OCR, ATP-linked OCR, leak OCR, 

and max OCR in both male and female mitochondria (numerical data displayed above).  

Figure 12. Summary of respirometry of isolated mitochondria from male and female renal cortex 

and medulla. Isolated renal mitochondria from males from both cortex and medulla displayed 

higher oxygen consumption over females for each measured parameter. Biological and technical 

replicates displayed on individual graphs in Figure 13.  
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Figure 13. Oxygen consumption rate measurements of isolated renal mitochondria in male and 

female cortex and medulla. N value represents the number of biological replicates, and is 5 for 

each group shown. The n-values shown on the graph represent technical replicates. Analysis was 

2-way ANOVA with the Holm-Sidak post-hoc test. .   

 

The ETC is a multiprotein system where numerous factors, from expression to activity of each 

protein, could be potential driving factors of the observed discrepancies in respiration by sex. 

Respirometry can be tailored to observe differences in ETC function by complex. To assess the 

ETC complex dependency of mitochondria in male and female cortex and medulla, an additional 

experiment measuring OCR was performed. The experimental groups remained the same as in 

Figures 12 and 13, but were split into two groups with mitochondrial substrates which would 

independently stimulate unique complexes of the ETC, thus allowing for more mechanistic insight 

to the altered levels of oxygen consumption. As described in Protocol 2.06 The first solution 
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contained malate and pyruvate sugars to stimulate respiration through Complex I, and the second 

solution contained only succinate to stimulate respiration through Complex II. Figure 14 shows 

that, in malate/pyruvate buffer, male mitochondria followed the previous trends and had 

significantly higher basal OCR compared to the female mitochondrial groups (Units shown are 

pmol/min/mg protein. Male cortex = 15.63 ± 0.90; female cortex = 10.91 ±  0.57; male medulla = 

16.09 ± 1.12; female medulla = 10.20 ± 0.45), max OCR (male cortex = 43.39 ± 2.23; female 

cortex = 44.34 ±  2.93; male medulla = 51.23 ± 2.57; female medulla = 43.85 ± 2.20), and leak 

OCR (male cortex = 12.03 ± 1.03; female cortex = 9.76 ± 0.58; male medulla = 14.23 ± 1.14; 

female medulla = 9.44 ± 0.64). Interestingly, when fresh isolated renal mitochondria were placed 

into the succinate buffer, significant sex-related discrepancies in respiration were absent.  

Figure 14. Differential substrate feeding of isolated renal mitochondria from male and female 

cortex and medulla. N values represent the number of biological replicates. The n-value 

represents technical replicates. P-values with statistical significance are displayed. Data were 

analyzed with 3-way ANOVA and the Holm-Sidak post-hoc test.  
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Differentiation of the expression of respiration-linked genes in male and female renal 

mitochondria. 

There are a plethora of proteins which make up the ETC and contribute to the process of oxidative 

phosphorylation. Through respirometry, we were able to stimulate complexes I and II, but needed 

to further investigate the ETC to identify other segments which could be contributing to the 

observed sex-related discrepancies in respiration. To accomplish this, qPCR was performed as 

described in Protocol 2.07 to analyze the mRNA levels of the proteins produced by the genes 

Atp5f1a, which codes for ATP synthase or complex V in the ETC, as well as Cox4i1 and Cycs, 

which encode for complex IV and cytochrome c, respectively, and data are displayed in Figure 

15. Cytochrome C is an essential protein for the function of the electron transport chain, given its 

role in shuttling electrons from complex III to complex IV, and Pgc1-α affects respiration by 

increasing the number of mitochondria available to perform the function52. No significant 

differences were observed in the mRNA levels from the Atp5f1a, Cox4i1, or Ppargc1a genes, 

however, the expression level of the transcripts from the Cycs gene were significantly higher in 

both the cortex and medulla of males as compared to females (Units displayed as fold 

change/male average. Male cortex = 1.0 ± 0.24; female cortex = 0.40 ± 0.09; male medulla = 1 ± 

0.15; female medulla = 0.40 ± 0.11).   
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Figure 15. Respiratory 

gene mRNA expression. 

qPCR was performed on 

genes Atp5f1a, Cox4i1, 

Cycs, and PparGc1a. 

Data points each 

represent one biological 

replicate.  Data were 

analyzed with 2-way 

ANOVA and the Holm-

Sidak post-hoc test.  

 

Quantification of 

mitochondrial membrane potential and reactive oxygen species production in isolated 

renal mitochondria. 

The ETC has obvious functions in the generation of ATP for the cell, but one byproduct of this 

process is the generation of a proton gradient between mitochondrial membranes. This gradient 

gives each mitochondrion a membrane potential, or Δψmito51, therefore all live, healthy 

mitochondria have a Δψmito value, which can be measured using the fluorescent dye TMRM. 

The proton gradient, and thus membrane potential, is responsible for the generation of ADP from 

ATP by Complex V; for this reason, discrepancies in Δψmito can be indicative of differences in 

mitochondrial bioenergetics52. We observed that the isolated mitochondria from renal medullae 

displayed overall higher levels of  Δψmito than did cortices in both males and females (Units 
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displayed as au/mg protein. Male cortex = 92.87 ± 

3.80; female cortex = 102.76 ± 5.51; male medulla 

= 162.02 ± 8.77; female medulla = 238.05 ± 12.38), 

as displayed in Figure 16. Female medullary 

mitochondria also displayed significantly higher 

Δψmito compared to the male medullary 

mitochondria.  

 

Figure 16. Measurement of mitochondrial 

membrane potential from male and female cortex 

and medulla. N represents the number of biological replicates, and n represents the number of 

technical replicates. Data were analyzed with 2-way ANOVA and the Holm-Sidak post-hoc test.  

 

Assessment of mitochondrial respiration and dynamics-related proteins via Western blot 

in isolated renal mitochondria. 

 

Mitochondrial fusion state often correlates with respiration52. In order to determine whether the 

upregulation in male mitochondrial oxygen consumption we observed was due to fusion levels, 

Western blots were performed to measure the expression of the proteins MFN2 and OPA1, both 

of which are integral for the mitochondrial fusion process. MFN2 expression was higher in male 

isolated mitochondria from both cortex and medulla regions, compared to the expressions in 

females (Units displayed as au/mg protein. Male cortex = 92.87 ± 3.80; female cortex = 102.76 ± 

5.51; male medulla = 162.02 ± 8.77; female medulla = 238.05 ± 12.38), as shown in Figure 17. 

OPA1 expression in the cortex and medulla of males was not significantly different than in the 

mitochondria isolated from female kidney regions; however, the OPA1 expression in female 
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cortex groups was much lower than in female medulla groups (Units displayed as au/mg protein. 

Female cortex = 0.93 ± 0.07; female medulla 0.73 ± 0.05).  

 

 

Figure 17. Western blots and analyses of fusion proteins MFN2 and OPA1. Images were obtained 

with a Li-Cor Odyssey XF system, and densitometry was performed using FIJI software. Data 

points each represent one biological replicate. Data were analyzed with 2-way ANOVA and the 

Holm-Sidak post-hoc test.  

 

Size, density, number, and health of isolated renal mitochondria.  

We observed sexual dimorphisms in the expression levels of fusion protein Mfn2, thus the next 

logical experiment was to visualize and analyze mitochondria to further elucidate whether 



48 
 

changes in fusion state were responsible for differences in respiration. This was done using 

transmission electron microscopy. Proximal tubule cells were used for analysis to represent the 

cortical fraction of the kidney as they comprise the largest portion of the renal cortex [28804120]. 

Analysis of density, being used as a crude indicator of mitochondrial health, revealed that male 

mitochondria were significantly more dense than the female group (male = 42.58 au ± 0.57; 

female = 39.30 au ± .05) . Male mitochondria were also smaller in area (male mean = 0.29 µm2 

± .01; female = 0.38 µm2 ± 0.01)  and more numerous per field (male = 44.36 mitochondria/field 

± 1.91; female = 34.94 mitochondria/field ± 1.93) . Notably, despite differences in morphology, 

both male and female mitochondria displayed nearly identical health scores. Representative 

images are shown in Figure 18, and quantitative analyses of the identified parameters are 

displayed in Figure 19.  

 

Figure 18. A representative image set of male and female mitochondria from renal proximal 

tubules. Images were obtained with a JEOL 1010 transmission electron microscope set to 80 kV. 

Images  are displayed at 20000x magnification. 
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Figure 19. Electron microscopic analyses of isolated proximal tubular mitochondria in males and 

females. Data were analyzed with 1-way ANOVA and the Holm-Sidak post-hoc test. N represents 

the number of animals analyzed. The n-value represents the number of mitochondria analyzed 

for density, area, and score; n-value represents the number of fields of view analyzed for number 

of mitochondria.  

 

Discussion for Chapter 3 

 

Overall, the results obtained in Chapter 3 showed that male mitochondria had higher overall 

respiration compared to female mitochondria. These differences were apparent in a Complex I-
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stimulating buffer, but ameliorated in a Complex II-stimulating buffer. qPCR showed that the 

expression level of cytochrome c was altered between sexes, being higher in males in both cortex 

and medulla. Membrane potential was interestingly higher in females than in males, particularly 

in the medulla. When the expression of fusion proteins MFN2 and OPA1 was measured, MFN2 

displayed higher expression in males. Electron microscopy analysis showed that male 

mitochondria were in fact smaller and more numerous, which could point to a less fused 

phenotype than in the females. The relative health scores as determined by electron microscopy 

were nearly identical between sexes.  

 

In our hands, isolated male renal mitochondria displayed overall higher levels of respiration. The 

trend for most other organs in the body is for male mitochondria to display lower levels of 

respiration50, which is the opposite trend. It is important to note that the kidney, unlike other 

organs, has metabolic rates that are directly influenced by the rate of renal blood flow82. The 

cortex has a much higher oxygenation level than the medulla, which likely accounts for the higher 

overall levels of respiration in cortical mitochondria compared to those that are medullary15,16. This 

could also be one explaining factor for the sex-related discrepancy in observed mitochondrial 

bioenergetics, and could also account for the trend of female renal mitochondria having higher 

levels of membrane potential and ROS production, which appear to be unique to the kidney - 

males have a higher metabolic load, which could account for their increases in respiration83. This 

could be further tested by matching GFR from males and females to isolated mitochondria and 

respirometry results as a future experiment.   

 

Regarding oxygen consumption, the fact that sex-related discrepancies only appear in the 

Complex I-stimulating malate/pyruvate substrate buffer and not the Complex II-stimulating 

succinate substrate buffer suggests that the observed sex-related discrepancies in oxygen 
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consumption may arise from Complex I. This suggests that regardless of the contributions of 

Complex I to respiratory efficiency, there are other factors both in and outside the ETC which 

could account for the discrepancy in disease incidence and severity between sexes.   

 

Other studies which examined the energetics in renal mitochondria have shown reduction in the 

renal expression of ETC Complexes in diseases such as diabetic nephropathy and acute kidney 

injury84-86. Our previous studies in salt-sensitive hypertension showed that the respiration rates of 

glomerular mitochondria were depressed in rats fed a HS diet, which develop profound renal 

damage32. Doe et al. found reductions in OXPHOS activity in the mitochondria of skeletal muscles 

of mice afflicted by CKD, though interestingly no measurements of renal mitochondrial OXPHOS 

activity were made87. Smith et al. measured the activity of OXPHOS components in patients with 

CKD, and reported that Complex IV activity was significantly reduced, though once again the 

isolated mitochondria did not come from the kidney, and instead came from peripheral blood 

mononuclear cells60. Notably, in the same study the authors observed that although Complex IV 

activity was lower in CKD patients, the protein expression for the same Complex was significantly 

higher, likely indicative of a compensatory mechanism60. This poses future directions for our 

experiments: it would be beneficial to measure the expression of genes and proteins involved in 

OXPHOS, as well as the activities of each Complex to see if the trend holds true in the kidney: 

the next step would be to test whether higher expression levels correlate with reduced activity in 

disease states, and, if so, whether this holds true in healthy states and across sexes. 

Our studies did address the key pieces of this puzzle by examining the expression of several 

respiratory genes involved with the ETC. For instance, there were no differences observed in the 

expression of the Atp5f1a or Cox4i1 genes, but it is important to note that levels of gene 

expression do not necessarily correlate directly with levels of protein expression88 or activity, as 

noted above. Furthermore, Atp5f1a or Cox4i1 comprise a small section of the number of genes 
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which are code for all the ETC complexes, so they do not represent the entire picture51. The 

mRNA expression level of cytochrome c, which is critical in shuttling electrons from Complex III 

to Complex IV in the ETC51, was shown to be higher in males. As reported previously, we found 

that OCR levels were also higher in male renal mitochondria, and higher expression of Cycs may 

partially explain this phenomenon. Released cytochrome c is also used as a way to measure 

apoptosis; it has recently been suggested that measurement of plasma or urinary levels of 

cytochrome c could be used to assess renal damage89,90. This allows us to speculate that the 

increase in Cycs gene expression in males could be used as an early indicator for the severity of 

renal disease observed later in life, and more studies measuring the protein expression as well 

as the urinary and plasma levels of cytochrome c need to be performed in order to assess this 

intriguing correlation. This experiment, in addition to the measurements of OXPHOS protein 

expression and activity in the kidney proposed above, would provide a clearer picture of how 

mitochondrial respiratory chain function in the kidney relates to disease, and would expand upon 

the limited knowledge of the dimorphisms in function between males and females in a healthy 

state.  

 

Our analysis of Western blots for fusion protein expression posed a seemingly contradictory point 

to the respiratory data: generally, fusion state is correlated with respiration55,91. And, despite 

increases in MFN2 protein level in males, the analysis of our electron micrographs, show the 

opposite of what the expression would indicate: shorter, rounder mitochondria belonging to the 

males, and the females displaying the more fused phenotype. This could be due to a number of 

factors, the first being that protein expression does not necessarily correlate with protein 

activity92,93. There are also a variety of other factors which influence mitochondrial dynamics, such 

as the proteins DRP1, the prime regulator of mitochondrial fission94, and PGC1-α52. DRP1 has 

been shown to be upregulated in the kidney in renal disease states such as AKI86,95 and diabetic 
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nephropathy96. These alterations are concurrent with downregulation of both PGC1-α and the 

fusion protein MFN286,97,98. Our studies showed no changes in gene expression level of  

Ppargc1a, but electron micrograph analysis did show significantly higher numbers of mitochondria 

in males, which allows us to speculate that biogenesis is being upregulated. 

Changes in dynamics are also associated with renal disease. Notably, a low fusion state caused 

by loss of either mitofusins 1 or 2, or OPA1 causes mitochondrial dysfunction99, and is seen in 

renal disease states such as diabetic nephropathy, and AKI86,100,101. Our data showed lower 

expression of OPA1 in females, which is interesting to note as it appears to contradict the 

phenotype of the mitochondria analyzed via electron microscopy as well as the respirometry data. 

It should be noted that though fusion state can be indicative of respiratory efficiency, there are 

many cases in disease states where mitochondrial dynamics contraindicate this: long, highly 

fused mitochondria can be senescent, and have significantly reduced membrane potential over 

smaller but more active mitochondria102, and both abundance and lack of fission is seen in multiple 

disease states103-105. Smith et al. showed higher levels of OPA1 protein expression in a human 

tubular cell model of CKD as compared to healthy ones106, additionally highlighting the dichotomy 

of mitochondrial dynamic states with disease. Further studies regarding mitochondrial dynamics 

and bioenergetics are needed to contextualize our data.  Experiments such as measuring the 

protein expression of MFN1, PGC1-α, and DRP1, quantifying mitochondrial biogenesis, and 

analyzing electron micrographs from other cortical cell types such as glomeruli, as well as 

medullary regions, are needed to elucidate the discrepancies observed between sexes and clarify 

whether these changes are contributing to the sexual dimorphism observed in renal disease.   
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CHAPTER 4 - Oxidative stress and calcium uptake in renal mitochondria  

Introduction 

The primary product thought about in regard to oxidative phosphorylation is ATP; however, there 

are many other byproducts of this reaction which are of high importance to the function of the 

mitochondrion, the cell, and the organism in general. One key group of molecules that is 

generated during oxidative phosphorylation is reactive oxygen species (ROS). Molecules that 

constitute ROS can range from harmful to beneficial, and include superoxide, hydrogen peroxide, 

singlet oxygens, hydroxyl radicals, alkoxyl radicals, ozone, nitric oxide, and others107. When 

electrons are shuttled during various steps of the ETC, electrons leak through the mitochondrial 

inner membrane from donor centers within the Complexes themselves (such as 2-oxoacid 

dehydrogenase complexes located in Complex I) as well as from other molecules such as 

ubiquinone and ubiquinol108,109. A schematic displaying ROS production is shown in Figure 20. 

ROS are produced as a byproduct during routine function of the ETC, so naturally, their production 

rate increases during times of increased respiration in the body, such as exercise109,110.  

Figure 20. Sites of ROS production by the electron transport chain. Used with permission from 

Mazat, JP., Devin, A. & Ransac, S. Modelling mitochondrial ROS production by the respiratory 

chain. Cell. Mol. Life Sci. 77, 455–465 (2020). https://doi.org/10.1007/s00018-019-03381-1 



55 
 

Low levels of ROS are necessary for a plethora of biological signaling processes. These range 

from cell-signaling functions such as proliferation, immune functions, including both host defense 

as well as termination of inflammatory processes, to regulatory functions in nutrient-sensing and 

aging pathways58,111. Despite many known and yet to be discovered roles in normal physiology, 

ROS have also been implicated in a number of disease states: renal, neurological and 

cardiovascular diseases as well as cancers have been shown to have ROS involvement 58,111. 

These links with disease are caused by the ability of ROS to interact with a variety of biological 

molecules such as DNA, lipids, and proteins, and usually occur when ROS are produced in 

aberrant, high levels. The cell has many systems in place to process ROS and reduce the 

negative effects thereof; these include antioxidant enzymes such as superoxide dismutases and 

glutathione peroxidases61.  

 

The kidney, due to its high energetic demand, has some of the highest concentrations of 

mitochondria in the body52. Similarly, the proximal tubules have the highest mitochondrial content 

in the kidney, and thus are particularly susceptible to mitochondrial-induced oxidative 

stress52,112,113. Various renal diseases are associated with excess production of ROS, including 

CKD, diabetic nephropathy, AKI, and salt-sensitive hypertension60,61,114-117. ROS-related damage 

is caused both directly by free radicals, as well as by alterations of biological molecules such as 

proteins, which are susceptible to oxidation and thus differentiation of structure or function61. 

Some pathways, such as nitric oxide synthase signaling, are pathologically downregulated in the 

presence of high levels of oxidative stress, as is seen in salt-sensitive hypertension116,117 

.  

Oxidative stress is linked with the ETC function of the mitochondria; however, the ETC is not the 

only link between mitochondria and ROS. One major cellular signaling pathway involved with 

ROS is calcium handling. Calcium levels in the cell are critical for a variety of signaling cascades, 



56 
 

making the calcium ion one of the most important messaging molecules in the cell118. Calcium 

signaling is involved in the modification of proteins; binding of calcium to proteins can cause 

conformational changes and thus activation or inhibition of function118. Changes in cellular calcium 

concentration are also involved in the contraction of muscles, secretion of hormones, initiation of 

apoptosis, and other functions118,119. Mitochondria are an important mediator in calcium signaling. 

The MCU protein complex allows mitochondria to selectively uptake calcium in an electrogenic 

fashion, which occurs generally as the cytosolic concentration of calcium increases, in order to 

maintain a homeostatic balance118. Mechanistically, involvement with ROS comes in part via 

excess of mitochondrial calcium uptake; disruption to cellular and mitochondrial calcium handling 

can cause opening of the mPTP, thus releasing ROS and calcium and inducing mPTP opening 

in adjacent mitochondria--this is termed ROS-induced ROS release120-123.  

 

When calcium homeostasis is disrupted and the intramitochondrial concentration of calcium 

becomes excessive, the mitochondrial permeability transition pore (mPTP) opens, which leads to 

an efflux of both calcium and ROS124,125. The mPTP is a nonspecific protein with an as-of-yet 

undetermined structure. The only confirmed component is cyclophilin D, which sensitizes the pore 

complex to inhibition via cyclosporin A126,127. Many other components are still being debated, 

though there is evidence for the voltage-gated anion channel, adenine nucleotide translocator, 

and a mitochondrial phosphate carrier as parts of the mPTP124,128,129. Despite the gaps in 

knowledge regarding its structure, the mPTP has a variety of defined functions, primarily 

regarding damage and apoptosis125,130. In the kidney, mPTP opening can be used to reduce the 

mitochondrial membrane potential, which increases oxygen consumption and therefore reduces 

ROS generation131. In excess, however, renal mPTP opening is linked with the activation of 

apoptotic pathways, initiation of calcium crystallization, and the transition from AKI to CKD61,125 .  
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There is a strong correlation between calcium overload and ROS generation, due to its discussed 

roles in mPTP opening. Quantification of both ROS levels and mitochondrial calcium would help 

elucidate the mechanism by which mitochondrial dysfunction, and thus renal damage, occurs. 

Since many renal diseases are linked with excess oxidative stress, the experiments in this chapter 

were designed to provide insight into whether the observed sexual dimorphisms in renal disease 

are caused by dysfunction in mitochondrial ROS handling, especially in relation to mitochondrial 

calcium-induced ROS production.  

 

Chapter 4 Results 

Quantification of reactive oxygen species in isolated renal mitochondria.  

One of the main forms of reactive oxygen species (ROS) produced in mitochondria is 

mitochondrial superoxide, which is formed from the leak of electrons from the ETC. The 

physiological half-life of superoxide is relatively short, however, as the enzyme superoxide 

dismutase rapidly converts it to hydrogen peroxide. We observed that the levels of hydrogen 

peroxide produced in female mitochondria from both cortex and medulla regions were significantly 

higher than those produced by the males for each region (Units displayed as au/mg protein. Male 

cortex = 69.94E3  ± 1.71E3; female cortex = 99.44E3 ± 3.06E3; male medulla = 60.61E3 ± 

2.30E3; female medulla = 113.37E3 ± 5.43E3). Additionally, hydrogen peroxide levels were 

higher in the medulla than in the cortex for females (numerical values displayed above). Graphical 

representations of these data are shown below in Figure 21.   
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Figure 21. Mitochondrial superoxide and hydrogen peroxide production in isolated renal 

mitochondria from male and female cortex and medulla. N represents the number of animals 

used. The n-values represent technical replicates.  Data were analyzed with two-way ANOVA and 

the Holm-Sidak post-hoc test.  

 

Measurement of antioxidant capacity in male and female renal tissues.  

Antioxidant systems are one of the cell’s main defenses against oxidative stress. In order to 

examine the ROS-handling capabilities of male and female renal mitochondria, an antioxidant 

capacity assay as described in Protocol 2.13 was performed. Here, male medulla showed a 

significantly higher level of antioxidant capacity over female medulla (Units displayed as mM/mg 

tissue. Male cortex = 0.21 ± 0.03 ; female cortex = 0.16 ± 0.02; male medulla = 0.20 ± 0.04; female 

medulla = 0.08 ± 0.02). Though not significant, the cortex shows a similar trend of males having 

increased antioxidant capacity over females, and female cortex has increased capacity compared 

to female medulla (numerical data displayed above).  
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Figure 22. Antioxidant capacity in male and female kidneys. N represents the number of animals 

used (biological replicates).  Data were analyzed with two-way ANOVA and the Holm-Sidak post-

hoc test.  

 

Activity of superoxide dismutase in isolated renal mitochondria. 

To help elucidate why female mitochondria displayed higher levels of ROS, a functional assay 

was performed for superoxide dismutase (SOD), the enzyme responsible for converting 

superoxide into hydrogen peroxide. The total SOD activity (SODs 1, 2, and 3) was significantly 

higher in female cortices as compared to males (Units displayed as U/uL. Male cortex = 273.63 ± 

36.14 ; female cortex = 422.04  ± 22.29), as displayed in Figure 22. There was no observed 

difference in mitochondria isolated from renal medullae (male medulla = 199.40 ± 38.53; female 

medulla = 169.65 ± 17.92).  
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Figure 23. Total SOD activity of male and female renal tissues. Each data point represents one 

biological replicate. Data were analyzed with two-way ANOVA and the Holm-Sidak post-hoc test.  

 

Calcium uptake of isolated renal mitochondria.  

Calcium uptake and the subsequent opening of the mPTP and ROS efflux are implicated in a 

variety of renal dysfunctions such as AKI, CKD, salt-sensitive hypertension, and diabetic 

nephropathy61. As is the case with most of the other mitochondrial functions, little is known 

regarding the sexual dimorphism of calcium handling in the kidney. In order to elucidate the trends 

in healthy individuals, we performed a series of experiments designed to measure the uptake of 

calcium in renal mitochondria, as well as the opening of the mPTP. Freshly isolated renal 

mitochondria from male and female cortex and medulla were loaded with Calcium Green dye. 

Fluorescence was measured at baseline, and after serial injections of calcium chloride solution. 

As displayed in Figure 24, the amount of calcium taken up by the medullary mitochondria was 

significantly higher in both males and females (Units displayed as calcium uptake per mg tissue. 

Male cortex = 15.33 ± 0.83 ; female cortex =18.24 ± 1.20; male medulla = 26.21 ± 2.14; female 
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medulla = 26.32 ± 2.78) as compared to the cortical mitochondria. Notably, there was no 

significant difference in the amount of Ca uptake between males and females in either region of 

the kidney.  

 

Figure 24. Calcium uptake in 

isolated mitochondria from male 

and female renal cortex and 

medulla. N value represents 

biological replicates. The n-

values represent technical 

replicates. Data were analyzed 

with 2-way ANOVA and the 

Holm-Sidak post-hoc test. 

 

As noted above, the amount of calcium uptake was not the only piece of quantifiable data which 

comes from this experiment. In each kidney region, the number of injections at which the 

mitochondrial permeability transition pore opens was also measured. Overall, medullary 

mitochondria had earlier mPTP openings in both males and females (Units displayed as calcium 

uptake per mg tissue. Male cortex = 15.33 ± 0.83 ; female cortex =18.24 ± 1.20; male medulla = 

26.21 ± 2.14; female medulla = 26.32 ± 2.78). Female mitochondria, however, displayed a 

significantly earlier mPTP opening in both the cortex and medulla groups (Units displayed as 

injection number at which mPTP opened. Male cortex = 10.25 ± 0.21 ; female cortex = 9.05 ± 

0.18; male medulla = 9.25 ± 0.35; female medulla = 8.18 ± 0.13), as can be seen in Figure 25.  
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Figure 25. Injection 

number at which mPTP 

opened in male and 

female cortical and 

medullary mitochondria. 

N-value represents 

biological replicates. The 

n-values represent 

technical replicates. Data 

were analyzed with 2-way 

ANOVA and the Holm-

Sidak post-hoc test.  

 

Discussion for Chapter 4 

We report that female renal mitochondria had higher levels of ROS production in both cortex and 

medulla compared to those from males. In line with this, female kidneys also displayed lower 

levels of total antioxidant capacity in both the renal cortex and medulla. Surprisingly, SOD activity 

was higher in cortical tissues than in medullary, and higher from female cortical tissues than in 

those from the male cortex. No sexual dimorphisms were observed in SOD activity from medullary 

tissues, but expression of SOD2 in both cortical and medullary mitochondria could be analyzed 

to examine whether sex-related discrepancies exist solely in mitochondrial superoxide dismutase 

activity.  Calcium uptake was higher in medullary mitochondria than in cortical, but no sex-specific 

trends were found. The opening of the mPTP was significantly earlier in female mitochondria as 

compared to males in both cortex and medulla, and earlier in medullary mitochondria as 

compared to cortical.  
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The higher levels of ROS observed in female renal mitochondria are contrary to the trends 

observed in most other organs in the body. For example, in the heart, brain, liver, and skeletal 

muscle, female mitochondria have been demonstrated to produce fewer ROS than in males40,42-

44,50,132. This poses an interesting contradiction; high levels of oxidative stress are linked to many 

renal disease states such as ischemia-reperfusion AKI, CKD, salt-sensitive hypertension, and 

diabetic nephropathy7,60,61,117,133-135, where females generally have better clinical 

prognoses6,7,134,136. Low levels of oxidative stress are known to activate protective mitophagic 

pathways62, which allows us to speculate that the higher levels of ROS observed in female renal 

mitochondria may be enacting similar protective pathways, due to the lower incidence of renal 

disease observed in premenopausal women, as described above. 

 

The cellular mechanisms which counteract oxidative stress are referred to as antioxidant systems. 

Female renal mitochondria displayed lower total antioxidant capacity as compared to males, 

which is in line with the ROS production data. An interesting discrepancy exists between these 

data and the elevated SOD activity shown in females. One experiment to help clarify non-SOD 

antioxidant system involvement in ROS handling between sexes and kidney regions would be to 

perform an enzymatic activity assay for glutathione peroxidase 4, a protein which catalyzes the 

reduction of peroxides and has been shown to have an anti-inflammatory role137. 

 

ROS levels have also been linked with the opening of the mPTP; high levels of intramitochondrial 

calcium can cause backwards transport of electrons, and opening of the mPTP to allow efflux of 

ROS and calcium restores the mitochondrial membrane potential and thus the forward flow of 

electrons through the ETC130. Mechanisms such as this prevent the formation of more ROS by 
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increasing consumption of oxygen, but depending on the amount of ROS released by the mPTP, 

the cell may undergo harmful or apoptotic pathways52,125,130.  

 

Our results show similar levels of calcium uptake in males and females, but significantly earlier 

opening of the mPTP in females. This is a key set of data which suggests that female renal 

mitochondria are more sensitive to oxidative stress. The unique oxygen metabolism caused by 

the complex architecture of the kidney, paired with the data we have collected so far allow us to 

speculate that perhaps renal mitochondria behave differently than in other areas of the body. If 

true, this could contribute to why the sex-specific trends in ROS levels we observed in renal 

mitochondria differ from the trends observed in many other organs40,42-44,50,132. Despite producing 

more ROS, which are generally considered pathogenic, perhaps the renal mitochondrial ROS 

levels are activating protective pathways earlier in females, as opposed to male mitochondria. 

Pathways known to be affected by ROS signaling which may be protective include activation of 

the HIF1-α pathway to help restore redox homeostasis, various PTEN cascades for cell growth, 

and NRF2-mediated antioxidant protein synthesis138-142. Experiments which could help clarify the 

downstream signaling events include the analysis of the pathways mentioned above in the young, 

healthy stage that our model represents. To further clarify the involvement of the mPTP, 

experiments to test the activation of apoptotic cascades, such as the cytochrome c-mediated 

activation of procaspase-9 and -3, to compare males and females could be performed143. 

Interestingly, not all cytosolic release of cytochrome c is guaranteed to induce apoptosis. Several 

studies suggest that some levels of released cytochrome c are responsible for vital cellular 

processes such as proliferation and differentiation144-148. Furthermore, analyzing the lipid 

peroxidation profiles of these renal cells would be beneficial in order to examine how much of the 

generated ROS may be pathological in nature; lipid peroxidation is considered a hallmark of the 

AKI-to-CKD transition, and is also linked with diabetic nephropathy and glomerulosclerosis61,149. 
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Evaluation of the levels of endothelial nitric oxide synthase (eNOS) activity within male and female 

kidneys could also reveal a pathway by which ROS are helping or hindering--high levels of ROS 

are known to inhibit nitric oxide signaling, which is one of the mechanisms by which salt-sensitive 

hypertension develops133,150. Examination of nNOS activity or expression could also be beneficial, 

as nNOS has been shown to produce several ROS151,152 153. The measurement of NO levels in 

both the cortex and medulla could also be performed to contextualize results obtained from 

measuring ENOS activity  Overall, more experiments are needed to determine whether the 

controversially high levels of ROS produced by female renal mitochondria are contributing to 

renoprotective mechanisms.  
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CHAPTER 5 - Final conclusions, discussion, and future directions 

  

Given the large contributions of mitochondria to renal function52, and the number of renal diseases 

linked with renal mitochondrial dysfunction31-39,52, it is imperative to understand the baseline 

bioenergetic parameters of the organelles. The sex-specific trends observed in renal diseases 

further prompt investigation into the sexual dimorphisms of baseline renal mitochondrial functions, 

to observe is perhaps impaired mitochondrial function in males prior to the onset of diseases is in 

part responsible for the more severe clinical manifestations of renal pathology.  

 

In Chapter 3, the process of oxidative phosphorylation as well as the respiratory rates of renal 

mitochondria were examined. This was done as a baseline measurement of mitochondrial 

function, as oxidative phosphorylation is perhaps the most impactful mitochondrial function across 

the body and in the kidney51,52. It was found that, contrary to what is seen in many other organ 

systems50, female mitochondria exhibit lower rate of oxygen consumption, as well as lower 

expression of the Cycs gene, as compared to males. The differential substrate feeding 

respirometry results allowed us to speculate that ETC Complex I is at least partially responsible 

for the sex-related discrepancies in respiration. It is important to note, however, that overall levels 

of respiration were lower in males and females in the pyruvate/malate buffer as compared to the 

pyruvate/malate/succinate buffer. This suggests that although there is a sexual dimorphism in 

Complex I function, it is not the only portion of the ETC responsible for the differences we 

observed in respiration between sexes. Furthermore, it is important to take into consideration that 

isolated mitochondria used in our experiments lack the physiological context of the cellular milieu; 

methods for measuring respiratory flux using intact, permeable cells are routinely employed in 

cultured cells154. Using this method for respirometry in tissue homogenates or isolated nephron 

segments may give us more physiologically relevant data, as there are many cytosolic and 
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nuclear factors which interact with the mitochondrion to affect cellular signaling pathways, 

including those related to respiratory demand and regulating oxidative stress155-159. 

  

Mitochondria from the medullae of females displayed higher mitochondrial membrane potential, 

which was not necessarily expected given the fact that membrane potential is coupled with 

respiratory rate under normal physiological conditions, and female mitochondria in both renal 

regions displayed lower respiratory rates than males52,160. Both higher membrane potential in 

female mitochondria as well as lower respiration compared to males  are contrary to what is seen 

in sex-specifc mitochondrial trends from most other organ systems, such as the heart, liver, and 

skeletal muscle45,46,50,161. Presented with this apparent controversy, it is necessary to go back to 

the distinct oxygenation and vascular architecture of the kidney. Unlike all other organs in the 

body, whereby metabolic rate determines blood flow and oxygen consumption, the kidney’s 

metabolism and oxygen consumption are directly influenced by the blood flowing through the 

organ1,68,82. Given the unique metabolic microenvironment of renal mitochondria, it is not 

surprising that the bioenergetics of renal mitochondria would differ from that of other organ 

systems. 

Electron micrograph analysis of proximal tubular mitochondria showed that female mitochondria 

were more elongated and larger, though less dense than in males. This falls in line with what has 

been observed in hepatocytes and cardiomyocytes45,161, though interestingly is not what would be 

expected in concordance with the respirometry data: generally, more fusion is indicative of higher 

oxygen consumption50,162. It should be noted, however, that it is possible that elongated 

mitochondria are senescent and display significantly reduced levels of oxidative phosphorylation 

activity, and this is not something that would be able to be detected from the analysis of an 

electron micrograph102. Given the fact that the analyzed organelles were from young, healthy 

animals, however, large numbers of senescent mitochondria in females does not seem likely. 
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Notably, increases to mitochondrial fusion are often seen both in healthy states, such as in times 

of higher cellular energy demand52,162. To expand on the data provided in this set of experiments, 

further analysis of mitochondria from other nephron segments are required in order to fully 

reconcile our findings. Though the proximal tubules make up a large portion of the renal cortex, 

in EM we assayed mitochondria isolated from all the cortical renal tissue altogether, which is likely 

a contributing factor to the observed discrepancies as different tubular segments could exhibit 

different trends1. Furthermore, mitochondrial size and scores should be assessed in medullary 

renal segments as well.  

In Chapter 4, we sought to examine levels of oxidative stress in male and female renal 

mitochondria. Given that high levels of oxidative stress are implicated in a variety of renal 

diseases61, investigation of ROS emission and antioxidant capacities prior to the onset of disease 

may provide context for the renoprotection observed in females. Our experiments displayed that 

mitochondria from female medulla produce higher levels of superoxide, and that both cortical and 

medullary mitochondria displayed hydrogen peroxide than male renal mitochondria. This is in 

accordance with the membrane potential data discussed above, as ROS are formed during 

oxidative phosphorylation, so mitochondrial membrane potential should normally correlate with 

formation of ROS61,163. Generally, however, female mitochondria have been shown to produce 

less ROS than in males50.  

Many other studies also show that females have higher antioxidant capacities than males, in part 

due to higher expression or activity of mitochondrial superoxide dismutase or glutathione 

peroxidases41,43,44. Our data showed that females have reduced antioxidant capacity in the kidney 

as well as lower superoxide dismutase activity, both trends of which oppose what has been 

demonstrated in other organs. Of the superoxide dismutase family, three isoforms exist which 

contribute to the total SOD activity that we reported in Chapter 4. A clearer picture of which 

isoforms are contributing to the results may be obtained by the measurement of the expression 
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of mitochondrial SOD2, as well as the cytosolic forms SOD1 and SOD3. In particular, loss of 

SOD2 has been demonstrated to lead to many kinds of renal injury, and its presence has been 

suggested as protective against oxidative stress164,165. Examination of SOD expression levels, 

particularly of SOD2, could assist in reconciling the higher total SOD activity observed in female 

renal mitochondria with the elevated ROS levels seen. Furthermore, superoxide dismutase is  not 

the only antioxidant system present in the cell. As briefly discussed above, the glutathione 

peroxidase family, in particular GPX4, is responsible for the reduction of reactive oxygen 

species137. Reduction in GPX4 is associated with increases in oxidative stress, inflammation, and 

renal tubular cell death via ferroptosis137,166,167. GPX4 has recently been suggested as protective 

against ischemia-reperfusion AKI as well as renal fibrosis168,169. For its antioxidant and 

renoprotective functions, the analysis of GPX4 activity in renal tissues would provide valuable 

insight on the antioxidant pathways being enacted in renal cells, and help to further contextualize 

our antioxidant capacity data. Notably, we assayed for total antioxidant capacity in tissue lysates. 

This analyzed the total antioxidant capacity of the renal cells, but did not assess the specific 

capacity of the mitochondria; the assay could be repeated on isolated mitochondrial samples in 

order to determine what portion of the cell’s antioxidant capacity is conveyed by the mitochondria. 

In summary, we have obtained information about the total antioxidant state of the cell, but not of 

the specific pathways which cause the differences in male and female kidneys.  

 

The data discussed so far, taken together, align with female renal mitochondria behaving in ways 

which embody the opposite bioenergetic trends than in what is known about other organ systems. 

This poses a controversy primarily because the sexual dimorphism of renal diseases is in 

accordance with other pathologies, such as in cardiac dysfunction, liver failure, and in neurological 

disease: pre-menopausal females display protection from many diseases in and outside of the 

renal system6,10,14,170-175. This brings up questions regarding what could be driving the 
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renoprotection in females: high ROS levels and low antioxidant capacity are thought to be driving 

factors in the development of renal diseases such as AKI, CKD, diabetic nephropathy, and salt-

sensitive hypertension60,61,117. Like many biological systems, however, a single molecule can be 

responsible for a variety of signaling events. Excess oxidative stress is associated with the 

development and exacerbation of many disease states, but lower levels of ROS are associated 

with increases in mitophagic signaling62. These increases in mitophagy can result in removal of 

dysfunctional mitochondria from the cell, or termination of an unhealthy cell via apoptosis in a 

controlled manner, both of which can function to prevent target organ damage62. By extrapolating 

from this, we can speculate that renal cells may have a higher threshold for beneficial ROS 

signaling as opposed to other organs, or that the high metabolic rate of the kidneys facilitates a 

higher degree of mitochondrial damage, which requires elevated levels of mitophagy.  

 

A comprehensive review by Mitchell et al. suggests that renal disease stems from a three-part 

axis that includes mitochondria, oxidative stress, and inflammation, as shown in Figure 26. A 

large expansion to our study could involve the investigation of the inflammatory portion of this 

disease axis, including a plethora of experimental methods. For one, analysis of the inflammatory 

profiles of the experimental groups, both in kidney regions as well as systemically, via the use of 

a comprehensive cytokine profiling assay would provide insight as to which inflammatory 

pathways are upregulated between sexes, which may provide context for the respirometry and 

ROS-related datasets.  
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Figure 26. A schematic of the proposed 

causative axis which is responsible for the bulk 

of renal disease. Used with permission from 

Aranda-Rivera, A. K., Cruz-Gregorio, A., 

Aparicio-Trejo, O. E., & Pedraza-Chaverri, J. 

(2021). Mitochondrial Redox Signaling and 

Oxidative Stress in Kidney Diseases. 

http://creativecommons.org/licenses/by-nc-

nd/4.0/  

 

 Additionally, several early markers of kidney 

disease such as N-acetylglutamine, N-

acetylornithine, or acetyllysine could be 

examined both locally in the kidney as well as 

systemically in plasma via a metabolomics 

approach176-178.  

 

An important factor that must be taken into consideration in the case of disease markers such as 

those mentioned above is that their presence can often be counterintuitive. Molecules such as N-

acetylglutamine, N-acetylornithine, or acetyllysine may be produced during the early phases of 

damage, but their presence often allows for early detection of damage (such as in clinical 

scenarios), or earlier signaling for damage remediation pathways176-178. This perspective on 

damage markers could also be applied to our ROS production datasets. It is known that ROS can 

be involved in protective signaling cascades involving both mitophagy as well as vital processes 

such as cellular proliferation and differentiation144-148. ROS are also tightly linked with cellular and 
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mitochondrial calcium signaling via the mPTP: excess mitochondrial calcium uptake, is implicated 

in the opening of the mPTP, which causes efflux of ROS into the cytosol61,179.  

The final experiment discussed in Chapter 4 is the renal mitochondrial calcium uptake assay, 

which measured not only the mitochondrial calcium uptake in male and female cortex and 

medulla, but also the amount of calcium that is sufficient to trigger the irreversible mPTP opening. 

In our hands, female mitochondria from both regions of the kidney displayed earlier mPTP 

opening than their male counterparts, while the amounts of calcium taken up by mitochondria 

were similar. The opening of the mPTP can trigger a variety of signaling events including ROS-

induced ROS release, whereby other mitochondria in the cell release ROS. It has been proposed, 

however, that the mPTP opens in more states than the irreversible calcium-overloaded state. 

Evidence exists for mPTP “flickers” which briefly cause opening of the pore--this is thought to 

occur in order to restore the elevated mitochondrial membrane potential back to physiological 

levels and increase forward flow of electrons through the ETC, and can also result in efflux of 

ROS and calcium back into the cytosol without triggering any apoptotic cascades130,180-182. In this 

manner, mPTP opening can be beneficial in restoring mitochondrial function.  

 

Taken further from this angle of a conservative mPTP opening, it is important to examine the other 

mechanisms by which mPTP-induced ROS efflux in female renal mitochondria could be affecting 

the observed renoprotection in females. As discussed in Chapter 4, ROS are involved in a number 

of signaling cascades. A major pathway involving mitochondrial ROS is the activation of molecular 

mechanisms which combat hypoxia: they are involved in HIF1-α cascades to mediate hypoxic 

damage139,183-186. Mitochondrial ROS have also been shown to have roles in the signaling of 

cellular differentiation, apoptosis, growth, proliferation, and metalloproteinase activity183. Cialó et 

al. further suggest that reverse transport of electrons, which is often paired with reduced activity 

in Complex I, produces ROS that are responsible for extension of lifespan in Drosophila187. In the 
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kidney, the dual functions of ROS are beginning to be explored: some ROS-induced post-

translational modifications of proteins have been demonstrated to be protective against sepsis-

AKI damage188, while excess levels of ROS are implicated in the transition of AKI to CKD as well 

as in the development of salt-sensitive hypertension59,133. Our studies propose that, in the kidney, 

female mitochondria display a higher sensitivity to oxidative stress, and induce a conservative, 

protective mPTP opening which is responsible for our observed discrepancies in the bioenergetics 

and dynamics compared to males. The higher levels of ROS observed in females may be 

indicative of this phenomenon. A schematic summary of our hypothesis and findings is displayed 

below in Figure 27.  

 

 

 

Figure 27. A schematic detailing a summary of our experimental conclusions and our current 

hypothesis regarding protective mPTP opening in female renal mitochondria. 

 

Conclusions. Though mitochondria are implicated in a plethora of renal diseases, and these 

renal pathologies are known to be sexually dimorphic, little is known about renal mitochondrial 
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sex-specific discrepancies in a healthy physiological state. Though still in early phases of 

research, it is clear that renal mitochondrial bioenergetics displays profound sexual dimorphisms. 

We have hypothesized that female renal mitochondria display a higher sensitivity to oxidative 

stress, and proposed that this allows for earlier ROS-related signaling in females via the calcium 

uptake-mPTP-ROS axis. We believe that our studies have opened the way for exploration of 

mechanisms which may be responsible for the renoprotective effects observed in females. 

Furthermore, our breakthrough into a novel area of science has provided a scaffold for other 

studies to examine renal mitochondrial bioenergetics prior to the onset of disease.  

 

Future Directions. This set of studies is, to our knowledge, the first which examines renal 

mitochondrial bioenergetics in males and females in a healthy physiological context. For this 

reason, there are a plethora of directions which need further exploration in order to fully 

characterize the sex-specific discrepancies observed in renal mitochondrial function in physiology 

vs. pathology. In order to fully define the roles that the respective sex hormones are playing, the 

experiments discussed in Chapters 3 and 4 could be performed again with groups of 

gonadectomized animals. In fact, Gaignard et al. performed gonadectomies on healthy mice, and 

reported amelioration of sex differences in brain mitochondrial respiration and ATP production42. 

Ovariectomized mice also displayed reduced recovery time from calcium-induced mitochondrial 

depolarization as compared to females189. To further expand on the roles sex hormones play in 

mitochondrial function, a set of similar experiments as described in Chapter 2 could be performed 

with a “rescue” group composed of gonadectomized animals with hormone replacement therapy 

for their respective sexes. Eliminating and subsequently replacing the hormones will elucidate 

any causal roles they have in the sex-specific differences noted in renal mitochondrial function, 

and perhaps in the trends observed in renal disease onset.  
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Other future experiments to expand upon these studies include the performance of more in-depth 

analyses of proteins involved in oxidative phosphorylation, as well as for each superoxide 

dismutase isoform and GPX4. Examination of the expressions and activities of other proteins 

involved in the bioenergetics and dynamics homeostasis of mitochondria would also serve to 

expand our set of studies: potential targets include mitochondrial uncoupling proteins UCP1 and 

UCP2, fission proteins PINK1 and Parkin52. This would help clarify which complexes other than 

Complex I could be contributing to the sex differences we observed in our respirometry 

experiments. This could be complemented by the performance of metabolomics, as suggested 

above. A metabolic profile of the substrates and products related to oxidative phosphorylation 

could reveal key differences in respiratory chain Complexes, contextualizing our respirometry 

data and investigating what TCA metabolites and other mitochondrial molecules could be 

influencing cellular signaling155.  

 

There are also additional methods to measure oxidative stress in the kidney; quantifying lipid 

peroxidation is one such method. Loosely ligated (“labile”) iron is able to react with superoxide 

and/or hydrogen peroxide to form oxygen-centered radicals, which is then able to form a resonant 

structure with a hydrogen atom of a polyunsaturated fatty acid, and thus is able to react with 

molecular oxygen to form a lipid peroxyl radical in a process referred to as Fenton chemistry or 

the Fenton reaction190,191. Both the destruction of lipids which comprise membranes, as well as 

the high level of reactivity of lipid peroxyl radicals are harmful to cells; lipid peroxides are known 

to be involved with CKD and polycystic kidney disease,  and are also suggested as early markers 

of renal disease prior even to decline in renal function192,193. Performance of electron 

paramagnetic resonance (EPR) would elucidate levels of lipid peroxidation in male and female 

renal tissues, which would allow interpretation as to whether the higher ROS levels observed in 
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females was to a pathogenic degree, further clarifying our hypothesis of the protective mPTP 

opening and subsequent ROS efflux in females.  

 

Though we have measured ROS levels and other  physiological parameters of renal mitochondria 

in males and females, we have yet to examine whether sex hormones are responsible for the 

dimorphisms we report. There are a number of emerging studies which place the mitochondrion 

in a prime position for investigation regarding sexual dimorphism of function: mitochondria have 

been shown to express sex hormone receptors. Studies from Solakidi et al. and Pronsato et al. 

found that testosterone receptors can localize to mitochondrial membranes in sperm cells, as well 

as in skeletal muscle, respectively77,78. Recent studies have also shown nonclassical localization 

of estrogen-ꞵ receptors to the outer mitochondrial membrane in breast and neural cancer 

cells79,194. Several of these directions would be beneficial in the expansion of our study: 

gonadectomized rat groups would allow for the observation of whether mitochondrial 

bioenergetics are sexually dimorphic in the lack of hormones, which would provide mechanistic 

insight regarding renal disease incidence and development, as well as providing context for the 

differences in renal disease phenotype observed in women pre- and post-menopause5,13,14. 

Furthermore, examining renal mitochondria for the presence of colocalized estrogen or androgen 

receptors would not only be novel, but would present a direct pathway by which sex hormones 

could be influencing mitochondrial function and thus progression or prevention of disease. 

 

To summarize the above, extensive and detailed future studies aimed at exploring the function 

and expression of the network of proteins involved in mitochondrial bioenergetics, as well as the 

function and phenotypes of mitochondria in other renal cell types, are needed in order to expand 

upon the foundational studies we have performed. This will allow for a more robust understanding 

of the reasons behind the sex-specific discrepancies we have observed in mitochondrial 
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bioenergetics and ROS handling, and would open up an avenue for the discovery of the specific 

mitochondrial mechanisms which may be enacting renoprotection in females pre-menopause.  

  



78 
 

REFERENCES 

 

1. Hall JE, Guyton AC. Guyton and Hall textbook of medical physiology. 12th ed. 
Philadelphia, Pa.: Saunders/Elsevier; 2011. 

2. The top 10 causes of death. 2020; https://www.who.int/news-room/fact-sheets/detail/the-
top-10-causes-of-death. Accessed 3 October 2021, 2021. 

3. Leading Causes of Death.  https://www.cdc.gov/nchs/fastats/leading-causes-of-
death.htm. 

4. Chronic Kidney Disease.  https://www.worldkidneyday.org/facts/chronic-kidney-disease/, 
2021. 

5. Neugarten J, Golestaneh L. Female sex reduces the risk of hospital-associated acute 
kidney injury: a meta-analysis. BMC Nephrol. 2018;19(1):314. 

6. Zhang J, Zhu J, Wei J, et al. New Mechanism for the Sex Differences in Salt-Sensitive 
Hypertension: The Role of Macula Densa NOS1beta-Mediated Tubuloglomerular 
Feedback. Hypertension. 2020;75(2):449-457. 

7. Neugarten J, Acharya A, Silbiger SR. Effect of gender on the progression of nondiabetic 
renal disease: a meta-analysis. J Am Soc Nephrol. 2000;11(2):319-329. 

8. Tejpal A, Gianos E, Cerise J, et al. Sex-Based Differences in COVID-19 Outcomes. J 
Womens Health (Larchmt). 2021;30(4):492-501. 

9. Baylis C. Sexual dimorphism in the aging kidney: differences in the nitric oxide system. 
Nat Rev Nephrol. 2009;5(7):384-396. 

10. Veiras LC, Girardi ACC, Curry J, et al. Sexual Dimorphic Pattern of Renal Transporters 
and Electrolyte Homeostasis. J Am Soc Nephrol. 2017;28(12):3504-3517. 

11. Mirabito KM, Hilliard LM, Kett MM, et al. Sex- and age-related differences in the chronic 
pressure-natriuresis relationship: role of the angiotensin type 2 receptor. Am J Physiol 
Renal Physiol. 2014;307(8):F901-907. 

12. Yu MK, Lyles CR, Bent-Shaw LA, Young BA, Pathways A. Risk factor, age and sex 
differences in chronic kidney disease prevalence in a diabetic cohort: the pathways study. 
Am J Nephrol. 2012;36(3):245-251. 

13. Garovic VD, August P. Sex Differences and Renal Protection: Keeping in Touch with Your 
Feminine Side. J Am Soc Nephrol. 2016;27(10):2921-2924. 

14. Stenvinkel P, Wanner C, Metzger T, et al. Inflammation and outcome in end-stage renal 
failure: does female gender constitute a survival advantage? Kidney Int. 2002;62(5):1791-
1798. 

15. Lee CJ, Gardiner BS, Evans RG, Smith DW. Analysis of the critical determinants of renal 
medullary oxygenation. Am J Physiol Renal Physiol. 2019;317(6):F1483-F1502. 

16. Zhang W, Edwards A. Oxygen transport across vasa recta in the renal medulla. Am J 
Physiol Heart Circ Physiol. 2002;283(3):H1042-1055. 

17. Scholz H, Boivin FJ, Schmidt-Ott KM, et al. Kidney physiology and susceptibility to acute 
kidney injury: implications for renoprotection. Nat Rev Nephrol. 2021;17(5):335-349. 

18. Pruijm M, Milani B, Pivin E, et al. Reduced cortical oxygenation predicts a progressive 
decline of renal function in patients with chronic kidney disease. Kidney Int. 
2018;93(4):932-940. 

19. Sugiyama K, Inoue T, Kozawa E, et al. Reduced oxygenation but not fibrosis defined by 
functional magnetic resonance imaging predicts the long-term progression of chronic 
kidney disease. Nephrol Dial Transplant. 2020;35(6):964-970. 

https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
https://www.worldkidneyday.org/facts/chronic-kidney-disease/


79 
 

20. Zhou H, Yang M, Jiang Z, Ding J, Di J, Cui L. Renal Hypoxia: An Important Prognostic 
Marker in Patients with Chronic Kidney Disease. Am J Nephrol. 2018;48(1):46-55. 

21. Bleyer AJ, Chen R, D'Agostino RB, Jr., Appel RG. Clinical correlates of hypertensive end-
stage renal disease. Am J Kidney Dis. 1998;31(1):28-34. 

22. Palm F. Intrarenal oxygen in diabetes and a possible link to diabetic nephropathy. Clin 
Exp Pharmacol Physiol. 2006;33(10):997-1001. 

23. Munger K, Baylis C. Sex differences in renal hemodynamics in rats. Am J Physiol. 
1988;254(2 Pt 2):F223-231. 

24. Tiede LM, Cook EA, Morsey B, Fox HS. Oxygen matters: tissue culture oxygen levels 
affect mitochondrial function and structure as well as responses to HIV viroproteins. Cell 
Death Dis. 2011;2:e246. 

25. Serebrovskaya TV, Nosar VI, Bratus LV, Gavenauskas BL, Mankovska IM. Tissue 
oxygenation and mitochondrial respiration under different modes of intermittent hypoxia. 
High Alt Med Biol. 2013;14(3):280-288. 

26. Daehn I, Casalena G, Zhang T, et al. Endothelial mitochondrial oxidative stress 
determines podocyte depletion in segmental glomerulosclerosis. J Clin Invest. 
2014;124(4):1608-1621. 

27. Corcoran JB, McCarthy S, Griffin B, et al. IHG-1 must be localised to mitochondria to 
decrease Smad7 expression and amplify TGF-beta1-induced fibrotic responses. Biochim 
Biophys Acta. 2013;1833(8):1969-1978. 

28. Long J, Badal SS, Ye Z, et al. Long noncoding RNA Tug1 regulates mitochondrial 
bioenergetics in diabetic nephropathy. J Clin Invest. 2016;126(11):4205-4218. 

29. Qi H, Casalena G, Shi S, et al. Glomerular Endothelial Mitochondrial Dysfunction Is 
Essential and Characteristic of Diabetic Kidney Disease Susceptibility. Diabetes. 
2017;66(3):763-778. 

30. Casalena G, Krick S, Daehn I, et al. Mpv17 in mitochondria protects podocytes against 
mitochondrial dysfunction and apoptosis in vivo and in vitro. Am J Physiol Renal Physiol. 
2014;306(11):F1372-1380. 

31. Wang Z, Sun Q, Sun N, Liang M, Tian Z. Mitochondrial Dysfunction and Altered Renal 
Metabolism in Dahl Salt-Sensitive Rats. Kidney Blood Press Res. 2017;42(3):587-597. 

32. Domondon M, Polina I, Nikiforova AB, et al. Renal Glomerular Mitochondria Function in 
Salt-Sensitive Hypertension. Front Physiol. 2019;10:1588. 

33. Dugan LL, You YH, Ali SS, et al. AMPK dysregulation promotes diabetes-related reduction 
of superoxide and mitochondrial function. J Clin Invest. 2013;123(11):4888-4899. 

34. Galloway CA, Lee H, Nejjar S, et al. Transgenic control of mitochondrial fission induces 
mitochondrial uncoupling and relieves diabetic oxidative stress. Diabetes. 
2012;61(8):2093-2104. 

35. Zhan M, Usman IM, Sun L, Kanwar YS. Disruption of renal tubular mitochondrial quality 
control by Myo-inositol oxygenase in diabetic kidney disease. J Am Soc Nephrol. 
2015;26(6):1304-1321. 

36. Hartleben B, Godel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular 
disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 
2010;120(4):1084-1096. 

37. D'Aco KE, Manno M, Clarke C, Ganesh J, Meyers KE, Sondheimer N. Mitochondrial 
tRNA(Phe) mutation as a cause of end-stage renal disease in childhood. Pediatr Nephrol. 
2013;28(3):515-519. 

38. de Arriba G, Calvino M, Benito S, Parra T. Cyclosporine A-induced apoptosis in renal 
tubular cells is related to oxidative damage and mitochondrial fission. Toxicol Lett. 
2013;218(1):30-38. 



80 
 

39. Dinour D, Mini S, Polak-Charcon S, Lotan D, Holtzman EJ. Progressive nephropathy 
associated with mitochondrial tRNA gene mutation. Clin Nephrol. 2004;62(2):149-154. 

40. Colom B, Oliver J, Roca P, Garcia-Palmer FJ. Caloric restriction and gender modulate 
cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc Res. 
2007;74(3):456-465. 

41. Guevara R, Gianotti M, Oliver J, Roca P. Age and sex-related changes in rat brain 
mitochondrial oxidative status. Exp Gerontol. 2011;46(11):923-928. 

42. Gaignard P, Savouroux S, Liere P, et al. Effect of Sex Differences on Brain Mitochondrial 
Function and Its Suppression by Ovariectomy and in Aged Mice. Endocrinology. 
2015;156(8):2893-2904. 

43. Borras C, Sastre J, Garcia-Sala D, Lloret A, Pallardo FV, Vina J. Mitochondria from 
females exhibit higher antioxidant gene expression and lower oxidative damage than 
males. Free Radic Biol Med. 2003;34(5):546-552. 

44. Vina J, Borras C, Gambini J, Sastre J, Pallardo FV. Why females live longer than males? 
Importance of the upregulation of longevity-associated genes by oestrogenic compounds. 
FEBS Lett. 2005;579(12):2541-2545. 

45. Justo R, Boada J, Frontera M, Oliver J, Bermudez J, Gianotti M. Gender dimorphism in 
rat liver mitochondrial oxidative metabolism and biogenesis. Am J Physiol Cell Physiol. 
2005;289(2):C372-378. 

46. Colom B, Alcolea MP, Valle A, Oliver J, Roca P, Garcia-Palmer FJ. Skeletal muscle of 
female rats exhibit higher mitochondrial mass and oxidative-phosphorylative capacities 
compared to males. Cell Physiol Biochem. 2007;19(1-4):205-212. 

47. Gomez-Perez Y, Capllonch-Amer G, Gianotti M, Llado I, Proenza AM. Long-term high-fat-
diet feeding induces skeletal muscle mitochondrial biogenesis in rats in a sex-dependent 
and muscle-type specific manner. Nutr Metab (Lond). 2012;9:15. 

48. Capllonch-Amer G, Llado I, Proenza AM, Garcia-Palmer FJ, Gianotti M. Opposite effects 
of 17-beta estradiol and testosterone on mitochondrial biogenesis and adiponectin 
synthesis in white adipocytes. J Mol Endocrinol. 2014;52(2):203-214. 

49. Rodriguez-Cuenca S, Pujol E, Justo R, et al. Sex-dependent thermogenesis, differences 
in mitochondrial morphology and function, and adrenergic response in brown adipose 
tissue. J Biol Chem. 2002;277(45):42958-42963. 

50. Ventura-Clapier R, Moulin M, Piquereau J, et al. Mitochondria: a central target for sex 
differences in pathologies. Clin Sci (Lond). 2017;131(9):803-822. 

51. Ahmad M, Wolberg A, Kahwaji CI. Biochemistry, Electron Transport Chain. StatPearls. 
Treasure Island (FL)2021. 

52. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 
2017;13(10):629-646. 

53. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to 
promote mitochondrial fusion. Proc Natl Acad Sci U S A. 2004;101(45):15927-15932. 

54. Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE. Conformational 
changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct 
Mol Biol. 2011;18(1):20-26. 

55. Mishra P, Carelli V, Manfredi G, Chan DC. Proteolytic cleavage of Opa1 stimulates 
mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. 
Cell Metab. 2014;19(4):630-641. 

56. Wirthensohn G, Guder WG. Renal substrate metabolism. Physiol Rev. 1986;66(2):469-
497. 

57. Gewin LS. Sugar or Fat? Renal Tubular Metabolism Reviewed in Health and Disease. 
Nutrients. 2021;13(5). 



81 
 

58. Brieger K, Schiavone S, Miller FJ, Jr., Krause KH. Reactive oxygen species: from health 
to disease. Swiss Med Wkly. 2012;142:w13659. 

59. Tomsa AM, Alexa AL, Junie ML, Rachisan AL, Ciumarnean L. Oxidative stress as a 
potential target in acute kidney injury. PeerJ. 2019;7:e8046. 

60. Granata S, Zaza G, Simone S, et al. Mitochondrial dysregulation and oxidative stress in 
patients with chronic kidney disease. BMC Genomics. 2009;10:388. 

61. Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Pedraza-Chaverri J. 
Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases. Biomolecules. 
2021;11(8). 

62. Frank M, Duvezin-Caubet S, Koob S, et al. Mitophagy is triggered by mild oxidative stress 
in a mitochondrial fission dependent manner. Biochim Biophys Acta. 2012;1823(12):2297-
2310. 

63. Frezza C, Cipolat S, Scorrano L. Organelle isolation: functional mitochondria from mouse 
liver, muscle and cultured fibroblasts. Nat Protoc. 2007;2(2):287-295. 

64. Calton MA, Beaulieu MO, Benchorin G, Vollrath D. Method for measuring extracellular flux 
from intact polarized epithelial monolayers. Mol Vis. 2018;24:425-433. 

65. Yepez VA, Kremer LS, Iuso A, et al. OCR-Stats: Robust estimation and statistical testing 
of mitochondrial respiration activities using Seahorse XF Analyzer. PLoS One. 
2018;13(7):e0199938. 

66. Zhang J, Zhang Q. Using Seahorse Machine to Measure OCR and ECAR in Cancer Cells. 
Methods Mol Biol. 2019;1928:353-363. 

67. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-
image analysis. Nat Methods. 2012;9(7):676-682. 

68. Wang Z, Ying Z, Bosy-Westphal A, et al. Specific metabolic rates of major organs and 
tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. 
Am J Clin Nutr. 2010;92(6):1369-1377. 

69. Nourbakhsh N, Singh P. Role of renal oxygenation and mitochondrial function in the 
pathophysiology of acute kidney injury. Nephron Clin Pract. 2014;127(1-4):149-152. 

70. Pagliarini DJ, Calvo SE, Chang B, et al. A mitochondrial protein compendium elucidates 
complex I disease biology. Cell. 2008;134(1):112-123. 

71. Palmer LG, Schnermann J. Integrated control of Na transport along the nephron. Clin J 
Am Soc Nephrol. 2015;10(4):676-687. 

72. Lee JJ, Tripi LM, Erbe RW, Garimella-Krovi S, Springate JE. A mitochondrial DNA deletion 
presenting with corneal clouding and severe Fanconi syndrome. Pediatr Nephrol. 
2012;27(5):869-872. 

73. Nishi Y, Satoh M, Nagasu H, et al. Selective estrogen receptor modulation attenuates 
proteinuria-induced renal tubular damage by modulating mitochondrial oxidative status. 
Kidney Int. 2013;83(4):662-673. 

74. Lash LH, Qian W, Putt DA, et al. Renal toxicity of perchloroethylene and S-(1,2,2-
trichlorovinyl)glutathione in rats and mice: sex- and species-dependent differences. 
Toxicol Appl Pharmacol. 2002;179(3):163-171. 

75. Patil CN, Wallace K, LaMarca BD, et al. Low-dose testosterone protects against renal 
ischemia-reperfusion injury by increasing renal IL-10-to-TNF-alpha ratio and attenuating 
T-cell infiltration. Am J Physiol Renal Physiol. 2016;311(2):F395-403. 

76. Peng Y, Fang Z, Liu M, et al. Testosterone induces renal tubular epithelial cell death 
through the HIF-1alpha/BNIP3 pathway. J Transl Med. 2019;17(1):62. 

77. Pronsato L, Boland R, Milanesi L. Non-classical localization of androgen receptor in the 
C2C12 skeletal muscle cell line. Arch Biochem Biophys. 2013;530(1):13-22. 



82 
 

78. Solakidi S, Psarra AM, Nikolaropoulos S, Sekeris CE. Estrogen receptors alpha and beta 
(ERalpha and ERbeta) and androgen receptor (AR) in human sperm: localization of 
ERbeta and AR in mitochondria of the midpiece. Hum Reprod. 2005;20(12):3481-3487. 

79. Karakas B, Aka Y, Giray A, et al. Mitochondrial estrogen receptors alter mitochondrial 
priming and response to endocrine therapy in breast cancer cells. Cell Death Discov. 
2021;7(1):189. 

80. Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014;505(7483):335-
343. 

81. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 
2011;435(2):297-312. 

82. Rajeev Dalal ZSB, Jasjit S. Sehdev. Physiology, Renal Blood Flow and Filtration. FL: 
Treasure Island (FL) : StatPearls Publishing; 2021. 

83. Ellam T, Fotheringham J, Kawar B. Differential scaling of glomerular filtration rate and 
ingested metabolic burden: implications for gender differences in chronic kidney disease 
outcomes. Nephrol Dial Transplant. 2014;29(6):1186-1194. 

84. Huang C, Kim Y, Caramori ML, et al. Diabetic nephropathy is associated with gene 
expression levels of oxidative phosphorylation and related pathways. Diabetes. 
2006;55(6):1826-1831. 

85. Sas KM, Kayampilly P, Byun J, et al. Tissue-specific metabolic reprogramming drives 
nutrient flux in diabetic complications. JCI Insight. 2016;1(15):e86976. 

86. Funk JA, Schnellmann RG. Persistent disruption of mitochondrial homeostasis after acute 
kidney injury. Am J Physiol Renal Physiol. 2012;302(7):F853-864. 

87. Thome T, Kumar RA, Burke SK, et al. Impaired muscle mitochondrial energetics is 
associated with uremic metabolite accumulation in chronic kidney disease. JCI Insight. 
2020;6(1). 

88. Gry M, Rimini R, Stromberg S, et al. Correlations between RNA and protein expression 
profiles in 23 human cell lines. BMC Genomics. 2009;10:365. 

89. Zager RA, Johnson AC, Hanson SY. Proximal tubular cytochrome c efflux: determinant, 
and potential marker, of mitochondrial injury. Kidney Int. 2004;65(6):2123-2134. 

90. Sibarani J, Tjahjodjati T, Atik N, Rachmadi D, Mustafa A. Urinary Cytochrome C and 
Caspase-3 as Novel Biomarker of Renal Function Impairment in Unilateral Ureteropelvic 
Junction Obstruction Model of Wistar Rats. Res Rep Urol. 2020;12:217-224. 

91. Boissan M, Montagnac G, Shen Q, et al. Membrane trafficking. Nucleoside diphosphate 
kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science. 
2014;344(6191):1510-1515. 

92. Miyamoto S, Ochiai A, Boku N, et al. Discrepancies between the gene expression, protein 
expression, and enzymatic activity of thymidylate synthase and dihydropyrimidine 
dehydrogenase in human gastrointestinal cancers and adjacent normal mucosa. Int J 
Oncol. 2001;18(4):705-713. 

93. Jennifer D Rocca EKH, Jay T Lennon, Sarah E Evans, Mark P Waldrop, James B Cotner, 
Diana R Nemergut, Emily B Graham & Matthew D Wallenstein Relationships between 
protein-encoding gene abundance and corresponding process are commonly assumed 
yet rarely observed. The ISME Journal. 2015;9:1693-1699. 

94. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-
related GTPase Drp1 participates in mitochondrial fission. J Biol Chem. 
2007;282(15):11521-11529. 

95. Cho SG, Du Q, Huang S, Dong Z. Drp1 dephosphorylation in ATP depletion-induced 
mitochondrial injury and tubular cell apoptosis. Am J Physiol Renal Physiol. 
2010;299(1):F199-206. 



83 
 

96. Wang W, Wang Y, Long J, et al. Mitochondrial fission triggered by hyperglycemia is 
mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 
2012;15(2):186-200. 

97. Tang WX, Wu WH, Zeng XX, Bo H, Huang SM. Early protective effect of mitofusion 2 
overexpression in STZ-induced diabetic rat kidney. Endocrine. 2012;41(2):236-247. 

98. Guo K, Lu J, Huang Y, et al. Protective role of PGC-1alpha in diabetic nephropathy is 
associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS 
One. 2015;10(4):e0125176. 

99. Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity 
and dysfunction. J Biol Chem. 2005;280(28):26185-26192. 

100. Qi W, Keenan HA, Li Q, et al. Pyruvate kinase M2 activation may protect against the 
progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med. 
2017;23(6):753-762. 

101. Xiao X, Hu Y, Quiros PM, Wei Q, Lopez-Otin C, Dong Z. OMA1 mediates OPA1 
proteolysis and mitochondrial fragmentation in experimental models of ischemic kidney 
injury. Am J Physiol Renal Physiol. 2014;306(11):F1318-1326. 

102. Yoon YS, Yoon DS, Lim IK, et al. Formation of elongated giant mitochondria in DFO-
induced cellular senescence: involvement of enhanced fusion process through modulation 
of Fis1. J Cell Physiol. 2006;209(2):468-480. 

103. Huang P, Yu T, Yoon Y. Mitochondrial clustering induced by overexpression of the 
mitochondrial fusion protein Mfn2 causes mitochondrial dysfunction and cell death. Eur J 
Cell Biol. 2007;86(6):289-302. 

104. Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R. Drp-1-
dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and 
protects against Ca2+-mediated apoptosis. Mol Cell. 2004;16(1):59-68. 

105. Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV. A 
lethal defect of mitochondrial and peroxisomal fission. N Engl J Med. 2007;356(17):1736-
1741. 

106. Yoon YM, Go G, Yoon S, et al. Melatonin Treatment Improves Renal Fibrosis via miR-
4516/SIAH3/PINK1 Axis. Cells. 2021;10(7). 

107. Li R, Jia Z, Trush MA. Defining ROS in Biology and Medicine. React Oxyg Species (Apex). 
2016;1(1):9-21. 

108. Lambert AJ, Brand MD. Superoxide production by NADH:ubiquinone oxidoreductase 
(complex I) depends on the pH gradient across the mitochondrial inner membrane. 
Biochem J. 2004;382(Pt 2):511-517. 

109. Wong HS, Dighe PA, Mezera V, Monternier PA, Brand MD. Production of superoxide and 
hydrogen peroxide from specific mitochondrial sites under different bioenergetic 
conditions. J Biol Chem. 2017;292(41):16804-16809. 

110. Davies KJ, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage 
produced by exercise. Biochem Biophys Res Commun. 1982;107(4):1198-1205. 

111. Irazabal MV, Torres VE. Reactive Oxygen Species and Redox Signaling in Chronic Kidney 
Disease. Cells. 2020;9(6). 

112. Mitchell T, Saba H, Laakman J, Parajuli N, MacMillan-Crow LA. Role of mitochondrial-
derived oxidants in renal tubular cell cold-storage injury. Free Radic Biol Med. 
2010;49(8):1273-1282. 

113. Wen Y, Liu YR, Tang TT, et al. mROS-TXNIP axis activates NLRP3 inflammasome to 
mediate renal injury during ischemic AKI. Int J Biochem Cell Biol. 2018;98:43-53. 

114. Himmelfarb J, McMonagle E, Freedman S, et al. Oxidative stress is increased in critically 
ill patients with acute renal failure. J Am Soc Nephrol. 2004;15(9):2449-2456. 



84 
 

115. Tanaka S, Tanaka T, Kawakami T, et al. Vascular adhesion protein-1 enhances neutrophil 
infiltration by generation of hydrogen peroxide in renal ischemia/reperfusion injury. Kidney 
Int. 2017;92(1):154-164. 

116. Bayorh MA, Ganafa AA, Socci RR, Silvestrov N, Abukhalaf IK. The role of oxidative stress 
in salt-induced hypertension. Am J Hypertens. 2004;17(1):31-36. 

117. Banday AA, Muhammad AB, Fazili FR, Lokhandwala M. Mechanisms of oxidative stress-
induced increase in salt sensitivity and development of hypertension in Sprague-Dawley 
rats. Hypertension. 2007;49(3):664-671. 

118. Granatiero V, De Stefani D, Rizzuto R. Mitochondrial Calcium Handling in Physiology and 
Disease. Adv Exp Med Biol. 2017;982:25-47. 

119. Santulli G, Marks AR. Essential Roles of Intracellular Calcium Release Channels in 
Muscle, Brain, Metabolism, and Aging. Curr Mol Pharmacol. 2015;8(2):206-222. 

120. Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload. Ann N Y 
Acad Sci. 2010;1201:183-188. 

121. Korge P, Langer GA. Mitochondrial Ca2+ uptake, efflux, and sarcolemmal damage in 
Ca2+-overloaded cultured rat cardiomyocytes. Am J Physiol. 1998;274(6):H2085-2093. 

122. Votyakova TV, Reynolds IJ. Ca2+-induced permeabilization promotes free radical release 
from rat brain mitochondria with partially inhibited complex I. J Neurochem. 
2005;93(3):526-537. 

123. Duan Y, Gross RA, Sheu SS. Ca2+-dependent generation of mitochondrial reactive 
oxygen species serves as a signal for poly(ADP-ribose) polymerase-1 activation during 
glutamate excitotoxicity. J Physiol. 2007;585(Pt 3):741-758. 

124. Halestrap AP. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol. 
2009;46(6):821-831. 

125. Niimi K, Yasui T, Hirose M, et al. Mitochondrial permeability transition pore opening 
induces the initial process of renal calcium crystallization. Free Radic Biol Med. 
2012;52(7):1207-1217. 

126. Crompton M, Ellinger H, Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in 
heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J. 
1988;255(1):357-360. 

127. Halestrap AP, Davidson AM. Inhibition of Ca2(+)-induced large-amplitude swelling of liver 
and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to 
mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with 
the adenine nucleotide translocase. Biochem J. 1990;268(1):153-160. 

128. Szabo I, De Pinto V, Zoratti M. The mitochondrial permeability transition pore may 
comprise VDAC molecules. II. The electrophysiological properties of VDAC are 
compatible with those of the mitochondrial megachannel. FEBS Lett. 1993;330(2):206-
210. 

129. Kokoszka JE, Waymire KG, Levy SE, et al. The ADP/ATP translocator is not essential for 
the mitochondrial permeability transition pore. Nature. 2004;427(6973):461-465. 

130. Briston T, Roberts M, Lewis S, et al. Mitochondrial permeability transition pore: sensitivity 
to opening and mechanistic dependence on substrate availability. Sci Rep. 
2017;7(1):10492. 

131. Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of 
renal diseases. Am J Physiol Renal Physiol. 2014;306(4):F367-378. 

132. Lagranha CJ, Deschamps A, Aponte A, Steenbergen C, Murphy E. Sex differences in the 
phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen 
species and cardioprotection in females. Circ Res. 2010;106(11):1681-1691. 



85 
 

133. Manning RD, Jr., Meng S, Tian N. Renal and vascular oxidative stress and salt-sensitivity 
of arterial pressure. Acta Physiol Scand. 2003;179(3):243-250. 

134. Mitchell T, De Miguel C, Gohar EY. Sex differences in redox homeostasis in renal disease. 
Redox Biol. 2020;31:101489. 

135. Nordstrom A, Hadrevi J, Olsson T, Franks PW, Nordstrom P. Higher Prevalence of Type 
2 Diabetes in Men Than in Women Is Associated With Differences in Visceral Fat Mass. 
J Clin Endocrinol Metab. 2016;101(10):3740-3746. 

136. Ricardo AC, Yang W, Sha D, et al. Sex-Related Disparities in CKD Progression. J Am Soc 
Nephrol. 2019;30(1):137-146. 

137. Li C, Deng X, Xie X, Liu Y, Friedmann Angeli JP, Lai L. Activation of Glutathione 
Peroxidase 4 as a Novel Anti-inflammatory Strategy. Front Pharmacol. 2018;9:1120. 

138. Bell EL, Klimova TA, Eisenbart J, et al. The Qo site of the mitochondrial complex III is 
required for the transduction of hypoxic signaling via reactive oxygen species production. 
J Cell Biol. 2007;177(6):1029-1036. 

139. Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at 
mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a 
mechanism of O2 sensing. J Biol Chem. 2000;275(33):25130-25138. 

140. Connor KM, Subbaram S, Regan KJ, et al. Mitochondrial H2O2 regulates the angiogenic 
phenotype via PTEN oxidation. J Biol Chem. 2005;280(17):16916-16924. 

141. Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine 
phosphatases in vivo. Mol Cell. 2002;9(2):387-399. 

142. DeNicola GM, Karreth FA, Humpton TJ, et al. Oncogene-induced Nrf2 transcription 
promotes ROS detoxification and tumorigenesis. Nature. 2011;475(7354):106-109. 

143. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional 
structure of the apoptosome: implications for assembly, procaspase-9 binding, and 
activation. Mol Cell. 2002;9(2):423-432. 

144. Zermati Y, Garrido C, Amsellem S, et al. Caspase activation is required for terminal 
erythroid differentiation. J Exp Med. 2001;193(2):247-254. 

145. Arama E, Agapite J, Steller H. Caspase activity and a specific cytochrome C are required 
for sperm differentiation in Drosophila. Dev Cell. 2003;4(5):687-697. 

146. Sordet O, Rebe C, Plenchette S, et al. Specific involvement of caspases in the 
differentiation of monocytes into macrophages. Blood. 2002;100(13):4446-4453. 

147. De Botton S, Sabri S, Daugas E, et al. Platelet formation is the consequence of caspase 
activation within megakaryocytes. Blood. 2002;100(4):1310-1317. 

148. Woo M, Hakem R, Furlonger C, et al. Caspase-3 regulates cell cycle in B cells: a 
consequence of substrate specificity. Nat Immunol. 2003;4(10):1016-1022. 

149. Jang HS, Noh MR, Kim J, Padanilam BJ. Defective Mitochondrial Fatty Acid Oxidation 
and Lipotoxicity in Kidney Diseases. Front Med (Lausanne). 2020;7:65. 

150. Gadkari TV, Cortes N, Madrasi K, Tsoukias NM, Joshi MS. Agmatine induced NO 
dependent rat mesenteric artery relaxation and its impairment in salt-sensitive 
hypertension. Nitric Oxide. 2013;35:65-71. 

151. Szabo AJ, Wagner L, Erdely A, Lau K, Baylis C. Renal neuronal nitric oxide synthase 
protein expression as a marker of renal injury. Kidney Int. 2003;64(5):1765-1771. 

152. Seddon MD, Chowienczyk PJ, Brett SE, Casadei B, Shah AM. Neuronal nitric oxide 
synthase regulates basal microvascular tone in humans in vivo. Circulation. 
2008;117(15):1991-1996. 

153. Yoneyama H, Yamamoto A, Kosaka H. Neuronal nitric oxide synthase generates 
superoxide from the oxygenase domain. Biochem J. 2001;360(Pt 1):247-253. 



86 
 

154. Salabei JK, Gibb AA, Hill BG. Comprehensive measurement of respiratory activity in 
permeabilized cells using extracellular flux analysis. Nat Protoc. 2014;9(2):421-438. 

155. Martinez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology 
and disease. Nat Commun. 2020;11(1):102. 

156. Martinez-Reyes I, Diebold LP, Kong H, et al. TCA Cycle and Mitochondrial Membrane 
Potential Are Necessary for Diverse Biological Functions. Mol Cell. 2016;61(2):199-209. 

157. Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, Richard DE. Hypoxia-
inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-
derived reactive oxygen species. Mol Biol Cell. 2010;21(18):3247-3257. 

158. Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to 
oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1):77-85. 

159. Arts RJ, Novakovic B, Ter Horst R, et al. Glutaminolysis and Fumarate Accumulation 
Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metab. 
2016;24(6):807-819. 

160. Yang H, van der Stel W, Lee R, et al. Dynamic Modeling of Mitochondrial Membrane 
Potential Upon Exposure to Mitochondrial Inhibitors. Front Pharmacol. 2021;12:679407. 

161. Ribeiro RF, Jr., Ronconi KS, Morra EA, et al. Sex differences in the regulation of spatially 
distinct cardiac mitochondrial subpopulations. Mol Cell Biochem. 2016;419(1-2):41-51. 

162. Yao CH, Wang R, Wang Y, Kung CP, Weber JD, Patti GJ. Mitochondrial fusion supports 
increased oxidative phosphorylation during cell proliferation. Elife. 2019;8. 

163. Wenzel P, Mollnau H, Oelze M, et al. First evidence for a crosstalk between mitochondrial 
and NADPH oxidase-derived reactive oxygen species in nitroglycerin-triggered vascular 
dysfunction. Antioxid Redox Signal. 2008;10(8):1435-1447. 

164. Kitada M, Xu J, Ogura Y, Monno I, Koya D. Manganese Superoxide Dismutase 
Dysfunction and the Pathogenesis of Kidney Disease. Front Physiol. 2020;11:755. 

165. Fukui M, Zhu BT. Mitochondrial superoxide dismutase SOD2, but not cytosolic SOD1, 
plays a critical role in protection against glutamate-induced oxidative stress and cell death 
in HT22 neuronal cells. Free Radic Biol Med. 2010;48(6):821-830. 

166. Kim S, Kang SW, Joo J, et al. Correction: Characterization of ferroptosis in kidney tubular 
cell death under diabetic conditions. Cell Death Dis. 2021;12(4):382. 

167. Wortmann M, Schneider M, Pircher J, et al. Combined deficiency in glutathione peroxidase 
4 and vitamin E causes multiorgan thrombus formation and early death in mice. Circ Res. 
2013;113(4):408-417. 

168. Zhang J, Bi J, Ren Y, et al. Involvement of GPX4 in irisin's protection against ischemia 
reperfusion-induced acute kidney injury. J Cell Physiol. 2021;236(2):931-945. 

169. C. ZLXXHQaD. Targeting Ferroptosis Attenuates Interstitial Inflammation and Kidney 
Fibrosis. Karger. 

170. Gal-Oz ST, Maier B, Yoshida H, et al. ImmGen report: sexual dimorphism in the immune 
system transcriptome. Nat Commun. 2019;10(1):4295. 

171. Fisher DW, Bennett DA, Dong H. Sexual dimorphism in predisposition to Alzheimer's 
disease. Neurobiol Aging. 2018;70:308-324. 

172. Leinwand LA. Sex is a potent modifier of the cardiovascular system. J Clin Invest. 
2003;112(3):302-307. 

173. Brie B, Ramirez MC, De Winne C, et al. Brain Control of Sexually Dimorphic Liver Function 
and Disease: The Endocrine Connection. Cell Mol Neurobiol. 2019;39(2):169-180. 

174. Garcia-Carrizo F, Priego T, Szostaczuk N, Palou A, Pico C. Sexual Dimorphism in the 
Age-Induced Insulin Resistance, Liver Steatosis, and Adipose Tissue Function in Rats. 
Front Physiol. 2017;8:445. 



87 
 

175. Posa A, Kupai K, Menesi R, et al. Sexual dimorphism of cardiovascular ischemia 
susceptibility is mediated by heme oxygenase. Oxid Med Cell Longev. 2013;2013:521563. 

 

 

1. Hall JE, Guyton AC. Guyton and Hall textbook of medical physiology. 12th ed. 
Philadelphia, Pa.: Saunders/Elsevier; 2011. 

2. The top 10 causes of death. 2020; https://www.who.int/news-room/fact-sheets/detail/the-
top-10-causes-of-death. Accessed 3 October 2021, 2021. 

3. Leading Causes of Death.  https://www.cdc.gov/nchs/fastats/leading-causes-of-
death.htm. 

4. Chronic Kidney Disease.  https://www.worldkidneyday.org/facts/chronic-kidney-disease/, 
2021. 

5. Stenvinkel P, Wanner C, Metzger T, et al. Inflammation and outcome in end-stage renal 
failure: does female gender constitute a survival advantage? Kidney Int. 2002;62(5):1791-
1798. 

6. Neugarten J, Golestaneh L. Female sex reduces the risk of hospital-associated acute 
kidney injury: a meta-analysis. BMC Nephrol. 2018;19(1):314. 

7. Zhang J, Zhu J, Wei J, et al. New Mechanism for the Sex Differences in Salt-Sensitive 
Hypertension: The Role of Macula Densa NOS1beta-Mediated Tubuloglomerular 
Feedback. Hypertension. 2020;75(2):449-457. 

8. Neugarten J, Acharya A, Silbiger SR. Effect of gender on the progression of nondiabetic 
renal disease: a meta-analysis. J Am Soc Nephrol. 2000;11(2):319-329. 

9. Tejpal A, Gianos E, Cerise J, et al. Sex-Based Differences in COVID-19 Outcomes. J 
Womens Health (Larchmt). 2021;30(4):492-501. 

10. Baylis C. Sexual dimorphism in the aging kidney: differences in the nitric oxide system. 
Nat Rev Nephrol. 2009;5(7):384-396. 

11. Veiras LC, Girardi ACC, Curry J, et al. Sexual Dimorphic Pattern of Renal Transporters 
and Electrolyte Homeostasis. J Am Soc Nephrol. 2017;28(12):3504-3517. 

12. Mirabito KM, Hilliard LM, Kett MM, et al. Sex- and age-related differences in the chronic 
pressure-natriuresis relationship: role of the angiotensin type 2 receptor. Am J Physiol 
Renal Physiol. 2014;307(8):F901-907. 

13. Yu MK, Lyles CR, Bent-Shaw LA, Young BA, Pathways A. Risk factor, age and sex 
differences in chronic kidney disease prevalence in a diabetic cohort: the pathways study. 
Am J Nephrol. 2012;36(3):245-251. 

14. Garovic VD, August P. Sex Differences and Renal Protection: Keeping in Touch with Your 
Feminine Side. J Am Soc Nephrol. 2016;27(10):2921-2924. 

15. Lee CJ, Gardiner BS, Evans RG, Smith DW. Analysis of the critical determinants of renal 
medullary oxygenation. Am J Physiol Renal Physiol. 2019;317(6):F1483-F1502. 

16. Zhang W, Edwards A. Oxygen transport across vasa recta in the renal medulla. Am J 
Physiol Heart Circ Physiol. 2002;283(3):H1042-1055. 

17. Scholz H, Boivin FJ, Schmidt-Ott KM, et al. Kidney physiology and susceptibility to acute 
kidney injury: implications for renoprotection. Nat Rev Nephrol. 2021;17(5):335-349. 

18. Pruijm M, Milani B, Pivin E, et al. Reduced cortical oxygenation predicts a progressive 
decline of renal function in patients with chronic kidney disease. Kidney Int. 
2018;93(4):932-940. 

https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
https://www.worldkidneyday.org/facts/chronic-kidney-disease/


88 
 

19. Sugiyama K, Inoue T, Kozawa E, et al. Reduced oxygenation but not fibrosis defined by 
functional magnetic resonance imaging predicts the long-term progression of chronic 
kidney disease. Nephrol Dial Transplant. 2020;35(6):964-970. 

20. Zhou H, Yang M, Jiang Z, Ding J, Di J, Cui L. Renal Hypoxia: An Important Prognostic 
Marker in Patients with Chronic Kidney Disease. Am J Nephrol. 2018;48(1):46-55. 

21. Bleyer AJ, Chen R, D'Agostino RB, Jr., Appel RG. Clinical correlates of hypertensive end-
stage renal disease. Am J Kidney Dis. 1998;31(1):28-34. 

22. Palm F. Intrarenal oxygen in diabetes and a possible link to diabetic nephropathy. Clin 
Exp Pharmacol Physiol. 2006;33(10):997-1001. 

23. Munger K, Baylis C. Sex differences in renal hemodynamics in rats. Am J Physiol. 
1988;254(2 Pt 2):F223-231. 

24. Tiede LM, Cook EA, Morsey B, Fox HS. Oxygen matters: tissue culture oxygen levels 
affect mitochondrial function and structure as well as responses to HIV viroproteins. Cell 
Death Dis. 2011;2:e246. 

25. Serebrovskaya TV, Nosar VI, Bratus LV, Gavenauskas BL, Mankovska IM. Tissue 
oxygenation and mitochondrial respiration under different modes of intermittent hypoxia. 
High Alt Med Biol. 2013;14(3):280-288. 

26. Daehn I, Casalena G, Zhang T, et al. Endothelial mitochondrial oxidative stress 
determines podocyte depletion in segmental glomerulosclerosis. J Clin Invest. 
2014;124(4):1608-1621. 

27. Corcoran JB, McCarthy S, Griffin B, et al. IHG-1 must be localised to mitochondria to 
decrease Smad7 expression and amplify TGF-beta1-induced fibrotic responses. Biochim 
Biophys Acta. 2013;1833(8):1969-1978. 

28. Long J, Badal SS, Ye Z, et al. Long noncoding RNA Tug1 regulates mitochondrial 
bioenergetics in diabetic nephropathy. J Clin Invest. 2016;126(11):4205-4218. 

29. Qi H, Casalena G, Shi S, et al. Glomerular Endothelial Mitochondrial Dysfunction Is 
Essential and Characteristic of Diabetic Kidney Disease Susceptibility. Diabetes. 
2017;66(3):763-778. 

30. Casalena G, Krick S, Daehn I, et al. Mpv17 in mitochondria protects podocytes against 
mitochondrial dysfunction and apoptosis in vivo and in vitro. Am J Physiol Renal Physiol. 
2014;306(11):F1372-1380. 

31. Wang Z, Sun Q, Sun N, Liang M, Tian Z. Mitochondrial Dysfunction and Altered Renal 
Metabolism in Dahl Salt-Sensitive Rats. Kidney Blood Press Res. 2017;42(3):587-597. 

32. Domondon M, Polina I, Nikiforova AB, et al. Renal Glomerular Mitochondria Function in 
Salt-Sensitive Hypertension. Front Physiol. 2019;10:1588. 

33. Dugan LL, You YH, Ali SS, et al. AMPK dysregulation promotes diabetes-related reduction 
of superoxide and mitochondrial function. J Clin Invest. 2013;123(11):4888-4899. 

34. Galloway CA, Lee H, Nejjar S, et al. Transgenic control of mitochondrial fission induces 
mitochondrial uncoupling and relieves diabetic oxidative stress. Diabetes. 
2012;61(8):2093-2104. 

35. Zhan M, Usman IM, Sun L, Kanwar YS. Disruption of renal tubular mitochondrial quality 
control by Myo-inositol oxygenase in diabetic kidney disease. J Am Soc Nephrol. 
2015;26(6):1304-1321. 

36. Hartleben B, Godel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular 
disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 
2010;120(4):1084-1096. 

37. D'Aco KE, Manno M, Clarke C, Ganesh J, Meyers KE, Sondheimer N. Mitochondrial 
tRNA(Phe) mutation as a cause of end-stage renal disease in childhood. Pediatr Nephrol. 
2013;28(3):515-519. 



89 
 

38. de Arriba G, Calvino M, Benito S, Parra T. Cyclosporine A-induced apoptosis in renal 
tubular cells is related to oxidative damage and mitochondrial fission. Toxicol Lett. 
2013;218(1):30-38. 

39. Dinour D, Mini S, Polak-Charcon S, Lotan D, Holtzman EJ. Progressive nephropathy 
associated with mitochondrial tRNA gene mutation. Clin Nephrol. 2004;62(2):149-154. 

40. Colom B, Oliver J, Roca P, Garcia-Palmer FJ. Caloric restriction and gender modulate 
cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc Res. 
2007;74(3):456-465. 

41. Guevara R, Gianotti M, Oliver J, Roca P. Age and sex-related changes in rat brain 
mitochondrial oxidative status. Exp Gerontol. 2011;46(11):923-928. 

42. Gaignard P, Savouroux S, Liere P, et al. Effect of Sex Differences on Brain Mitochondrial 
Function and Its Suppression by Ovariectomy and in Aged Mice. Endocrinology. 
2015;156(8):2893-2904. 

43. Borras C, Sastre J, Garcia-Sala D, Lloret A, Pallardo FV, Vina J. Mitochondria from 
females exhibit higher antioxidant gene expression and lower oxidative damage than 
males. Free Radic Biol Med. 2003;34(5):546-552. 

44. Vina J, Borras C, Gambini J, Sastre J, Pallardo FV. Why females live longer than males? 
Importance of the upregulation of longevity-associated genes by oestrogenic compounds. 
FEBS Lett. 2005;579(12):2541-2545. 

45. Justo R, Boada J, Frontera M, Oliver J, Bermudez J, Gianotti M. Gender dimorphism in 
rat liver mitochondrial oxidative metabolism and biogenesis. Am J Physiol Cell Physiol. 
2005;289(2):C372-378. 

46. Colom B, Alcolea MP, Valle A, Oliver J, Roca P, Garcia-Palmer FJ. Skeletal muscle of 
female rats exhibit higher mitochondrial mass and oxidative-phosphorylative capacities 
compared to males. Cell Physiol Biochem. 2007;19(1-4):205-212. 

47. Gomez-Perez Y, Capllonch-Amer G, Gianotti M, Llado I, Proenza AM. Long-term high-fat-
diet feeding induces skeletal muscle mitochondrial biogenesis in rats in a sex-dependent 
and muscle-type specific manner. Nutr Metab (Lond). 2012;9:15. 

48. Capllonch-Amer G, Llado I, Proenza AM, Garcia-Palmer FJ, Gianotti M. Opposite effects 
of 17-beta estradiol and testosterone on mitochondrial biogenesis and adiponectin 
synthesis in white adipocytes. J Mol Endocrinol. 2014;52(2):203-214. 

49. Rodriguez-Cuenca S, Pujol E, Justo R, et al. Sex-dependent thermogenesis, differences 
in mitochondrial morphology and function, and adrenergic response in brown adipose 
tissue. J Biol Chem. 2002;277(45):42958-42963. 

50. Ventura-Clapier R, Moulin M, Piquereau J, et al. Mitochondria: a central target for sex 
differences in pathologies. Clin Sci (Lond). 2017;131(9):803-822. 

51. Ahmad M, Wolberg A, Kahwaji CI. Biochemistry, Electron Transport Chain. StatPearls. 
Treasure Island (FL)2021. 

52. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 
2017;13(10):629-646. 

53. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to 
promote mitochondrial fusion. Proc Natl Acad Sci U S A. 2004;101(45):15927-15932. 

54. Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE. Conformational 
changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct 
Mol Biol. 2011;18(1):20-26. 

55. Mishra P, Carelli V, Manfredi G, Chan DC. Proteolytic cleavage of Opa1 stimulates 
mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. 
Cell Metab. 2014;19(4):630-641. 



90 
 

56. Wirthensohn G, Guder WG. Renal substrate metabolism. Physiol Rev. 1986;66(2):469-
497. 

57. Gewin LS. Sugar or Fat? Renal Tubular Metabolism Reviewed in Health and Disease. 
Nutrients. 2021;13(5). 

58. Brieger K, Schiavone S, Miller FJ, Jr., Krause KH. Reactive oxygen species: from health 
to disease. Swiss Med Wkly. 2012;142:w13659. 

59. Tomsa AM, Alexa AL, Junie ML, Rachisan AL, Ciumarnean L. Oxidative stress as a 
potential target in acute kidney injury. PeerJ. 2019;7:e8046. 

60. Granata S, Zaza G, Simone S, et al. Mitochondrial dysregulation and oxidative stress in 
patients with chronic kidney disease. BMC Genomics. 2009;10:388. 

61. Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Pedraza-Chaverri J. 
Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases. Biomolecules. 
2021;11(8). 

62. Frank M, Duvezin-Caubet S, Koob S, et al. Mitophagy is triggered by mild oxidative stress 
in a mitochondrial fission dependent manner. Biochim Biophys Acta. 2012;1823(12):2297-
2310. 

63. Frezza C, Cipolat S, Scorrano L. Organelle isolation: functional mitochondria from mouse 
liver, muscle and cultured fibroblasts. Nat Protoc. 2007;2(2):287-295. 

64. Calton MA, Beaulieu MO, Benchorin G, Vollrath D. Method for measuring extracellular flux 
from intact polarized epithelial monolayers. Mol Vis. 2018;24:425-433. 

65. Yepez VA, Kremer LS, Iuso A, et al. OCR-Stats: Robust estimation and statistical testing 
of mitochondrial respiration activities using Seahorse XF Analyzer. PLoS One. 
2018;13(7):e0199938. 

66. Zhang J, Zhang Q. Using Seahorse Machine to Measure OCR and ECAR in Cancer Cells. 
Methods Mol Biol. 2019;1928:353-363. 

67. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-
image analysis. Nat Methods. 2012;9(7):676-682. 

68. Wang Z, Ying Z, Bosy-Westphal A, et al. Specific metabolic rates of major organs and 
tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. 
Am J Clin Nutr. 2010;92(6):1369-1377. 

69. Nourbakhsh N, Singh P. Role of renal oxygenation and mitochondrial function in the 
pathophysiology of acute kidney injury. Nephron Clin Pract. 2014;127(1-4):149-152. 

70. Pagliarini DJ, Calvo SE, Chang B, et al. A mitochondrial protein compendium elucidates 
complex I disease biology. Cell. 2008;134(1):112-123. 

71. Palmer LG, Schnermann J. Integrated control of Na transport along the nephron. Clin J 
Am Soc Nephrol. 2015;10(4):676-687. 

72. Lee JJ, Tripi LM, Erbe RW, Garimella-Krovi S, Springate JE. A mitochondrial DNA deletion 
presenting with corneal clouding and severe Fanconi syndrome. Pediatr Nephrol. 
2012;27(5):869-872. 

73. Nishi Y, Satoh M, Nagasu H, et al. Selective estrogen receptor modulation attenuates 
proteinuria-induced renal tubular damage by modulating mitochondrial oxidative status. 
Kidney Int. 2013;83(4):662-673. 

74. Lash LH, Qian W, Putt DA, et al. Renal toxicity of perchloroethylene and S-(1,2,2-
trichlorovinyl)glutathione in rats and mice: sex- and species-dependent differences. 
Toxicol Appl Pharmacol. 2002;179(3):163-171. 

75. Patil CN, Wallace K, LaMarca BD, et al. Low-dose testosterone protects against renal 
ischemia-reperfusion injury by increasing renal IL-10-to-TNF-alpha ratio and attenuating 
T-cell infiltration. Am J Physiol Renal Physiol. 2016;311(2):F395-403. 



91 
 

76. Peng Y, Fang Z, Liu M, et al. Testosterone induces renal tubular epithelial cell death 
through the HIF-1alpha/BNIP3 pathway. J Transl Med. 2019;17(1):62. 

77. Pronsato L, Boland R, Milanesi L. Non-classical localization of androgen receptor in the 
C2C12 skeletal muscle cell line. Arch Biochem Biophys. 2013;530(1):13-22. 

78. Solakidi S, Psarra AM, Nikolaropoulos S, Sekeris CE. Estrogen receptors alpha and beta 
(ERalpha and ERbeta) and androgen receptor (AR) in human sperm: localization of 
ERbeta and AR in mitochondria of the midpiece. Hum Reprod. 2005;20(12):3481-3487. 

79. Karakas B, Aka Y, Giray A, et al. Mitochondrial estrogen receptors alter mitochondrial 
priming and response to endocrine therapy in breast cancer cells. Cell Death Discov. 
2021;7(1):189. 

80. Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014;505(7483):335-
343. 

81. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 
2011;435(2):297-312. 

82. Rajeev Dalal ZSB, Jasjit S. Sehdev. Physiology, Renal Blood Flow and Filtration. FL: 
Treasure Island (FL) : StatPearls Publishing; 2021. 

83. Ellam T, Fotheringham J, Kawar B. Differential scaling of glomerular filtration rate and 
ingested metabolic burden: implications for gender differences in chronic kidney disease 
outcomes. Nephrol Dial Transplant. 2014;29(6):1186-1194. 

84. Huang C, Kim Y, Caramori ML, et al. Diabetic nephropathy is associated with gene 
expression levels of oxidative phosphorylation and related pathways. Diabetes. 
2006;55(6):1826-1831. 

85. Sas KM, Kayampilly P, Byun J, et al. Tissue-specific metabolic reprogramming drives 
nutrient flux in diabetic complications. JCI Insight. 2016;1(15):e86976. 

86. Funk JA, Schnellmann RG. Persistent disruption of mitochondrial homeostasis after acute 
kidney injury. Am J Physiol Renal Physiol. 2012;302(7):F853-864. 

87. Thome T, Kumar RA, Burke SK, et al. Impaired muscle mitochondrial energetics is 
associated with uremic metabolite accumulation in chronic kidney disease. JCI Insight. 
2020;6(1). 

88. Gry M, Rimini R, Stromberg S, et al. Correlations between RNA and protein expression 
profiles in 23 human cell lines. BMC Genomics. 2009;10:365. 

89. Zager RA, Johnson AC, Hanson SY. Proximal tubular cytochrome c efflux: determinant, 
and potential marker, of mitochondrial injury. Kidney Int. 2004;65(6):2123-2134. 

90. Sibarani J, Tjahjodjati T, Atik N, Rachmadi D, Mustafa A. Urinary Cytochrome C and 
Caspase-3 as Novel Biomarker of Renal Function Impairment in Unilateral Ureteropelvic 
Junction Obstruction Model of Wistar Rats. Res Rep Urol. 2020;12:217-224. 

91. Boissan M, Montagnac G, Shen Q, et al. Membrane trafficking. Nucleoside diphosphate 
kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science. 
2014;344(6191):1510-1515. 

92. Miyamoto S, Ochiai A, Boku N, et al. Discrepancies between the gene expression, protein 
expression, and enzymatic activity of thymidylate synthase and dihydropyrimidine 
dehydrogenase in human gastrointestinal cancers and adjacent normal mucosa. Int J 
Oncol. 2001;18(4):705-713. 

93. Jennifer D Rocca EKH, Jay T Lennon, Sarah E Evans, Mark P Waldrop, James B Cotner, 
Diana R Nemergut, Emily B Graham & Matthew D Wallenstein Relationships between 
protein-encoding gene abundance and corresponding process are commonly assumed 
yet rarely observed. The ISME Journal. 2015;9:1693-1699. 



92 
 

94. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-
related GTPase Drp1 participates in mitochondrial fission. J Biol Chem. 
2007;282(15):11521-11529. 

95. Cho SG, Du Q, Huang S, Dong Z. Drp1 dephosphorylation in ATP depletion-induced 
mitochondrial injury and tubular cell apoptosis. Am J Physiol Renal Physiol. 
2010;299(1):F199-206. 

96. Wang W, Wang Y, Long J, et al. Mitochondrial fission triggered by hyperglycemia is 
mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 
2012;15(2):186-200. 

97. Tang WX, Wu WH, Zeng XX, Bo H, Huang SM. Early protective effect of mitofusion 2 
overexpression in STZ-induced diabetic rat kidney. Endocrine. 2012;41(2):236-247. 

98. Guo K, Lu J, Huang Y, et al. Protective role of PGC-1alpha in diabetic nephropathy is 
associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS 
One. 2015;10(4):e0125176. 

99. Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity 
and dysfunction. J Biol Chem. 2005;280(28):26185-26192. 

100. Qi W, Keenan HA, Li Q, et al. Pyruvate kinase M2 activation may protect against the 
progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med. 
2017;23(6):753-762. 

101. Xiao X, Hu Y, Quiros PM, Wei Q, Lopez-Otin C, Dong Z. OMA1 mediates OPA1 
proteolysis and mitochondrial fragmentation in experimental models of ischemic kidney 
injury. Am J Physiol Renal Physiol. 2014;306(11):F1318-1326. 

102. Yoon YS, Yoon DS, Lim IK, et al. Formation of elongated giant mitochondria in DFO-
induced cellular senescence: involvement of enhanced fusion process through modulation 
of Fis1. J Cell Physiol. 2006;209(2):468-480. 

103. Huang P, Yu T, Yoon Y. Mitochondrial clustering induced by overexpression of the 
mitochondrial fusion protein Mfn2 causes mitochondrial dysfunction and cell death. Eur J 
Cell Biol. 2007;86(6):289-302. 

104. Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R. Drp-1-
dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and 
protects against Ca2+-mediated apoptosis. Mol Cell. 2004;16(1):59-68. 

105. Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV. A 
lethal defect of mitochondrial and peroxisomal fission. N Engl J Med. 2007;356(17):1736-
1741. 

106. Yoon YM, Go G, Yoon S, et al. Melatonin Treatment Improves Renal Fibrosis via miR-
4516/SIAH3/PINK1 Axis. Cells. 2021;10(7). 

107. Li R, Jia Z, Trush MA. Defining ROS in Biology and Medicine. React Oxyg Species (Apex). 
2016;1(1):9-21. 

108. Lambert AJ, Brand MD. Superoxide production by NADH:ubiquinone oxidoreductase 
(complex I) depends on the pH gradient across the mitochondrial inner membrane. 
Biochem J. 2004;382(Pt 2):511-517. 

109. Wong HS, Dighe PA, Mezera V, Monternier PA, Brand MD. Production of superoxide and 
hydrogen peroxide from specific mitochondrial sites under different bioenergetic 
conditions. J Biol Chem. 2017;292(41):16804-16809. 

110. Davies KJ, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage 
produced by exercise. Biochem Biophys Res Commun. 1982;107(4):1198-1205. 

111. Irazabal MV, Torres VE. Reactive Oxygen Species and Redox Signaling in Chronic Kidney 
Disease. Cells. 2020;9(6). 



93 
 

112. Mitchell T, Saba H, Laakman J, Parajuli N, MacMillan-Crow LA. Role of mitochondrial-
derived oxidants in renal tubular cell cold-storage injury. Free Radic Biol Med. 
2010;49(8):1273-1282. 

113. Wen Y, Liu YR, Tang TT, et al. mROS-TXNIP axis activates NLRP3 inflammasome to 
mediate renal injury during ischemic AKI. Int J Biochem Cell Biol. 2018;98:43-53. 

114. Himmelfarb J, McMonagle E, Freedman S, et al. Oxidative stress is increased in critically 
ill patients with acute renal failure. J Am Soc Nephrol. 2004;15(9):2449-2456. 

115. Tanaka S, Tanaka T, Kawakami T, et al. Vascular adhesion protein-1 enhances neutrophil 
infiltration by generation of hydrogen peroxide in renal ischemia/reperfusion injury. Kidney 
Int. 2017;92(1):154-164. 

116. Bayorh MA, Ganafa AA, Socci RR, Silvestrov N, Abukhalaf IK. The role of oxidative stress 
in salt-induced hypertension. Am J Hypertens. 2004;17(1):31-36. 

117. Banday AA, Muhammad AB, Fazili FR, Lokhandwala M. Mechanisms of oxidative stress-
induced increase in salt sensitivity and development of hypertension in Sprague-Dawley 
rats. Hypertension. 2007;49(3):664-671. 

118. Granatiero V, De Stefani D, Rizzuto R. Mitochondrial Calcium Handling in Physiology and 
Disease. Adv Exp Med Biol. 2017;982:25-47. 

119. Santulli G, Marks AR. Essential Roles of Intracellular Calcium Release Channels in 
Muscle, Brain, Metabolism, and Aging. Curr Mol Pharmacol. 2015;8(2):206-222. 

120. Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload. Ann N Y 
Acad Sci. 2010;1201:183-188. 

121. Korge P, Langer GA. Mitochondrial Ca2+ uptake, efflux, and sarcolemmal damage in 
Ca2+-overloaded cultured rat cardiomyocytes. Am J Physiol. 1998;274(6):H2085-2093. 

122. Votyakova TV, Reynolds IJ. Ca2+-induced permeabilization promotes free radical release 
from rat brain mitochondria with partially inhibited complex I. J Neurochem. 
2005;93(3):526-537. 

123. Duan Y, Gross RA, Sheu SS. Ca2+-dependent generation of mitochondrial reactive 
oxygen species serves as a signal for poly(ADP-ribose) polymerase-1 activation during 
glutamate excitotoxicity. J Physiol. 2007;585(Pt 3):741-758. 

124. Halestrap AP. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol. 
2009;46(6):821-831. 

125. Niimi K, Yasui T, Hirose M, et al. Mitochondrial permeability transition pore opening 
induces the initial process of renal calcium crystallization. Free Radic Biol Med. 
2012;52(7):1207-1217. 

126. Crompton M, Ellinger H, Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in 
heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J. 
1988;255(1):357-360. 

127. Halestrap AP, Davidson AM. Inhibition of Ca2(+)-induced large-amplitude swelling of liver 
and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to 
mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with 
the adenine nucleotide translocase. Biochem J. 1990;268(1):153-160. 

128. Szabo I, De Pinto V, Zoratti M. The mitochondrial permeability transition pore may 
comprise VDAC molecules. II. The electrophysiological properties of VDAC are 
compatible with those of the mitochondrial megachannel. FEBS Lett. 1993;330(2):206-
210. 

129. Kokoszka JE, Waymire KG, Levy SE, et al. The ADP/ATP translocator is not essential for 
the mitochondrial permeability transition pore. Nature. 2004;427(6973):461-465. 



94 
 

130. Briston T, Roberts M, Lewis S, et al. Mitochondrial permeability transition pore: sensitivity 
to opening and mechanistic dependence on substrate availability. Sci Rep. 
2017;7(1):10492. 

131. Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of 
renal diseases. Am J Physiol Renal Physiol. 2014;306(4):F367-378. 

132. Lagranha CJ, Deschamps A, Aponte A, Steenbergen C, Murphy E. Sex differences in the 
phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen 
species and cardioprotection in females. Circ Res. 2010;106(11):1681-1691. 

133. Manning RD, Jr., Meng S, Tian N. Renal and vascular oxidative stress and salt-sensitivity 
of arterial pressure. Acta Physiol Scand. 2003;179(3):243-250. 

134. Mitchell T, De Miguel C, Gohar EY. Sex differences in redox homeostasis in renal disease. 
Redox Biol. 2020;31:101489. 

135. Nordstrom A, Hadrevi J, Olsson T, Franks PW, Nordstrom P. Higher Prevalence of Type 
2 Diabetes in Men Than in Women Is Associated With Differences in Visceral Fat Mass. 
J Clin Endocrinol Metab. 2016;101(10):3740-3746. 

136. Ricardo AC, Yang W, Sha D, et al. Sex-Related Disparities in CKD Progression. J Am Soc 
Nephrol. 2019;30(1):137-146. 

137. Li C, Deng X, Xie X, Liu Y, Friedmann Angeli JP, Lai L. Activation of Glutathione 
Peroxidase 4 as a Novel Anti-inflammatory Strategy. Front Pharmacol. 2018;9:1120. 

138. Bell EL, Klimova TA, Eisenbart J, et al. The Qo site of the mitochondrial complex III is 
required for the transduction of hypoxic signaling via reactive oxygen species production. 
J Cell Biol. 2007;177(6):1029-1036. 

139. Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at 
mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a 
mechanism of O2 sensing. J Biol Chem. 2000;275(33):25130-25138. 

140. Connor KM, Subbaram S, Regan KJ, et al. Mitochondrial H2O2 regulates the angiogenic 
phenotype via PTEN oxidation. J Biol Chem. 2005;280(17):16916-16924. 

141. Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine 
phosphatases in vivo. Mol Cell. 2002;9(2):387-399. 

142. DeNicola GM, Karreth FA, Humpton TJ, et al. Oncogene-induced Nrf2 transcription 
promotes ROS detoxification and tumorigenesis. Nature. 2011;475(7354):106-109. 

143. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional 
structure of the apoptosome: implications for assembly, procaspase-9 binding, and 
activation. Mol Cell. 2002;9(2):423-432. 

144. Zermati Y, Garrido C, Amsellem S, et al. Caspase activation is required for terminal 
erythroid differentiation. J Exp Med. 2001;193(2):247-254. 

145. Arama E, Agapite J, Steller H. Caspase activity and a specific cytochrome C are required 
for sperm differentiation in Drosophila. Dev Cell. 2003;4(5):687-697. 

146. Sordet O, Rebe C, Plenchette S, et al. Specific involvement of caspases in the 
differentiation of monocytes into macrophages. Blood. 2002;100(13):4446-4453. 

147. De Botton S, Sabri S, Daugas E, et al. Platelet formation is the consequence of caspase 
activation within megakaryocytes. Blood. 2002;100(4):1310-1317. 

148. Woo M, Hakem R, Furlonger C, et al. Caspase-3 regulates cell cycle in B cells: a 
consequence of substrate specificity. Nat Immunol. 2003;4(10):1016-1022. 

149. Jang HS, Noh MR, Kim J, Padanilam BJ. Defective Mitochondrial Fatty Acid Oxidation 
and Lipotoxicity in Kidney Diseases. Front Med (Lausanne). 2020;7:65. 

150. Gadkari TV, Cortes N, Madrasi K, Tsoukias NM, Joshi MS. Agmatine induced NO 
dependent rat mesenteric artery relaxation and its impairment in salt-sensitive 
hypertension. Nitric Oxide. 2013;35:65-71. 



95 
 

151. Szabo AJ, Wagner L, Erdely A, Lau K, Baylis C. Renal neuronal nitric oxide synthase 
protein expression as a marker of renal injury. Kidney Int. 2003;64(5):1765-1771. 

152. Seddon MD, Chowienczyk PJ, Brett SE, Casadei B, Shah AM. Neuronal nitric oxide 
synthase regulates basal microvascular tone in humans in vivo. Circulation. 
2008;117(15):1991-1996. 

153. Yoneyama H, Yamamoto A, Kosaka H. Neuronal nitric oxide synthase generates 
superoxide from the oxygenase domain. Biochem J. 2001;360(Pt 1):247-253. 

154. Salabei JK, Gibb AA, Hill BG. Comprehensive measurement of respiratory activity in 
permeabilized cells using extracellular flux analysis. Nat Protoc. 2014;9(2):421-438. 

155. Martinez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology 
and disease. Nat Commun. 2020;11(1):102. 

156. Martinez-Reyes I, Diebold LP, Kong H, et al. TCA Cycle and Mitochondrial Membrane 
Potential Are Necessary for Diverse Biological Functions. Mol Cell. 2016;61(2):199-209. 

157. Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, Richard DE. Hypoxia-
inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-
derived reactive oxygen species. Mol Biol Cell. 2010;21(18):3247-3257. 

158. Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to 
oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1):77-85. 

159. Arts RJ, Novakovic B, Ter Horst R, et al. Glutaminolysis and Fumarate Accumulation 
Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metab. 
2016;24(6):807-819. 

160. Yang H, van der Stel W, Lee R, et al. Dynamic Modeling of Mitochondrial Membrane 
Potential Upon Exposure to Mitochondrial Inhibitors. Front Pharmacol. 2021;12:679407. 

161. Ribeiro RF, Jr., Ronconi KS, Morra EA, et al. Sex differences in the regulation of spatially 
distinct cardiac mitochondrial subpopulations. Mol Cell Biochem. 2016;419(1-2):41-51. 

162. Yao CH, Wang R, Wang Y, Kung CP, Weber JD, Patti GJ. Mitochondrial fusion supports 
increased oxidative phosphorylation during cell proliferation. Elife. 2019;8. 

163. Wenzel P, Mollnau H, Oelze M, et al. First evidence for a crosstalk between mitochondrial 
and NADPH oxidase-derived reactive oxygen species in nitroglycerin-triggered vascular 
dysfunction. Antioxid Redox Signal. 2008;10(8):1435-1447. 

164. Kitada M, Xu J, Ogura Y, Monno I, Koya D. Manganese Superoxide Dismutase 
Dysfunction and the Pathogenesis of Kidney Disease. Front Physiol. 2020;11:755. 

165. Fukui M, Zhu BT. Mitochondrial superoxide dismutase SOD2, but not cytosolic SOD1, 
plays a critical role in protection against glutamate-induced oxidative stress and cell death 
in HT22 neuronal cells. Free Radic Biol Med. 2010;48(6):821-830. 

166. Kim S, Kang SW, Joo J, et al. Correction: Characterization of ferroptosis in kidney tubular 
cell death under diabetic conditions. Cell Death Dis. 2021;12(4):382. 

167. Wortmann M, Schneider M, Pircher J, et al. Combined deficiency in glutathione peroxidase 
4 and vitamin E causes multiorgan thrombus formation and early death in mice. Circ Res. 
2013;113(4):408-417. 

168. Zhang J, Bi J, Ren Y, et al. Involvement of GPX4 in irisin's protection against ischemia 
reperfusion-induced acute kidney injury. J Cell Physiol. 2021;236(2):931-945. 

169. C. ZLXXHQaD. Targeting Ferroptosis Attenuates Interstitial Inflammation and Kidney 
Fibrosis. Karger. 

170. Gal-Oz ST, Maier B, Yoshida H, et al. ImmGen report: sexual dimorphism in the immune 
system transcriptome. Nat Commun. 2019;10(1):4295. 

171. Fisher DW, Bennett DA, Dong H. Sexual dimorphism in predisposition to Alzheimer's 
disease. Neurobiol Aging. 2018;70:308-324. 



96 
 

172. Leinwand LA. Sex is a potent modifier of the cardiovascular system. J Clin Invest. 
2003;112(3):302-307. 

173. Brie B, Ramirez MC, De Winne C, et al. Brain Control of Sexually Dimorphic Liver Function 
and Disease: The Endocrine Connection. Cell Mol Neurobiol. 2019;39(2):169-180. 

174. Garcia-Carrizo F, Priego T, Szostaczuk N, Palou A, Pico C. Sexual Dimorphism in the 
Age-Induced Insulin Resistance, Liver Steatosis, and Adipose Tissue Function in Rats. 
Front Physiol. 2017;8:445. 

175. Posa A, Kupai K, Menesi R, et al. Sexual dimorphism of cardiovascular ischemia 
susceptibility is mediated by heme oxygenase. Oxid Med Cell Longev. 2013;2013:521563. 

176. Gessner A, Mieth M, Auge D, et al. Establishment of reference values for the lysine 
acetylation marker N(varepsilon)-acetyllysine in small volume human plasma samples by 
a multi-target LC-MS/MS method. Amino Acids. 2019;51(9):1259-1271. 

177. Izquierdo-Garcia JL, Nin N, Cardinal-Fernandez P, et al. Identification of novel 
metabolomic biomarkers in an experimental model of septic acute kidney injury. Am J 
Physiol Renal Physiol. 2019;316(1):F54-F62. 

178. Rebholz CM, Surapaneni A, Levey AS, et al. The Serum Metabolome Identifies 
Biomarkers of Dietary Acid Load in 2 Studies of Adults with Chronic Kidney Disease. J 
Nutr. 2019;149(4):578-585. 

179. Petrosillo G, Ruggiero FM, Pistolese M, Paradies G. Ca2+-induced reactive oxygen 
species production promotes cytochrome c release from rat liver mitochondria via 
mitochondrial permeability transition (MPT)-dependent and MPT-independent 
mechanisms: role of cardiolipin. J Biol Chem. 2004;279(51):53103-53108. 

180. Chance B, Hollunger G. The interaction of energy and electron transfer reactions in 
mitochondria. I. General properties and nature of the products of succinate-linked 
reduction of pyridine nucleotide. J Biol Chem. 1961;236:1534-1543. 

181. Hinkle PC, Butow RA, Racker E, Chance B. Partial resolution of the enzymes catalyzing 
oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta 
region of the respiratory chain of beef heart submitochondrial particles. J Biol Chem. 
1967;242(22):5169-5173. 

182. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and 
ROS-induced ROS release. Physiol Rev. 2014;94(3):909-950. 

183. Hoffman DL, Salter JD, Brookes PS. Response of mitochondrial reactive oxygen species 
generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J 
Physiol Heart Circ Physiol. 2007;292(1):H101-108. 

184. Bonnet S, Michelakis ED, Porter CJ, et al. An abnormal mitochondrial-hypoxia inducible 
factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary 
arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial 
hypertension. Circulation. 2006;113(22):2630-2641. 

185. Sanjuan-Pla A, Cervera AM, Apostolova N, et al. A targeted antioxidant reveals the 
importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-
1alpha. FEBS Lett. 2005;579(12):2669-2674. 

186. Weissmann N, Ebert N, Ahrens M, et al. Effects of mitochondrial inhibitors and uncouplers 
on hypoxic vasoconstriction in rabbit lungs. Am J Respir Cell Mol Biol. 2003;29(6):721-
732. 

187. Scialo F, Sriram A, Fernandez-Ayala D, et al. Mitochondrial ROS Produced via Reverse 
Electron Transport Extend Animal Lifespan. Cell Metab. 2016;23(4):725-734. 

188. Noh MR, Kim KY, Han SJ, Kim JI, Kim HY, Park KM. Methionine Sulfoxide Reductase A 
Deficiency Exacerbates Cisplatin-Induced Nephrotoxicity via Increased Mitochondrial 
Damage and Renal Cell Death. Antioxid Redox Signal. 2017;27(11):727-741. 



97 
 

189. Arieli Y, Gursahani H, Eaton MM, Hernandez LA, Schaefer S. Gender modulation of 
Ca(2+) uptake in cardiac mitochondria. J Mol Cell Cardiol. 2004;37(2):507-513. 

190. HJH F. The oxidation of tartaric acid in presence of iron. J Chem Soc Proc. 1893;9:113. 
191. Michael M Gaschler BRS. Lipid peroxidation in cell death. Biochem Biophys Res 

Commun. 2017;3(482):419-425. 
192. Schreiber R, Buchholz B, Kraus A, et al. Lipid Peroxidation Drives Renal Cyst Growth In 

Vitro through Activation of TMEM16A. J Am Soc Nephrol. 2019;30(2):228-242. 
193. Ongajooth L, Ongajyooth S, Likidlilid A, Chantachum Y, Shayakul C, Nilwarangkur S. Role 

of lipid peroxidation, trace elements and anti-oxidant enzymes in chronic renal disease 
patients. J Med Assoc Thai. 1996;79(12):791-800. 

194. Liao TL, Tzeng CR, Yu CL, Wang YP, Kao SH. Estrogen receptor-beta in mitochondria: 
implications for mitochondrial bioenergetics and tumorigenesis. Ann N Y Acad Sci. 
2015;1350:52-60. 

 


	Assessment of Sex Differences in Basic Renal Mitochondrial Bioenergetics
	Recommended Citation

	tmp.1641928580.pdf.9l3jm

