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Introduction

Meta-Analysis of Transcriptomic Datasets for the Investigation of 
Differential Expression in Hantavirus-Infected Human Tissue

Krapohl J, Pickett BE

Orthohantavirus, commonly referred to as hantaviruses, is a viral genus 
that is found across Asia, Europe, the Americas, and parts of Africa, all 
within various rodent hosts. Hantavirus is generally well adapted to its 
rodent host and is unlikely to cause disease. However, when humans 
encounter infected mice or their feces, virions can potentially cause an 
infection in a human host. Within humans, infection is far more severe 
and can cause serious permanent injury or even death. Except for 
some rare cases of Andes virus, spread of hantavirus between human 
hosts does not occur [1]. However, as cities expand, threat of 
hantavirus spillover into humans is increasingly becoming a threat. This 
is especially true in eastern Asia, where thousands of cases of 
hemorrhagic fever with renal syndrome (HFRS) due to hantavirus 
infection are reported per year. New world hantaviruses disease, 
hantavirus cardiopulmonary syndrome (HCPS), is far less common, but 
has been reported to have up to a 50% fatality rate [2]. Hantavirus 
infections are characterized by the loss of endothelial barrier integrity 
leading to severe symptoms and death, as wells as high levels of T-cell 
proliferation in affected tissues [3]. Interestingly, several experiments 
have shown that hantavirus infection causes no cytopathic effects in 
vitro. Instead, the highly elevated levels of both T-cells and cytokines 
in infected tissue indicate that host inflammatory response are 
responsible for the observed symptoms [4]. 

While several studies have characterized the proteomics and health 
outcomes of infected individuals, little has been done to 
transcriptionally characterize human infection. Further, no studies that 
examine multiple tissue types in a hantavirus infection have been 
reported. Evidence of differences in differential gene expression (DE) 
across tissues would provide evidence that further research is required 
to understand how DE affects differences in morbidity in human 
tissues. This study seeks to further examine which host pathways are 
impacted by infection by combining existing RNA-seq data of 
hantavirus infection for the analysis of DE in vivo and in vitro.
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As several genes of interest have been identified, it would be 
worthwhile to look at differential expression of these genes in 
vitro using multiple cell lines and viral species. This may increase 
our understanding of the differences in pathogenesis between 
HCPS and HFRS causing strains of hantavirus. In addition, this 
would illuminate how hantavirus has varying success in masking 
infection between tissue types.

As expected, the analysis of the in vivo dataset identified substantially 
more DE genes than what was found in the in vitro. Many of the genes 
identified relate to cellular repair, replication, or other housekeeping 
functions. In fact, SPIA identified only 4 pathways directly associated 
with immune response in the in vivo dataset that were perturbed, as 
compared to 11 identified in the in vitro dataset. 

In the STRING plot, we see that of the 25 genes identified, 23 are 
highly connected, and are associated with interferon activation. 
However, SLC27A3 and TSEN34 were found to be significantly 
dysregulated, but have no known function associated with viral 
infection. It is possible these genes may have unknown secondary 
functions [17]. 

Interestingly, SLC27A3 is also one of 3 genes downregulated in the in 
vitro dataset, along with TRGV3 (T cell receptor gamma variable 3) and 
IGHG2 (immunoglobulin heavy constant gamma 2). In contrast, IGHG2 
and IGHG3 are highly upregulated in vivo. The presence of IGHG2 in 
endothelial tissue in our data could be an artifact of our data 
processing, however recent studies have shown the IgG can be 
produced in some endothelial tissues and cancer lines [18]. 

SPIA results showed that some interferon pathways are inhibited while 
others are activated. This may indicate an incomplete inhibition of the 
interferon response, as hantavirus is adapted to a murine host, not a 
human one. Further investigation of genes in this pathway may further 
elucidate hantavirus pathogenesis.

Fig 2. Volcano plots of in vitro (top) in vivo (bottom). Differentially 
expressed genes (LFC ≥2, FDR adjusted p-value <0.05) are depicted in 
red (upregulated) and blue (downregulated). In total 26 genes in the in 
vitro dataset and 1134 in the in vivo dataset were significant.

A search of the Gene Expression Omnibus (GEO) database [5], hosted 
at the National Center for Biotechnology Information (NCBI), was 
performed to find RNA-sequencing datasets for hantavirus-infected 
human tissue. The corresponding sequencing data for six GEO series 
were retrieved from the Sequence Read Archive (SRA): GSE158712, 
GSE161354, GSE133319, GSE133634, GSE133751, GSE73410 [6-9]. 
In total, this represents 73 samples and contains all publicly available 
datasets. These datasets were generated from cell cultures or patients 
infected with one of:  Hantaan Virus (HTNV), Dobrava-Belgrade virus 
(DOBV), Puumala virus (PUUV), Tula Virus (TULV) and Prospect Hill 
virus (PHV). While analyses were run on each set individually, they 
were more broadly grouped into in-vitro samples and in-vivo samples. 
The Automated Reproducible MOdular Workflow for Preprocessing 
and Differential Analysis of RNA-seq Data (ARMOR) was used to 
perform quality control, trim reads, map to the reference 
transcriptome for Homo sapiens (Ensembl build GRCh38, release 98), 
and calculate the log-fold change of differentially expressed genes 
[10]. DE was defined as significant using a false discovery rate (FDR) 
adjusted p-value of <0.05. Ensembl identifiers for DE genes identified 
by ARMOR were converted to their analogous Entrez Gene Identifiers 
using Bioconductor and Biomart [11-12]. Subsequently, this gene list 
and corresponding metadata were processed using Signaling Pathway 
Impact Analysis (SPIA). Using the KEGG, Reactome, Panther, NCI, and 
BioCarta databases, SPIA identifies perturbed cellular pathways from 
the DE data [13-16].

Fig 1. Protein-protein interaction network (from the STRING database) 
of in vitro statistically significant DE genes (FDR adjusted p-value 
<0.05). 25 genes directly interact with each other, while SLC27A3 
(Very Long-Chain Acyl-CoA Synthetase) and TSEN34 (tRNA Splicing 
Endonuclease Subunit 34) remain unconnected [17].

Name Status SourceDB

Cytokine-cytokine receptor 
interaction Inhibited KEGG

Systemic lupus 
erythematosus Activated KEGG

Cell cycle Activated KEGG

Carbohydrate digestion and 
absorption Activated KEGG

Staphylococcus aureus 
infection Activated KEGG

Alcoholism Activated KEGG

Generic Transcription 
Pathway Activated Reactome

Activated PKN1 stimulates 
transcription of AR 
(androgen receptor) 
regulated genes KLK2 and 
KLK3 Activated Reactome

RNA Polymerase I Promoter 
Opening Inhibited Reactome

Meiotic recombination Activated Reactome

Name Status SourceDB
Influenza A Activated KEGG

Herpes simplex infection Activated KEGG
Measles Activated KEGG

RIG-I-like receptor signaling 
pathway Activated KEGG
Interferon Signaling Inhibited Reactome
Interferon alpha/beta 
signaling Activated Reactome
Cytokine Signaling in 
Immune system Inhibited Reactome

Antiviral mechanism by IFN-
stimulated genes Inhibited Reactome

ISG15 antiviral mechanism Inhibited Reactome

Negative regulators of RIG-
I/MDA5 signaling Activated Reactome

RIG-I/MDA5 mediated 
induction of IFN-alpha/beta 
pathways Inhibited Reactome

The top 10 are shown above and 79 pathways were identified 
in the in vivo dataset.

Table 1. In vitro significant cellular pathways identified by 
SPIA.*

Table 2. In vivo significant cellular pathways identified by 
SPIA.* 

*FDR adjusted p-value <0.05)
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