
Roskilde
University

Optimizing Gradient Methods for IoT Applications

Hosseini, Eghbal; Reinhardt, Line; Rawat, Danda B.

Published in:
IEEE Internet of Things Journal

DOI:
10.1109/JIOT.2022.3142200

Publication date:
2022

Document Version
Peer reviewed version

Citation for published version (APA):
Hosseini, E., Reinhardt, L., & Rawat, D. B. (2022). Optimizing Gradient Methods for IoT Applications. IEEE
Internet of Things Journal, Early Access. https://doi.org/10.1109/JIOT.2022.3142200

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 05. May. 2022

https://doi.org/10.1109/JIOT.2022.3142200
https://doi.org/10.1109/JIOT.2022.3142200

1

Optimizing Gradient Methods for IoT Applications
Eghbal Hosseini, Line Reinhardt, Danda B. Rawat Senior Member, IEEE

Abstract—Solving Linear Programming (LP) and Non-Linear
Programming (NLP) problems are momentous because of their
wide applications in real-life problems. There is no unified
way to find the global optimum for NLPs. But on the other
hand, Simplex Algorithm, as the dominating methodology for
LPs for several decades moves only on the boundary (vertices)
and ignores the vast majority of the feasible region in the
process of searching. In this paper, we study two gradient-
based methodologies that explore the whole feasible region,
which guarantee faster convergence rates for both LP and NLP
optimization problems including IoT problems such as Software
Defined Internet of Vehicles (SDIoV) and Vehicular Ad hoc
Networks (VANETs). The Gradient-Simplex Algorithm (GSA)
for LPs, which moves inside the feasible region in the gradient
direction at first to reduce the search space and then explores the
reduced boundary to find an optimal solution. The Evolutionary-
Gradient Algorithm (EGA), on the other hand, is for NLPs and
uses an evolutionary population to estimate gradients by evolving
to find better solutions in steps. Based on extensive simulations,
obtained numerical results show that both approaches provide
efficient solutions and outperform the state-of-the-art methods
on optimization problems with large feasible spaces. Comparative
results of applying the GSA on SDIoV and VANETs with different
sizes are included.

Index Terms—Gradient Function, Simplex Algorithm,
Evolutionary Population, Feasible Region, Internet of Things.

I. INTRODUCTION

The Simplex Algorithm has, for many years been, the most
widely known methodology for solving Linear Programming
(LP) problems. Recent approaches for solving LPs inherit
the structural properties of the Simplex Algorithm. Such
algorithms include but are not limited to upper bounding
the number of basic solutions of the Simplex Algorithm [1],
algorithms based on a hybrid of meta-heuristic and modified
Simplex Algorithm [2], [3], other algorithms can be found in
[4]–[7]. Nevertheless, the Simplex Algorithm searches for the
optimal solution by exploring the vertices of the polyhedron,
therefore the efficiency of the algorithm will be lost by moving
along the boundary of the feasible region.

Nonlinear programming (NLP), on the other hand, has many
applications in practice, such as in the area of regression
[8]–[10], portfolio [11], energy [12], etc. The gradient is a
key factor to consider in NLP; most NLP methodologies
rely on a gradient or an estimate of a gradient to define
the search direction, e.g., Steepest Descent/Ascent Method,

Eghbal Hosseini and Line Reinhardt are with Department
of People and Technology Roskilde University, Denmark (e-
mail:kseghbalhosseini@gmail.com, hosseini@ruc.dk, liner@ruc.dk).

Danda B. Rawat is with Department of Electrical Engineering
and Computer Science, Howard University, Washington, DC, USA(e-
mail:db.rawat@ieee.org).

The researchers can access the implementation and programming
code in https://github.com/eghbal11/Eghbal/blob/master/GSA%20and%
20EGA

Newton’s Method, etc. Both LPs and NLPs often occur in
IoT applications among others the problems Software-Defined
Internet of Vehicles (SDIoV) [13] and Vehicular Ad hoc
Networks (VANETs) [14].

Recently researchers have with success applied heuristic
approaches for solving specific cases such as the vehicle
connectivity problem [13]. Additionally, researchers have
solved optimization problems using simulation of several
algorithms based on the behavior of animals and insects,
natural phenomena, or scientific theories [15]–[25]. Some of
these proposed algorithms are: particle swarm optimization
(PSO) [15], artificial bee colony algorithm [16], krill herd
algorithm [17], laying chicken algorithm (LCA) [13], volcano
eruption algorithm (VEA) [18], multiverse algorithm (MVA)
[19], Covid-19 optimizer algorithm (CVA) [20] and grey wolf
optimizer [21], bat algorithm [22], social spider optimization
[23], chicken swarm optimization (CSO) [24], Fire Fly (FF)
[25]. Recently, an algorithm based on a hidden Markov model
and an ant colony optimization (ACO) has been proposed
to answer the service composition issue by enhancing the
QoS [26], an agent-based algorithm for achieving a distributed
resources organization in an IoT environment [27] and a secure
outsourcing algorithm of bi-linear pairings, which does not
require pre-computations has been proposed [28].

This paper proposes new methodologies for solving LPs
and NLPs with a focus on IoT problems with different data
formats and different network sizes. The approaches apply
the ideas of Gradient-based methods to generate moving
directions inside the feasible region. The Gradient Simplex
Algorithm (GSA) method for LPs avoids the boundary
search of the Simplex Algorithm but instead, searches in a
continuous space within the feasible region and based on
computational results, see Instances 1,2 and Table I, and
results for IoT problems in Table IV, Table V, GSA has
better results than other algorithms including the Simplex
Algorithm. When reaching the boundary of the feasible
region, GSA then, applies the ideas of the Simplex Algorithm
for locating the optimal vertex. The Evolutionary-Gradient
Algorithm (EGA), on the other hand, is for NLPs. EGA
uses an evolution population to explore the local vertices
and to evolve to better solutions based on the estimate
gradients. According to the numerical tests on representative
examples, the proposed algorithms converge faster than
existing approaches on both LPs and NLPs for problems
with many constraints or boundary points, especially on IoT
problems with considering all of connectivity, reliability,
packet delivery ratio, and delay variance of the route. Because
GSA solves LPs, it is efficient for some IoT problems like
SDIoV. Also, EGA is an efficient algorithm to solve all
nonlinear and nonconvex linear programming, so it can solve
VANETs as NLPs. The results have been shown in tables IV

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.”

 https://github.com/eghbal11/Eghbal/blob/master/GSA%20and%20EGA
 https://github.com/eghbal11/Eghbal/blob/master/GSA%20and%20EGA

2

and V.

Some of novelties of GSA and EGA are as follows:

1) GSA is much faster than simplex based on (17).
2) EGA is an evolutionary algorithm which unlike other

evolutionary algorithms uses gradient concepts.
3) There are many heuristic algorithms in the literature to

solve IoT which can solve a specific form of the problem,
GSA and EGA can solve different types of IoT.

The rest of the article is organized as follows: Section II
proposes the conceptual ideas of GSA as a combination of
typical Gradient Method and Simplex Algorithm, which is
then extended in Section III with Evolutionary populations.
Computational complexity and convergence and convexity are
discussed in Sections IV and V respectively. Computational
Results are presented in Section VI and the conclusion is found
in Section VII.

II. GRADIENT-SIMPLEX ALGORITHM (GSA) FOR LPS

The fundamental idea of the Gradient-Simplex Algorithm
(GSA) is to replace moving along the boundary of the Simplex
algorithm by a movement across the polyhedron along the
Gradient direction. We begin our discussion by presenting the
Gradient-Simplex Algorithm (GSA) in this section and then
extend it with evolutionary populations in the next.

Consider the following LP in canonical form:

max2G
B.C�G ≤ 1
G ≥ 0

(1)

where � is a < × = matrix, G and 1 are two = × 1 vectors, c
is a 1 × < vector.

The GSA works in two phases. In the first phase, moves in
the direction of the gradient of the objective from the origin.
In the second phase, the GSA applies the Simplex algorithm
on the feasible solutions found in the precious phase in order
to find the optimal solution.

1) Phase 1. Moving in Gradient Direction: In this phase,
we calculate the gradient of the objective function and find the
intersection of the gradient direction with the boundary of the
feasible region. By doing this the active constraint bounding
the optimal solution is identified. Consider problem (1) which
has < constraints and = variables. The algorithm moves in
the direction of the gradient vector until it meets the first
hyperplane that is defined by a constraint. Let

G = W1 · 2 = W1 · (21, 22, ..., 2=) (2)

where W is a constant representing the maximum moving step
in the Gradient direction without violating any constraints.
Then the following constraints must hold:

�G = �W12 = W1 (
=∑
9=1
08 92 9) ≤ 18 , 8 = 1, 2..., < (3)

Now let

B8 =

=∑
9=1
08 92 9 , 8 = 1, 2..., < (4)

The constraint which intersects the gradient vector first can be
found as the minimum intercept of the < constraints, which
is:

A = min(18
B8
|B8 > 0, 8 = 1, 2..., <) (5)

In case when (5) is not empty and the origin is feasible,
moving further in the same direction will violate at least the
constraint 8̂ so we are already on the boundary of the feasible
region and the constraint 8̂ should be active in the optimal
solution. If the origin is not in the feasible region the method
uses the M-large method to find an initial feasible solution, and
move in the gradient direction from it. Algorithm 1 shows the
pseudo-code for the first phase procedures.

Algorithm 1 Pseudo code of initial solution and the first
population

1: Initialization of Variables:
[<, =] = B8I4(�)
C = =

� = [�4H4(<)]
1 = 1(:)
2 = −2(:) ′
2 = [2I4A>B(1, < + 1)]
� = [�1]

2: for 8 = 1 C> < do
3: 3 (8) = 0
4: for 9 = 1 C> = do
5: 3 (8) = 3 (8) + �(8, 9) ∗ 2(9)
6: end for
7: end for
8: <8= = 1(1)/3 (1), A = 1
9: for 9 = 1 C> < do

10: : (9) = 1(9)/3 (9)
11: if : (9) < <8=, 3 (9) > 0 then
12: <8= = : (9), A = 9

13: end if
14: end for

2) Phase 2. Continuing by Simplex Algorithm: Next let’s
define the Simplex based part of the algorithm and thus
continue the solution process by applying the Simplex
Algorithm in order to locate the correct vertex for the optimal
solution. As discussed in phase 1, the constraint 8̂ should be
active in the optimal solution, which means the corresponding
slack variable should be set to zero before continuing with
the Simplex Algorithm and remains zero for all the following
iterations. Therefore, the slack variable should be removed
from the basis.

Let A = 18̂
B8̂

, be the length of movement in the direction of the
gradient. The pseudo code of this phase is shown in Algorithm
2.

3) Steps of the algorithm: The main steps of the GSA are
proposed as follows:

3

Algorithm 2 Pseudo code of continuing by simplex algorithm

1: <0G = 2(1), B = 1
2: for 8 = 1 C> = + < do
3: if 2(8) > <0G, �(A, 8) > 0 then
4: <0G = 2(8), B = 8
5: end if
6: end for
7: � = E4AC20C (2, �)
8: A>F = A + 1, 2>; = B
9: �(A>F, :) = �(A>F, :)/�(A>F, 2>;)

10: for 9 = 1 C> < + 1 do
11: if 8 = A>F then
12: �(8, :) = �(8, :) − �(8, 2>;) ∗ �(A>F, :)
13: end if
14: end for

Given problem (1) then let 3 be the direction of the gradient
function. Move in direction –3 in the feasible space as possible
for minimization and move in direction 3 for maximization.
Find the first constraint which meets gradient function. The
optimal solution should be located on this this constraint. To
find the constraint, move from the feasible solution G 9 based
on the following equation:

G 9+1 = G 9 − W13 (6)

For minimization and

G 9+1 = G 9 + W13 (7)

For maximization. Continue this process in the feasible region
until:

3 (5 (G 9+1), 5 (G 9)) < n (8)

Where d is the following metric and n is a very small positive
number.

3 (5 (G 9+1), 5 (G 9)) =
=∑
9=1
| 5 (G89+1) − 5 (G

8
9) | (9)

When (8) is satisfied then set the slack variable of the
constraint identified in Algorithm 1 to zero and continue using
Simplex Method to find the optimal solution.
There is no guarantee to provide an optimal solution by only
moving along the direction of the gradient function in the
feasible region, on the other hand, the simplex algorithm has
a high complexity to solve linear programming problems. One
of the advantages of combining these two methods in GSA is
that the optimal solution is found with complexity much lesser
than the simplex algorithm. Also, by this combination, GSA
uses both boundary and insides of the feasible region. Finally,
GSA moves very fast at the first stage and then provides the
optimal solution by the second stage of the algorithm.

III. EVOLUTIONARY–GRADIENT ALGORITHM (EGA)

The EGA, for NLPs, is explained in detail in this section.
EGA applies an evolutionary population to approximate
gradient so as to advance iteratively to a better solution.
An approximation of the gradient is constructed using the

smallest and largest observed objective values drawn among
the solutions of the population. The algorithm will converge
to a better solution by updating the approximated gradient and
the population.

1) Phase 1. Initial population and approximation of
gradients: An initial feasible solution is sampled randomly,
then an initial population is created in the neibourghood of
the initial solution based on the following inequality:

| |G8 − G0 | | ≤ :, 8 = 1, 2..., < (10)

where G0 indicates the initial feasible solution, G8 the entry
of the initial population and < the population size. : is an
arbitrary positive real constant which is defined based on the
size of the feasible region. With smaller choice of : one
can expect better accuracy the solution but lower convergence
speed. Among this population, all < feasible solutions are
selected and sorted based on the objective function. The vector
pointing from the minimum solution to the maximum solution
defines an approximated gradient vector.

2) Phase 2. Continue in the direction of the approximated
gradient: In this phase, the algorithm moves in the direction
of the approximated gradient to find better solutions. The
movement for maximization problem is according to

G=4F = W2 (G<0G − G<8=) ≈ W23 (11)

where (G<0G − G<8=) is an approximation of gradient vector,
3, and W2 ≥ 1 is a real constant which is defined based
on the size of feasible region, G<0G , G<8= are solutions
with maximum and minimum objective values in the current
population. In case of minimization problem, the algorithm
uses the following equation:

G=4F = W2 (G<8= − G<0G) ≈ −W23 (12)

EGA continues with G=4F . If G=4F is feasible it becomes the
new initial solution, i.e. G0 = −G=4F for the next iteration and
the algorithm moves back to Phase 1. If G=4F is infeasible,
it means W2 is too big so we change its length with W2 =

W2/2 until it finds a W2 that fits into the feasible region. The
resulting W23 (or −W23 for minimization) becomes the G0 in
next iteration.

3) Steps of the algorithm:
1) G0 is created randomly in feasible region.

2) " feasible random solutions are generated in the
neighbourhood of G0.

3) The vector between minimum and maximum of "

solutions is calculated as the approximated gradient
vector.

4) Move in the direction of approximated gradient (for
maximization problem) based on the following equation:

G=4F = W2 (G<0G − G<8=) ≈ W23 (13)

where 3 represents the approximated gradient vector and
W2 ≥ 1 is defined based on feasible region size.

4

5) If G=4F is feasible let G0 = −G=4F and go back to step 2.

6) If G=4F is infeasible let W2 = W2/2 and G=4F = W23 and
go back to step 5.

In order to solve complicated optimization problems such
as multi-objective problems, EGA evaluates the solutions of
population based on (14).

1B =


G8 8 5

∑=
:=1 (5: (G8) − 5: (G 9)) < 0

G 9 8 5
∑=
:=1 (5: (G8) − 5: (G 9)) > 0

(14)

If all objective functions are minimization problems and 1B
is the better solution of G8 , G 9 and 5 = (51, 51, ..., 5=). Also,
we have the following equations in the process of EGA for
calculate the approximated gradient in (11):

G<8= = min
G8

=∑
:=1

5: (G8) (15)

G<0G = max
G8

=∑
:=1

5: (G8) (16)

Figure 1 shows the process of the EGA for a given
optimization problem to find the optimal solutions.

Initial population generated by step 2 are shown in Figure
1(a) (blue points) together with the estimated gradient that is
built from the minimum to the maximum of the population.
Figure 1(b) shows the advances of the algorithm to the second
generation and the new set of population points that are closely
nested near the optimal solution. Figure 1(c) shows the final
convergence towards the global optimum after one iteration.
Algorithm 3 shows the pseudo code of EGA.
Some of the advantages of EGA are as follows:
1) Finding and using gradient functions for nonlinear

programming problems is very time-consuming, EGS
makes an approximated gradient function by initial
population very fast.

2) Approximated gradient function is improved by
improving populations.

3) EGA considers gradient function, unlike evolutionary
algorithms.

4) EGS improves provided feasible solutions and
populations gradually.

IV. COMPLEXITY OF GSA

The total number of vertices in a LP problem with <

constraints and = variables to be explored by the Simplex
Algorithm is:

((�) =
(
< + =
=

)
(17)

If solved by GSA the total number of vertices reduces to:

(�(�) =
(
< + = − 1
= − 1

)
(18)

as one of the basic constraint would be identified by the
gradient step before applying Simplex Algorithm.

Algorithm 3 Pseudo code of EGA

1: Initialization of Variables:
W2: A real constant greater than 1
k: An arbitrary positive real constant
M: Number of Iterations
n : A small positive number
G0: Initial solution
n: Number of solutions

2: Let NI=0
3: while 1¿0 do
4: Generate G0
5: if G0 is feasible then
6: Break
7: end if
8: end while
9: for 8 = 1 C> = do

10: Generate G8 based on | |G8 − G0 | | ≤ :
11: end for
12: Find G<8=, G<0G
13: Let G=4F = W2 (G<0G − G<8=)
14: Let G0 = G14BC , # � = #� + 1
15: if #� < " then
16: Go back to 3
17: end if

Therefore, we have:

U =
((�)
(�(�) =

(<+=
=

)(<+=−1
=−1

) =

(<+=) (<+=−1) . . . =!
=!<!

(<+=−1) (<+=−2) . . . (=−1)!
<!(=−1)!

=
(< + =) (< + = − 1). . . (= + 1)

(< + = − 1) (< + = − 2). . . (= + 1)= =
< + =
=

= 1 + <
=

(19)

Then:
U =

((�)
(�(�)

< = =⇒ U = 2
< � =⇒ U→ 1
< � =⇒ U→∞

(20)

which means that the saving of GSA is more significant when
the number of constraints are large. This is also justified in
the numerical results.

V. CONVERGENCE AND CONVEXITY

Convergent factors of EGA include initial solution, direction
of gradient function, small positive n (for stopping criteria)
and W (stepsize). EGA can be run several times so as to tweak
the convergent parameters of the algorithm and to reveal the
convergence rate. If different results are observed, convergence
rate is high therefore slow convergent parameter set and very
small n are used in this state. If appropriate results are found,
convergence rate is common and the usual parameter set will
be used. Finally if the same results are found after high number
of iterations, the convergence rate is low. In this state a quick
convergent parameter set and small n will be used. According
to the computational results, convergence rate of EGA is better
than simplex method.

5

−5 0 5
−5

0

5

x

y

(a) Generation 1 and the vector from minimum to maximum
solution

−5 0 5
−5

0

5

x

y

(b) Generation 2 close to global optimal

−5 0 5
−5

0

5

x

y

(c) Surrounding optimal solution by EGA

Fig. 1. Steps of EGA for a given optimization problem with four global and local optimals.

For a bounded feasible region EGA method can reach to
the constraint, but for unbounded feasible region or very large
regions following theorem proves that the used sequence in
heuristic algorithm is convergent.

Theorem 1: �: , sequence of objective function at point G:
in EGA, is convergent to the optimal solution, therefore the
algorithm is convergent.

Proof: Let (58) = (5 (C8)) = (5 (C81), 5 (C
8
2), ..., 5 (C

8
=)) =

(5 81 , 5
8
2 , ..., 5

8
=)

According to step 4

3 (5 9+1, 5 9) = 3 (5 (G 9+1), 5 (G 9)) =
=∑
8=1
| 5 (G89+1) − 5 (G

8
9) | < n

So
∑=
8=1 | 5 (G89+1) − 5 (G

8
9
) | < n , then | 5 (G8

9+1) − 5 (G
8
9
) | < n for

each i.
Consider sufficient big number like N such that : +1 > : > #
and 9 = 1, 2, ..., =. .
we have:

| 5 8:+1, 5
8
: | < n

Now consider m=k+1, r=k thus we have:

| 5 8<, 5 8A | < n �>A < > A > =

The above inequality shows that for each fixed i, (1 ≤ 8 ≤ =),
the sequence (5 81 , 5

8
2 , ...) is Cauchy of real numbers, thus it

converges. Now let 5 8< → 5 8 when < →∞. Using all of these
n limits, 5 = (5 1, 5 2, ..., 5 =). Using (6) and m=k+1, r=k,

3 (5<, 5A) < n

Finally if A →∞ , by 5A → 5 then

3 (5<, 5) ≤ n

The last inequality shows f is the limit of (5<) and therefore
the sequence is convergent. GSA has two phases; phase
1 is a heuristic method which moves in direction of the
gradient function inside feasible region and phase 2 in which
the obtained problem from phase 1 will be solved by the
simplex method. In this section, at first a discussion of
the convergence of the heuristic algorithm in phase 1 is
presented and then the convexity of the obtained problem
from phase 1 is discussed. As mentioned the algorithm in

phase 2 is the the simplex method. GSA is convergent for
bounded and convex mathematical programming problems.
Now consider GSA which uses the simplex method to solve
the obtained problem from phase1. Therefore only convexity
of the obtained problem from phase 1 is required. If the k-th
constraint was selected from the heuristic algorithm in phase
1, this constraint combined with problem (1) construct the
following problem:

min 2G
B.C

=∑
9=1
0: 9G 9 = B:

(21)

Problem (7) is convex because:

U

=∑
9=1
0: 9G 9 = UB: (22)

And

V

=∑
9=1
0: 9 H 9 = VB: (23)

From (19), (20)
=∑
9=1
0: 9UG 9 +

=∑
9=1
0: 9 VH 9

= U

=∑
9=1
0: 9G 9 + V

=∑
9=1
0: 9 H 9

= UB: + VB: = (U + V)B:

(24)

Which this finishes proof of the convexity.

VI. COMPUTATIONAL RESULTS

In this section, both LP and NLP in both categories of small
and large sizes are solved to demonstrate the effectiveness of
the designed algorithm.

A. GSA for LPs

Two examples will be solved by the GSA.

The optimal solution of Example 1 in Table I is:

G∗1 = 2, G∗2 = 2/3, I∗ = 8/3 (25)

6

TABLE I. Optimization test functions examples 1-8

Examples Equation
Example 1 max G1 + G2B.C : 2G1 + 3G2 ≤ 6,−G1 + G2 ≤ 1, G1 ≤ 2, G1, G2 ≥ 0.
Example 2 min G1 + G2 − 4G3B.C : G1 + G2 + 2G3 ≤ 9, G1 + G2 − G3 ≤ 2,−G1 + G2 + G3 ≤

4, G1, G2, G3 ≥ 0.
Example 3 5 (G, H) = 4−(G−4)2−(H−4)2 + 4−(G+4)2−(H−4)2 + 24−G2−H2 + 24−G2−(H+4)2

Example 4 - Rastrigin Function 5 (G, H) = 10= +∑=
8=1 (G

2
8
− 102>B(2cG8))

Example 5 5 (G, H) = −204−0.2
√
(0.5(G2+H2)) + 40.5(2>B (2cG)+2>B (2cH)) + 4 + 20

Example 6 - Holder-Table Function 5 (G, H) = −|B8=(G)2>B(H)4 |1−
√
G2+H2
c
| |

Example 7 - Rosenbrock Function 5 (G, H) = ∑=
8=1 [1(G8+1 − G

2
8
)2 + (0 − G8)2]

Example 8 - Bird Function 5 (G, H) = B8=(G)4 (1−2>B (H))2 + 2>B(H)4 (1−B8=(G))2 + (G − H)2

Example 9 - Salomon Function 5 (x) = 5 (G1, ..., G=) = 1 − 2>B(2c
√∑�

8=1 G
2
8
) + 0.1

√∑�
8=1 G

2
8

Example 10 - Keane Function 5 (G, H) = − sin2 (G−H) sin2 (G+H)√
G2+H2

Example 11 - Bohachevsky N. 2 Function 5 (G, H) = G2 + 2H2 − 0.32>B(3cG)2>B(4cH) + 0.3

To move in the direction of the gradient vector, let - =

(G1, G2) = U(1, 1). Then the following constraints will be
obtained:

2U + 3U ≤ 6
−U + U ≤ 1

U ≤ 2
(26)

Therefore
5U ≤ 6

0 ≤ 1
U ≤ 2

(27)

The first constraint is selected to exit from basic in
simplex. Then we continue to solve the problem using simplex
algorithm as follows.

I

B1
B2
B3


I G1 G2 B1 B2 B3 '�(

1 −1 −1 0 0 0 0
0 2 3 1 0 0 6
0 −1 1 0 1 0 1
0 1 0 0 0 1 2


(28)

Iteration 2:

I

G1
B2
B3


I G1 G2 B1 B2 B3 '�(

1 0 1/2 1/2 0 0 3
0 1 3/2 1/2 0 0 3
0 0 5/2 1/2 1 0 4
0 0 −3/2 −1/2 0 1 −1


(29)

Iteration 3:

I

G1
B2
G2


I G1 G2 B1 B2 B3 '�(

1 0 0 1/3 0 1/3 8/3
0 1 0 0 0 1 2
0 0 0 −1/3 1 5/3 7/3
0 0 1 1/3 0 −2/3 2/3


(30)

Figure 2 (a-b) shows the solution process of the algorithm
for Example 1. The algorithm starts from origin searching in
direction of the gradient of objective function (blue vector)

until one constraint is found (Figure 2(a)). After that in the
second phase, the algorithm moves from the green point found
in phase 1 into a vertex on the identified constraint (Figure
2(b)), which is the optimal solution.

Optimal solution of Example 2 in Table I as follows:

G∗1 = 1/3, G∗2 = 0, G∗3 = 13/3, I∗ = −17 (31)

To move in direction of the gradient vector, let - =

(G1, G2, G3) = −U(1, 1,−4). Then the following constraints will
be obtained:

−U − U + 8U ≤ 9
−U − U − 4U ≤ 2
−U − U + 4U ≤ 4

(32)

Therefore
6U ≤ 9
−6U ≤ 2

4U ≤ 4
(33)

So, the third constraint is selected to exit from basic in
simplex. Continue with simplex algorithm:

I

B1
B2
B3


I G1 G2 G3 B1 B2 B3 1

1 −1 −1 4 0 0 0 0
0 1 1 2 1 0 0 9
0 1 1 −1 0 1 0 2
0 −1 1 1 0 0 1 4


(34)

Iteration 2:

I

B1
B2
G3


I G1 G2 G3 B1 B2 B3 1

1 3 −5 0 0 0 −4 −16
0 3 −1 0 1 0 −2 1
0 0 2 0 0 1 1 6
0 −1 1 1 0 0 1 4


(35)

Iteration 3:

I

G1
B2
G3


I G1 G2 G3 B1 B2 B3 1

1 0 −4 0 −1 0 −2 −17
0 1 −1/3 0 1/3 0 −2/3 1/3
0 0 2 0 0 1 1 6
0 0 2/3 1 1/3 0 1/3 13/3


(36)

7

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

x

y

(a)

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

x

y

(b)
0

1

2

3

0

1

2

3
0

1

2

3

4

xy

z

(c)

0
1

2
3

0

1

2

3
0

1

2

3

4

xy

z

(d)

Fig. 2. Steps of GSA for Examples 1, 2.

TABLE II. Comparisons between GSA and normal method in Matlab
(Linprog interior point)

Name size m×n Optimal Linprog GSA N.
Iter

agg 489×163 -3.59E+07 -3.92e+16 -8.19e+07 5
SC50A 51×48 -6.45E+01 -6.53e+20 -64.57 5
AFIRO 28×32 -4.64E+02 -1.45e+29 -464.75 5
SC50B 51×48 -7.00E+01 -3.25e+27 -70.00 5
SHARE2B 28×32 -4.15E+02 -1.93e+19 -549.52 5
Random
Problem

2000×4000 ——– 189.12e+12 188.14e+12 100

Benchmark Functions:
F1:Sphere Function:

∑=
8=1 G

2
8

F2:Schwefel 2.22:
∑=
8=0 |G8 | +

∏=
8=0 |G8 |

F3:Schwefel 2.21:max8{|G8 |, 1 ≤ 8 ≤ =}
F4:Rosenbrock Function:

∑=−1
8=1 (100(G2

8
− G8+1)2 + (1 − G8)2)

F5:Zakharov Function:
∑=
8=1 G

2
8
+ (∑=

8=1 0.58G8)2 + (
∑=
8=1 0.58G8)4

F6:Quartic Function:
∑=
8=0 8G

4
8
+ random[0, 1)

F7:Schwefel Function:
∑=
8=1 (−G8B8=(

√
|G8 |)) + U · =

F8:Rastrigin Function:10n +
∑=
8=1 (G2

8
− 102>B(2cG8))}

F9:Ackley Function:-20 exp(-0.2
√

1
=

∑=
8=1 G

2
8
) + 20 + 4

F10:Levi N. 13:
∑=
8=1 (B8=2 (3cG8) + (1 − G8)2 (1 + B8=2 (3cG8)))

TABLE III. Optimization test functions examples 1-8

Functions
VEA EGA GWO PSO
Mean Std. Mean Std. Mean Std. Mean Std.

F1 1.73 0.58 1.53 0.58 2319 1237 3.55 2.85
F2 5.12 3.26 5.01 3.13 14.43 5.92 8.71 4.92
F3 1.16 1.26 1.12 1.25 13.09 11.34 21.51 6.71
F4 945.1 813.6 1025 743.7 3425 3304 1132 1357
F5 1.18 0.52 1.12 0.56 5009 3028 86.62 147.3
F6 0.014 0.011 0.011 0.019 0.40 0.11 0.57 0.31
F7 -884 567.3 -853 643.1 -10.7 1162 -672 1352
F8 12.47 8.32 11.04 5.36 89.13 37.95 99.83 24.62
F9 1.32 0.82 1.09 1.15 9.45 3.46 4.29 1.30
F10 0.61 0.10 0.45 0.10 3200 6746 13.38 8.96

Solution process for Example 2 is demonstrated in Figure
2 (c-d). The algorithm begins in direction of the gradient of
objective function (red vector) until one constraint is found.
Then the algorithm begins from the origin and goes to a vertex

in the found constraint (blue point – infeasible solution, Figure
2 (c)). Finally, the algorithm tries to active the constraint and
goes to the next vertex point (green point – optimal solution,
Figure 2 (d)).

Table I shows the models used for the benchmarks and
Figure 3 shows the process of EGA for those benchmarks.
Figures 4 shows contours of the benchmark functions and
the process of EGSA for solving them. Also, comparisons
between GSA and normal method to solve linear programming
problems in Matlab (Linprog- interior point or simplex
algorithm) are shown in Table II on benchmark problems, the
last row of the Table II includes a random generated problem
which has not optimal solution.

B. Route Optimization Design in Internet of Vehicles
environment

Based on the objective function, the problem maximizes
both of the connection quality and connectivity probability
of the current routes from origin to destination [13]. The
constraints are Signal to Interference and Noise Ratio
threshold((�#'Cℎ) for finding more trustworthy and conjunct
route. Volcano Eruption Algorithm (VEA) [18] has been
implemented for finding optimal route from origin to
destination. Table IV shows the comparison of results and the
rate of improvement for GSA and VEA. An initial solution
is generated randomly for both GSA and VEA algorithms.
Initial solutions by GSA and VEA will be improved by the
process of algorithms, this improvement has been shown after
five iterations.

Problem 1:

max
Z

� (Z) = _1 × %� (Z) + _2 × (�#'(Z) (37)

where %� (Z) =
=∏
8=1

%� (48),

(�#'(Z) =
∑=
8=1 (�#'(48) −

∑=
8=1 (�#'Cℎ (48))∑=

8=1 (�#'(48)
,

(38)
subject to

(�#'(Z) ≥ (�#'Cℎ (Z).
(39)

In the above problem, F(Z) is the objective function
includes a set of routes Z from origin to destination. _−1 and
_ − 2 are the weights in the simulation which experimentally
set and also their summation is equal to 1. PC(Z) and SINR(Z)

8

TABLE IV. Comparison and Improvement from Random Initial Solutions (RIS) by GSA and VEA for internet of vehicles problem 1

Problems Size n×m Best Solution by GSA Best Solution by VEA Improvement of
RIS by GSA

Improvement of
RIS by VEA

IoV 1-1 100×100 1000.5450 917.3405 0.251 0.221
IoV 2-1 200×200 1.4329e+04 1.3014e+04 0.328 0.318
IoV 3-1 500×500 6.8147e+04 6.9372e+04 0.188 0.202
IoV 4-1 1000×1000 2.9921e+05 2.8461e+05 0.102 0.097
IoV 5-1 2000×2000 1.4822e+06 1.2831e+06 0.3122 0.303
IoV 6-1 5000×5000 6.8766e+06 6.6281e+06 0.087 0.064
IoV 7-1 10000×10000 3.1450e+07 2.7145e+07 0.088 0.081
IoV 8-1 30000×30000 3.8642e+09 3.7916e+09 0.055 0.053

TABLE V. Comparison of EGA and other algorithms for internet of vehicles problem 2

Problems Size n×m LCA VEA MVA EGA
IoV 1-2 10×10 6.1257 7.1234 6.0327 6.7456
IoV 2-2 50×50 17.4799 20.8234 18.1241 19.0521
IoV 3-2 100×100 45.2681 51.4065 43.2356 53.1578
IoV 4-2 200×200 88.4489 100.1293 97.2013 102.0362
IoV 5-2 500×500 226.7274 213.1343 205.2120 201.1680
IoV 6-2 1000×1000 422.4528 675.3421 734.1243 532.0134
IoV 7-2 2000×2000 844.9100 1.2543e+03 1.5432e+03 1.5621e+03
IoV 8-2 5000×5000 2.2489e+03 3.1437e+03 4.2516e+03 4.1026e+03

are the connectivity and reliability of routes. %� (48) and
(�#'(48) show the street’s connectivity and link reliability.

Problem 2 [14]:

max
H
� (H) = _1%� (H)+_2%�'(H) + _3

�Cℎ − �H
� (H) × 1

(1 + �E(H))
(40)

where %� (H) =
=∏
8=1

%� (48),

%�'(H) =
=∏
8=1

%�'(48),

� (H) =
=∑
8=1

� (48),

�E(H) =
=∑
8=1

�E(48)
=

,

(41)

subject to
� (H) ≤ �Cℎ .

(42)

The algorithm is also used to solve internet of
vehicles in problem 2. The results have been shown in
Table V. The comparison is with some recent efficient
meta-heuristics; Laying Chicken Algorithm (LCA), Volcano
Eruption Algorithm (VEA), and Multiverse Algorithm (MVA)
where GSA has an acceptable results.

C. EGA on NLPs

The number of solutions is 50, the greatest number of
iterations is considered 20 and epsilon is 0.1, finally the
algorithm is run 30 times. Based on Table III, the obtained
results of the proposed algorithm shows that EGA is provided
very competitive and impressive results in solving several

kinds of test functions. Average results and corresponding
standard deviations have been shown by Ave. and Std.
respectively. Low standard deviation of EGA is remarkable.
It demonstrates that, based on the definition of standard
deviation, the values tend to be close to the expected value of
the set. The comparison is with some efficient meta-heuristics;
Volcano Eruption Algorithm (VEA), Grey Wolf (GWO), and
Particle Swarm Optimization (PSO).

VII. CONCLUSION

EGA and GSA are methods that can optimize linear
programming problems and at the same time, the algorithms
are also efficient at solving nonlinear programming problems,
because they are based on gradient direction. The best
solution by the algorithms is better than other methods
while using less time. In fact, GSA is successful because
it moves infeasible region not just on the boundary. For
large problems, this algorithm should be much better than
the simplex method because it does not investigate most
of the vertex points in the problem. Further testing of this
algorithm should be done with big data algorithms as it
shows clear potential in this area. Finally, there are still a
lot of complicated optimization problems such as quadratic
programming, which can be solved by EGA and GSA.
Perhaps the easy MATLAB code of the EGA can be a basis
for researchers in future research within the area solving
problems of large sizes. However the found solution by EGA
is only close to the optimal solution an may not be optimal.

9

−2
0

2
4

−5

0

5
0

0.5

1

1.5

xy

z

(a) First Iteration - Example 3

−2
0

2
4

−5

0

5
0

0.5

1

1.5

xy

z

(b) Surrounding global optimal solution by
GESA

−5

0

5

−5

0

5
0

20

40

60

80

x

z

(c) First Iteration - Example 4

−5

0

5

−5

0

5

20

40

60

80

xy

z

(d) Surrounding global optimal solution by
GESA

−5

0

5

−5

0

5
5

10

15

xy

z

(e) First Iteration - Example 5

−5

0

5

−5

0

5
5

10

15

xy

z

(f) Surrounding global optimal solution by
GESA

(g) First Iteration - Example 6 (h) Surrounding global optimal solution by
GESA

(i) First Iteration - Example 7 (j) Surrounding optimal solution by GESA (k) First Iteration - Example 8 (l) Surrounding global optimal solution by
GESA

(m) First Iteration - Example 9
(n) Surrounding global optimal solution by
GESA (o) First Iteration - Example 10 (p) First Iteration - Example 10

(q) Surrounding global optimal solution by
GESA (r) First Iteration - Example 11 (s) First Iteration - Example 11

(t) Surrounding global optimal solution by
GESA

Fig. 3. The results of benchmarks when original function (First) and EGA are applied (Others)

Nomenclature
N(GSA): Number of visited solutions by GSA

N(SA): Number of visited solutions by SA
m: Size of population in EGA

k: An arbitrary positive real constant
d: Approximated gradient vector

SA: Simplex Algorithm, MVA: Multiverse Algorithm
VEA: Volcano Eruption Algorithm

RIS: Random Initial Solutions,LCA: Laying Chicken Algorithm
x0, G8 : �=8C80;B>;DC8>=, 8CℎB>;DC8>=> 5 ?>?D;0C8>=

W2 : �A40;2>=BC0=C6A40C4ACℎ0=1
U, V : %0A0<4C4ABC>?A>E42>=E4G8CH

W1 : �2>=BC0=CC><0G8<8I4?>BB81;4<>E8=68=�(�

REFERENCES

[1] T. Kitahara and S. Mizuno, “A bound for the number of different
basic solutions generated by the simplex method,” Mathematical
Programming, vol. 137, no. 1-2, pp. 579–586, 2013.

[2] P.-Z. Peng, J. Yuan, Z.-J. Wang, Y. Yu, and M. Jiang, “An improved
gafsa based on chaos search and modified simplex method,” Lecture
Notes in Electrical Engineering, vol. 336, pp. 133–141, 2015.

[3] J.-Y. Chang, S.-H. Liao, S.-L. Wu, and C.-T. Lin, “A hybrid of cuckoo
search and simplex method for fuzzy neural network training,” 2015,
pp. 13–16.

10

(a) First Iteration - Example 9 (b) Surrounding global optimal solution by
GESA

(c) First Iteration - Example 10 (d) Surrounding global optimal solution by
GESA

(e) First Iteration - Example 11 (f) Surrounding global optimal solution by
GESA (g) First Iteration - Example 9

(h) Surrounding global optimal solution by
GESA

(i) First Iteration - Example 10 (j) Surrounding global optimal solution by
GESA

(k) First Iteration - Example 11
(l) Surrounding global optimal solution by
GESA

(m) First Iteration - Example 9 (n) Surrounding global optimal solution by
GESA (o) Keane Function - Example 10 (p) First Iteration - Example 10

(q) Surrounding global optimal solution by
GESA

(r) Bohachevsky N. 2 Function - Example 11 (s) First Iteration - Example 11
(t) Surrounding global optimal solution by
GESA

Fig. 4. Contours of the function and the process of EGSA

[4] M. Riplinger, M. Krause, A. Louis, and C. Xu, “A new local dimming
algorithm based on the simplex method,” Computational Optimization
and Applications, vol. 64, no. 1, pp. 243–263, 2016.

[5] V. Cerdà, J. Cerdà, and A. Idris, “Optimization using the gradient and
simplex methods,” Talanta, vol. 148, pp. 641–648, 2016.

[6] M. Dumaldar, “A theoretical comparison between the simplex method
and the basic line search algorithm,” Optimization, vol. 65, no. 1, pp.
1–7, 2016.

[7] M. Bezerra, Q. dos Santos, A. Santos, C. Novaes, S. Ferreira, and
V. de Souza, “Simplex optimization: A tutorial approach and recent
applications in analytical chemistry,” Microchemical Journal, vol. 124,
pp. 45–54, 2016.

[8] K.-N. Lau, P.-L. Leung, and K.-K. Tse, “Mathematical programming
approach to clusterwise regression model and its extensions,” European

Journal of Operational Research, vol. 116, no. 3, pp. 640–652, 1999.
[9] Z. Sener and E. Karsak, “A decision model for setting target levels

in quality function deployment using nonlinear programming-based
fuzzy regression and optimization,” International Journal of Advanced
Manufacturing Technology, vol. 48, no. 9-12, pp. 1173–1184, 2010.

[10] O. Kocadagli, “A novel nonlinear programming approach for estimating
capm beta of an asset using fuzzy regression,” Expert Systems with
Applications, vol. 40, no. 3, pp. 858–865, 2013.

[11] M. Branda, M. Bucher, M. Červinka, and A. Schwartz, “Convergence
of a scholtes-type regularization method for cardinality-constrained
optimization problems with an application in sparse robust portfolio
optimization,” Computational Optimization and Applications, vol. 70,
no. 2, pp. 503–530, 2018.

[12] M. A. Duran and I. E. Grossmann, “Mixed-integer nonlinear

11

programming algorithm for process synthesis.” 1984.
[13] K. Ghafoor, L. Kong, D. Rawat, E. Hosseini, and A. Sadiq, “Quality of

service aware routing protocol in software-defined internet of vehicles,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2817–2828, 2019.

[14] G. Li, L. Boukhatem, and J. Wu, “Adaptive quality-of-service-based
routing for vehicular ad hoc networks with ant colony optimization,”
IEEE Transactions on Vehicular Technology, vol. 66, no. 4, pp. 3249–
3264, 2017.

[15] J. Kennedy and R. Eberhart, “Particle swarm optimization,” vol. 4, 1995,
pp. 1942–1948.

[16] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (abc) algorithm,”
Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, 2007.

[17] A. Gandomi and A. Alavi, “Krill herd: A new bio-inspired optimization
algorithm,” Communications in Nonlinear Science and Numerical
Simulation, vol. 17, no. 12, pp. 4831–4845, 2012.

[18] E. Hosseini, A. Sadiq, K. Ghafoor, D. Rawat, M. Saif, and X. Yang,
“Volcano eruption algorithm for solving optimization problems,” Neural
Computing and Applications, vol. 33, no. 7, pp. 2321–2337, 2021.

[19] E. Hosseini, K. Ghafoor, A. Emrouznejad, A. Sadiq, and D. Rawat,
“Novel metaheuristic based on multiverse theory for optimization
problems in emerging systems,” Applied Intelligence, vol. 51, no. 6,
pp. 3275–3292, 2021.

[20] E. Hosseini, K. Ghafoor, A. Sadiq, M. Guizani, and A. Emrouznejad,
“Covid-19 optimizer algorithm, modeling and controlling of coronavirus
distribution process,” IEEE Journal of Biomedical and Health
Informatics, vol. 24, no. 10, pp. 2765–2775, 2020.

[21] S. Mirjalili, S. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances
in Engineering Software, vol. 69, pp. 46–61, 2014.

[22] X.-S. Yang, “Bat algorithm: Literature review and applications,”
International Journal of Bio-Inspired Computation, vol. 5, no. 3, pp.
141–149, 2013.

[23] E. Cuevas, M. Cienfuegos, D. Zaldı́var, and M. Pérez-Cisneros, “A
swarm optimization algorithm inspired in the behavior of the social-
spider,” Expert Systems with Applications, vol. 40, no. 16, pp. 6374–
6384, 2013.

[24] X. Meng, Y. Liu, X. Gao, and H. Zhang, “A new bio-inspired algorithm:
Chicken swarm optimization,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 8794, pp. 86–94, 2014.

[25] X.-S. Yang, Nature-Inspired Optimization Algorithms, 1st ed. NLD:
Elsevier Science Publishers B. V., 2014.

[26] S. S. Sefati and N. J. Navimipour, “A qos-aware service composition
mechanism in the internet of things using a hidden markov model-based
optimization algorithm,” IEEE Internet of Things Journal, 2021.

[27] A. Forestiero and G. Papuzzo, “Agents-based algorithm for a distributed
information system in internet of things,” IEEE Internet of Things
Journal, 2021.

[28] H. Zhang, L. Tong, J. Yu, and J. Lin, “Blockchain aided privacy-
preserving outsourcing algorithms of bilinear pairings for internet of
things devices,” IEEE Internet of Things Journal, 2021.

Eghbal Hosseini is currently working on RoRo
Green Project as a researcher with Roskilde
University, before that, he was working as a senior
researcher with Erbil Polytechnic University, and an
assistant professor at University of Raparin from
2017 to 2021. He received B.Sc. and M.Sc degrees
in applied mathematics and operations research in
Iran, and also his Ph.D. degree in optimization
from Tehran Payame Noor University at 2015.
His research interests are meta-heuristic approaches,
algorithms, multilevel programming problems and

machine learning. From 2017 he has proposed five new meta-heuristics:
Laying Chicken Algorithm (LCA), Big Bang Algorithm (BBA), Volcano
Eruption Algorithm (VEA), Multiverse Algorithm (MVA), and Covid-19
Optimizer Algorithm (CVA).

Line Reinhardt is an Associate Professor in the
Programming, Logic and Intelligent Systems Section
at the Department of People and Technology at
Roskilde University and the head of the Center for
Maritime and Marine Research at the University.
Line Reinhardt has served many years on the board
of the Danish Operations Research Society. Line
Reinhardt has been in the Organizing committee
for several international conferences such as 8th
ESICUP conference, 4th ICCL and the 33rd EURO
conference. Dr. Reinhardt is engaged in international

collaboration among others with Norwegian University of Science and
Technology, Paderborn University Germany, Izmir Bakircay University Turkey
and Dalian Maritime University in China.

Dr. Danda B. Rawat is a Full Professor in
the Department of Electrical Engineering and
Computer Science (EECS), Founder and Director
of the Howard University Data Science and
Cybersecurity Center, Director of DoD Center of
Excellence in Artificial Intelligence and Machine
Learning (CoE-AIML), Director of Cyber-security
and Wireless Networking Innovations (CWiNs)
Research Lab, Graduate Program Director of
Howard CS Graduate Programs and Director of
Graduate Cybersecurity Certificate Program at

Howard University, Washington, DC, USA. Dr. Rawat is engaged in research
and teaching in the areas of cybersecurity, machine learning, big data
analytics and wireless networking for emerging networked systems including
cyber-physical systems, Internet-of-Things, multi domain operations, smart
cities, software defined systems and vehicular networks. He has secured
over 16 million USD in research funding from the US National Science
Foundation (NSF), US Department of Homeland Security (DHS), US National
Security Agency (NSA), US Department of Energy, National Nuclear Security
Administration (NNSA), DoD and DoD Research Labs, Industry (Microsoft,
Intel, etc.) and private Foundations. Dr. Rawat is the recipient of NSF
CAREER Award in 2016, Department of Homeland Security (DHS) Scientific
Leadership Award in 2017, Provost’s Distinguished Service Award 2021,
Researcher Exemplar Award 2019 and Graduate Faculty Exemplar Award
2019 from Howard University, the US Air Force Research Laboratory (AFRL)
Summer Faculty Visiting Fellowship 2017, Outstanding Research Faculty
Award (Award for Excellence in Scholarly Activity) at GSU in 2015, the
Best Paper Awards (IEEE CCNC, IEEE ICII, BWCA) and Outstanding PhD
Researcher Award in 2009. He has delivered over 30 Keynotes and invited
speeches at international conferences and workshops. Dr. Rawat has published
over 200 scientific/technical articles and 11 books. He has been serving as an
Editor/Guest Editor for over 70 international journals including the Associate
Editor of IEEE Transactions of Service Computing, Editor of IEEE Internet of
Things Journal, Associate Editor of IEEE Transactions of Network Science
and Engineering and Technical Editors of IEEE Network. He has been in
Organizing Committees for several IEEE flagship conferences such as IEEE
INFOCOM, IEEE CNS, IEEE ICC, IEEE GLOBECOM and so on.

	Introduction
	Gradient-Simplex Algorithm (GSA) for LPs
	Phase 1. Moving in Gradient Direction
	Phase 2. Continuing by Simplex Algorithm
	Steps of the algorithm

	Evolutionary–Gradient Algorithm (EGA)
	Phase 1. Initial population and approximation of gradients
	Phase 2. Continue in the direction of the approximated gradient
	Steps of the algorithm

	Complexity of GSA
	Convergence and Convexity
	Computational Results
	GSA for LPs
	Route Optimization Design in Internet of Vehicles environment
	EGA on NLPs

	Conclusion
	References
	Biographies
	Eghbal Hosseini
	Line Reinhardt
	Dr. Danda B. Rawat

