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Essays on Risk and EconometricsThis thesis contains the outcome of two projects: risk and property 
prices, and computational aspects of model averaging. In the first 
project, we investigate the effect of objective and subjective 
earthquake risk embedded in Japanese property prices. We employ 
a multivariate error components regression model to exploit a rich 
dataset containing transaction prices and various characteristics of 
residential properties. While the earthquake probabilities are seen as 
objective measures of earthquake risk, we elicit a subjective measure 
of risk from the data by means of a parametric family of probability 
weighting functions. The estimated shape of the probability weighting 
function provides insight on how people’s perception of earthquake 
probabilities is reflected in property prices. 

In the second project we study the properties of the weighted-average 
least squares (WALS) estimator. The idea of model averaging emerges 
from the insight that model selection and estimation should not be 
seen as two separate steps, but rather as one integrated procedure. 
Model averaging estimators do not select one best-fitting candidate 
model but estimate a whole range of candidate models and assigns 
weights to each of the candidate estimates. We explore the compu-
tational properties of WALS and develop statistical packages that 
enable the computation of WALS estimates. 
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Chapter 1

Introduction

This thesis contains the outcome of two unrelated projects: risk and property prices, and computational

aspects of model averaging.

In the first project, we investigate the effect of objective and subjective earthquake risk embedded in

Japanese property prices. This is measured within the framework of a hedonic pricing model, which is

the benchmark model for analyzing property prices. In hedonic pricing models, the characteristics of a

property are seen as components that each independently contribute to a part of the property price.

We collect a rich dataset containing transaction prices of residential properties and various charac-

teristics that are relevant to property prices. We distinguish between three types of residential properties:

residential land (land only), residential land (land and building), and pre-owned condominiums. Each

type has different attributes but also shares many characteristics. Among the property characteristics,

there are cross-sectional data such as information on the attractiveness of the district where the property

is located, time-series data such as macroeconomic variables, and also individual characteristics such as

square footage, building coverage ratio, or distance to the nearest station.

To exploit the available dataset, we employ a multivariate error components regression model. The

error terms are the sum of three independent components, capturing the time-specific, cross-section-

specific, and individual-specific effects. Furthermore, each component is a vector instead of a scalar,

enabling the pooling of equations of closely related error structures while maintaining a relatively small

number of parameters. This vector has three elements, each corresponding to one of the three property

types. The dimension of the huge variance matrix caused by the vector form can be drastically reduced

thanks to the error components structure.

We introduce earthquake risk measured as the probability of an earthquake exceeding a certain mag-

nitude or intensity threshold over a certain time period. Since the occurrence of earthquakes is frequent

in Japan and varies both spatially and temporally, earthquake risk is a non-negligible characteristic in

the valuation of property prices. We distinguish between long-run risk and short-run risk. The long-run

earthquake risk data is provided by the Japan Seismic Hazard Information Station, and is defined as the

probability of an earthquake exceeding certain intensity thresholds in the next thirty years in a given

area. We take the average of these long-run probabilities over the entire sample period to create a time-

invariant measure of the overall riskiness corresponding to a given area. On the other hand, short-run
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probabilities are ninety-day probabilities which vary per time period and per city, simulated by a tem-

poral epidemic-type aftershock sequence (ETAS) model. The ETAS model is a path-dependent marked

point process commonly used for modelling seismic activities. The idea behind the ETAS model is that

each earthquake can trigger aftershocks like epidemics and that the intensity of the impact of each trigger

event diminishes over time.

While the long-run and short-run earthquake probabilities are seen as objective measures of earth-

quake risk, we also try to elicit a subjective measure of risk from the data. This is achieved by using a

parametric family of probability weighting functions, which is widely used in economic analysis and de-

cision theory. The idea is that, by entering the weighted (subjective) probabilities instead of the original

(objective) probabilities in the regression function, we can estimate (by maximum likelihood) from the

data the unknown parameter by doing a grid search. The corresponding variance of this estimator needs

to be derived because the situation is nonstandard in that one of the regressors depends on the parame-

ter of interest. The estimated parameter sheds light on the shape of the probability weighting function

and thus provides insight on how people’s perception of small and large probabilities is reflected in

the property prices. When the probability weighting function is inverse-S shaped, it means that peo-

ple overweight small probabilities and underweight large probabilities. When the probability weighting

function is S-shaped, it means that people underweight small probabilities and overweight large prob-

abilities. When the parameter equals 1, the function degenerates to the identity function, which means

there are no subjective distortions of the probabilities.

We found that long-run objective earthquake risk has a significantly negative impact on property

prices. The additional impact of objective short-run earthquake risk is not significantly different from

zero. However, the distorted short-run earthquake probabilities (allowing for probability weighting) do

have a significantly negative impact on property prices. We found this probability weighting function

to be S-shaped, thus underweighting small probabilities and overweighting larger probabilities. This

finding is contrary to conventional wisdom in decision theory where probability weighting functions are

commonly found to be inverse-S shaped, which may be explained by the fact that the background earth-

quake intensity is positive, so that people do not perceive temporary deviations of short-run earthquake

risk with a reference probability of zero but with a positive reference probability.

In the second project we study the properties of a model-averaging estimator, namely the weighted-

average least squares (WALS) estimator. The idea of model averaging emerges from the insight that

model selection and estimation should not be seen as two separate steps, but rather as one integrated

procedure. Model averaging does not select one best-fitting candidate model but estimates a whole

range of candidate models and assigns weights to each of the candidate estimates.

The common and naive use of t-ratios in applied econometrics as a diagnostic statistic goes like

this. When the t-ratio of a regressor is above a certain threshold (usually 1.96 at the 5% significance

level), the regressor is deemed “significant” and is kept in the model; and when the t-ratio is below the

threshold, it is removed from the model. This approach thus ignores the fact that the same data have

been used for diagnostic testing and estimation, so that inference obtained from the second step is likely

to be misleadingly precise because it ignores the uncertainty generated from the first step.

The above procedure is called “pretesting”, and it leads to estimators which are not differentiable and
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hence not admissible. It is the simplest form of a WALS estimator, namely the case where the weights

of candidate models can only be 0 or 1. The WALS procedure generalizes this discrete version to a

continuous version, where the weights are now continuous functions of the t-ratio. Literature on model

averaging diverges into frequentist model averaging (FMA) and Bayesian model averaging (BMA). We

explore the properties of WALS which is a Bayesian combination of frequentist estimators. This esti-

mator has advantages over the traditional BMA estimators in terms of interpretation and computational

efficiency.

The framework of WALS is the linear regression model with independent and identically distributed

normal error terms. We distinguish between focus regressors, which we want to keep in the model

regardless of the outcome of diagnostic testing, and auxiliary regressors, which may or may not be in

the model.

We develop statistical packages that enable the computation of WALS estimates, standard errors,

bias and mean squared errors, confidence intervals, and predictions. The estimation hinges on a choice

of prior and prior parameters, which come from a reflected generalized Gamma family — the Weibull,

Subbotin, and Laplace priors. We show that the Laplace prior leads to estimates with higher bias,

while for Weibull and Subbotin priors the theoretically obtained minimax regret prior parameters, which

minimize the maximum regret over all possible values, can lead to more bias than other choices of the

prior parameter.

WALS estimation makes use of numerical integration results except for the case of the Laplace

prior. We show the effect of the choice between two alternative integration routines, the Gauss-Laguerre

quadrature and the adaptive quadrature, on the precision and computational efficiency of the program.

We also explore the limits to the WALS estimation procedure by using simulation set-ups where the

matrix of regressors is nearly singular and when the number of auxiliary regressors is large. We found

that, as long as the input data are of full column rank, the estimator is able to produce estimation results,

but the bias increases exponentially when the correlation between regressors increases. We establish a

relationship between the number of required observations and the number of auxiliary regressors under

the same targeted bias level, and found this relationship to be approximately linear.

The project focuses on the computational properties of the WALS estimator. Apart from the findings

listed above, we show some other aspects of the WALS estimation procedures, such as the effect of

Monte Carlo replications on the precision of confidence intervals, and the comparison of the computa-

tional speed of different packages (R, Python, or Stata). By exploring these aspects we aim to provide

insight in the performance of the WALS estimator and the various available estimation options, so that

a typical user can make informed decisions when using WALS in empirical applications.

The thesis is structured as follows. Chapter 2 sets up a model with a multiple error components structure

and derives the associated maximum likelihood estimation procedure. It also designs a grid search

procedure and derives the variance of the parameter of interest when one of the regressors depend on

this parameter. Chapter 3 explains the data collection process for the empirical study of earthquake risk

embedded in property prices. Chapter 4 shows the full picture of the empirical study and presents the

empirical results. Chapter 5 explores the (computational) properties of the WALS estimator.
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Chapter 2

Estimation of panel data models with
multivariate error components

2.1 Introduction

The combination of cross-sectional data and time-series data has become widespread and can be useful

in the economic analysis of phenomena that involve cross-sectional differences, temporal fluctuations,

or both.

A standard single error regression model would be insufficient to unveil the complexity in the rela-

tionship within and between equations. Regression models with error terms being the sum of two or more

independent components, widely known as error components models, have been extensively used for the

aforementioned purposes ever since the seminal work of Balestra and Nerlove (1966). Two-error compo-

nents models involve one time-specific or cross-section-specific component, and one individual-specific

component. Three-error components models involve both the time-specific and cross-section-specific

components, and the individual-specific part.

Multivariate error components models have error structures where the components are vectors in-

stead of scalars. The vector form enables pooling equations of closely related error structures together

while maintaining a relatively small number of parameters, but also gives rise to a huge variance matrix

that is computationally cumbersome to estimate directly. Exploiting the independence assumption of the

error components it is possible to decompose the variance matrix and drastically reduce its dimensions.

In this chapter we introduce a multivariate three-error components model for which we develop associ-

ated maximum likelihood estimation and variance computation procedures. Another contribution of this

chapter is the introduction of a regressor that depends on a parameter of interest, the value and variance

of which needs to be estimated. We derive the variance of such a parameter and design a procedure to

find its estimate based on a grid search.

Multivariate two-error components were first employed by Chamberlain and Griliches (1975) using

maximum likelihood techniques. Multivariate three-error components were first considered by Avery

(1977) who derived a feasible Aitken estimator, which is however not maximum likelihood and turns

out to be asymptotically inefficient. Baltagi (1980) derived an alternative estimator, also not maximum

likelihood, which is asymptotically efficient. Magnus (1982) discussed the estimation and testing of the
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multivariate two- and three-error components models in a maximum likelihood context.

The rest of this chapter proceeds as follows. Section 2.2 lays out the model. Section 2.3 specifies

the error structure. Section 2.4 decomposes the large matrix into smaller ones using the assumptions on

the error structure. Section 2.5 derives the concentrated likelihood. Section 2.6 decomposes the concen-

trated likelihood function into matrices of smaller dimensions. Section 2.7 derives the variances of the

parameters and describes the estimation method using concentrated likelihood. Section 2.8 concludes.

2.2 The model

We describe the model in a hedonic pricing context, where the dependent variable is log-property price

and the independent variables are property characteristics. There are different types of properties and

each type corresponds to different characteristics and total price levels. There is overlap in the sets of

characteristics for each type, such as variables related to the location and/or time but indifferent to types.

Each property is located in a certain district and transaction takes place at a certain time.

Suppose there are p types of property, N different districts and T time periods in the data set. We

denote the h-th observation of type k in district i during quarter t as y(h,k)
it . The number of observations

varies per district, type and quarter, and this affects the precision. We let H(k)
it denote the number of

observations on each type in district i during quarter t.
Our general model can be written as

y(h,k)
it = x(h,k)

it
′β0 + xit(ψ)

′β1 + u(h,k)
it , (2.1)

where x(h,k)
it includes constant terms, time-invariant characteristics, district-invariant characteristics, and

individual-specific characteristics. xit(ψ) is the variable that depends on an additional parameter.

In order to obtain a (balanced) panel we average over h, and obtain

ȳ(k)it = x̄(k)it
′β0 + xit(ψ)

′β1 + ū(k)
it , (2.2)

where we average over H(k)
it items, which thus depends on how many properties of type k there are in a

given district.

Next we combine the three types of property into one p× 1 vector:

ȳit = X∗itβ0 + ıxit(ψ)
′β1 + ūit, (2.3)

where ı is a p× 1 vector of ones, which we write more succinctly as

ȳit = X̄itβ + ūit (i = 1, . . . , N; t = 1, . . . , T), (2.4)

where ȳit is a p× 1 vector of random observations, explained by (non-random) regressors X̄it = X̄it(ψ),

an unknown parameter vector β, and random errors ūit (p× 1). The estimation of β is done by first fixing

ψ to find the conditional estimates and then runnig a grid search over a set of values for ψ to maximize

the likelihood; see Sections 2.5 and 2.7.
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2.3 Specification of the error term

The errors are assumed to follow a p-variate three-error components structure,

ūit = ζi + ηt + εit, (2.5)

a sum of three independent components each of which is iid with zero means and variances

var(ζi) = Σζ , var(ηt) = Ση , var(εit) = Σε, (2.6)

where Σζ and Ση are positive semidefinite, and Σε is positive definite, all of order p× p.

The Cholesky decomposition of Σζ , Ση , and Σε can be written as

Σζ = Lζ L′ζ , Ση = Lη L′η , Σε = LεL′ε, (2.7)

where Lζ , Lη , and Lε are p× p lower triangular matrices.

Our error structure implies that

E(ūit ū′js) =



Σζ + Ση + Σε if i = j and t = s,

Σζ if i = j and t 6= s,

Ση if i 6= j and t = s,

0 if i 6= j and t 6= s.

(2.8)

Let

Y =


ȳ11 ȳ12 . . . ȳ1T

ȳ21 ȳ22 . . . ȳ2T
...

...
...

ȳN1 ȳN2 . . . ȳNT

 , U =


ū11 ū12 . . . ū1T

ū21 ū22 . . . ū2T
...

...
...

ūN1 ūN2 . . . ūNT

 , (2.9)

and

X̄(t) =


X̄1t

X̄2t
...

X̄Nt

 , X =


X̄(1)

X̄(2)
...

X̄(T)

 . (2.10)

Then we can write (2.4) in stacked form as

y = Xβ + u, (2.11)

where y = vec Y and u = vec U. We shall assume that y is normally distributed with mean µ = Xβ

and variance Ω(θ), so that β refers to the mean parameters and θ to the variance parameters. More

specifically, θ contains the non-zero elements of Lζ , Lη , and Lε, thus (p + 1) × p/2× 3 parameters

in the three-error components model and (p + 1)× p/2× 2 parameters in the two-error components

model.
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2.4 Decomposition and properties of Ω

Given the error components structure proposed in Section 2.3, we show that the (NTp)× (NTp) vari-

ance matrix of the error term u in (2.11) takes a particularly convenient form, allowing an easy way to

calculate its inverse and determinant:

Proposition 2.4.1. Let ıT and ıN denote vectors containing only ones, of orders T and N, respectively,

and let JT = ıTı′T/T and JN = ıNı′N/N. Then,

Ω = var(u) = V1 ⊗ ∆1 + V2 ⊗ ∆2 + V3 ⊗ ∆3 + V4 ⊗ ∆4,

where

V1 = JT ⊗ JN , V2 = JT ⊗ (IN − JN),

V3 = (IT − JT)⊗ JN , V4 = (IT − JT)⊗ (IN − JN),

and

∆1 = Σε + TΣζ + NΣη , ∆2 = Σε + TΣζ ,

∆3 = Σε + NΣη , ∆4 = Σε.

In addition,

Ω−1 = V1 ⊗ ∆−1
1 + V2 ⊗ ∆−1

2 + V3 ⊗ ∆−1
3 + V4 ⊗ ∆−1

4

and

|Ω| = |∆1| |∆2|N−1 |∆3|T−1 |∆4|(N−1)(T−1).

Proof: First, we note that the Vi are idempotent matrices, that ViVj = 0 (i 6= j), and that ∑i Vi = INT.

This follows from the mixed-product property of Kronecker products: for matrices A, B, C, and D such

that AC and BD exists, (A⊗ B)(C ⊗ D) = (AC)⊗ (BD). In fact, JT and JN are both idempotent,

thus

V1V1 = (JT ⊗ JN)(JT ⊗ JN) = (JT JT)⊗ (JN JN) = JT ⊗ JN = V1,

V1V2 = (JT ⊗ JN)(JT ⊗ (IN − JN)) = (JT JT)⊗ (JN(IN − JN)) = JT ⊗ (JN − JN) = 0,

and for all other i and j it follows similarly. Also, rules of the Kronecker product gives

V1 + V2 = JT ⊗ JN + JT ⊗ (IN − JN) = JT ⊗ IN ,

V1 + V3 = JT ⊗ JN + (IT − JT)⊗ JN = IT ⊗ JN ,

V1 + V2 + V3 + V4 = JT ⊗ IN + (IT − JT)⊗ IN = IT ⊗ IN = INT.
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The ranks of the matrices are given by

rank(V1) = rank(JT)rank(JN) = 1,

rank(V2) = rank(JT)rank(IN − JN) = N − 1,

rank(V3) = rank(IT − JT)rank(JN) = T − 1,

rank(V4) = rank(IT − JT)rank(IN − JN) = (N − 1)(T − 1).

We write

Ω = var(u) = ıTı′T ⊗ IN ⊗ Σζ + IT ⊗ ıNı′N ⊗ Ση + IT ⊗ IN ⊗ Σε

= JT ⊗ IN ⊗ TΣζ + IT ⊗ JN ⊗ NΣη + IT ⊗ IN ⊗ Σε

= (V1 + V2)⊗ TΣζ + (V1 + V3)⊗ NΣη + (V1 + V2 + V3 + V4)⊗ Σε

= V1 ⊗ ∆1 + V2 ⊗ ∆2 + V3 ⊗ ∆3 + V4 ⊗ ∆4.

The results now follow from Baltagi (1980), Magnus (1982, Lemma 2.1), and Abadir and Magnus

(2005, Exercise 8.73).

To verify the inverse, we directly check the product:

Ω(V1 ⊗ ∆−1
1 + V2 ⊗ ∆−1

2 + V3 ⊗ ∆−1
3 + V4 ⊗ ∆−1

4 )

= ∑
i
(Vi ⊗ ∆i)(Vi ⊗ ∆−1

i ) + ∑
i 6=j

(Vi ⊗ ∆i)(Vj ⊗ ∆−1
j )

= ∑
i
(ViVi)⊗ (∆i∆−1

i ) + ∑
i 6=j

(ViVj)⊗ (∆i∆−1
j )

= ∑
i

Vi + ∑
i 6=j

0 = INT.

For the determinant, since the eigenvalues of Ω are the eigenvalues of ∆1, ∆2, ∆3 and ∆4 with

multiplicities of 1, N − 1, T − 1 and (N − 1)(T − 1), respectively, and the determinant is the product

of the eigenvalues, we have

|Ω| = |∆1| |∆2|N−1 |∆3|T−1 |∆4|(N−1)(T−1).‖

In the special case where Σζ = 0 we have

∆1 = ∆3 = Σε + NΣη , ∆2 = ∆4 = Σε, (2.12)

and

Ω = IT ⊗ JN ⊗ ∆1 + IT ⊗ (IN − JN)⊗ ∆2. (2.13)
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In the special case where Ση = 0 we have

∆1 = ∆2 = Σε + TΣζ , ∆3 = ∆4 = Σε, (2.14)

and

Ω = JT ⊗ IN ⊗ ∆1 + (IT − JT)⊗ IN ⊗ ∆3. (2.15)

Both are examples of a multivariate two-error components structure. Notice that we employ two idem-

potent matrices when there are two components, but that we need four (rather than three) when there are

three components.

2.5 The concentrated likelihood

Under normality, the loglikelihood takes the form

L(β, θ, ψ) = constant− (1/2) log |Ω| − (1/2)(y− Xβ)′Ω−1(y− Xβ). (2.16)

Maximizing L with respect to β and θ is assumed to be (relatively) easy, while maximization with respect

to ψ is more difficult. We write

µ = Xβ. (2.17)

Upon differentiating µ we obtain

dµ = Xdβ + (dX)β = Xdβ + (β′ ⊗ In)Zdψ, (2.18)

where

Z = ∂ vec X/∂ψ′. (2.19)

Differentiating the loglikelihood then gives

dL = −(1/2) tr(Ω−1dΩ) + (1/2)(y− Xβ)′Ω−1(dΩ)Ω−1(y− Xβ)

+ (y− Xβ)′Ω−1Xdβ + (y− Xβ)′Ω−1(dX)β. (2.20)

It follows from (2.20) that the first-order conditions are

(y− Xβ)′Ω−1Xdβ = 0,

(y− Xβ)′Ω−1(dΩ)Ω−1(y− Xβ) = tr(Ω−1dΩ),

(y− Xβ)′Ω−1(dX)β = 0, (2.21)

for β, θ, and ψ, respectively. This implies that β̂ takes the simple form

β̂(θ, ψ) = (X′Ω−1X)−1X′Ω−1y, (2.22)
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so that we can concentrate the likelihood with respect to β. The concentrated loglikelihood is

L∗ = L(θ, ψ) = constant− (1/2) log |Ω| − (1/2)û′Ω−1û, (2.23)

where

û = y− Xβ̂ = y− X(X′Ω−1X)−1X′Ω−1y.

For fixed ψ we have dψ = 0 and

dL∗ = −(1/2) tr(Ω−1dΩ) + (1/2)û′Ω−1(dΩ)Ω−1û

− û′Ω−1X(X′Ω−1X)−1X′Ω−1(dΩ)Ω−1û, (2.24)

using the fact that

dβ̂ = [d(X′Ω−1X)−1]X′Ω−1y + (X′Ω−1X)−1d(X′Ω−1y)

= −(X′Ω−1X)−1X′Ω−1(dΩ)Ω−1û. (2.25)

2.6 Estimation using the concentrated likelihood

Given (2.23), we can obtain the ML estimates of the unknown parameters under normality by minimizing

L∗ = log |Ω|+ (y− Xβ)′Ω−1(y− Xβ). (2.26)

Given the special structure of Ω this function also takes a convenient form:

Proposition 2.6.1. We have

L∗ = log |∆1|+ (N − 1) log |∆2|+ (T − 1) log |∆3|+ (N − 1)(T − 1) log |∆4|

+ (1/N)(1/T)(∑
i,t

vit)
′(∆−1

1 − ∆−1
2 − ∆−1

3 + ∆−1
4 )(∑

i,t
vit)

+ (1/T)∑
i
(∑

t
vit)
′(∆−1

2 − ∆−1
4 )(∑

t
vit)

+ (1/N)∑
t
(∑

i
vit)
′(∆−1

3 − ∆−1
4 )(∑

i
vit) + ∑

i,t
v′it∆

−1
4 vit,

where vit = ȳit − X̄itβ. In addition, we have

X′Ω−1X = (1/N)(1/T)(∑
i,t

Xit)
′(∆−1

1 − ∆−1
2 − ∆−1

3 + ∆−1
4 )(∑

i,t
Xit)

+ (1/T)∑
i
(∑

t
Xit)

′(∆−1
2 − ∆−1

4 )(∑
t

Xit)

+ (1/N)∑
t
(∑

i
Xit)

′(∆−1
3 − ∆−1

4 )(∑
i

Xit) + ∑
i,t

X′it∆
−1
4 Xit.

Proof: Let e(N)
i denote the ith column of IN and let e(T)t denote the tth column of IT, where IN and IT
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are identity matrices of orders N and T, respectively. Then, we can write

v =
N

∑
i=1

T

∑
t=1

e(T)t ⊗ e(N)
i ⊗ vit, X =

N

∑
i=1

T

∑
t=1

e(T)t ⊗ e(N)
i ⊗ Xit,

and

Ω−1 = JT ⊗ JN ⊗ ∆−1
1 + JT ⊗ (IN − JN)⊗ ∆−1

2

+ (IT − JT)⊗ JN ⊗ ∆−1
3 + (IT − JT)⊗ (IN − JN)⊗ ∆−1

4 .

Noting that the transpose of a Kronecker product is the Kronecker product of transposes: (A⊗ B)′ =
A′ ⊗ B′, and the mixed-product property of Kronecker products, we obtain

(a1 ⊗ b1 ⊗ C1)
′ (D⊗ E⊗ F) (a2 ⊗ b2 ⊗ C2) = (a′1 ⊗ b′1 ⊗ C′1) (D⊗ E⊗ F) (a2 ⊗ b2 ⊗ C2)

=
(
(a′1 ⊗ b′1)(D⊗ E)

)
⊗ (C′1F)(a2 ⊗ b2 ⊗ C2)

= (a′1D⊗ b′1E⊗ C′1F)(a2 ⊗ b2 ⊗ C2)

= (a′1Da2)⊗ (b′1Eb2)⊗ (C′1FC2)

= (a′1Da2)(b′1Eb2)(C′1FC2),

where a1 and a2 are vectors of order T× 1, b1 and b2 are vectors of order N× 1, D, E, and F are square

matrices of orders T, N, and p, respectively. C1 and C2 can be vectors of order p × 1 or matrices of

order p× k. The last equality comes from the observation that a′1Da2 and b′1Eb2 are both scalars.

We substitute a1, a2 with e(T)t , e(T)s ; b1, b2 with e(N)
j , e(N)

i ; D with JT or IT − JT, and E with JN or

IN − JN . This gives

e(T)
′

t JTe(T)s = 1/T,

e(T)
′

t (IT − JT)e
(T)
s = δst − 1/T,

e(N)′

i JNe(N)
j = 1/N,

e(N)′

i (IN − JN)e
(N)
j = δij − 1/N,

where δij and δst denote the Kronecker δ, that is, δij = 1 if i = j and zero otherwise; and δst = 1 if

s = t and zero otherwise.

We obtain

v′Ω−1v = ∑
i,j,s,t

(1/T)(1/N)v
′
it∆
−1
1 vjs + ∑

i,j,s,t
(1/T)(δij − 1/N)v

′
it∆
−1
2 vjs

+ ∑
i,j,s,t

(δst − 1/T)(1/N)v
′
it∆
−1
3 vjs

+ ∑
i,j,s,t

(δst − 1/T)(δij − 1/N)v
′
it∆
−1
4 vjs.
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Reorganizing terms, we have

v′Ω−1v = (1/T)(1/N)∑
i,j

∑
t,s

v
′
it

(
∆−1

1 − ∆−1
2 − ∆−1

3 + ∆−1
4

)
vjs

+ (1/T)∑
i

∑
t,s

v
′
it

(
∆−1

2 − ∆−1
4

)
vis

+ (1/N)∑
i,j

∑
t

v
′
it

(
∆−1

3 − ∆−1
4

)
vjt + ∑

i
∑

t
v
′
it∆
−1
4 vit.

Similarly,

X′Ω−1X = ∑
i,j,s,t

(1/T)(1/N)X
′
it∆
−1
1 Xjs + ∑

i,j,s,t
(1/T)(δij − 1/N)X

′
it∆
−1
2 Xjs

+ ∑
i,j,s,t

(δst − 1/T)(1/N)X
′
it∆
−1
3 Xjs

+ ∑
i,j,s,t

(δst − 1/T)(δij − 1/N)X
′
it∆
−1
4 Xjs

= (1/N)(1/T)(∑
i,t

Xit)
′(∆−1

1 − ∆−1
2 − ∆−1

3 + ∆−1
4 )(∑

i,t
Xit)

+ (1/T)∑
i
(∑

t
Xit)

′(∆−1
2 − ∆−1

4 )(∑
t

Xit)

+ (1/N)∑
t
(∑

i
Xit)

′(∆−1
3 − ∆−1

4 )(∑
i

Xit) + ∑
i,t

X′it∆
−1
4 Xit.

The decomposition of the concentrated likelihood comes from the determinant of Ω shown in Propo-

sition 2.4.1 and the derivation of v′Ω−1v. ‖

2.7 The variance

It follows from (2.20) that

d2L = (1/2) tr(Ω−1dΩ)2 − (y− Xβ)′Ω−1(dΩ)Ω−1(dΩ)Ω−1(y− Xβ)

− (dµ)′Ω−1(dµ)− 2(y− Xβ)′Ω−1(dΩ)Ω−1(dµ) + (y− Xβ)′Ω−1(d2µ)

− (1/2) tr(Ω−1d2Ω) + (1/2)(y− Xβ)′Ω−1(d2Ω)Ω−1(y− Xβ).

Minus the expectation of the second differential takes the simple form

−E(d2L) = (1/2) tr(Ω−1dΩ)2 + (dµ)′Ω−1(dµ), (2.27)

which implies that the information matrix will be block-diagonal in (β, ψ) and θ. This shows that

we don’t have to take the variance of the maximum likelihood (ML) estimator θ̂ into account when
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calculating the variance of the ML estimators (β̂, ψ̂). Thus, writing

(dµ)′Ω−1(dµ) =

(
dβ

dψ

)′(
V11 V12

V21 V22

)(
dβ

dψ

)
, (2.28)

where

V11 = X′Ω−1X, V12 = V ′21 = X′
(

β′ ⊗Ω−1
)

Z, (2.29)

and

V22 = Z′
(

ββ′ ⊗Ω−1
)

Z, (2.30)

we obtain estimators of the variances of β̂ and ψ̂ as

v̂ar(β̂) = V−1
11 + V−1

11 V12

(
V22 −V21V−1

11 V12

)−1
V21V−1

11 (2.31)

and

v̂ar(ψ̂) =
(

V22 −V21V−1
11 V12

)−1
, (2.32)

where the parameters in the Vij matrices are replaced by their estimators.

The variance matrix Ω = var(u) is of a very large dimension, but the error components structure

allows us to write it in a convenient form, allowing simple expressions for its inverse and determinant;

see Proposition 2.4.1. We also need simple expressions for quadratic forms like v′Ω−1v and X′Ω−1X.

These are provided in Proposition 2.6.1.

Estimation of the parameters then proceeds as follows. For given ψ we maximize the concentrated

likelihood (2.23) with respect to the variance parameters θ, where using the explicit expression (2.24) for

the gradient will speed up the optimization. Performing a grid search on ψ we obtain the ML estimates θ̂

and ψ̂. Then we find β̂ from (2.22). Finally, the estimated variances of β̂ and ψ̂ are obtained from (2.31)

and (2.32).

2.8 Conclusion

In this chapter we have introduced an estimation procedure for combined cross-sectional and time-series

data models with a multivariate error components structure and independent variables depending on ad-

ditional parameters. The assumption of mutually independent error components facilitates the decom-

position of the huge variance matrix into sums of Kronecker products of much smaller matrices. The

estimation of the additional parameter can be conducted by a combination of grid search and concen-

trated likelihood. The variance of such a parameter is derived so that statistical tests become feasible.
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Chapter 3

Data collection

3.1 Introduction

In the development of an economic model, the availability and quality of data often plays an important

role. Various choices have to be made and various obstacles have to be overcome. In this chapter we

provide more details of the data set used in Chapter 4, introduce the data collection procedure, detailing

the complexity of integrating data from multiple sources and the motivation behind our choices involved

in the process.

We are interested in the effect of earthquake risk on property prices in major cities in Japan. We select

five Japanese cities/areas for our purpose (see Section 3.2): Tokyo Metropolitan Area (23 special wards),

Osaka City, Nagoya City, Fukuoka City and Sapporo City. We shall refer to the Tokyo Metropolitan Area

as a city, although officially it is an area, not a city.

Each city is divided into wards and each ward is divided into districts. Certain information is avail-

able per ward, which can affect the attractiveness of buying a property in that ward. For example,

population characteristics, information about schools and medical facilities, shopping, safety, etc. These

‘attractiveness’ characteristics are described in Section 3.3.

We distinguish between three types of properties: ‘residential land (land and building)’, ‘residential

land (land only)’, and condominium. Sales prices and property characteristics are available for each of

these types in each of the five cities. These are described in Section 3.4. We do not know the exact

location of a property, but we do know in which district the property lies and we also know the distance

to the nearest station and the name of that station.

Some macro variables are relevant and affect house prices nationally. These variables are described

in Section 3.5.

We next come to the earthquake and risk data. Historical earthquake data are described in Sec-

tion 3.6. The estimation and simulation of ETAS models based on the historical earthquake data are

introduced in Section 3.7.

Japan is geographically split up in meshes of varying size. The largest (first mesh) is 80× 80 km,

the smallest (quarter mesh) is 250× 250 meter. The data on these meshes are described in Section 3.8.

While historical earthquake data are described in Section 3.6, earthquake risk data are described in

Section 3.9. Finally, we describe how to link stations and districts to these meshes in Section 3.10.
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3.2 Cities

Japan has twelve cities with populations of more than one million people. Almost 100 million Japanese,

or 78% of the country’s total population of 127.4 million, live in urban areas. The total population of

Japan’s largest 103 cities amounts to 63.9 million or just over half of all the country’s residents. Tokyo,

with almost nine million inhabitants, is often referred to as a city, but is officially known and governed

as a ‘metropolitan prefecture’. With a population of 3.7 million, Yokohama, south of Tokyo, is Japan’s

second largest city. It is the country’s largest port and a manufacturing and ship building centre. Japan’s

third-largest city is Osaka with 2.7 million inhabitants. It is the country’s third most important seaport

and home to many leading Japanese manufacturers. Nagoya (2.3 million inhabitants) is the center of

the Chukyo Metropolitan Area and is home to the Mitsubishi Aircraft Company and the Toyota factory.

Eight cities have between one and two million inhabitants: Sapporo, Kobe, Fukuoka, Kyoto, Kawasaki,

Saitama, Hiroshima, and Sendai.

From these twelve cities we selected five: Sapporo, Tokyo, Nagoya, Osaka, and Fukuoka. These

five cities provide a good representation of the major cities in Japan, in terms of geographical spread

(Sapporo in the North, Fukuoka in the South) and earthquake risk (Tokyo highest, then Osaka and

Nagoya, then Sapporo and Fukuoka).

We excluded Yokohama, Kawasaki, and Saitama, because they are located in the same metropolitan

area as Tokyo, the ‘Kanto’ area. Similarly, we excluded Kobe and Kyoto, because they are located in

the same metropolitan area as Osaka, the ‘Keihanshin’ area. Thus, each of the three major metropolitan

areas is represented: the greater Tokyo area (Tokyo, Yokohama, Kawasaki, Saitama) by Tokyo, the

Kansai region (Osaka, Kobe, Kyoto) by Osaka, and the Chukyo metropolitan area by Nagoya.

To obtain a representative geographical spread we added Sapporo, the largest city in the North, and

Fukuoka, the second largest city in the West after Osaka.

Hiroshima was excluded because the metro system is not sufficiently dense to identify the properties,

and Sendai because it lies in the 2011 Fukushima disaster area and property prices there are completely

distorted.

3.3 Wards and attractiveness characteristics

A designated city is a Japanese city that has a population greater than 500,000 and has been designated

as such by order of the Cabinet of Japan. Designated cities are delegated many of the tasks normally

performed by prefectural governments, such as public education, social welfare, sanitation, business

licensing, and urban planning. Designated cities are required to subdivide themselves into wards (‘ku’),

each of which has a ward office conducting various administrative functions for the city government.

The 23 special wards of Tokyo are not part of this system, as Tokyo is a prefecture, and its wards are

effectively independent cities. The five cities together contain 80 wards: 24 in Osaka, 23 in Tokyo, 16

in Nagoya, 10 in Sapporo, and 7 in Fukuoka.

When considering to buy a property in a given city we are likely to be interested in certain char-

acteristics of these wards, in particular characteristics that make one ward more or less attractive than

another. Information about wards can be downloaded from
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www.e-stat.go.jp/SG1/estat/eStatTopPortalE.do,

the portal site of official statistics of Japan, under the category ‘Regional Statistics’. The English version

of this website provides the statistics for one year (not the same year for each variable), while the

Japanese version provides ‘time-series’ data. Data are available in 11 categories: A. Population and

households; B. Natural environment; C. Economic base; D. Administrative base; E. Education; F. Labor;

G. Culture and sports; H. Dwelling; I. Health and medical care; J. Welfare and social security; and K.

Safety. More detailed information on these categories (in Japanese) is available from

www.e-stat.go.jp/SG1/chiiki/FileStream.do?file=koumoku.html.

Some variables (such as unemployment and the number of traffic accidents) are updated (or adjusted)

annually, while others (such as population and households) are only updated after each 5-year census.

The data cover the period 2007–2015, so in order to obtain a general indicator that reflects the attractive-

ness over the whole sample period of our housing price data (2006–2015), a simple average is calculated.

In case of a missing record the nearest data available are used as a proxy; for example, data for year 2006

are assumed to be the same as data for 2007. In this way we construct one (time-independent) value for

each item in each ward.
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Table 3.1: Attractiveness characteristics by ward

Category Item

Population % younger than 15 years

% older than 65 years

% immigrants

% emigrants

% foreigners

% private households

% nuclear families

% one-person households

Schools, culture, number of daycare nurseries

& welfare number of schools (kindergarten)

number of schools (primary)

number of schools (junior/senior high)

number of students per teacher (primary school)

number of homes for the aged

number of community halls

number of libraries

Medical facilities number of general hospitals

number of physicians

number of dentists

number pharmacists

Safety number of traffic accidents

number of criminal offenses

Shopping number of large-scale retail stores

number of department stores

annual sales of commercial goods

Housing % privately owned houses

habitable land area (% of total area)

Employment unemployment ratio

% of self-employed

% of executives

For our purpose we selected the variables listed in Table 3.1. These are the ward characteristics

that might have explanatory power on property prices, representative of each category. Note that not

all the listed variables are actually used in the base model or the sensitivity analysis; instead of adding

all variables with significant regression coefficients in the model, we choose a relatively small subset of

variables with low correlation between each other. Our goal is not to find as much variables as possible

to explain property prices, but to focus on the risk variables with some auxiliary variables in the model.

Below we explain how these items were constructed from the available data.
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3.3.1 Population

% younger than 15 years:

The percentage of population younger than 15 years is obtained as the ratio of ‘population younger than

15 years old’ to ‘total population’ of each ward. The data are constant for years 2007–2011 and for

years 2012–2015. Since we only want a time-independent indicator, simple averaging and extrapolation

is used, so that for each ward

percentage U15 population = [6× PctU152007 + 4× PctU152012]/10,

where PctU15t denotes the percentage in year t, the first term represents the percentage for the first 6

years (2006–2011) and the second for the last 4 years (2012–2015).

% older than 65 years:

Obtained as the ratio of ‘population aged 65 years or more’ to ‘total population’. The data is constant

for years 2007–2011 and for years 2012–2015. The indicator is thus averaged in the same pattern as the

item ‘% younger than 15 years’.

% immigrants:

Obtained as the ratio of ‘number of immigrants from other municipalities’ to ‘total population’. The

numbers are varying each year. We assume that data for years 2005 and 2006 are the same as year 2007.

% emigrants:

Obtained as the ratio of ‘number of emigrants to other municipalities’ to ‘total population’. The numbers

are varying each year. The data is missing in 2007–2011 for wards in Sapporo and in 2008–2011 for

wards in Nagoya. For Sapporo we use year 2012 data as a substitute for the missing values. For Nagoya

we use year 2007 data to substitute missing values in 2008–2009 and the year 2012 data to substitute

those in 2010–2011.

% foreigners:

Obtained as the ratio of ‘number of foreigners’ to ‘total population’. The numbers are constant for years

2007–2011 and for years 2012–2015.

% private households:

Obtained as the ratio of ‘number of private households’ to ‘number of households’. The numbers are

constant for years 2007–2011 and for years 2012–2015.
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% nuclear families:

Obtained as the ratio of ‘number of nuclear family households’ to ‘number of households’. The numbers

are constant for years 2007–2011 and for years 2012–2015.

% one-person households:

Obtained as the ratio of ‘number of one-person households’ to ‘number of households’. The numbers

are constant for years 2007–2011 and for years 2012–2015.

3.3.2 Schools, culture, welfare

number of daycare nurseries (per inhabitable area):

The variable is obtained as the number of daycare nurseries per square km of inhabitable area.

number of schools (kindergarten) (per inhabitable area):

The numbers of kindergartens per square km of inhabitable area are missing in years 2006–2007 for

all wards in Sapporo, so we approximate numbers of these years with those of 2008. The numbers are

missing in year 2010 for all wards in Nagoya, so we approximate this as the mean numbers from years

2009 and 2011.

number of schools (primary) (per inhabitable area):

The number of primary schools is divided by the area of inhabitable land.

number of schools (junior/senior high)
(per inhabitable area):

The total number of junior and senior high schools is divided by the area of inhabitable land. For senior

high schools, the numbers for Nagoya and Fukuoka are missing in year 2010; we use the average of

2009 and 2011 data as an proxy.

number of students per teacher (primary school):

The ratio of students to teachers for primary schools.

number of homes for the aged (per 65+ population):

The number of homes for the aged divided by 1/1000 times the population over 65 years old.

number of community halls (per capita):

The number of community halls is divided by 1/10000 of the total population. The data is missing for

Sapporo in 2007, which we approximate using 2008 data.
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number of libraries (per capita):

The number of libraries is divided by 1/10000 of the total population. The data is missing for Sapporo

in 2007, which we approximate using 2008 data.

3.3.3 Medical facilities

number of general hospitals (per capita):

The number of general hospitals is divided by 1/10000 times the total population.

number of physicians (per capita):

The number of physicians is divided by 1/100 times the total population.

number of dentists (per capita):

The number of dentists is divided by 1/100 times the total population.

number pharmacists (per capita):

The number of pharmacists is divided by 1/100 times the total population.

3.3.4 Safety

number of traffic accidents (per capita):

The number of traffic accidents is divided by 1/100 times the total population. The numbers are unknown

for years 2012–2015, which we approximate with the numbers from year 2011.

number of criminal offenses (per capita):

The number of criminal offenses is divided by 1/100 times the total population. The numbers are un-

known for years 2012–2015, which we approximate with the numbers from year 2011.

3.3.5 Shopping

number of large-scale retail stores (per capita):

The number of large-scale retail stores is divided by 1/1000 times the total population.

number of department stores (per capita):

The number of department stores is divided by 1/10000 times the total population.

annual sales of commercial goods (per capita):

The annual sales of commercial goods are divided by the total population. The unit is in 1000 yen.
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3.3.6 Housing

% privately owned houses:

Obtained as the ratio of privately owned houses per dwelling building. It is constant for years 2011–2015

so we use this number to approximate the missing data for years before 2011.

habitable land area (% of total area):

Obtained as the ratio of inhabitable land area to total area. It is constant for years 2007–2012 and for

years 2013–2015.

3.3.7 Employment

unemployment ratio (per labor supply population):

Obtained as the ratio of unemployed population to the population of labor supply.

% of self-employed (per labor supply population):

Obtained as the ratio of self-employed (including those with and without employee) to the population of

labor supply.

% of executives (per labor supply population):

Obtained as the ratio of number of executives to the population of labor supply.

3.3.8 Variable selected

The summary statistics of the variables finally selected for the estimation and sensitivity analysis are

shown below.

Table 3.2: Summary statistics of key ward characteristics

city mean min 25% 50% 75% max sd

PctImmi
Tokyo 0.077 0.043 0.059 0.075 0.085 0.133 0.024

Osaka 0.063 0.031 0.047 0.051 0.071 0.138 0.028

Nagoya 0.063 0.039 0.049 0.059 0.070 0.112 0.019

Fukuoka 0.079 0.065 0.066 0.068 0.087 0.110 0.019

Sapporo 0.065 0.050 0.054 0.062 0.072 0.103 0.016

NCrime
Tokyo 2.544 1.275 1.447 1.671 3.453 11.267 2.124

Osaka 3.600 1.817 2.242 2.649 3.088 14.794 2.927

Nagoya 3.098 1.979 2.050 2.621 3.106 9.615 1.872
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Fukuoka 2.354 1.743 1.864 1.992 2.733 3.546 0.765

Sapporo 1.415 0.842 1.221 1.338 1.517 2.537 0.454

PctUnemploy
Tokyo 0.054 0.029 0.047 0.054 0.061 0.072 0.012

Osaka 0.102 0.074 0.085 0.098 0.111 0.202 0.026

Nagoya 0.055 0.045 0.047 0.055 0.060 0.074 0.009

Fukuoka 0.068 0.063 0.066 0.067 0.067 0.078 0.005

Sapporo 0.071 0.064 0.069 0.070 0.073 0.079 0.004

PctExec
Tokyo 0.094 0.061 0.070 0.080 0.105 0.181 0.033

Osaka 0.064 0.032 0.047 0.056 0.072 0.127 0.024

Nagoya 0.072 0.048 0.060 0.067 0.082 0.116 0.017

Fukuoka 0.052 0.044 0.045 0.048 0.053 0.075 0.011

Sapporo 0.058 0.050 0.052 0.055 0.057 0.084 0.010

PctForeign
Tokyo 0.029 0.014 0.020 0.025 0.030 0.064 0.014

Osaka 0.037 0.015 0.018 0.024 0.035 0.208 0.040

Nagoya 0.023 0.014 0.016 0.022 0.027 0.050 0.009

Fukuoka 0.011 0.006 0.007 0.009 0.016 0.019 0.005

Sapporo 0.003 0.002 0.002 0.003 0.004 0.006 0.001

Nhosp
Tokyo 0.643 0.257 0.372 0.460 0.685 3.707 0.690

Osaka 0.779 0.326 0.566 0.670 0.937 1.412 0.300

Nagoya 0.627 0.212 0.443 0.592 0.740 1.664 0.332

Fukuoka 0.739 0.544 0.578 0.640 0.902 1.027 0.200

Sapporo 0.991 0.738 0.825 0.932 1.032 1.769 0.298

Ndaycare
Tokyo 1.868 0.541 1.572 1.827 2.251 2.844 0.569

Osaka 1.667 0.360 1.212 1.764 2.087 2.924 0.626

Nagoya 0.994 0.501 0.775 0.982 1.117 1.658 0.308

Fukuoka 0.815 0.511 0.681 0.897 0.958 1.019 0.198

Sapporo 0.492 0.136 0.349 0.518 0.652 0.748 0.203

Nkindergtn
Tokyo 1.419 0.811 1.057 1.333 1.658 2.476 0.441

Osaka 1.072 0.244 0.676 0.936 1.384 2.504 0.569

Nagoya 0.713 0.197 0.506 0.743 0.899 1.226 0.273

Fukuoka 0.704 0.281 0.397 0.693 1.009 1.140 0.353

Sapporo 0.399 0.176 0.291 0.343 0.501 0.625 0.153

Nagedhome
Tokyo 0.178 0.122 0.153 0.174 0.197 0.290 0.040
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Osaka 0.211 0.072 0.176 0.216 0.244 0.329 0.063

Nagoya 0.231 0.098 0.193 0.222 0.272 0.395 0.082

Fukuoka 0.294 0.176 0.279 0.292 0.312 0.407 0.068

Sapporo 0.227 0.175 0.179 0.203 0.219 0.428 0.078

Ndepstore
Tokyo 0.239 0.074 0.112 0.175 0.222 1.286 0.264

Osaka 0.179 0.000 0.078 0.109 0.174 1.112 0.223

Nagoya 0.276 0.076 0.180 0.249 0.307 0.741 0.162

Fukuoka 0.191 0.023 0.098 0.213 0.242 0.419 0.133

Sapporo 0.198 0.079 0.128 0.181 0.216 0.474 0.113

Nlargeretail
Tokyo 0.305 0.094 0.112 0.119 0.248 2.132 0.451

Osaka 0.208 0.070 0.109 0.141 0.181 1.022 0.207

Nagoya 0.196 0.100 0.126 0.155 0.213 0.638 0.130

Fukuoka 0.176 0.082 0.106 0.135 0.228 0.344 0.108

Sapporo 0.204 0.159 0.175 0.184 0.208 0.353 0.056

It can be seen from Table 3.2 that there is sufficient variation in each variable. The distribution pattern

between different cities is also very different. For example, the percentage of immigration (PctImmi) for

the districts in Tokyo is on average higher than Osaka, but the standard deviation is smaller.

3.4 Property prices and determinants

3.4.1 The MLIT data set

In our study we shall work with sales prices rather than with rental prices, because we believe sales are

more permanent than rentals and therefore the effect of earthquake risk on choosing the property will be

more informative.

Nakagawa et al. (2009) use land prices over various years (from 1980 onwards) and describe the

data in their Section 3 (for the Tokyo area). Their data are based on the Koji-Chika data set published by

the Ministry of Land, Infrastructure, Transport, and Tourism. The well-known Koji-Chika set provides

fictional sales prices (as produced by ‘experts’) and they are only available at annual intervals, which we

consider to be too long.

Thus we shall use a different data set, which provides self-reported transaction prices at three-months

intervals. This data set known as the ‘Real estate transaction-price information’ and is provided by the

Ministry of Land, Infrastructure, Transport and Tourism (MLIT); see

www.land.mlit.go.jp/webland_english/servlet/MainServlet,

The information in this data set is based on the results of a questionnaire survey of persons involved in

real estate transactions conducted by MLIT, compiled and published quarterly.

The Real Estate Transaction Questionnaire Survey was conducted for government ordinance-designed

major cities of three metropolitan areas (including the 23 special wards of Tokyo, Osaka and Nagoya)
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starting at the 3rd quarter of 2005. The survey region expanded to cover prefectural capitals (including

Sapporo and Fukuoka) starting at the 2nd quarter of 2006. After 2007 2nd quarter, the prefectural office

location cities of the whole country were included in the survey region.

In our analysis we use the data from 2nd Quarter 2006 to 3rd Quarter 2015, where all five cities are

surveyed. Thus, in total, we have 38 quarters of observations.

We distinguish between three types of properties: (1) ‘residential land (land and building)’, hereafter

‘land & building’; (2) ‘residential land (land only)’, hereafter ‘land only’; and (3) ‘pre-owned condo-

miniums’, hereafter ‘condos’. We have data on 362658 properties of which approximately 44% are

condo’s, 34% are land & buildings, and 22% are land only.

Table 3.3: List of variables, LandMLIT data set: Name and description

Variable name Description
Type condos/ land only/ land & building
Region residential/ commercial/ industrial. . .
City/Town/Ward/Village code postcode
Prefecture
City/Town/Ward/Village which ward is the property in
District which district is the property in
Nearest station name
Nearest station distance minutes 80m/min, accurate to minute

for 0–30 min
Transaction price, total price in 10,000 yen
Layout number of rooms, stories etc.
Area m2 (floor) area of the property, accurate

to 5 or 10 m2

Transaction price unit price m2

Land shape
Frontage length of land in contact of front road
Total floor area m2

Year of construction
Building structure steel / concrete / wood. . .
Building use family / office / factory. . .
Purpose of use similar as above
Frontage road direction
Frontage road classification city road / prefectural road. . .
Frontage road breadth
City planning plans for the district
Max bldg coverage ratio
Max floor area ratio
Transaction period date of contract
Remarks other transaction-related issues

In Table 3.3 we provide a list of the available variables in the housing data set, together with a short

description.
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3.4.2 Included/excluded variables and availability

Not all these variables are selected to be included in our study.

Table 3.4: Included variables, LandMLIT data set

Variable name Availability
Type all types
City/Town/Ward/Village all records
District all records
Nearest station name most records
Nearest station distance (minutes) most records
Transaction price, total all records
Area m2 all records
Total floor area m2 ‘land & building’ only
Year of construction unknown for ‘land only’
Building structure unknown for ‘land only’
Max bldg coverage ratio all records
Max floor area ratio all records
City planning for land use all records
Transaction period all records

The selected variables are provided in Table 3.4. Obviously the transaction price is included since

its logarithm is our dependent variable. The variable ‘Max bldg coverage ratio’ is important in the

literature.

Table 3.5: Not included variables, LandMLIT data set

Variable name Availability
Region unknown for condos
City/Town/Ward/Village code all records
Prefecture all records
Layout condos only
Transaction price unit price m2 ‘land only’ only
Land shape unknown for condos
Frontage unknown for condos
Building use unknown for ‘land only’
Purpose of use only after 2013
Frontage road direction unknown for condos
Frontage road classification unknown for condos
Frontage road breadth unknown for condos
Remarks some records

The variables that are excluded from our data set are listed in Table 3.5. In the variables ‘Layout’

and ‘Building use’ there are too many categories, and in ‘Purpose of use’ the data are only available for

too short a period.
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Table 3.6: Summary of number of wards, districts, properties per type, and stations

City Wards Areas Buildings Land Condos Metro stations
Tokyo 23 898 57568 33991 92518 482
Osaka 24 564 21064 6901 21855 220
Nagoya 16 1379 14640 13110 11029 159
Fukuoka 7 318 7847 5660 12475 75
Sapporo 10 551 11763 9461 11461 86
Total 80 3710 112882 69123 149338 1022

3.4.3 Sample selection

For all five cities and the whole sample period (2006Q2–2015Q3), there are 362,658 records (before

sample selection). In choosing the sample, the following criteria are applied:

• We exclude all records where walking time to nearest station is longer than 30 minutes or nearest

station is unknown.

• We exclude records with living area larger than 2000 square meters.

• In cases of ‘pre-owned condominiums’ and ‘residential Land (land and building)’, we exclude

properties built before the war (1945).

After selection we are left with 91.4% of the original data, that is, 331,390 records. In addition, 47

records are apparently wrongly coded because the location information given by the ‘district’ and ‘near-

est station’ do not match. We manually checked these records and decided that the information may not

be accurate, so we exclude these from our sample. More information on how we verified the location

information can be found in Subsection 3.10.5.

This leads to the summary statistics provided in Table 3.6. We emphasize that we do not know the

exact location of a property. We only know two things about the location, namely the district in which

the property lies and the name of and distance to the nearest station. In the five cities together there

are 3710 districts and 1022 stations after applying the sample selection criteria mentioned above. So,

in order to identify the location of a property, the district information is more accurate than the station

information.

3.4.4 Property prices

For all records in our data, the total transaction value (unit: 10,000 yen) excluding overhead costs (such

as agent’s commission) is provided. Figures are rounded to two decimal places by the provider, but no

other numerical adjustments were made.

The main quantiles of the distribution of the total transaction price per city and per type are given

in Table 3.7. Property prices are highly skewed with the median well below the mean. Not surprisingly,

Tokyo is the most expensive city, followed by Osaka and Nagoya. Cheapest are Fukuoka and Sapporo.

The cheapest property is a condo built in 1984 in the Nagayoshinagahara district of Hirano Ward,

Osaka. It is a 1DK room of 40m2 and it was sold in 2012 for 530 yen (about 5 dollars and 30 cents).
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Table 3.7: Total price, quantiles (× 10 million yen)

City 5% 25% 50% 75% 95% n
Land & Building
Tokyo 1.5 3.7 5.0 7.5 34.0 57568
Osaka 0.5 1.6 3.1 4.5 26.0 21064
Nagoya 1.0 2.7 3.7 4.8 16.0 14640
Fukuoka 1.0 2.1 3.2 5.3 26.0 7847
Sapporo 0.7 1.6 2.6 3.8 14.0 11763
Land only
Tokyo 1.2 3.1 4.9 8.3 27.0 33991
Osaka 0.6 1.6 3.0 6.4 25.0 6901
Nagoya 0.8 1.8 2.7 4.5 13.0 13110
Fukuoka 0.6 1.5 2.2 4.5 16.0 5660
Sapporo 0.4 0.9 1.3 2.3 7.4 9461
Condo
Tokyo 0.7 1.6 2.5 3.8 7.0 92518
Osaka 0.4 1.0 1.6 2.2 3.6 21855
Nagoya 0.3 0.9 1.5 2.3 3.6 11029
Fukuoka 0.2 0.5 1.1 1.8 3.1 12475
Sapporo 0.2 0.6 1.1 1.7 2.7 11461

This is obviously a symbolic prize and one may make up an explanatory story, but we don’t know

the background. Such extremely cheap properties are rare in our sample. Out of our 331,343 sample

records, there are 524 properties (0.16%) with a sales price under one million yen (about $10,000). This

subsample of 524 properties are mostly small properties, but there are no apparent patterns in terms of

location, distance to nearest station, region, city zone, or transaction period.

We attempted to find out a little more about these ‘outliers’. The ‘Land Economy and Construc-

tion and Engineering Industry Bureau’ of the Ministry of Land, Infrastructure, Transport and Tourism

(MLIT) told us that their questionnaire involves people involved in real estate transactions, not real es-

tate agencies or organizations. The information totally relies on the answers in the questionnaire. The

National Tax Agency (Osaka Region) told us that it is legally possible for properties to be sold for such

low prices. But there are fiscal restrictions: if the estimated value of a property and the realized deviate

too much (according to the tax authority), then this sale may be subject to gift or inheritance tax. Fi-

nally, two private real-estate agencies (one in Fukuoka, one in Osaka) told us that there might be special

issues with these properties. For example, the owner went bankrupt and the creditor placed a mortgage

on the property; or the property suffers from a psychologically defect (such as criminal homicide or

suicide, in Japan such information must be provided by the seller); or that the deal includes the right of

property (house) or land lease; or renovation is very expensive so that the previous owner sold the house

at low price possibly to the real estate broker who would then renovate and sell for a higher price. We

marked these 524 properties in our data set, so that we are able to do the analysis with and without these

‘outliers’.

The most expensive property is a building in Ginza, Chuo Ward, Tokyo. It has a land area of 1200m2

and a total floor area larger than 2000m2. This property was sold in 2013 for 24,000 million yen (about
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$240 million).

Table 3.8: Total log-price, quantiles

City 5% 25% 50% 75% 95% Skew n
Land & Building
Tokyo 16.5 17.4 17.7 18.1 19.6 0.1 57568
Osaka 15.4 16.6 17.2 17.6 19.4 −0.3 21064
Nagoya 16.1 17.1 17.4 17.7 18.9 −0.1 14640
Fukuoka 16.1 16.9 17.3 17.8 19.4 0.1 7847
Sapporo 15.8 16.6 17.1 17.5 18.8 −0.1 11763
Land only
Tokyo 16.3 17.2 17.7 18.2 19.4 0.1 33991
Osaka 15.5 16.6 17.2 18.0 19.3 0.1 6901
Nagoya 15.8 16.7 17.1 17.6 18.7 0.1 13110
Fukuoka 15.6 16.5 16.9 17.6 18.9 0.3 5660
Sapporo 15.1 16.0 16.4 17.0 18.1 0.1 9461
Condo
Tokyo 15.7 16.6 17.0 17.5 18.1 −0.0 92518
Osaka 15.1 16.1 16.6 16.9 17.4 −0.2 21855
Nagoya 14.9 16.0 16.5 17.0 17.4 −0.1 11029
Fukuoka 14.6 15.5 16.2 16.7 17.2 −0.2 12475
Sapporo 14.5 15.5 16.2 16.6 17.1 −0.3 11461

The distribution of the property prices is clearly highly skewed. Hence, we also present the log-

prices in Table 3.8. The log-prices are more symmetric, which is one reason why we choose log-prices

to be our dependent variable. To analyze the symmetry of the log-prices we also present the ‘skew’

in Table 3.8. The skew is defined in terms of the quartiles as: (Q3− Q2)− (Q2− Q1), where Q1,

Q2, and Q3 denote the first, second, and third quartile, respectively. If this number is positive, then

we say there is positive skew. Of the 15 items there is 1 without skew. Of the remaining 14, 7 have

negative skew and 7 positive skew. The assumption of symmetry of log-prices therefore does not seem

unreasonable.

We emphasize one other point. The legality of property sales works differently in different countries.

In many countries, there are two contracts: the first when you agree on a price, the second when you

actually exchange. Once the second contract is signed, the first becomes obsolete. There may be several

months between the two contracts. In the first contract it would say that A intends to buy from B the

following property for such and such a price, but under condition that a mortgage can be obtained, a

property inspector will not find major faults, etc. So, it is binding under certain conditions. The buyer

typically pays a percentage (like 10%) of the price as a guarantee. The second contract is signed when

all is in order, the money is with the solicitor, and the house is empty. It is the second contract which is

the official document and its date is the official date, even though the actual price has been negotiated

and decided (much) earlier.

Fortunately, in Japan it works differently. There is only one purchase contract, which is signed after

the price has been agreed on. If the buyer cancels the purchase after signing the contract, he/she loses

the deposit, which is typically 10% of the price but can be lower (sometimes negotiable). In the case of a
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condo that is typically sold before completion, the deposit is usually much lower (less than 5% typically).

Banks provide preliminary review services before signing a purchase contract. There are non-negligible

cases where they eventually decide not to provide loans, but the probability of this happening is low.

Important in our case is that the purchase date given in our data set corresponds to the moment when

the price was agreed, not to the moment that the exchange of property/money takes place.

3.4.5 Housing characteristics as explanatory variables

Type

According to the LandMLIT website:

Real estate is divided into the following types: residential land, pre-owned condominiums,

etc., agricultural land, and forest land. Residential land is further divided into two types

of residential land (land only) and residential land (land and building). Transactions for

residential land (land only) indicate the transactions for land only. Transactions for resi-

dential land (land and building) mean the package transactions for the land and buildings,

etc.. Transactions for pre-owned condominiums, etc. are the transactions for condominium

units (apartments, etc.).

For pre-owned condos, the ward, district, nearest station, distance to nearest station, floor area, year of

construction, building structure, building use, city planning, building coverage ratio, and floor area ratio

are provided.

For residential land (land only), the region, ward, district, nearest station, distance to nearest station,

area in square meters, unit land price, land shape, frontage of land, frontage road width/direction/classification,

city planning, building coverage ratio, and floor area ratio are provided.

For residential land (land and building), the region, ward, district, nearest station, distance to nearest

station, area in square meters, total floor area of building, frontage road width/direction/classification,

year of construction, building structure, building use, city planning, building coverage ratio, and floor

area ratio are provided.

Location information

For each record, the city, ward, and district where the record is located are specified. In addition, the

name and walking distance of the nearest station are given. These are the only two measures of location

of a given record available to us.

Time distance to nearest station

According to the LandMLIT website:

For the residential land (land only), residential land (land and building), and pre-owned

condominiums, etc., the name of the nearest train station and the time distance (minute)

from the location of the property to the nearest train station (for subway, to the ground

entrance) are displayed. A time distance less than 30 minutes is displayed in minutes. A
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time distance greater than 30 minutes is displayed in the following time periods: 30 minutes

to 59 minutes, 1 hour to 1 hour 29 minutes, 1 hour 30 minutes to 1 hour 59 minutes, and 2

hours or more.

The time distance by walking is calculated following laws and regulations concerning advertisement.

Ordinance for ‘Enforcement of the fair competition codes concerning indication of real estate’, Chapter

5, Article 10, in accordance with the ‘Fair competition codes’, Article 15, assigns a walking rate formula.

This formula states that one-minute walking on a road is equal to a distance of 80 meters. There are 1955

properties that are ‘0’ minutes walking distance to the nearest station.

Table 3.9: Summary statistics distance (0–29min)

City mean 25% 50% 75% sd n
Tokyo 8.2 4 7 11 5.04 184077
Osaka 6.8 4 6 9 4.21 49820
Nagoya 10.8 6 9 15 6.73 38779
Fukuoka 11.0 6 9 15 6.73 25982
Sapporo 11.2 6 10 15 7.00 32685

Table 3.9 summarizes the distance in minutes for each city. We provide the mean, three quantiles,

and the standard deviation. Osaka has the densest railway structure, followed by Tokyo. Fukuoka,

Nagoya, and Sapporo have a somewhat less dense railway/metro system.

Area and total floor area (in square meters)

From the official description:

For each of the residential land (land only), residential land (land and building), agri-

cultural land, and forest land, the surveyed area (m2) obtained from a survey of persons

involved in transactions or the registered area (m2) specified in a register if the surveyed

area is unknown is provided. For pre-owned condominiums, etc., the floor area (m2) of

the exclusively owned area registered in a register (the area measured inside walls or other

partitions) is provided. For all land types, data for small properties with an area less than

10 m2 are not published. For properties with an area of less than 200 m2, the area data

are displayed in 5 m2 intervals, while for properties with an area of 200 m2 or greater,

the data are displayed after rounding the figures to the first two digits from the left. For

transactions for land with an area of 2,000 m2 or greater, the data are displayed as ‘2,000

m2 or greater’.

For ‘land only’ types, the variable ‘area’ refers to the area of the land; for condos it refers to the floor

area.

Another variable is the total floor area of the building (m2). We have:

For buildings on residential land (land and building), the total floor area (m2) is provided.

For cases where the floor area is less than 200 m2, the data are displayed in 5 m2 intervals,

and for cases where the floor area is 200 m2 or greater, figures are rounded to two decimal
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places. For large transactions where the building floor area is 2,000 m2 or greater, the data

are displayed as ‘2,000 m2 or greater’ whereas for small transactions where the floor area

is less than 10 m2, the data are displayed as ‘less than 10 m2’.

We set the total floor area of properties where the building floor area is 2,000 m2 or greater to 2000

and those where the floor area is less than 10 m2 to 10.

Table 3.10: Summary statistics area (m2)

City mean 25% 50% 75% sd n
Land & Building
Tokyo 128.5 65.0 90.0 125.0 148.0 57568
Osaka 134.8 55.0 75.0 130.0 180.7 21064
Nagoya 186.1 110.0 135.0 180.0 178.0 14640
Fukuoka 259.4 140.0 180.0 270.0 240.6 7847
Sapporo 252.5 160.0 200.0 260.0 206.3 11763
Land Only
Tokyo 165.7 70.0 105.0 175.0 193.0 33991
Osaka 218.0 75.0 125.0 250.0 257.9 6901
Nagoya 240.6 120.0 170.0 270.0 224.1 13110
Fukuoka 325.4 150.0 220.0 370.0 302.7 5660
Sapporo 287.8 165.0 220.0 300.0 257.2 9461
Condo
Tokyo 46.7 20.0 45.0 65.0 27.9 92518
Osaka 53.8 30.0 60.0 70.0 26.9 21855
Nagoya 65.6 60.0 70.0 80.0 23.7 11029
Fukuoka 53.4 25.0 60.0 75.0 27.7 12475
Sapporo 69.1 60.0 70.0 85.0 22.8 11461

Table 3.11: Summary statistics total floor area (m2)

City mean 25% 50% 75% sd n
Land & Building
Tokyo 195.0 85.0 95.0 145.0 302.2 57568
Osaka 255.6 90.0 105.0 200.0 384.6 21064
Nagoya 214.1 100.0 110.0 155.0 312.8 14640
Fukuoka 282.2 100.0 125.0 230.0 399.9 7847
Sapporo 286.3 110.0 140.0 300.0 351.5 11763

Year of construction and age

For properties built before 1945, the construction year data are displayed as ‘before the war’. We discard

these data and further categorize the year of construction into ‘1946–1981’, ‘1982–2000’, and ‘2001–

now’. This categorization is due to time points of major changes in the Building Standards Act; see

www.uncrd.or.jp/hyogo/hesi/pdf/expmeeting/otani.pdf,
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from the United Nations website. In 1981 the establishment of ‘The shin-taishin, or New Earthquake

Resistant Building Standard Amendment’ came into effect following the disaster caused by the 1978

earthquake off the shore of Miyagi. The new standard stipulates that buildings must able to resist an

earthquake of at least JMA seismic scale upper 6 instead of scale 5. In 2000 the act was revised with

a more stringent standard for wooden buildings, and also new houses must provide a 10-Year warranty

against defects. These changes might lead to structural breaks in the quality of houses built around these

time points.

Table 3.12: Summary statistics building age

City mean min 25% 50% 75% max sd n
Tokyo 14.4 −2 1 11 24 67 13.5 184077
Osaka 18.1 −2 4 17 30 69 14.8 49820
Nagoya 14.9 −1 0 13 25 69 13.9 38779
Fukuoka 17.2 −2 7 18 25 66 12.3 25982
Sapporo 18.1 −1 8 18 27 65 12.4 32685

We also include the numerical ‘age’ of the property, i.e. transaction year minus the year of construc-

tion. This is displayed in Table 3.12. This can be a negative number, namely if the property was sold

before construction.

Building structure

Building structure can be ‘Steel frame reinforced concrete’, ‘Reinforced concrete’, ‘Steel frame’, ‘Light

steel structure’, ‘Concrete block’, ‘Wooden’, or combinations of these structures. This leads to a large

number of building structures. We summarize these in five categories: ‘contains steel frame reinforced

concrete’ (SRC), ‘contains reinforced concrete but not steel frame reinforced concrete’ (RC), ‘contains

steel but not reinforced concrete’ (S), ‘contains wood but not steel or reinforced concrete’ (W), and

‘NA’. This categorization is to some extent arbitrary but represents a general way to distinguish between

building structures regarding fire- and earthquake-resistant features. The SRC and RC types are deemed

most resistant to earthquake and fire; The S types and W types less so.

Table 3.13: Number of properties per building structure

Building structure Land & Building Condo
SRC 2288 54904
RC 12581 92804
S 17619 1135
W 75017 14
NA 5377 481
Total 112882 149338

Table 3.13 contains a summary of the available information.
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Building coverage ratio and floor area ratio

For all three types the designated maximum building coverage ratio (%) and maximum floor-area ratio

(%) are provided. These ratios are legally allowed maxima, different for each piece of land. Usually

buildings with larger designated ratios are more expensive.

The building coverage ratio is the percentage of the site area to the building area. The floor area ratio

is the percentage of the total floor area to the site area.

Figure 3.1: Urban land use planning system in Japan (Ministry of Land, Infrastructure and Transport)

For different city planning zones, there are different limits on these ratios, as shown Figure 3.1.

Table 3.14: Summary statistics Building Coverage Ratio

City mean min 25% 50% 75% max sd n
Tokyo 65 30 60 60 80 80 11 184077

Osaka 75 40 80 80 80 80 9 49820

Nagoya 63 30 60 60 80 80 12 38779

Fukuoka 64 30 60 60 80 80 12 25982

Sapporo 62 30 60 60 80 80 13 32685

Table 3.15: Summary statistics Floor Area Ratio

City mean min 25% 50% 75% max sd n
Tokyo 302 60 200 300 400 1300 157 184077

Osaka 341 80 200 300 400 1300 172 49820

Nagoya 240 50 200 200 200 1100 130 38779

Fukuoka 238 50 150 200 400 1000 134 25982

Sapporo 214 50 200 200 200 900 104 32685

The relevant data in our data set are summarized in Table 3.14 and Table 3.15.
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City planning

For all three types of records, the use of districts designated by the City Planning Act is provided. A

detailed explanation can be found at

www.mlit.go.jp/crd/city/plan/tochiriyou/pdf/reaf_e.pdf.

The planning can be: Category 1 Exclusive Low Rise Residential District, Category 1 Exclusive Mid-

high Rise Residential District, Category 1 Residential District, Category 2 Exclusive Low Rise Residen-

tial District, Category 2 Exclusive Mid-high Rise Residential District, Category 2 Residential District,

Commercial District, Exclusive Industrial District, Industrial District, Near-commercial District, Outside

Urban Planning Area, Semi-industrial District, Semi-residential District, Semi-urban Planning Area, or

Urbanization Control Area.

We may further categorize them into subclasses: Residential, Commercial, Industrial, and Other

(‘Urbanization control area’, ‘Non-divided city planning area’, ‘Quasi-city planning area’, and ‘Outside

city planning area’). The number of properties for each land use category is summarized in Table 3.16.

Table 3.16: Number of properties for each land use category

Land Use Land & Building Land Only Condo
Residential area 76303 48011 50178
Commercial area 20979 12324 71237
Industrial area 15339 8467 26260
Urbanization control area 140 231 11
NA 121 90 1652
Total 112882 69123 149338

3.4.6 Information ignored in our analysis

Region

For all condos, the region information is unknown. For ‘land only’ and ‘land & building’, the region can

be one of the following: residential area, commercial area, potential residential area, or industrial area.

Layout

The layout information is only known for condos. This can take the following values: NA, 3LDK,

4LDK, 5LDK, 2LDK, 1K, 2DK, 1R, 3DK, 1LDK, 1DK, Open Floor, 2LDK+S, 2K, 3LDK+S, 2DK+S,

3LD, 1LDK+S, 1DK+S, 4DK, 4LDK+S, 2L, 3LK, 5LDK+S, Studio Apartment, 2LK, Duplex, 3K,

3DK+S, 4K, 2K+S, 1R+S, 3K+S, 1LK, 5DK, 1L, 6DK, 1K+S, 7LDK, 6LDK, 4DK+S, 2LK+S, 3LD+S,

2LD+S, 8LDK, 4L, 4LDK+K, 4L+K, 3D, 6LDK+S.

We do not use this information since it is difficult to categorize and already we have floor area in our

selected data.
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Unit land price

According to the MLIT website, the unit price (10, 000 yen) per m2 is provided only for ‘land only’.

This unit price is obtained by dividing the total transaction value of each plot of land by the land area

(m2). The variable is not available for ‘land & building’ and condos, so we do not use this information.

Land shape

Only for ‘land only’ and ‘land & building’ the general shape of land is provided. The land shape can take

the following forms: NA, rectangular shaped, semi-square shaped, semi-rectangular shaped, irregular

Shaped,semi-trapezoidal shaped, trapezoidal shaped, semi-shaped, square-shaped, flag-shaped, etc.

Frontage of land / frontage road

For ‘land only’ and ‘land & building’, the frontage/width of land (in m) is provided, that is, the length

of land in contact with a frontage road, as well as the width (in m), type, and direction of the road in

contact with the land.

Building use

For the buildings on residential land (land and building) and exclusively owned areas of pre-owned

condominiums, the current usage is provided. This can be: house, shop, other, office, housing complex,

parking lot, factory, warehouse, workshop, or any combination of these. We do not include this variable

since there are too many interactions and it would be difficult to categorize.

Purpose of use

Purpose of use is provided only for records where the transaction period is after 1st quarter 2013. For

these records, purpose of use can be: NA, house, shop, other, office, warehouse, factory, among which

‘house’ is the majority (45,373 among 53,596 records where purpose of use is known). We do not use

this information because of its limited availability.

Additional remarks that might impact housing price

According to the MLIT website, remarks are provided when there is additional information that may

have impact on transaction prices. These are provided only when relevant additional information is

obtained via a questionnaire survey. Out of 158,474 records where remarks are provided, 137,490 are

condos. The remarks can be: NA, dealings of non-redecorating real estate, dealings of redecorated real

estate, dealings with auction or arbiter participation, dealings including private road, dealings between

related objects, dealings including special circumstances, dealings of adjacent land, dealings of real

estate that includes damage, dealings of real estate with mortgage issues, dealings including a valueless

house, or a combination of these items.
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3.5 Macro-economic variables

Housing prices are affected by general economic conditions. In order to incorporate possible effects of

these economic conditions, we include the following macro-economic indicators as explanatory vari-

ables: GDP, CPI, interest rate and stock price.

Table 3.17: Macro-economic variables

Name Description Frequency Source
GDP Nominal (not seas. adj.) Quarterly Cabinet office
CPI All items, 2015-base Monthly Statistics Bureau
Interest rate Basic discount rate Quarterly Bank of Japan
TOPIX Tokyo Stock Price Index Monthly Cabinet Office

GDP figures are provided by the cabinet office website

www.esri.cao.go.jp/index-e.html.

We use the nominal GDP series, not seasonally adjusted. The reason that we not adjust for quarter is

that we include many other controls in the analysis that vary over quarters. If we would take seasonally

adjusted GDP series, then the determinants of the seasonal adjustment and our own control variables

would become confounded.

The monthly CPI data can be downloaded from

www.stat.go.jp/english/data/cpi/index.htm.

We use the version released on August 26, 2016, which is 2015-based. Since our housing price data are

per quarter, we integrate the monthly data into quarterly data using simple averages.

Interest rate is one of the most important factors that have an impact on house prices. We use

quarterly time-series data of the ‘basic discount rate’,

www.stat-search.boj.or.jp/index_en.html#,

provided by the Bank of Japan.

Stock prices reflect business conditions, which might affect the housing market. We download

monthly data of the Tokyo Exchange Tokyo Price Index (TOPIX) from the ESRI website

www.esri.cao.go.jp/en/stat/di/di-e.html.

3.6 Historical earthquakes

3.6.1 Data source

The Japan Meteorological Agency (JMA) employs a seismic intensity scale to measure the intensity of

earthquakes. It is measured in units of ‘shindo’ (seismic intensity). The JMA scale differs from the more

common Richter scale (and the Moment Magnitude Scale), which measure magnitude, that is, the energy
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Figure 3.2: Japan macro-economic data series, 2006 Q2 – 2015 Q3
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released by the earthquake. In contrast, the JMA scale describes the degree of shaking. The intensity

of an earthquake is not completely determined by its magnitude, but varies with the event’s depth and

the distance from the event. For example, an earthquake may be described as shindo 4 in Tokyo, shindo

3 in Yokohama, and shindo 2 in Shizuoka. The JMA operates a network of 180 seismographs and 627

seismic intensity meters and provides real-time earthquake reports to the media and on the Internet.

The JMA data can be downloaded from

www.data.jma.go.jp/svd/eqev/data/bulletin/shindo_e.html.

Each year’s earthquake data are stored in separate .dat files, which provide record entries of two possi-

ble types:

(1) Hypocenter record; and

(2) Seismic intensity and acceleration data record.

A type (1) record contains the information we need for modeling the earthquake process: date, time,

exact location, depth, magnitude, intensity, etc. Following each type (1) record there are one or more

type (2) records, which contain descriptions from seismic detection stations about this earthquake.

The data are available for the years 1923–2015. A subset of the data can be selected with dropdown

menus from

www.data.jma.go.jp/svd/eqdb/data/shindo/index.php.

These interactive tables display the hypocenter records that are natural earthquakes (specified as ‘1’ in

column ‘Subsidiary information’) with known maximum intensity and known hypocenter (specified in

column ‘Identifiers’, which cannot be ‘N: Hypocenter unknown’).

3.6.2 Description

The description of all the earthquake parameters can be found on

www.data.jma.go.jp/svd/eqev/data/bulletin/data/

shindo/format_e.txt.

In each type (1) record, the following information is available:

• Record type identifier (A: hypocenter record, B: hypocenter record (for two or more spatio-

temporally close earthquakes whose seismic intensity data cannot be separated), D: hypocenter

record (for two or more temporally close earthquakes whose seismic intensity data cannot be

separated)

• Year, month, day, hour, minute, second of origin time (Japan Standard Time = UTC + 9 hours)

• Standard error (of origin time, in seconds)

• Latitude of hypocenter (degrees and minutes)
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• Standard error for latitude (minutes)

• Longitude of hypocenter (degrees and minutes)

• Standard error for longitude (minutes)

• Depth in kilometers

• Standard error for depth (kilometers)

• Magnitude 1

• Magnitude type (1),

JMA magnitudes: J: MJ - Local Meteorological Office magnitude; D: MD - Displacement

magnitude; d: Md - As per MD, but for two stations; V: MV - Velocity magnitude; v: Mv - As per

MV, but for two or three stations.

Moment magnitudes: W: MW - Moment magnitude based on the JMA centroid moment

tensor solution.

Other organizations’ magnitudes: B: mb - USGS body wave magnitude; S: MS - USGS

surface wave magnitude.

• Magnitude 2

• Magnitude type 2 (see magnitude type 1)

• Travel time table type

• Hypocenter location precision (1: Depth-free method; 2: Depth-slice method; 3: Fixed depth; 4:

Based on depth phase; 5: Based on S-P time; 7: Poor solution; 8: Undetermined or not accepted)

• Subsidiary information on event (1: Natural earthquake; 2: Insufficient number of JMA stations;

3: Artificial event; 4: Noise; 5: Low-frequency earthquake)

• Maximum intensity (1: One; 2: Two; 3: Three; 4: Four; 5: Five (until September 1996); 6: Six

(until September 1996); 7: Seven; A: Five lower; B: Five upper; C: Six lower; D: Six upper;

R: Remarkable earthquake (shock felt over 300 km away) (until 1977); M: Moderate earthquake

(shock felt over 200 km away but not over 300 km away) (until 1977); S: Small earthquake (shock

felt over 100 km away but not over 200 km away) (until 1977); L: Local earthquake (shock felt

less than 100 km away) (until 1977); F: Felt earthquake (until 1984); X: Shock felt by some people

but not by JMA observers (until September 1996))

• Damage class (after Utsu) (1: Slight damage (cracks on walls and ground); 2: Light damaged

(broken houses, roads, etc.); 3: 2–19 fatalities or 2–999 houses destroyed; 4: 20–199 fatalities

or 1,000–9,999 houses destroyed; 5: 200–1,999 fatalities or 10,000–99,999 houses destroyed; 6:

2,000–19,999 fatalities or 100,000–999,999 houses destroyed; 7: 20,000+ fatalities or 1,000,000+

houses destroyed; X: Injury or damage of unclear scale (until 1988); Y: Injury and damage in-

cluded in the grade for the preceding or following event (until 1988))
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• 1929–1988 Tsunami class (after Utsu)

• Number of epicenter location district

• Number and name of epicenter location region

• Number of shocks felt

• Identifiers (K: JMA hypocenter identified with high precision; S: JMA hypocenter identified with

low precision; N: Hypocenter unknown (first observation point used); U: USGS hypocenter; I: ISC

hypocenter; R: Preliminary hypocenter (included only in district observatory databases); H,D,M:

Exact observation time unknown)

3.6.3 JMA intensity scale

The tables detailing the JMA intensity scales can be found in

www.jma.go.jp/jma/en/Activities/inttable.html.

An excerpt of the description of each intensity level is shown below.

Figure 3.3: Explanation of the JMA Seismic Intensity Scale, source: JMA website
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3.6.4 Sample selection

We only extract the type (1) records. In order to use the records for modeling the earthquake process, we

may choose samples based on time period, hypocenter location, magnitude or intensity threshold, and

depth.

We select only the records that are ‘natural earthquakes’. In doing so we discard the records labeled

as ‘Insufficient number of JMA stations’, ‘Noise’, or ‘Low-frequency earthquake’ since these records

may not be reliable.

We discard the records with unknown hypocenters since the location information is inaccurate; fur-

thermore the magnitudes for these records are also unknown.

We discard the records with unknown ‘maximum intensity’ since these records are earthquakes that

are spatio-temporally close to another earthquake so that they cannot be separated.

Note that even with the same sample selection criteria as described in the literature, the resulting

sample catalog can be quite different. This is because the JMA catalog has been updated (modified)

many times as technology and knowledge have improved; see

www.data.jma.go.jp/svd/eqev/data/bulletin/data/

hypo/relocate.html

for further discussion (Japanese only).

3.6.5 Summary statistics

There are 194,882 records in the entire 1923–2015 period, among which 105,685 records are natural

earthquake with known hypocenter and known maximum intensity. Table 3.18 contains a summary of

these records.
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Table 3.18: Summary of JMA earthquake records for 1923–2015

Magnitude Intensity n
Magnitude<3 <=4 26015

3<=Magnitude<4 <=4 33464

5/5-lower/5 upper 4

4<=Magnitude<5 <=4 22845

5/5-lower/5 upper 57

5<=Magnitude<6 <=4 7085

5/5-lower/5 upper 157

6/6-lower/6 upper 7

6<=Magnitude<7 <=4 1283

5/5-lower/5 upper 131

6/6-lower/6 upper 24

7 1

Magnitude>=7 <=4 109

5/5-lower/5 upper 44

6/6-lower/6 upper 22

7 2

Unknown <=4 14432

5/5-lower/5 upper 3

In some records two magnitudes (and two magnitude types) are reported. The second magnitude

is supplementary information and the difference between the two magnitudes recorded for the same

earthquake is usually small. In Table 3.18 and in other places where magnitudes are needed, we use the

first magnitude (Magnitude 1) without further clarification.

3.7 ETAS estimation and simulation

The Epidemic Type Aftershock Sequence (ETAS) model was introduced by Ogata (1988) and has been

widely used to capture the quiescence and activation of seismic activities. The basic idea is that each

earthquake may trigger a sequence of aftershocks like ‘epidemics’ and that the severity of influence

diminishes over time (and distance). Despite its many space-time extensions, we choose the temporal

version of this model as described in the following for simplicity of estimation and simulation.

Given the observations of earthquake occurrences at time t1, t2, ..., tn on an interval [0, T] (T ≥ tn),

the associated counting process is defined as Nt = ∑n
i=1 1ti≤t.

The corresponding left-continuous Ft-conditional jump intensity process λt describes the mean

jump rate per unit of time,

λt = λ(t|Ft) = lim
h↓0

1
h

Pr [Nt+h − Nt > 0|Ft] .
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In a temporal ETAS model, the conditional intensity function may be written as

λt = λ∞ + ∑
ti<t

c(mi, mc)g(t− ti),

where λ∞ (shocks per unit time) is the background seismicity with λ∞ > 0. The aftershock decay (time

response function) takes the form of the Modified Omori function, g(t− ti) = K
(t−ti+C)p . The weight

assigned to the aftershock decay is an exponential function of the difference between the magnitude of

the earthquake and the cut-off magnitude mc: c(mi, mc) = exp(β(mi −mc)). The intensity consists of

the background intensity and a weighted sum of all the aftershock decays, where the sum is taken over

all earthquakes before time t.
For the estimation of the ETAS model, we take the earthquake catalog of areas around the five

Japanese cities in the period 1970-1-1 to 2015-12-31. The space windows and cut-off magnitudes for

each city is shown below.

Table 3.19: Space window of the earthquake catalog

city latMin latMax lngMin lngMax codeMin codeMax

Tokyo 34 37 138 141 13101 13123

Osaka 33.5 36.5 134 137 27102 27128

Nagoya 33.5 36.5 135.5 138.5 23101 23116

Fukuoka 32 35 129 132 40131 40137

Sapporo 41.5 45.5 138.5 143.5 1101 1110

The space windows and magnitude thresholds are chosen such that 1) the properties in our data set

are located around the center of space windows in each cities; 2) the number of observations within

each space window is moderate, in the sense that they are comparable across cities and that they yield

meaningful results for the ETAS estimation routine; 3) the estimation of ETAS models for each city is

appropriate, in the sense that they converge and pass the test of residuals. We use the test described

by Berman (1983), where we consider whether the transformed inter-arrival times are iid exponential

random variables with unit mean.

We show below the p-values for the Kolmogorov-Smirnov (K-S) test, number of observations as

well as model parameter estimates for each city. The estimation threshold is chosen to be magnitude 4.5

for Fukuoka, Nagoya, Osaka, Sapporo and 5 for Tokyo. This means that in each city, only earthquake

records above the corresponding thresholds are used for estimation.
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Table 3.20: Estimated with threshold 4.5 for Osaka, Nagoya, Fukuoka, Sapporo and 5 for Tokyo

city K-S N λ∞ K C p β

Tokyo 0.764 370 0.0076 0.0351 0.0155 1.0072 0.9253

Osaka 0.738 154 0.0073 0.0014 0.0064 1.1913 2.4854

Nagoya 0.940 177 0.0071 0.0066 0.0009 0.9616 1.7250

Fukuoka 0.982 102 0.0037 0.0098 0.0035 1.0330 1.4390

Sapporo 0.874 486 0.0193 0.0039 0.1044 1.2091 2.4424

The K-S test is one way of analyzing the residuals in an ETAS model; see Ogata (1988). Suppose

the integral of the conditional intensity function is

Λ(t) =
∫ t

0
λ(s)ds,

and the random time change τ = Λ(t). The Λ(·) function transforms the event time series {ti} to

{τi} which is a stationary Poisson process of intensity 1. The differences Yk = τk − τk−1 should be iid

exponential random variables with mean 1, and Uk = 1− exp(−Yk) should be iid standard uniform

random variables. We test here whether Uk comes from the standard uniform distribution, where a p-

value of lower than 0.05 rejects the null hypothesis that Uk comes from the standard uniform distribution

at a 0.05 significance level.

The estimated intensity and actual earthquake events are used to simulate 90-day probabilities of

an earthquake exceeding the magnitude threshold of 5.5 for each city. The simulation method follows

Ogata (1981).

Figure 3.4 shows the short-run risk series. As shown in the figure, the short-run probabilities spike

up immediately after a large earthquake and dies out gradually until another earthquake occurs.
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Figure 3.4: Simulated short run risk

3.8 Mesh codes

The Statistics Bureau of Japan explains the definition of mesh code in ‘Standard Grid Square and Grid

Square Code Used for the Statistics’; see the following webpage

www.stat.go.jp/english/data/mesh/02.htm.

There are five levels of precision:

• First mesh (‘Primary Area Partition’) is obtained by dividing the whole area of Japan into blocks

measuring 1 degree of longitude and 2/3 degree of latitude.

• Second mesh (‘Secondary Area Partition’) is obtained by dividing first mesh areas into 8 × 8
squares.

• Third mesh (‘Third Area Partition / Basic Grid Square’) is obtained by dividing second mesh areas

into 10× 10 squares.
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• Half/quarter mesh is obtained by dividing the third mesh grid into 2× 2 or 4× 4 equal parts to

get half or quarter grid squares, respectively.

Table 3.21: Levels of mesh codes

Level No. digits Format Scale

First mesh 4 XXXX 80km

Second mesh 6 XXXX–XX 10km

Third mesh 8 XXXX–XXXX 1km

Half mesh 9 XXXX–XXXX–X 500m

Quarter mesh 10 XXXX–XXXX–X–X 250m

The coding and scale of the five levels is given in Table 3.21.

In Figure 3.5 we provide a map of all first meshes.

In Figure 3.6 we show how mesh code numbers are calculated from the coordinates, based on

www.stat.go.jp/english/data/mesh/05-1.htm.

3.9 Predicted earthquake risks

3.9.1 The J-SHIS data set

While we considered data on actual earthquakes in the previous section, the current section deals with

data on earthquake risk. Earthquake risk has several dimensions. What matters is not only how likely

it is that there is an earthquake, but also how much damage the resulting fire will cause. Houses (since

1981) are essentially earthquake-proof, but they may not be fire-proof. When in a Japanese text it says

‘earthquake risk’ the meaning can be ambiguous. It may mean only earthquake, but more likely it means

‘earthquake and related risks combined’.

The Japan Seismic Hazard Information Station (J-SHIS) was established to help prevent and prepare

for earthquake disasters The seismic hazard maps serve as a sharing platform of seismic hazard infor-

mation by regarding the maps as a group of information incorporating the underlying data used in the

evaluation process, such as the seismic activity models, seismic source models, and subsurface structure

models, rather than mere maps as final products. Operations started in May 2005.

Four years later, in 2009, it was decided to incorporate the latest technology and a new J-SHIS

system was launched. The new J-SHIS manages various data in an integrated manner. It includes the

new National Seismic Hazard Maps for Japan which consist of the Probabilistic Seismic Hazard Maps

(PSHM) for Japan with a 250 m mesh resolution and the Scenario Earthquake Shaking Maps (SESM)

based on detailed strong motion estimation of earthquakes occurring at major active fault zones, as well

as the deep subsurface structure models for Japan and 250 m mesh geomorphological land classification

models used for the required calculations. The new J-SHIS also provides these data in a user-friendly

manner by superposing them on background maps. The new J-SHIS is a web mapping system based on

open source software which allows general users to easily view various data on their Internet browsers.
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Figure 3.5: Map of first meshs
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Figure 3.6: Method of calculating mesh code numbers from coordinates.

Especially, the notable new functions have enabled the users to overlap the seismic hazard maps on

Google maps including the layer transparency function, to freely move and zoom in and out the maps,

to view the seismic hazard maps with a 250 m mesh resolution, to search a precise location by addresses

and postal codes, to select and show a source fault on the browser, and to display attribute values for

each mesh. The new system has been in operation since July 2009.

Responding to the 2011 off the Pacific Coast of Tohoku Earthquake, studies are being made on

improvement of J-SHIS.

3.9.2 Data source

The relevant J-SHIS data is the ‘probability of exceedance’. According to

www.j-shis.bosai.go.jp/en/glossary,

this term means:

The probability that shakes will exceed a certain level of intensity at a point for a certain

time period (over the next 30 or 50 years, in this guidebook). For example, the ‘Map of

ground motions of seismic intensity for a 3% probability of exceedance occurring within 30

years from the present’ means the probability that each point is affected by shakes exceeding

its seismic intensity shown on the map is 3% within 30 years from the present.

The probabilities are either ‘average case’ or ‘maximum case’.

‘Average case’ means:

In the long-term evaluation for the 98 major active fault zones, there are many cases where

both mean recurrence interval and the latest event have been evaluated with a range of val-

ues. In the preparation of the seismic hazard map, the result of calculating the probability

of occurrence by using the mid-values of individual ranges is called ‘Average case’,

while ‘Maximum case’ means:
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The result of calculating the probability of occurrence by using the smallest value of mean

recurrence interval and the oldest value of the latest event is the highest probability.

Two analytical periods are typically given: 30 years (T30) and 50 years (T50). In our data set we confine

ourselves to the ‘average case’ and an analytical period of 30 years.

The J-SHIS data are available in two different formats for two subperiods. For 2008–2014, the

probability of earthquakes happening in the coming 30 or 50 years exceeding certain intensity thresholds

can be downloaded using Python from

www.j-shis.bosai.go.jp/map/JSHIS2/download.html?lang=en

under tab ‘Dataset/Probablistic Seismic Hazard Maps/Seismic Hazard Map’. The records come in sep-

arate .csv files for each year and each first mesh. We downloaded 8 first meshes: Tokyo 5339; Osaka

5135 and 5235; Nagoya 5235, 5236, and 5237; Fukuoka 4930 and 5030; Sapporo 6441. Each entry

corresponds with a 1/4 mesh area (250m), and the thresholds are 5-lower (denoted as I45), 5 upper (de-

noted as I50), 6-lower (I55) and 6 upper (I60). There can be multiple models in one year. In 2012 there

are data for two models and in 2013 there are data for three models. We use model 1 by default in both

years.

For 2005–2008, the PSHM map data can be downloaded from

wwwold.j-shis.bosai.go.jp/j-shis/index_en.html,

one zip file each year for the whole of Japan. The thresholds can be chosen as 6-lower or 5-lower. Each

entry corresponds with a third mesh area (1km). The probabilities are only available for an analytical

period of thirty years. There is some overlapping in the two sources: both the new and the old system

provides data for year 2008. Although in different formats, these data coincide (maximum difference is

5e-7, which is just rounding error). For further analysis we use the new data source for the year 2008.

3.9.3 Summary statistics

In summary, there are annual data for two subperiods: 2005–2008 and 2008–2016. (The year 2008

appears in both sets.) In the first period each mesh is about 1 square km (third mesh); in the second

period each mesh is about 250 square meters (quarter mesh).

Seismic intensity is given on a scale from 0 to 7, where 5 and 6 are further divided into 5-lower,

5-upper, 6-lower, and 6-upper. In the second period the data provide:

• probability of exceedance larger than 5-lower (30 years);

• probability of exceedance larger than 5-upper (30 years);

• probability of exceedance larger than 6-lower (30 years);

• probability of exceedance larger than 6-upper (30 years).

In the first period, only two of these probabilities are provided, namely 5-lower and 6-lower. Summary

statistics of the hazard probabilities for all the stations in the housing sample are provided below.

50

www.j-shis.bosai.go.jp/map/JSHIS2/download.html?lang=en
wwwold.j-shis.bosai.go.jp/j-shis/index_en.html


Table 3.22: Summary statistics of seismic hazard probabilities (for each unique district in the housing
sample), averaged over 2005–2014

City mean min 25% 50% 75% max sd #districts

Exceeding intensity level ‘5 lower’

Tokyo 1.00 0.99 0.99 1.00 1.00 1.00 0.00 898

Osaka 0.93 0.90 0.92 0.94 0.95 0.97 0.02 564

Nagoya 0.96 0.91 0.94 0.97 0.98 0.98 0.02 1379

Fukuoka 0.39 0.06 0.30 0.42 0.48 0.56 0.12 318

Sapporo 0.33 0.05 0.21 0.33 0.44 0.51 0.12 551

Exceeding intensity level ‘6 lower’

Tokyo 0.35 0.16 0.22 0.28 0.49 0.59 0.13 898

Osaka 0.37 0.22 0.30 0.39 0.44 0.52 0.09 564

Nagoya 0.56 0.21 0.41 0.61 0.67 0.77 0.14 1379

Fukuoka 0.03 0.00 0.02 0.03 0.03 0.05 0.01 318

Sapporo 0.01 0.00 0.01 0.01 0.02 0.03 0.01 551

Generally speaking, Tokyo, Nagoya and Osaka are all highly prone to small earthquakes. The prob-

ability of an earthquake in Tokyo (in a 30 year period) with intensity more severe than ‘5-lower’ is close

to 1. Nagoya is more likely to have larger earthquakes than Tokyo and Osaka. The variation of prob-

abilities of severe earthquakes within each of these three big cities is also much larger than the other

two. Fukuoka and Sapporo seem less risky to have larger earthquakes, but there is still considerable

probability of small earthquakes. These tables show that there is sufficient variation in the ‘riskiness’

of the five cities and that the risk measures under both thresholds (intensities 5-lower and 6-lower) are

important in characterizing a distribution of earthquake risk.

3.10 Districts versus stations

3.10.1 Two options

From the property price data set (as described in Section 3.4), the district, ward, city and the nearest

station of each property is provided. Since we do not know the exact location of a property, we need to

use a proxy. There are two options. The first option is to identify a property with the district in which it

lies. A city consists of wards, and wards consist of districts. So there are many districts within one city.

The second option is to identify a property with its nearest station. In our analysis we confine the

data to properties within 30 minutes of a station (walking distance) and we know the name of this nearest

station.

We shall investigate both options.
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3.10.2 Station coordinates

Since we confine our analysis to properties that are within 30 minutes walking distance from a station,

it is not unreasonable to identify the location of the property by the location of that metro station. There

are fewer stations than there are districts, so this division will be somewhat less accurate.

We find the location information of each station, given the name of the station and the city it is

located in. It is necessary to specify the city as well since in some cases the same station name appears

in different cities (such as Nakanoshima Station in Sapporo and Osaka).

We use Google Maps to find the coordinates of each station. In the search result page on Google

Maps, geographic coordinates appear in the url and can be collected for further usage. In cases where

station name is ambiguous and direct requesting yields zero results, manual correction is needed, for

example inserting spaces in the long station name or using the Japanese translation instead.

The station coordinates are double-checked by comparing the output with those found on the Wikipedia

pages of Japanese railway stations.

en.wikipedia.org/wiki/List_of_railway_stations_in_Japan.

We calculate the distance between coordinates found with the two different sources. Out of the 1022

unique stations in our sample, the coordinates discrepancies for 95% are less than 150 m, and those for

only two records are more than 1 km (but both are less than 1.6 km).

3.10.3 District coordinates

Using Google Maps,the location information for each district can also be found. Since districts are often

irregularly shaped, the coordinates are approximate and not necessarily at the exact geometric center of

a district. Postcodes can be obtained from the formatted address in the output.

3.10.4 From coordinates to mesh codes

Using either the district of the nearest station, we are able to obtain the rough location of each property.

The location information can then be used to find the time-varying seismic risk probabilities associated

with each property. In the JSHIS risk data set, the seismic hazard information is stored for each mesh

grid.

Given the coordinates, we calculate the 10 digit mesh codes using the method described in Figure 3.6.

A brief summary of the number of districts, stations and the number of sample records for each first

mesh code is shown below. We can see that the number of districts is much larger than the number of

stations, so using the district center of a property as its location proxy is more accurate. Also the ward

characteristics are district related. Therefore we have chosen to use the district information in the main

paper. The results for using stations as location proxy are included as a part of the sensitivity analysis.
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Table 3.23: Number of districts and stations for each first mesh code

City first mesh #districts #stations #samples

Tokyo 5339 898 482 184077

Osaka 5235 304 115 30107

5135 260 105 19713

Nagoya 5236 1295 150 36552

5237 84 9 2227

Fukuoka 5030 318 75 25982

Sapporo 6441 551 86 32685

3.10.5 Cross validation

In the procedures of finding coordinates using location names and finding mesh codes using coordinates,

we used multiple sources in order to minimize the risk of associating properties with wrong locations.

However, it is still possible that either or both of the location proxies were wrongly reported since the

property price data set is obtained from surveys. We thus need to check the validity of the location

information of each record.

For a given record in the sample, we have obtained the coordinates of the nearest station; we also

know the approximate center of the district where the property is located in. Since we have chosen the

walking distance to nearest stations to be less than 30 minutes, the distance from the nearest station to

the district center should not be too large. If the distance is above a certain threshold, then this record is

suspicious and manual check is in order. We have chosen this threshold to be 6.22 km which is the 99%

quantile of the station to district center distances of all the unique station-district pairs.

In the end we narrowed down the list of questionable records to 45 station-district combinations that

seemed invalid. These correspond to 47 records in the sample and have been excluded.
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Chapter 4

Earthquake risk embedded in property
prices: Evidence from five Japanese cities

4.1 Introduction

Using the data set described in Chapter 3, we employ a hedonic property price model with a multivariate

error components structure to analyze the subjective evaluation of both short-run and long-run earth-

quake risk embedded in Japanese property prices1. It is well-known that earthquakes tend to occur in

clusters rather than in isolation. These seismic clusters may take the form of foreshocks and aftershocks

anticipating and following a major earthquake or of a collection of major earthquakes triggering one

another by causing frictions that put strain on neighboring faults. There is therefore objective predictive

content embedded in the occurrence of earthquakes. This phenomenon is known as seismic excitation

and there exists a large literature in statistics aimed at capturing it.

In a different strand of the literature in economics, several papers analyze the impact of natural

catastrophes on property prices. Most commonly, this literature incorporates the prevailing binary state

of the world, depending on whether or not a catastrophe has occurred, into a hedonic house price model

of the Rosen (1974) type, which has become the benchmark model in analyzing property prices. Within

a typical hedonic price model, the characteristics of a property are viewed as detachable components that

each contribute to a part of the property price. The selection of components range from traditional house

attributes such as square footage, location and building age, to external factors such as macroeconomic

effects. The negative effect coming from hazardous environmental events, such as flood, hurricane

and earthquake, has been addressed by various researchers; see, among others, Brookshire et al. (1985);

Kawawaki and Ota (1996); Beron et al. (1997); Yamaga et al. (2002); Bin and Polasky (2004); Nakagawa

et al. (2007, 2009); Daniel et al. (2009); Naoi et al. (2009); Gu et al. (2011); Bin and Landry (2013);

Hanaoka et al. (2018); Hidano et al. (2015).

In recent years, a large body of literature has documented empirically that people do typically not

1An updated version of this chapter has been published (Ikefuji et al., 2021). Note: The published paper comes with three
supplementary files: First, the Appendix ( https://in05.hostcontrol.com/resources/bc83e0a2cccc29/39400b566c/
file-object/ILMY-Earthquake-JASA-accepted-Supp.pdf) which is an intrinsic part of the paper; second, the Data Doc-
umentation (https://bit.ly/3qHcTQ3) which contains a description of the data, but not the actual data set; and third the
actual data and the R codes (https://github.com/yy112/earthquake-risk).
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treat objectively given probabilities linearly, but rather tend to overweight small probability events and

underweight large probability events. This is particularly relevant when evaluating catastrophic events

that are often of a low-probability high-impact nature. Various modern theories of decision under risk,

such as rank-dependent utility theory and prospect theory, feature a probability weighting function that

‘distorts’ objective probabilities.

We contribute to this literature by introducing into a hedonic price model an objective measure of

seismic excitation, next to a more conventional measure of long-run earthquake risk, while allowing

for probability weighting in the spirit of the non-expected utility theories of rank-dependent utility and

prospect theory. We use a hedonic price model with the multivariate error component structure de-

scribed in Chapter 2, which enables us to estimate the model while pooling properties of different types

together, in spite of the very large dimension of the variance matrix and the fact that each property type

corresponds to different features and total price levels. Our approach allows to isolate the total com-

pensation for earthquake risk embedded in Japanese property prices, and to decompose this into pieces

stemming from short-run risk and long-run risk, and a further decomposition into objective and distorted

risk components.

We can summarize our main findings as follows. First, we find that objective long-run earthquake

risk has a significant negative impact on property prices, and increasingly so at higher risk levels. Sec-

ond, given that long-run risk matters for property prices, we find that the additional impact of objective

short-run earthquake risk on property prices, while estimated at negative values, is not significantly dif-

ferent from zero. Upon allowing for probability weighting, however, the distorted short-run earthquake

probabilities do have a significantly negative effect on property prices. Third, the probability weighting

function for short-run earthquake risk is found to be S-shaped, thus underweighting small probabilities

and overweighting larger probabilities, contrary to the inverse S-shaped probability weighting function

found in many experiments. This remarkable finding may be explained by the fact that the background

arrival rate of earthquakes is positive rather than zero, in particular in Tokyo where the short-run earth-

quake probabilities never drop below 35% in the period that we analyze. Therefore, people may tend to

evaluate and overweight temporary deviations of the short-run earthquake probabilities from the back-

ground seismicity caused by seismic excitation not with respect to zero but with respect to a positive

reference probability level. In an extension of our base model, we also analyze probability distortions

of long-run time-invariant earthquake probabilities. In this case, we find that small probabilities tend

to be overweighted and large probabilities tend to be underweighted, in accordance with conventional

wisdom.

Most of the studies on the interplay between property prices and environmental hazards investigate

the risks of floods or earthquakes in the USA or Japan. In the case of the USA, Brookshire et al.

(1985) analyze a hedonic house price model in an expected utility framework, examine self-insurance

for earthquake hazards in Los Angeles and San Francisco, and show that buyers pay less for houses

within a relatively risky area if they possess adequate information about earthquake hazards. Bin and

Polasky (2004) estimate and compare the effects of flood hazards on property prices before and after

Hurricane Floyd (the 1999 flooding in North Carolina), and show that the market price of a property

located within a flood plain gets discounted by more than a property located outside the flood plain. Re-

examining these findings, Bin and Landry (2013) estimate hedonic property prices for the same location
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with two major flooding events, and show that the implicit risk premia disappear rapidly.

In the case of Japan, Nakagawa et al. (2009), using the 1998 Tokyo hazard map, show strong negative

impacts of earthquake risks on land prices. Gu et al. (2011), using an updated Tokyo hazard map, find

that in previously safe areas, a decrease in risk rankings (even more safety) has a positive impact on

relative land prices, while in previously dangerous areas, an increase in risk rankings (even more risk)

has a negative effect. Naoi et al. (2009) estimate individuals’ valuation of earthquake risk, based on

nation-wide panel data of earthquake hazard information and records of observed earthquakes. They

show that after a big earthquake people discount house prices and house rents within the earthquake

area. Hidano et al. (2015) examine the effect of seismic hazard risk information on properties in Tokyo,

and find that the price of properties in low-risk zones is higher than the prices in high-risk zones, but that

for new more earthquake-resistant properties the influence of seismic hazard risk information is limited.

We also mention two survey-data studies on how risk preferences of households have changed after

the Tohoku earthquake (the Great East Japan earthquake) in 2011. Naoi et al. (2012) find that although

respondents seemed to be more prepared for natural disasters after the Tohoku experience, actual (costly)

mitigation activities depend on household income. Hanaoka et al. (2018) examine whether risk prefer-

ences of men and women have changed, and if so whether they changed in a different way, after the

Tohoku earthquake. There is some evidence that men have become more risk tolerant, while women

have become more risk averse. Finally, our work is also related to the financial econometrics literature

on the estimation of risk and financial excitation premia embedded in asset and derivative prices; see

Aït-Sahalia et al. (2014, 2015), and Boswijk et al. (2016).

The rest of this chapter proceeds as follows. Section 4.2 explains our treatment of objective seismic

excitation and of probability weighting. Section 4.3 describes the data set. Section 4.4 lays out the

model. Section 4.5 presents the estimation results. Section 4.6 analyzes the influence of each component

to the total property prices and calculates the implied premia for earthquake risk. Section 4.7 discusses

the robustness of our estimation results. Section 4.8 concludes.

4.2 Seismic excitation and probability weighting

In this section we consider short-run earthquake probabilities as objective measures of seismic excita-

tion, and develop a regression design that allows for probability weighting.

4.2.1 Short-run earthquake probabilities

Our approach estimates an Epidemic Type Aftershock Sequence (ETAS) model and generates a panel

of model-implied short-run earthquakes probabilities which vary per quarter and per city to be used in

our regression design. These probabilities can be viewed as objective measures of short-run earthquake

risk, summarizing publicly available information per time period and per city.

The occurrence of major earthquakes have served previously in hedonic price models with regression

discontinuity design as natural exogenous events to elicit causal pricing effects. Limitations of this

conventional approach include the somewhat rudimentary binary nature of this treatment, which does not

reflect the multiplicity of the events, the time elapsed since the last event, and the severity of the events.

57



By contrast, our approach relies on a continuous-time predictive earthquake intensity that depends on

all previous earthquakes, with recent ones being more important than older ones, and explicitly accounts

for the severity of the events. Furthermore, the earthquake intensity can be translated into objective

short-run probabilities enabling us to analyze probability weighting.

The ETAS model was introduced by Ogata (1988) and has since been widely used to capture the

quiescence and activation of seismic dynamics. The basic idea of the model is that each earthquake can

trigger a sequence of aftershocks like ‘epidemics’ in that the occurrence of an earthquake makes future

earthquakes more likely and that the impact of the trigger event diminishes over time (and distance).

Despite the existence of several space-time extensions, we choose the temporal version of the ETAS

model as described in the following, which we estimate separately for each of the five cities. Because

we consider five cities this treatment is natural and simpler than first estimating a space-time version to

a large area that covers all five cities and next isolating the city effects.

Formally, the ETAS model is a path-dependent marked point process and a special case of a Hawkes

self-exciting process. Given observations of earthquake occurrences at times t1, t2, . . . , tn over an inter-

val [0, T] (T ≥ tn), the associated counting process Nt is defined as Nt = ∑n
i=1 1ti≤t. Denoting by Ft

the information filtration up to time t, the corresponding left-continuous Ft-conditional jump intensity

process λt describes the mean jump rate per unit of time,

λt = λ(t|Ft) = lim
h↓0

1
h

Pr [Nt+h − Nt > 0|Ft] .

In the temporal ETAS model, the conditional intensity function may be written as

λt = λ∞ + ∑
ti<t

c(mi, mc)g(t− ti),

where λ∞ > 0 (measured in number of jumps per time unit) is the background seismicity, g(t − ti)

is the aftershock decay (i.e., time response) function, and the weight assigned to the aftershock decay

is a function c(mi, mc) of the magnitude of the earthquake mi and a cut-off (i.e., threshold) magnitude

mc. Thus, the earthquake intensity depends on the background intensity and a weighted sum of all

aftershock decays, where the sum is taken over all earthquakes that have occurred before time t. (In the

ETAS model, g takes the form of a so-called modified Omori law and c takes an exponential form.)

We estimate the ETAS model for each of the five cities that we consider, based on the earthquake

catalog of five areas covering the five cities, over the period January 1, 1970, to December 31, 2015.

Next, the estimated intensities are used to generate by simulation 90-days probabilities of an earthquake

exceeding a magnitude threshold of 5.5, for each city. Our simulation method follows Ogata (1981). Fur-

ther details about the parameterization, estimation and simulation within the ETAS model are explained

in Chapter 3.

In Figures 4.1 and 4.2 we plot the earthquake intensities along with the corresponding short-run

probability series for two of the five cities, Tokyo and Nagoya. The probabilities spike up immediately

after a large earthquake and die out gradually until another major earthquake occurs. The Tohoku earth-

quake of Friday 11 March 2011 was the most powerful earthquake ever recorded in Japan. The spike is

visible in 2011/Q2 (rather than in 2011/Q1) because the short-run probabilities are simulated based on
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Figure 4.1: Short-run earthquake risk: Simulated short-run earthquake probabilities and the logarithm of
the earthquake intensity series for Tokyo. Events marked in the graph: 1©: 2007-07-16 Chuetsu Offshore
earthquake, M6.8. 2©: 2009-08-09 Izu Islands earthquake, M6.8 and 2009-08-11 Shizuoka earthquake,
M6.5. 3©: 2011-03-11 Tohoku earthquake, M9.0. 4©: 2012-01-01 Izu Islands, M7.0. 5©: 2013-10-26
Fukushima-ken oki earthquake, M7.1. (Source: Japan Meteorological Agency.)

actual earthquakes up to and including the previous quarter.

The objective measure of seismic excitation given by the 90-days earthquake probabilities is included

in our regression design. The rationale is that, in addition to the long-run earthquake risk that people

may take into consideration when purchasing a property, news from a recent nearby earthquake may

also temporarily affect property prices. Just like objective seismic excitation generated by a self-exciting

process, the impact of such bad news on people’s perception of risk peaks right after the event and dies

out as time proceeds.

4.2.2 Probability weighting

To account for probability weighting our regression design furthermore allows for a parametric prob-

ability weighting function. There is a large literature on probability weighting. Probability weighting

is an important ingredient of prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman,

1992), and of the related decision theories given by the dual theory of choice under risk (Yaari, 1987)

and rank-dependent utility (Quiggin, 1982), which are building blocks of prospect theory.

We shall consider two canonical one-parameter families of probability weighting functions, pro-
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Figure 4.2: Short-run earthquake risk: Simulated short-run earthquake probabilities and the logarithm
of the earthquake intensity series for Nagoya. Events marked in the graph: 1©: 2007-03-25 Noto Hanto
earthquake, M6.9. 2©: 2009-08-11 Shizuoka earthquake, M6.5. 3©: 2011-03-11 Tohoku earthquake,
M9.0. (Source: Japan Meteorological Agency.)

posed by Tversky and Kahneman (1992) and Prelec (1998), respectively. The Tversky-Kahneman func-

tion — see also Wu and Gonzalez (1996) — is given by

w(p) =
pψ

(pψ + (1− p)ψ)1/ψ
, (4.1)

while the Prelec function is given by

w(p) = e−(− log p)ψ
. (4.2)

The parameter ψ is restricted to be positive. When 0.279 < ψ < 1 the Tversky-Kahneman function is

inverse S-shaped, while the Prelec function is inverse S-shaped for 0 < ψ < 1. The lower bound in

the parameter for the Tversky-Kahneman function ensures monotonicity. When ψ = 1 both functions

reduce to w(p) = p; and when ψ > 1 both functions are initially S-shaped, but (only) the Tversky-

Kahneman function becomes convex for large values of ψ.

In laboratory experiments (see Wu and Gonzalez (1996), and Abdellaoui (2000)) the probability

weighting function is often found to be inverse S-shaped, first concave and then convex. An inverse
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S-shape captures the phenomenon that people tend to become less sensitive to changes in objective

probabilities as these probabilities move further away from the reference point 0 and become more

sensitive as they get closer to the reference point 1. The inverse S-shape is consistent with a positive

third derivative of the probability weighting function. The interpretation of the signs of the successive

derivatives of the probability weighting function was recently provided by Eeckhoudt et al. (2020).

Note that contrary to the Tversky-Kahneman function the Prelec function has an invariant fixed point

and inflection point at p = 1/e = 0.37, which implies that it can never be globally convex or concave.

4.3 The data

The data collection process for this project has been complex and elaborate, and in this section we pro-

vide a brief summary. Full details and references to sources are available in Chapter 3. We are interested

in the impact of earthquake risk on property prices in major cities in Japan, and we have selected five

cities for our purpose. Each city is divided into wards and each ward is divided into districts. (In the orig-

inal data set the word ‘area’ is used. We prefer ‘district’ to avoid confusion with other uses of the word

‘area’.) Certain information that can affect (and explain/predict) the attractiveness of buying a property

is available per ward. For example, population characteristics, information about schools and medical

facilities, shopping, safety, etc. We distinguish between three types of properties: ‘residential land (land

and building)’, ‘residential land (land only)’, and ‘pre-owned condominiums’ (hereafter, condos). Sales

prices and property characteristics are available for each of these types in each of the five cities. We do

not know the exact location of a property, but we do know in which district the property lies and we also

know the distance to the nearest station and the name of that station. Some macro variables are relevant

and affect house prices nationally. Finally, we have information on historical earthquake data and on

earthquake risk data.

Cities. Japan has twelve cities with a population of more than one million people. Almost 100 million

people, or 78% of the country’s total population of 127.4 million, live in urban areas. The total popula-

tion of Japan’s largest 103 cities amounts to 63.9 million or just over half of all the country’s residents.

Tokyo, with almost nine million inhabitants, is by far the largest Japanese city. (Strictly speaking, Tokyo

is not a city — it is a prefecture, but we shall call it a city.) With a population of 3.7 million, Yokohama,

south of Tokyo, is Japan’s second largest city. Osaka and Nagoya are Japan’s third and fourth cities,

each with a population of over two million. Eight cities have between one and two million inhabitants:

Sapporo, Kobe, Fukuoka, Kyoto, Kawasaki, Saitama, Hiroshima, and Sendai.

From these twelve cities we selected five: Tokyo, Osaka, Nagoya, Fukuoka, and Sapporo. This

choice guarantees that each of the three major metropolitan areas is represented: the greater Tokyo area

(Tokyo, Yokohama, Kawasaki, Saitama) by Tokyo, the Kansai region (Osaka, Kobe, Kyoto) by Osaka,

and the Chukyo metropolitan area by Nagoya. To obtain a representative geographical spread we added

Sapporo, the largest city in the North, and Fukuoka, the second largest city in the West after Osaka.

Data limitations prevented us from including Hiroshima, while Sendai was not included because it is too

close to Fukushima where the 2011 nuclear disaster took place following the Tohoku earthquake.

61



Wards. A designated city is a Japanese city that has a population greater than 500,000 and has been

designated as such by order of the Cabinet of Japan. Designated cities are delegated many of the tasks

normally performed by prefectural governments, such as public education, social welfare, sanitation,

business licensing, and urban planning. Designated cities are required to subdivide themselves into

wards (‘ku’), each of which has a ward office conducting various administrative functions for the city

government. The 23 special wards of Tokyo are not part of this system, as Tokyo is a prefecture, and its

wards are effectively independent cities. The five cities together contain 80 wards (regular and special

together): 23 in Tokyo, 24 in Osaka, 16 in Nagoya, 7 in Fukuoka, and 10 in Sapporo.

When considering to buy a property in a given city, one is likely to be interested in certain charac-

teristics of these wards. The original data set contains one hundred characteristics divided into eleven

categories. Since many of these are highly correlated we first select eleven of these divided into six

categories: two from population; three from schools, culture and welfare; one from medical facilities;

one from safety; two from shopping facilities; and two from employment. Only four of these appear in

our base model, but extensive sensitivity analyses will be conducted in Section 4.7 to assess how adding

more characteristics may affect the results.

Districts. Within each city there are wards, and within each ward there are districts (usually ‘cho’, some-

times ‘machi’). An average ward in Nagoya contains 86 districts, an average ward in Osaka only 23.

The number of districts ranges from 318 in Fukuoka to 1383 in Nagoya (1379 after prescreening). In

total there are 3714 districts (3710 after prescreening) in the five cities together.

Property types. In a given district i we have observations on three types of (residential) properties: land

and buildings, land only, and condos. Most properties are condos (45.1%), followed by land and build-

ings (34.1%) and land only (20.8%). We have observations over T = 38 quarters, from 2006/Q2 to

2015/Q3.

Table 4.1: Distribution of properties over cities, wards, and districts

City Ward District Land & Land Condo Station
building only

Tokyo 23 898 57,568 33,991 92,518 482
Osaka 24 564 21,064 6,901 21,855 220
Nagoya 16 1,379 14,640 13,110 11,029 159
Fukuoka 7 318 7,847 5,660 12,475 75
Sapporo 10 551 11,763 9,461 11,461 86

Total 80 3,710 112,882 69,123 149,338 1,022

Records with obvious errors have been excluded. Also excluded are records where the walking time

to the nearest station is longer than thirty minutes or the nearest station is unknown; records with a living

area larger than 2000 square meters; and properties built before the war (1945). After applying the above

criteria we are left with N = 3710 districts in total. The number of wards, districts, properties of each

type, and stations in each city is displayed in Table 4.1.
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Property prices and characteristics. We work with sales prices rather than with rental prices, because

sales are more permanent than rentals and we would therefore expect that the effect of earthquake risk

on choosing a property will be more informative.

Nakagawa et al. (2009) use land prices over various years (from 1980 onwards) and describe the

data in their Section 3 (for the Tokyo area). Their data are based on the Koji-Chika data set published by

the Ministry of Land, Infrastructure, Transport, and Tourism (MLIT). The Koji-Chika data set provides

fictional sales prices (as produced by ‘experts’) and they are only available at annual intervals, which

we consider to be too long for our purpose. We use a different data set, which provides self-reported

transaction prices at three-months intervals. This data set, also provided by the MLIT, is known as the

‘real estate transaction-price information’; see

www.land.mlit.go.jp/webland_english/servlet/MainServlet.

The information in this data set is based on the results of a questionnaire survey of persons involved

in real estate transactions conducted by MLIT, compiled and published quarterly. We thus know the

transaction price and the transaction date (quarter), and also in which district the property lies and the

name of the nearest station. In addition, many property characteristics are provided, of which we shall

only consider: total area in square meters, total floor area in square meters, distance to nearest station

measured in walking minutes, age of the building (if applicable), building structure (reinforced concrete,

steel, or wood), purpose of city planning in the urban control area, maximum building coverage ratio,

and maximum floor area ratio. Different types may have different regressors. For example, the equation

for land only does not have ‘building structure’ or ‘building age’ as a regressor; and the equation for

condos does not use ‘building structure’ as a regressor.

Economic indicators. Property prices are affected by general economic conditions. In order to incor-

porate possible effects of these economic conditions, we have selected two national macroeconomic

indicators: GDP and CPI.

Long-run earthquake risk. We consider two measures of earthquake risk: short-run risk (i.e., seismic

excitation; see Section 4.2.1) and long-run risk. Long-run earthquake risk is defined as the probability

of an earthquake exceeding certain intensity thresholds in the next 30 years in a given area, provided

by the Japan Seismic Hazard Information Station (JSHIS). We select the threshold intensities ‘5-lower’

(medium risk) and ‘6-lower’ (high risk) in our analysis. The JSHIS probabilities are provided in various

mesh sizes, varying from one square km to 250 square meters. For each district we identify its center

and then define the risk of that district as the JSHIS risk associated with the smallest available mesh in

which this center lies. Although the JSHIS exceedance probabilities are updated every one or two years,

we take the average of the JSHIS risk data over all available years, thus obtaining a time-invariant mea-

sure of long-run risk for each district. These probabilities are included as objective measures of long-run

earthquake risk in our regression design, at the district level. Choosing a district of relative safety may be

viewed as a form of self-insurance. Therefore, provided this information, which is publicly available, is
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known among consumers, we would expect higher property prices in relatively safe areas all else being

equal.

If the intensity is ‘5 lower’ then, according to the Japan Meteorological Agency, many people will

be frightened and feel the need to hold on to something stable. Hanging objects (such as lamps) will

swing violently, books may fall from bookshelves, and unstable furniture may topple over. Windows

may break and fall down, electricity poles may move, and roads may sustain damage. There may be

cracks in the walls of wooden properties. If the intensity is ‘6 lower’ then the effects will be more

severe. It will be difficult to remain standing, unsecured furniture will move and topple over, and cracks

in walls, crossbeams, and pillars will appear not only in wooden properties but also in properties built

from reinforced concrete.

Summary statistics are shown in Table 3.22. It is clear from Table 3.22 that Tokyo, Nagoya, and Os-

aka are high-risk cities with respect to ‘small’ earthquakes. In fact, it is almost certain that an earthquake

will occur in Tokyo with an intensity more severe than ‘5 lower’ within the next 30 years. Regarding

the occurrence of ‘severe’ earthquakes (‘6 lower’), Nagoya is more exposed than Tokyo and Osaka, and

much more exposed than Fukuoka and Sapporo. The variation in probabilities of severe earthquakes in

Tokyo, Osaka, and Nagoya is also much larger than in the other two cities. Fukuoka and Sapporo are

not likely to have severe earthquakes, but there is still considerable probability (and variation) of smaller

earthquakes. This suggests that it is important to use both thresholds, 5-lower and 6-lower, in charac-

terizing the distribution of long-run earthquake risk for our purpose. In particular, this will guarantee

sufficient variation of long-run probabilities in the hedonic price model discussed in Section 4.4.

4.4 The model

The dependent variable is log-property price, and we denote the h-th observation of type k in district i
during quarter t as y(h,k)

it . The most common method of modeling the property market is hedonic pricing,

pioneered by Rosen (1974) who argued that an item’s total price can be thought of as the sum of the

price of each of its homogeneous characteristics, so that the effect of each characteristic on the price can

be determined by regressing (log)price on these characteristics.

We shall follow the hedonic approach. In our case the (log)price is determined by characteristics

of the property itself (size, age, etc.), the surrounding environment (location, crime rate, schools, etc.),

earthquake risk factors, and macroeconomic influences.

The district i determines the city c(i), which takes values 1, . . . , 5 depending on the city in which

district i is situated. Also, the time variable t determines in which quarter q(t) the transaction took place,

taking values 1, . . . , 4 depending on whether t refers to the first, second, third, or fourth quarter. The

number of observations varies per district, type and quarter, and this affects the precision. We let H(k)
it

denote the number of observations on each type k = 1, 2, 3 in district i during quarter t.
We model the difference between cities by a shift αc(i) in the intercept term, but we assume that all

other parameters are the same between cities. The difference between cities is thus completely captured

by the αc(i).
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Our model can now be written as

y(h,k)
it = α

(k)
0 + αc(i) + γq(t) + x(k)i·

′β1 + x(k)·t
′β2 + x(h,k)

it
′β3

+ rit(ψ)
′β4 + u(h,k)

it , (4.3)

where xi· denotes a variable that is constant over time, but varies over districts (attractiveness variables),

x·t denotes a variable that is constant over districts, but varies over time (economic indicators), xit

denotes a variable that varies over districts and over time (property characteristics), and rit denotes the

risk data (same for each type k) given by the (distorted) short- and long-run earthquake probabilities.

The reference dummies are the city dummy for Tokyo and the quarter dummy for Q4; these are set to

zero.

In order to obtain a (balanced) panel we average over h, and obtain

ȳ(k)it = α
(k)
0 + αc(i) + γq(t) + x(k)i·

′β1 + x(k)·t
′β2 + x̄(k)it

′β3

+ rit(ψ)
′β4 + ū(k)

it , (4.4)

where we average over H(k)
it items, which thus depends on how many properties of type k there are in a

given district.

Next we combine the three types of property into one 3× 1 vector:

ȳit = α0 + (αc(i) + γq(t)) ı + X∗i·β1 + X∗·tβ2 + X∗itβ3 + ırit(ψ)
′β4 + ūit, (4.5)

where ı = (1, 1, 1)′, which we write more succinctly as

ȳit = X̄itβ + ūit (i = 1, . . . , N; t = 1, . . . , T), (4.6)

where ȳit is a p× 1 vector of random observations, explained by (non-random) regressors X̄it = X̄it(ψ),

an unknown parameter vector β, and random errors ūit (p× 1). In our case p = 3.

The errors are assumed to follow a p-variate three-error components structure,

ūit = ζi + ηt + εit, (4.7)

a sum of three independent components each of which is iid with zero means and variances

var(ζi) = Σζ , var(ηt) = Ση , var(εit) = Σε, (4.8)

where Σζ and Ση are positive semidefinite, and Σε is positive definite, all of order p× p.

Although the model appears to be linear in the parameters this is not completely the case, because

the risk variable rit is a non-linear function of one or more ψ’s which appear in the probability weighting

function w(p). The estimation procedure taking this issue into account has been discussed in Chapter 2.
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4.5 Estimation results

Our primary interest is in earthquake risk and its impact on property prices. More specifically, we wish

to answer three questions:

(1) Do objective long-run earthquake probabilities have an effect on property prices?

(2) If so, do objective short-run earthquake probabilities have an effect on property prices, in addition

to the effect of long-run probabilities?

(3) And do potentially distorted short-run earthquake probabilities have an effect on property prices, in

addition to the effect of long-run probabilities?

Table 4.2: Results under various risk assumptions

variable LR LR and Base
only objective SR model

land & building 3.7592 4.5593 4.3812
intercepts land only 3.5949 4.3940 4.2155

condo 3.1025 3.9024 3.7244

Osaka −0.2273 −0.2625 −0.2615
city dummies Nagoya −0.3801 −0.4100 −0.4139

Fukuoka −0.8770 −0.9133 −0.9108
Sapporo −1.2050 −1.2458 −1.2388

immigrants 6.7245 6.7224 6.7218
ward crime −0.0437 −0.0436 −0.0436
attractiveness unemployment −4.3360 −4.3395 −4.3399

executives 3.3426 3.3447 3.3464

economic log(GDP) 0.5606 0.5220 0.5229
indicators log(CPI) 1.5347 1.4687 1.5030

area (m2) 0.0025 0.0025 0.0025
floor area (m2) 0.0006 0.0006 0.0006
distance to nearest station −0.0145 −0.0145 −0.0145
age −0.0121 −0.0121 −0.0121
built 1981–2000 0.1674 0.1658 0.1652

property built after 2000 0.4136 0.4126 0.4123
characteristics structure: reinf. concrete 0.4348 0.4344 0.4343

structure: steel 0.1867 0.1867 0.1867
structure: wood −0.1264 −0.1266 −0.1266
urban control −0.8972 −0.8967 −0.8967
max building coverage ratio −0.0019 −0.0019 −0.0019
max floor area ratio 0.0004 0.0004 0.0004

long run 45–55 −0.1433 −0.1427 −0.1427
risk long run 55+ −0.5037 −0.5039 −0.5041

short run — −0.0915‡ −0.0514
ψ̂ — — 3.74†

∆ log L −68.5 −15.8 —

Before we answer these questions and comment on our estimates in Table 4.2, we explain our econo-

metric modelling strategy. This strategy is based on two ingredients. First, we aim for parsimony. We

want the smallest model that captures the essence of our story. This means that sometimes regressors

have been deleted from our model even when the associated parameters are ‘significant’. Significance

does not imply importance, and importance is what interests us. Second, we make a distinction between

focus and auxiliary regressors. The focus regressors are the effects that we are interested in or are part
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of the minimum set that would make up a credible model, while the auxiliary regressors are only in the

model because they improve the estimation of the focus parameters.

Since we have many observations, most estimates are likely to be significant at the usual 1.96 level.

We provide more information about the results by strengthening the significance requirement on the

t-values. Thus, a ‡ will indicate that |t| ≤ 1.96, which we interpret as not significant, while † indicates

significance with 1.96 < |t| ≤ 4.00. Estimates without superscript are therefore significant with |t| >
4.0. The choice of 4.0 is somewhat arbitrary and chosen a posteriori in order to provide more information

about the precision of our estimates, in particular our parameter estimates pertaining to the risk variables.

(All t-values test the null hypothesis that the parameter of interest equals zero, except the t-value of ψ̂

which tests the null that ψ = 1.)

Now consider the first question. The results are presented in Table 4.2 under the heading ‘LR only’

and we see that all estimates are significant, that is, their t-value (in absolute terms) exceeds 4.0. Re-

garding the long-run risk effects, we remark that long run 45–55 (medium risk) indicates the JSHIS

probability that an earthquake occurs in the next thirty years of higher intensity than 5-lower and lower

intensity than 6-lower; and that long run 55+ (high risk) indicates the JSHIS probability that in the next

thirty years an earthquake occurs of intensity 6-lower or higher. Both medium risk and high risk appear

to have a significant negative impact on property prices. The higher risk level has a more severe impact,

which is intuitively reasonable. Hence, long-run risk matters. This answers the first question.

Next, we consider the second question: given that long-run risk plays a role, do objective short-run

probabilities also have an effect on property prices? The results are presented in the next column of

Table 4.2 under the heading ‘LR and objective SR’. Apparently they don’t: the effect of the risk variable

short run, while negative as we would expect, is not significantly different from zero.

Finally, we consider the third question: given that long-run risk plays a role, do potentially distorted

short-run probabilities also have an effect on property prices? The results are displayed in the final

column of Table 4.2 under the heading ‘Base model’. Apparently they do: after distortion, short-run

probabilities have a significant negative effect on property prices.

The difference between distorted and objective short-run risk is that short-run probabilities are now

allowed to be distorted using a probability weighting function, in this case the one-parameter weighting

function (4.2) proposed by Prelec (1998), which yields the highest likelihood. The parameter ψ in the

Prelec function is estimated to be 3.74 and is significantly different from unity, since the absolute value

of its t-value lies between 1.96 and 4.00; in fact |t| = 2.91.

As shown in Figure 4.3, the estimated probability weighting function has an S-shaped pattern where

small probabilities are underweighted and large probabilities are overweighted, which is in contrast to

the inverse S-shaped probability weighting function often found in experiments. This contrast may be

explained by the fact that with a positive background intensity of earthquakes, temporary deviations of

short-run earthquake probabilities caused by seismic excitation are not evaluated (and overweighted)

with respect to a reference probability of zero but with respect to a positive reference probability level.

This applies in particular to Tokyo where the 90-day probability of an earthquake exceeding magnitude

threshold of 5.5 never drops below 35% in the period that we analyze.

In summary: long-run risk matters, objective short-run risk does not, but distorted short-run risk

67



objective probabilities

di
st

or
te

d
pr

ob
ab

ili
tie

s

0
0.

2
0.

4
0.

6
0.

8
1

0 0.2 0.4 0.6 0.8 1

Figure 4.3: Estimated probability weighting of short-run probabilities, Prelec probability weighting
function, ψ̂ = 3.74

does. In addition, all non-risk parameter estimates in the second and third columns are similar to the

ones in the first column and all are significant (with a t-value larger than 4.0 in absolute value).

We briefly comment on these other (non-risk) parameters in the base model.

Intercept and city dummies. Tokyo, of course, is the most expensive city to buy property. If we set the

property price level of Tokyo at 1.00, then the average property price levels of the other cities are 0.77

in Osaka, 0.66 in Nagoya, 0.40 in Fukuoka, and 0.29 in Sapporo. (Recall that we don’t regress price

but log-price on these dummies.) Also, if we set the price of land and building at 1.00, then the average

price of the other types of property are 0.85 for land only and 0.52 for condos.

Quarterly effects. Estate agents sometimes tell customers that some months are better to buy or sell than

others. Our results (in quarters, not months) are ambiguous, which is why we have omitted the quarter

dummies from our regression. We return to this issue in our sensitivity analysis section.

Ward attractiveness. As discussed in Section 4.3, we selected eleven characteristics for each ward, di-

vided into six categories. Only four of these eleven characteristics appear in our base model: percentage
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of immigrants (representing population); number of criminal offenses (representing safety); and unem-

ployment ratio and percentage of executives (representing employment). Executives make a ward more

attractive, while crime and unemployment make it less attractive. Immigrants too make a ward more

attractive, which makes sense if we realize that the word ‘immigrant’ refers to somebody moving into

the ward from another municipality, usually within Japan. Hence, the more people move in from other

areas in Japan, the more attractive the ward apparently is.

Economic indicators. Property prices are affected by general economic conditions, and two indicators

appear in Table 4.2 and in our base model: log(GDP) and log(CPI), both of which have a positive

effect on property prices. The inclusion of log(CPI) has the additional advantage that if we wish to

explain real (rather than nominal) property prices, then all results remain the same except that the effect

of log(CPI) is now 0.503 rather than 1.503. Hence, CPI has a positive effect not only on nominal but

also on real property prices.

Property characteristics. A large (floor) area and proximity to the nearest station contribute positively

to the price. New buildings are preferred to old ones, where we have included two dummies because

major changes occurred in the regulations on earthquake-resistance standards in 1981 and 2000. As a

result, buyers prefer a house built between 1981 and 2000 over a house built before 1981, and they like a

house built after 2000 even better. Regarding the structure, wood is not desirable, steel is desirable, but

reinforced concrete is preferred. Urban control signifies restrictions on development possibilities, and

this has a negative effect on prices.

For all three property types the designated maximum building coverage ratio (BCR) and the max-

imum floor-area ratio (FAR) are provided. These ratios are legally allowed maxima, different for each

piece of land. The BCR is the percentage of the building area to the site area; the FAR is the percentage

of the total floor area to the site area. We use both ratios in our regression and find a negative effect of

BCR and a positive effect of FAR. Shimizu and Nishimura (2006) and Nakagawa et al. (2009) use only

FAR and find mixed effects and a positive effect, respectively. Hidano et al. (2015) use both ratios (as

we do) and find a negative effect of BCR and a mixed effect of FAR.

Error components. We estimated the coefficients using the multivariate three-error components struc-

ture, as described in Section 4.4. It turns out that

tr(Σε) = 0.496 > tr(Σζ) = 0.129� tr(Ση) = 0.002

and as a result we set Ση = 0, so that we end up with a two-error components structure. The effect of

this is negligible and will be discussed further in our sensitivity analysis in Section 4.7.

4.6 Importance ordering and premia for earthquake risk

Next we wish to determine an ordering of importance of the explanatory variables, in particular the

importance of the risk variables, and to calculate the premia for earthquake risk embedded in property
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prices.

Table 4.3: Influences of each component for each type and city, real prices. Interquartile range between
brackets.

intercept ward(+) ward(-) macro property(+) property(-) long-run short-run
risk risk

Type
land & building 0.3254 0.0497 -0.0285 0.6533 0.0600 -0.0354 -0.0187 -0.0014

(0.0320) (0.0162) (0.0104) (0.0436) (0.0273) (0.0224) (0.0085) (0.0025)
land only 0.3152 0.0514 -0.0284 0.6637 0.0360 -0.0191 -0.0180 -0.0000

(0.0394) (0.0159) (0.0095) (0.0404) (0.0296) (0.0087) (0.0085) (0.0024)
condo 0.2936 0.0613 -0.0302 0.6911 0.0403 -0.0334 -0.0196 -0.0018

(0.0217) (0.0226) (0.0108) (0.0490) (0.0216) (0.0219) (0.0076) (0.0031)
City
Tokyo 0.3119 0.0582 -0.0253 0.6598 0.0452 -0.0285 -0.0186 -0.0026

(0.0316) (0.0177) (0.0079) (0.0382) (0.0270) (0.0194) (0.0076) (0.0015)
Osaka 0.3095 0.0457 -0.0464 0.6899 0.0491 -0.0323 -0.0228 -0.0000

(0.0354) (0.0306) (0.0102) (0.0479) (0.0302) (0.0247) (0.0050) (0.0000)
Nagoya 0.3035 0.0498 -0.0269 0.6808 0.0518 -0.0313 -0.0280 -0.0000

(0.0266) (0.0152) (0.0103) (0.0437) (0.0332) (0.0208) (0.0087) (0.0000)
Fukuoka 0.2519 0.0535 -0.0324 0.7044 0.0487 -0.0363 -0.0061 -0.0000

(0.0292) (0.0243) (0.0074) (0.0590) (0.0352) (0.0240) (0.0021) (0.0000)
Sapporo 0.2442 0.0534 -0.0318 0.7145 0.0532 -0.0362 -0.0033 -0.0000

(0.0308) (0.0116) (0.0040) (0.0556) (0.0375) (0.0255) (0.0032) (0.0000)

We write the prediction based on our original model (4.4) as

ˆ̄y(k)it = α̂
(k)
0 + α̂c(i) + γ̂q(t) + x(k)i·

′ β̂1 + x(k)·t
′ β̂2 + x̄(k)it

′ β̂3 + rit(ψ̂)
′ β̂4. (4.9)

In order to determine an ordering of importance of the explanatory variables, we note that the size of an

estimated parameter gives no indication of the size of its influence, because this influence depends also

on how the associated regressor is measured. We write (4.9) symbolically as

log(price) = intercept + W+ − |W−|+ M + P+ − |P−| − |Rlr| − |Rsr|, (4.10)

where the intercept comprises the (combined) constant term α̂
(k)
0 + α̂c(i) + γ̂q(t) (positive); W+ and

W− contain the two positive and two negative ward regressors in x(k)i·
′ β̂1; M contains the two macro

regressors in x(k)·t
′ β̂2 (both positive); P+ and P− contain the seven positive and five negative property

regressors in x̄(k)it
′ β̂3, respectively; and Rlr and Rsr contain the long-run and short-run risk regressors in

rit(ψ̂)
′ β̂4 (all negative).

Some categories (the ward characteristics W and the property characteristics P) contain both positive

and negative influences. Simple addition would then be misleading since two opposite forces would hide

possibly important influences. Hence we calculate the influences by first defining

A = intercept + W+ + |W−|+ M + P+ + |P−|+ |Rlr|+ |Rsr|, (4.11)

where all items are positive (by construction). Influences can then be decomposed into contributions

from various categories by using A as the common denominator, that is, by computing intercept/A,

(W+ + |W−|)/A, et cetera.

Table 4.3 presents the median of the relative influences for each component, by type and by city,
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using log real property prices as the dependent variable. Macroeconomic indicatorsare very important,

contributing around 67%. The intercepts for type and city are also important, contributing around 31%.

Location matters as well, as the two subsets of ward attractiveness regressors take up around 5% and

-3% of the influence, while the two sets of individual property characteristics add up to another 5% and

-3%. This leaves around -2% for long-run and (distorted) short-run risk. The influence of long-run risk

is almost the same for all property types, but it differs substantially among different cities. Fukuoka

and Sapporo, where earthquakes are relatively rare, are not much influenced by long-run risk,while

Nagoya is the most influenced. Regarding short-run risk, only Tokyo is influenced and the importance

of short-run risk in Tokyo is about one-seventh of the influence of long-run risk. The joint influence of

long-run and distorted short-run earthquake risk, on average -2.0% of log property prices, translates in

monetary terms into a marginal effect of around -7 million Japanese yen per property, slightly more than

the average annual income of a middle-income Japanese household in the period 2006/Q2 to 2015/Q3

that we analyze (Source: e-Stat Portal Site of Official Statistics Japan).

While the macro variables are by far the most relevant in explaining median house prices, they may

be less relevant in explaining the dispersion around the median. To consider this aspect, Table 4.3

also displays the interquartile ranges (in brackets) of the relative influences. They reveal that the macro

variables are still important, but all other variables (including the risk variables) are also quite important.

More specifically, we see that individual property characteristics and intercepts for type and city are

relevant in explaining dispersion in property prices (2.6%, 1.8% and 3.1% on average, respectively),

still surpassed by macroeconomic variables (4.4%), and quite closely followed by the two sets of ward

characteristics (1.8% and 1.0%) and risk variables (1.1%). Remarkably, the risk variables thus almost

stand on equal footing with ward characteristics in explaining dispersion in property prices.

We can also compute these influences per quarter, in particular the quarter after the Tohoku earth-

quake (2011/Q2). The median influences of each component are essentially the same in that quarter

with the exception of short-run risk in Tokyo, which is -0.26% overall but -0.40% in 2011/Q2. Large

earthquakes have an important short-run effect in Tokyo. The influence of long-run risk remains the

same.

We now investigate the influence of long-run and short-run risk in more detail, by decomposing the

premia for earthquake risk. More precisely, we calculate and compare the predictions from four models.

In model M0 there are no risk variables, either long-run or short-run; in model M1 we only have the

two (objective) long-run risk variables; in model M2 we have long-run plus objective short-run risk

variables; and in model M3 we have long-run plus distorted short-run risk variables (our base model).

Table 4.4 contains the results of this experiment. Let us denote the median of the log-price predic-

tions in the four models by m0, m1, m2, and m3, respectively. Then the column m1 −m0 contains the

premium of including (objective) long-run risk compared to not including any risk variable; the col-

umn m2 −m1 contains the premium of including objective short-run risk (in addition to long-run risk)

compared to not including short-run risk; and the column m3 −m2 contains the premium of including

distorted short-run risk (in addition to long-run risk) compared to including objective short-run risk.

We see that there is not much difference between different types of property and that the premium for

long-run risk (compared to no risk) is much larger than the additional premium for short-run risk. Tokyo,

Osaka, and Nagoya have a substantial premium for (objective) long-run risk of about 24–34%, while in
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Table 4.4: Decomposition of the premia for earthquake risk per type and city

type city median median premium
log-price m1 −m0 m2 −m1 m3 −m2

Tokyo 17.7275 −0.2620 −0.0246 −0.0092
land & Osaka 17.2495 −0.2783 −0.0049 0.0049
building Nagoya 17.4264 −0.3393 −0.0076 0.0076

Fukuoka 17.2812 −0.0630 −0.0043 0.0043
Sapporo 17.0736 −0.0558 −0.0016 0.0016

Tokyo 17.7073 −0.2409 −0.0241 −0.0087
land Osaka 17.2167 −0.2691 −0.0048 0.0048
only Nagoya 17.1113 −0.3293 −0.0077 0.0077

Fukuoka 16.9066 −0.0658 −0.0046 0.0046
Sapporo 16.3805 −0.0517 −0.0016 0.0016

Tokyo 17.0344 −0.2621 −0.0246 −0.0093
Osaka 16.5881 −0.2677 −0.0051 0.0051

condo Nagoya 16.5236 −0.3175 −0.0079 0.0079
Fukuoka 16.2134 −0.0740 −0.0042 0.0042
Sapporo 16.2134 −0.0457 −0.0015 0.0015

Fukuoka and Sapporo this premium is 5–7%, thus much smaller. This is consistent with their different

long-run risk profile. All long-run premia are negative, which means that long-run risk is compensated

for through an adjustment in property prices in all cities.

Regarding short-run risk, there is a big difference between Tokyo and the other cities. In Tokyo,

property prices are compensated for objective short-run risk with a median premium of about 2.5%, and

there is an additional median compensation for distorted short-run risk of about 1%, because people tend

to overweight large short-run earthquake probabilities in the Tokyo property market. In the quarter after

the Tohoku earthquake these median premia rise to 3.0% and 1.7%, respectively.

Outside Tokyo we see that (m3 − m2) ≈ −(m2 − m1), which implies that the overall effect

(m3 − m1) is almost zero. This is caused by the shape of the estimated probability weighting func-

tion. The short-run probabilities outside Tokyo are relatively small, and after probability weighting they

become even smaller (bottom part of the S-curve). People thus underweight small short-run proba-

bilities; in fact they almost ignore them altogether. This effect (or lack of effect) can be decomposed

into a ‘compensation’ (m2 − m1 < 0) for objective short-run risk and a ‘reward’ (m3 − m2 > 0) for

underweighting short-run risk.

The power of econometrics is well-illustrated by the fact that, while property prices are the highest

in Tokyo, the largest compensation (that is, reduction) for short-run risk (objective and distorted) and a

sizeable compensation for long-run risk is in Tokyo.

4.7 Sensitivity analysis

Our base model depends on assumptions regarding which variables to include and which not, how to

measure or group certain variables, the choice of functional forms, and the stochastic specification. We

wish to show that our results are robust, and we shall do so by deviating from our base model in various

directions. (Of course, the selected base model was, in fact, itself the result of extensive sensitivity

analyses.) In each case we are interested to find out whether our focus parameters are affected by these

deviations. We are less interested to find out whether the deviations themselves are ‘significant’ or
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not, since these deviations typically represent auxiliary variables and are not the primary focus of our

investigation.

Our focus variables are the risk variables and, in addition, four key characteristics of the property:

area (m2), floor area (m2), distance to the nearest station, and age of the property. We have chosen the

location (distance to nearest station) and the size (area and floor area) as our focus variables, and one

characteristic of the property (age).

Ward attractiveness. Our base model contains four variables which measure the attractiveness of a ward.

We extend this list by adding seven ward characteristics: the percentage of foreigners, and the number of

hospitals, daycare centers, kindergartens, homes for the aged, department stores, and large retail stores.

Table 4.5: Sensitivity — ward attractiveness and economic indicators

Base +Attr. −GDP

area (m2) 0.0025 0.0025 0.0025
floor area (m2) 0.0006 0.0006 0.0006
distance to nearest station −0.0145 −0.0142 −0.0145
age −0.0121 −0.0121 −0.0122

long run 45–55 −0.1427 −0.1961 −0.1411
long run 55+ −0.5041 −0.5706 −0.5024
short run −0.0514 −0.0519 −0.0839
ψ̂ 3.74† 3.75† 2.63†

∆ log L — 472.9 −407.8

If we compare the column ‘+Attr.’ with the base model (‘Base’) in Table 4.5 we see that very

little changes, thus showing the robustness with regard to these ward characteristics. These additional

ward characteristics are therefore omitted in view of parsimony and the fact that, while they may be

significant, they are not important.

Economic indicators. In the same Table 4.5 we also experiment with deleting log(GDP), so that the

only economic indicator is log(CPI). This has some (although not a large) effect in particular on short-

run risk, so that we keep GDP in the model as a general plausible indicator of economic activity.

Property characteristics. Next we experiment with the property characteristics. We consider three

deviations from the base model, reported in Table 4.6.

In the first column we remove the urban control variable; in the second column we remove the three

building structure dummies; and in the third column we add, in addition to urban control, three further

land-use variables (‘residential’, ‘commercial’, and ‘industrial’), which describe the city’s intentions of

the usage of the land. Again, the estimated parameters appear to be robust to these changes; inclusion

of urban control and, in particular, building structure dummies appears to substantially increase the

loglikelihood, which makes sense because building a property costs more when steel is used instead of

wood, and even more when reinforced concrete is used.

Cities. In our base model we have selected five Japanese cities. Although our selection is based on

73



Table 4.6: Sensitivity — property characteristics

Urban control Build. Struct. Land use

area (m2) 0.0025 0.0025 0.0025
floor area (m2) 0.0006 0.0009 0.0006
distance to nearest station −0.0147 −0.0159 −0.0146
age −0.0121 −0.0119 −0.0121

long run 45–55 −0.1060 −0.1685 −0.1387
long run 55+ −0.4661 −0.5263 −0.4767
short run −0.0516 −0.0508 −0.0515
ψ̂ 3.72† 3.89† 3.76†

∆ log L −786.6 −5824.4 33.9

careful considerations (geographical spread and risk variation, in particular) as discussed in Section 4.3,

this is still somewhat arbitrary. Suppose we only had four cities. How would this affect our estimates?

This is shown in Table 4.7. In the first column we delete Tokyo, in the second column we delete Osaka,

Table 4.7: Sensitivity — four cities

Tokyo Osaka Nagoya

area (m2) 0.0023 0.0024 0.0025
floor area (m2) 0.0006 0.0006 0.0006
distance to nearest station −0.0152 −0.0145 −0.0147
age −0.0126 −0.0127 −0.0115

long run 45–55 −0.2427 −0.1124 −0.1571
long run 55+ −0.4302 −0.4759 −0.6160
short run −0.1873‡ −0.0627 −0.0525
ψ̂ 1.9‡ 4.04† 4.11†

and in the third column we delete Nagoya. The effect on the non-risk parameters (area, distance, age) is

small, but the effect on the risk parameters is not so small. Deleting Tokyo has quite a large effect on the

risk parameters, because the short-run risk of Osaka, Nagoya, Fukuoka and Sapporo is relatively small

compared to Tokyo, and estimation is less accurate when there is less variation in the risk variables.

Deleting Osaka or Nagoya only affects the risk estimates marginally. Deleting Fukuoka or, in particular,

Sapporo leads to unreliable results for the long-run risk parameters, probably caused by the fact that

without these cities there is insufficient variation in the long-run risk variables leading to inaccurate

estimation results. They are therefore omitted from the table. (Notice that we do not show the difference

in loglikelihood in this table since the numbers of observations are different with different subsets of the

sample.)

Time dimension. Our observations are per quarter and we could include quarter dummies to capture the

idea that buying or selling in one quarter is more advantageous than in another.

Our base model does not include quarter dummies and in Table 4.8 we experiment with three possi-

ble extensions, namely adding three quarter dummies, adding one dummy for the fourth quarter (because

there are relatively few earthquakes in the fourth quarter), and adding one dummy for the quarter follow-

ing the Tohoku earthquake, respectively. In the cases Q123 and Q4 the likelihood increases substantially,

but the key estimates don’t change much, although the short-run risk parameters now become less signif-
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Table 4.8: Sensitivity — quarters and Tohoku dummy

Base Q123 Q4 Tohoku

area (m2) 0.0025 0.0025 0.0025 0.0025
floor area (m2) 0.0006 0.0006 0.0006 0.0006
distance to nearest station −0.0145 −0.0145 −0.0145 −0.0145
age −0.0121 −0.0120 −0.0120 −0.0121

long run 45–55 −0.1427 −0.1415 −0.1406 −0.1426
long run 55+ −0.5041 −0.5033 −0.5025 −0.5040
short run −0.0514 −0.0162† −0.0208† −0.0562
ψ̂ 3.74† 4.56‡ 3.89‡ 3.27†

∆ log L — 1091.3 1007.8 6.3

icant. In the case of Tohoku even the likelihood does not increase much. Because the quarter dummies

and the short-run risk are both time effects, which are likely to interact with each other, the results are

ambiguous. This is why we prefer to exclude quarter dummies, thus making the interpretation easier

and more transparent.

Stochastics. In our base model we have estimated two variance matrices:

Σζ = 0.129

 0.16 0.10 −0.00
0.10 0.18 −0.04
−0.00 −0.04 0.66

 , Σε = 0.407

0.31 0.01 0.00
0.01 0.33 0.00
0.00 0.00 0.36

 ,

while we set Ση = 0. This is because when we estimate the full three-error components model, we find

Σζ = 0.129

 0.16 0.11 −0.00
0.11 0.18 −0.04
−0.00 −0.04 0.66

 , Σε = 0.406

0.31 0.01 0.00
0.01 0.33 0.00
0.00 0.00 0.36

 ,

while

Ση = 0.002

0.32 0.35 0.00
0.35 0.44 −0.06
0.00 −0.06 0.24

 .

The matrices Σζ and Σε are thus hardly affected and Ση is about one hundred times smaller than the

other two.

In Table 4.9, column 2 we see that the key parameters are also hardly affected, although the like-

lihood (with six additional parameters) increases substantially. A formal test (not trivial in this case)

may indicate that the hypothesis Ση = 0 is rejected in favor of Ση > 0, but we opt — in line with

current ideas about the theory of applied econometrics (Angrist and Pischke, 2009; Magnus, 2017) —

for parsimony and importance rather than for significance.

Station versus district. We know a lot about each property from the data, but not its exact location. We

know in which district the property lies and we also know the name of the nearest station. In our setup

we use districts as our location reference and there are 3,710 districts in our data set. But we could also
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Table 4.9: Sensitivity — stochasticity and station versus district

Base 3-errors station

area (m2) 0.0025 0.0025 0.0026
floor area (m2) 0.0006 0.0006 0.0006
distance to nearest station −0.0145 −0.0146 −0.0137
age −0.0121 −0.0121 −0.0115

long run 45–55 −0.1427 −0.1448 −0.1378†

long run 55+ −0.5041 −0.5067 −0.5742
short run −0.0514 −0.0443 −0.0548
ψ̂ 3.74† 3.52† 3.56†

∆ log L — 735.2

use the nearest station as our location reference. There are 1,022 stations, so the district measure should

be more precise. In fact, as Table 4.9, column 3 shows, the results are amazingly similar, demonstrating

that the precise method of approximating the location is not so important.

Probability weighting functions: an extension. In our base model we use objective long-run probabili-

ties and distorted short-run probabilities based on the Prelec probability weighting function. This raises

various questions. First, one could argue that we should allow long-run probabilities to be distorted too;

and second, we could experiment with different probability weighting functions.

Table 4.10: Sensitivity and extension — probability weighting functions

Base dist. SR dist. LR dist. LR
TK Prelec TK

area (m2) 0.0025 0.0025 0.0025 0.0025
floor area (m2) 0.0006 0.0006 0.0006 0.0006
distance to nearest station −0.0145 −0.0145 −0.0143 −0.0143
age −0.0121 −0.0121 −0.0121 −0.0121

long run 45–55 −0.1427 −0.1427 −0.8644 −0.4856
long run 55+ −0.5041 −0.5039 −1.3838 −1.5028
short run −0.0514 −0.0733‡ −0.0517 −0.0518
ψ̂ 3.74† 1.40‡ 3.78† 3.77†

γ̂ — — 0.17 0.32

∆ log L — −14.6 152.8 167.6

In Table 4.10 we experiment with an alternative functional form for the short-run risk variable,

namely the weighting function (4.1) introduced by Tversky and Kahneman (1992). In particular, in col-

umn 2 (dist. SR, TK) we replace the Prelec function applied to the short-run earthquake probabilities

with the Tversky-Kahneman probability weighting function. The estimation results are similar to the

base model, but somewhat less precise, and the loglikelihood decreases. The Tversky-Kahneman proba-

bility weighting function is found to be S-shaped, just like the Prelec function, confirming the robustness

of this finding.

Next we also allow long-run risk to be distorted using both the Prelec and the Tversky-Kahneman

weighting functions. The model contains two related time-invariant long-run probabilities and we quite

naturally assume that these two probabilities share the same weighting function with the same parameter

γ. (In particular, distorted long run 45–55 is computed as distorted long run 45+ minus distorted long

76



run 55+, consistent with Choquet integration.) In columns 3 and 4 of Table 4.10 we allow both long-run

risk and short-run risk to be distorted.
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Figure 4.4: Implied probability weighting functions of long-run and short-run earthquake risk

The model with the higher likelihood is the one with an inverse S-shaped Tversky-Kahneman

weighting function for long-run risk and an S-shaped Prelec weighting function for short-run risk, as

shown in Figure 4.4. We note that the Prelec function for long-run risk, although yielding a lower log-

likelihood than the Tversky-Kahneman weighting function, is also found to be inverse S-shaped, which

is reassuring for the robustness of our results. Thus, in an extension of our base model that allows for

distortion of time-invariant long-run earthquake probabilities we find evidence of a conventional inverse

S-shaped probability weighting function. This means that when purchasing property in Japan, people

tend to overweight small long-run probabilities and underweight large long-run probabilities.

Summarizing, we have conducted extensive sensitivity analyses on our base model, always moving

one step away from our base model. The base model proved to be remarkably robust in most directions.

In some cases, however, one could argue that the base model should have been adjusted. The reason

why we have not done so and prefer the current base model is twofold. First, we aim for parsimony; we

prefer a simpler model over a more complex model. Second, if we were to change our base model, we

would need to do (and we have done) the sensitivity analysis again for all cases, now based on the new

base model. Then there will be other directions that prove to be sensitive. It is unlikely that there exists
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a model that is insensitive in every direction.

4.8 Conclusion

We have studied the impact of earthquake risk on Japanese property prices using a rich panel data set.

We have not only allowed for time-invariant long-run earthquake probabilities to impact property prices,

but we have also analyzed the impact of short-run earthquake probabilities generated from a seismic

excitation model.

We have shown that long-run earthquake probabilities negatively impact property prices and increas-

ingly so at higher risk levels. We have also shown that short-run earthquake probabilities have a negative

impact on property prices, and that this effect becomes statistically significant only after we allow for

probability weighting.

The probability weighting function associated with short-run earthquake probabilities is found to

be S-shaped. That stands in contrast to the familiar inverse S-shaped probability weighting functions

predominantly found in experiments. The shape we find may be explained by the fact that in our setting

there is a non-negligible positive background arrival rate of earthquakes. People may therefore tend to

evaluate earthquake probabilities, and overweight their temporary deviations under seismic excitation,

not with respect to zero but with respect to a positive reference probability level. This remarkable finding

calls for the development of reference-dependent models for probabilities to augment the large literature

on reference-dependent models for changes in wealth levels.
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Chapter 5

Computational properties of the WALS
estimator

5.1 Introduction

The t-statistic is commonly used by econometricians to determine the statistical significance of a param-

eter estimate in linear regression models. More specifically, its use can be seen as two-fold. First, it is

used for hypothesis testing. Under certain assumptions the t-statistic follows a Student’s t-distribution,

thus by checking its value against the critical values under a certain significance level, the null hypoth-

esis that the estimated coefficient of a regressor of interest is zero can be tested. Second, it is used as

a diagnostic, where the econometrician is not sure about whether to include a regressor in the model

and chooses to include it only when the t-statistic is above a certain threshold or when including the

regressor would improve the estimator of other regressor(s) in the model.

In the second approach, the t-statistic is used as a criterion for model selection. The process of using

the t-statistic as a criterion for model selection is called pretesting. The resulting estimator, the pretest

estimator, is defined as

bi = wβ̂iu + (1− w)β̂ir, (5.1)

where

w =

 1 if |tj| > c,

0 if |tj| ≤ c,
(5.2)

and β̂iu and β̂ir are estimators from the unrestricted and restricted model, while tj is the t-statistic

corresponding to β j. In the restricted model, β j = 0. The value of c is usually chosen to be 1.96 if

the significance level is 5%. As has been discussed in, among others, Magnus and Durbin (1999) and

Danilov and Magnus (2004), the pretest estimator is non-differentiable, inadmissible, and is not robust

to small changes in the level of c or small perturbations in the data.

Pretesting is commonly employed by applied econometricians but often without proper scrutiny into

the implications of using the same dataset for selecting a model and estimating the parameters in the

selected model. Danilov and Magnus (2004) shows that model selection and estimation should not

be viewed as two separate steps but should be seen as one integrated procedure, since ignoring the
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uncertainty in the model selection would lead to misleadingly precise estimates.

The pretest estimator is a simple special case of model-averaging estimators, which combine model

selection and estimation. The literature on model averaging diverges into two major schools: Frequen-

tist Model Averaging (FMA) and Bayesian Model Averaging (BMA). In this chapter we focus on the

weighted-average least squares (WALS) estimator, which is a Bayesian combination of frequentist es-

timators developed in Magnus et al. (2010). A Bayesian flavor is introduced in the estimator because

the weights and conditional estimates of each model are determined by the input data and the choice of

priors. As shown by Magnus et al. (2010), the WALS estimator has a number of advantages over the

BMA estimator from both the theoretical and practical standpoints.

Magnus and De Luca (2016) presents a comprehensive review on the WALS method from its in-

ception until 2014. In this survey paper, the theory related to WALS was summarized and a consistent

framework was introduced. After the publishing of Magnus and De Luca (2016), a number of exten-

sions and improvements to the WALS estimator have been proposed. De Luca et al. (2018) extends

the WALS estimator from Gaussian linear models to generalized linear models. De Luca et al. (2021b)

derives estimators of the finite-sample bias and variance of WALS. In particular, two plug-in estimators

of the bias and variance of the posterior mean are proposed and analyzed, namely the frequentist Maxi-

mum Likelihood (ML) estimator and the Bayesian Double Shrinkage (DS) estimator. These estimators

can be embedded in the WALS estimation procedure to obtain bias-corrected WALS estimation results.

De Luca et al. (2021c) proposes a simulation-based approach for estimating WALS confidence and pre-

diction intervals, and compares the performance of WALS with several competing estimators in a Monte

Carlo simulation study. The competing estimators include the unrestricted and restricted least-squares

estimator, two post-selection estimators based on the Akaike and Bayesian information criteria, various

frequentist model averaging estimators, and a popular shrinkage estimator (the adaptive LASSO). The

paper found that the bias-corrected WALS estimator leads to better confidence and prediction intervals.

Empirical applications of the WALS estimator have been studied in various papers. Liski et al.

(2010) compares WALS with alternative model selection methods in a application to hip fracture treat-

ment costs. Poghosyan and Magnus (2012) uses WALS to estimate and forecast Armenian real GDP

growth and inflation. Seya et al. (2012) employs WALS in spatial hedonic land price models. Xu (2014)

applies the WALS estimator to investigate the robustness of the cross-country relationship between anti-

self-dealing rules and proxies for stock market development. Clarke (2017) extends the WALS frame-

work from OLS to two stage least squares (2SLS) and applies WALS to two examples, one on the returns

to schooling and the other on the effect of religion in explaining differences in cross-country economic

growth. Tumala et al. (2018) uses BMA and WALS to investigate predictors of inflation in Nigeria.

Afonso and Jalles (2019) analyzes the determinants of bond spreads considering non-conventional mon-

etary policy using BMA and WALS. Furceri and Ostry (2019) applies WALS to determine a robust set

of determinants of income inequality. Comunale and Mongelli (2020) uses WALS to select variables

when investigating which variables have consistently supported growth in euro area countries in the past

thirty years. Rahman et al. (2020) and Rahman and Shang (2020) apply WALS on a Pakistanian ensem-

ble multi-satellite precipitation dataset and evaluates the performance of the WALS estimator against

alternative estimators. Mignamissi and Kuete (2020) uses both BMA and WALS to analyze the key

determinants of African well-being under model uncertainty. Furceri et al. (2021) uses BMA and WALS
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to analyze robust determinants of initial output losses from the Covid-19 pandemic. Aller et al. (2021)

investigates robust determinants of CO2 emissions using BMA, Cluster-LASSO and WALS.

The rest of this chapter is structured as follows. Section 5.2 lays out the theoretical framework of

WALS and introduces relevant mathematical notations. Section 5.3 introduces the three packages that

implement the WALS procedures, and presents a comparison between the available options of the three

packages so that the user can choose the package most suitable for her purposes. Section 5.4 shows an

example of the output from all three packages using a small example dataset under a common model

specification. Section 5.5 compares the theoretical properties and performance of different choices in

the prior distributions and prior parameters, so that the user can make an informed decision about which

prior to choose apart from the default options. Section 5.6 compares the efficiency of two alternative

integration routines, Gauss-Laguerre Quadrature and Adaptive Quadrature. This section also shows the

effects of a cut-off point where the program switches between two alternative methods in calculating

posterior moments. Section 5.7 demonstrates the simulated bias and variances under different prior

distribution and parameters, the values of which come from a large number of replications of Monte

Carlo simulations and are pre-stored so that bias-corrected WALS estimators can be obtained in the

programs without having to simulate the biases and variances on the go. We compute what is the

minimum number of Monte Carlo replication needed in order to achieve a certain degree of accuracy

in the final estimated biases. Section 5.8 analyzes the relationship between the distribution of WALS

estimates and confidence intervals when the number of Monte Carlo simulations used in the estimation of

confidence intervals changes. Section 5.9 analyzes the performance of the programs under two extreme

cases with simulated data: the case when the number of auxiliary regressors k2 becomes large, and

the case when the input data is nearly singular (correlation between regressors is high). Section 5.10

compares the three packages in terms of computation time. Finally, 5.11 concludes.

5.2 The WALS framework

We adopt the framework of a linear regression model

y = Xβ + ε = X1β1 + X2β2 + ε (5.3)

where y(n× 1) is the endogenous variable, X1(n× k1) are the focus regressors that the econometrician

is certain to include in the model, X2(n × k2) are the auxiliary regressors that may or may not be

included in the model. We assume k1 ≥ 1, k2 ≥ 0, k1 + k2 ≤ n, and that the disturbance ε has mean

zero and a diagonal positive definite variance matrix.

The model-averaging estimators take the form

β̂1 =
2k2

∑
j=1

λj β̂1j, β̂2 =
2k2

∑
j=1

λj β̂2j, (5.4)

where the λj are the model weights.

The WALS estimator proposed by Magnus et al. (2010) reduces the dimension of the model aver-

aging estimator from order 2k2 to k2 by exploiting a semi-orthogonal transformation of the auxiliary
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regressors.

The steps of the WALS estimator is briefly explained as follows:

Step 1: Determine the k1 focus regressors (X1) and k2 auxiliary regressors (X2). We require 0 <

k1, k2 < n. When k2 = 0, the model reduces to unrestricted OLS. Furthermore the matrix X = [X1, X2]

is required to have full column rank.

Step 2: Scale the input data by diagonal matrices ∆1 (k1 × k1) and ∆2 (k2 × k2) to ensure that all

diagonal elements of the scaled data is equal to 1. Equivariance is imposed for numerical stability.

Step 3: Semi-orthogonalization transformation. This step reduces the dimension of the problem

from 2k2 to k2. After the transformation, the original regressors X1, X2 are transformed into Z1, Z2 such

that Z1γ1 = X1β1, Z2γ2 = X2β2, and the data generating process (DGP) can be rewritten as

y = Z1γ1 + Z2γ2 + ε.

Step 4: Solving the unrestricted and restricted models. γ1, γ2 and σ2 can be estimated using OLS.

Step 5: Compute the mean and variance in posterior distribution. Under a given prior distribution

(we assume Weibull, Subbotin, or the Laplace prior), the mean m = (m1, ..., mk1) and variance V =

diag(v1, ..., vk2) of the posterior distribution is computed for each of the k2 components of x. In this step

numerical integration is required for Weibull and Subbotin priors, while theoretical derivations exist for

the Laplace prior.

Step 6: Calculate the bias and variance of the posterior mean by using plug-in estimators. The bias

and variances of the posterior mean η is simulated and pre-stored for each prior and each value of η

between 0 to 30, with a step size of 0.01. For values within this range, the bias and variances can be

calculated through linear interpolation of the stored values. For values outside of this range, asymptotic

approximation is used.

Step 7: Calculate the WALS point estimates by transforming the estimated parameters γ̂1 and γ̂2 to

β̂1 and β̂2.

Step 8: Calculate the bias and variance of the WALS estimates using the plug-in estimators from

Step 6.

Step 9: Estimate confidence intervals of the WALS estimator. The confidence intervals are simulation-

based where we draw from the estimated sampling distribution of the bias-corrected WALS estimators of

β1 and β2. The draws are stored for calculating prediction intervals when WALS prediction is required.

Step 10: Estimate the MSE, skewness and kurtosis of the WALS estimator.

Embedded in the theory of WALS is the seemingly trivial Normal location problem, where we need to

estimate one parameter η given one observation x, generated by the Normal distribution N(η, 1):

x|η ∼ N(η, 1).

Combined with a prior π(η), the posterior density p(η|x) can be written as

p(η|x) = φ(x− η)π(η)∫ ∞
−∞ φ(x− η)π(η)dη
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where φ is the standard normal density function. We denote the mean and variance of η in the posterior

distribution as m(x) and v(x).

5.3 Packages

We present three statistical packages that implement the WALS procedures for linear regression models

(assuming normality and homoskedasticity in the disturbances). In this section we discuss also the

input/output options for the user. We describe which choices the user can make and how to implement

these choices in the different packages.

5.3.1 Stata

The WALS routine in Stata is called wals1.

The syntax of the package is:

Usage

wals depvar foc([varlist]), aux([varlist]) [options]

where the options are explained as follows.

Arguments

depvar Name of the dependent variables.

foc(varlist) A list of dim_X1 focus regressors. If nocons is not specified in the options, a

constant term is added to the (beginning of) focus regressors, and the number

of focus regressors is k1 = dim_X1 + 1. If nocons is specified in the options,

k1 = dim_X1.

aux(varlist) A list of dim_X2 auxiliary regressors. If auxcons is specified in the options, a

constant term is added to the auxiliary regressors (but not to the focus regressors),

and the number of auxiliary regressors becomes k2 = dim_X2 + 1. Otherwise,

k2 = dim_X2.

nocons If this is specified, do not add a constant to the focus regressors.

auxcons If this is specified, do not add a constant term to the focus regressors but add a

constant to the auxiliary regressors.

consname(...) Custom name of the constant term, for example can be "_cons" or "constant".

prior(...) The chosen prior distribution, can be one of prior(weibull), prior(subbotin),

or prior(laplace). Default value is "weibull".

1The Stata package wals is kindly provided by Dr. Giuseppe De Luca and Prof. Jan Magnus. An earlier version of this
package has been published in De Luca and Magnus (2011).
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priorpar(...) Choice of the parameter q for Weibull and Subbotin priors. This is ignored for

Laplace priors. if option "priorpar(.5)" is specified, use q = 0.5; otherwise use the

minimax regret parameter.

quadp(...) The number of quadrature points to use in the Gauss-Laguerre quadrature method.

Default value is quadp(1000). This is ignored for Laplace priors since closed-

form solution is available and numerical integration is not necessary for Laplace

priors.

estmom(...) The type of plug-in estimation to use, can be estmom(ds) (double shrinkage) or

estmom(ml) (maximum likelihood). Default option is "ds".

cint(...) The type of the confidence interval, can be cint(mc) or cint(naive). Default

option is "mc".

level(...) An integer (or a sequence of integers) between 0 to 100, the significance level of

the confidence intervals of the parameter estimates. Default option is level(90).

mcreps(...) An integer, the number of repetitions to use for Monte Carlo draws used in the

calculation of bias-corrected posterior moments and construction of confidence

intervals. Default option is mcreps(5000).

mcseed(...) An integer, the random seed to use for Monte Carlo draws. Default option is

mcseed(1).

mcsaving(...) Specify the name of the data to store the Monte Carlo simulated draws of the bias

correction. mcsave(...) must be specified if prediction intervals may be needed

for WALS prediction.

sigma(...) If not specified, the standard deviation of the error term is inferred from the input

data. Otherwise, the user may specify a positive real number as the presumed

standard deviation of the error term.

Examples

* WALS regression of y on focus variables X1 (adding the constant term) and auxiliary variables X2,

* under the Laplace prior; the name of the constant term is "_cons"

wals `y', foc(`X1') aux(`X2') prior(laplace) consname(_cons)

* all auxiliary variables except the constant term

wals `y', foc() aux(`X1' `X2')

* focus variables X1 and auxiliary variables X2 (adding the constant term)

wals `y', foc(`X1') aux(`X2') auxcons

* focus variables X1 (without constant term) and auxiliary variables X2

wals `y', foc(`X1') aux(`X2') nocons

* subbotin prior with 500 quadrature points and maximum likelihood estimators of the sampling moments
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wals `y', foc(`X1') aux(`X2') prior(subbotin) quadp(500) estmom(ml)

* multiple levels for confidence intervals

wals `y', foc(`X1') aux(`X2') prior(laplace) lev(90 95 99) mcseed(1234) estmom(ml) mcreps(1000000)

* naive and simulation-based approaches with ds and ml plug-in estimators of the bias

wals `y', foc(`X1') aux(`X2') prior(laplace) level(90) cint(naive)

wals `y', foc(`X1') aux(`X2') prior(laplace) level(90) cint(naive) estmom(ml)

* save the dataset with draws of the bias-corrected estimates

wals `y', foc(`X1') aux(`X2') lev(90) mcseed(1234) estmom(ml) mcsav(WALS_bc_draws)

* WALS (in-sample) predictions: weibull prior

wals `y', foc(`X1') aux(`X2') mcsav(WALS_bc_draws_W) mcseed(1234)

predict wals_lp_W, xb

5.3.2 R

The WALS routine in R is collected in an R package called walsR.

wals The main WALS estimation procedure.

Usage

wals(

y,

X_focus = NULL,

X_aux = NULL,

no_cons = FALSE,

aux_cons = FALSE,

prior = "weibull",

quad_pts = 1000,

plugin_type = "ds",

conf_int_type = "mc",

conf_levels = 95,

mc_reps = 5000,

mc_seed = 1,

mc_save = FALSE,

sigma = NULL,
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choice_q = "minimax"

)

Arguments

y An n ∗ 1 vector, matrix or data frame containing the dependent variables.

X_focus An n ∗ dim_X1 vector, matrix or data frame containing the focus regressors. If

no_cons == FALSE, a constant term is added to the focus regressors, and the

number of focus regressors is $k1 = dim_X1+1$. If no_cons == TRUE, $k1 =

dim_X1$. Default value of X_focus is NULL, which cannot occur at the same

time as the option no_cons=TRUE since the minimum number of focus regressors

is 1.

X_aux An n ∗ dim_X2 matrix or data frame containing the auxiliary regressors. If aux_cons

== TRUE, a constant term is added to the (end of) auxiliary regressors, and the

number of auxiliary regressors is k2 = dim_X2 + 1. If aux_cons == FALSE,

k2 = dim_X2. Default value of X_aux is NULL, which cannot occur at the same

time as the option aux_cons=FALSE since the minimum number of auxiliary re-

gressors is 1.

no_cons A boolean. Whether to add a constant to the focus regressors and include in the

model. Default value is FALSE.

aux_cons A boolean. Whether to add a constant to the auxiliary regressors and include in

the model. Default value is FALSE. The options no_cons = FALSE and aux_cons

= TRUE cannot occur at the same time since only one constant term is allowed in

the model.

prior The chosen prior distribution, can be one of "weibull", "subbotin", "laplace". De-

fault value is "weibull".

quad_pts The number of quadrature points to use in the Gauss-Laguerre quadrature method.

Default value is 1000. This is ignored for Laplace priors since closed-form solu-

tion is available and numerical integration is not necessary for Laplace priors.

plugin_type The type of plug-in estimation to use, can be "ds" (double shrinkage) or "ml"

(maximum likelihood). Default value is "ds".

conf_int_type The type of the confidence interval, can be "mc" or "naive". Default value is "mc".

conf_levels An integer (or a sequence of integers) between 0 to 100, the significance level of

the confidence intervals of the parameter estimates. Default value is 95.

mc_reps An integer, the number of repetitions to use for Monte Carlo draws used in the

calculation of bias-corrected posterior moments and construction of confidence

intervals. Default value is 5000.

mc_seed An integer, the random seed to use for Monte Carlo draws. Default value is 1.
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mc_save A boolean. If TRUE, save the Monte Carlo simulated draws of the bias correc-

tion. mc_save = TRUE is necessary if prediction intervals are needed for WALS

prediction. Default value is FALSE.

sigma If NULL, the standard deviation of the error term is inferred from the input data.

Otherwise, the user may specify a positive real number as the presumed standard

deviation of the error term. Default value is NULL.

choice_q A string, choice of the parameter q for Weibull and Subbotin priors. Can be "min-

imax" or "0.5". This is ignored for Laplace priors. Default value is "minimax".

Value

wals(...) returns an object of class wals. The function summary_wals can be used to obtain and

print a summary table of the results. The function predict_wals can be used to perform in-sample

or out-of-sample prediction based on a wals object. An object of class wals is a list containing at

least the following components:

beta_hat Coefficient estimates.

beta_bias The estimated bias of the coefficient estimates.

beta_var The variance covariance matrix of the coefficient estimates.

beta_MSE The MSE of the model.

beta_RMSE The RMSE of the model.

beta_VARRMSE The variance to MSE ratio of the model.

std_error The standard error of the coefficient estimates.

t The t-statistic of the coefficient estimates.

beta_CI The confidence intervals of the coefficient estimates.

skewnewss The skewness of the (bias-corrected) WALS estimator.

kurtosis The kurtosis of the (bias-corrected) WALS estimator.

kappa The condition number of the data.

sigma_hat The estimated sigma (if not provided ex ante) or user-specified sigma of the model.

Other information such as the prior parameters, arguments passed to the function call, and the input

data are also stored in this object. To obtain a complete list of the object (for example if the wals

object is stored in res), run attributes(res)$names.

Examples

res <- wals(growth_data["growth"],

growth_data[c("gdp60", "equipinv", "school60", "life60", "dpop")],

growth_data[c("law", "tropics", "avelf","confuc")])
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res <- wals(growth_data["growth"],

growth_data[c("gdp60", "equipinv")],

growth_data[c("law", "tropics", "avelf","confuc")],

no_cons=TRUE, aux_cons=TRUE)

res <- wals(growth_data["growth"],

growth_data[c("gdp60", "equipinv")],

growth_data[c("law", "tropics", "avelf","confuc")],

prior="laplace")

predict_wals The WALS prediction procedure.

Usage

predict_wals(

object,

PI_level = 95,

out_of_sample = FALSE,

X_focus = NULL,

X_aux = NULL

)

Arguments

object An object of class wals, obtained from running the WALS estimation using the

wals(...) function

PI_level An integer or a sequence of integers between 0 to 100, the confidence level(s) of

the prediction. Default value is 95, corresponding to [2.5%, 97.5%] prediction

intervals.

out_of_sample A boolean indicating whether the prediction is performed for the same dataset used

for estimation. If FALSE, no additional input data needs to be provided. Default

value is FALSE. If TRUE, additional data X_focus and X_aux should be provided.

X_focus Additional input data for the focus regressors, only needed if out_of_sample ==

TRUE. This should be provided in the same order as the focus regressors used

for estimation. If a constant term is added during estimation, only the regressors

excluding the constant term need to be provided. Default value is NULL.
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X_aux Additional input data for the auxiliary regressors, only needed if out_of_sample

== TRUE. This should be provided in the same order as the auxiliary regressors

used for estimation. If a constant term is added during estimation, only the regres-

sors excluding the constant term need to be provided. Default value is NULL.

Value

Note that to enable the calculation of prediction intervals, the Monte Carlo draws simulated in the

estimation procedure must be stored by setting the option mc_save=TRUE. This function returns a

list containing the following items:

y_pred Predicted values of y.

pi_y_pred Prediction intervals corresponding to the levels specified in PI_level.

Examples

res <- wals(growth_data["growth"],

growth_data[c("gdp60", "equipinv", "school60", "life60", "dpop")],

growth_data[c("law", "tropics", "avelf","confuc")], mc_save=TRUE)

## in sample prediction

predict_wals(res)

predict_wals(res, c(90, 95))

## out of sample prediction

predict_wals(res, out_of_sample=TRUE,

X_focus=growth_data_pred[c("gdp60", "equipinv", "school60", "life60", "dpop")],

X_aux=growth_data_pred[c("law", "tropics", "avelf","confuc")])

summary_wals The summary function which provides post-estimation analysis.

Usage

summary_wals(object, save_df = FALSE, digits = 6)

Arguments

object An object of class wals, obtained from running the WALS estimation using the

wals(...) function

save_df A boolean. Whether to save the summary as data frames. Default value is FALSE,

in which case the summary is displayed on screen.

digits An integer, the number of digits to be used for displaying the data frame of results.
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Value

If save_df == TRUE, return a list containing the following items:

params_df A data frame with the chosen options: no_cons, aux_cons, prior, quad_pts,

plugin_type, conf_int_type, mc_reps and the parameter values: n, k1, k2, a,

b, c, sigma.

res_df A data frame with the estimation results: variable names, coefficients, bias, stan-

dard errors, RMSE, t-statistics, and the confidence intervals of the coefficient es-

timates.

Examples

res <- wals(growth_data["growth"],

growth_data[c("gdp60", "equipinv", "school60", "life60", "dpop")],

growth_data[c("law", "tropics", "avelf","confuc")], mc_save=TRUE)

## print summary to screen

summary_wals(res, digits=4)

## alternatively, save summary to data frame

summary <- summary_wals(res, save_df=TRUE)

res_df <- summary$res_df

5.3.3 Python

The WALS package in Python is called WALS and is written within the framework of the popular statis-

tical package statsmodels.

The WALS estimator is defined in a class called WALS in similar fashion as the popular statsmodels.OLS

class, where class methods like .fit(), .summary(), .predict() provides an easy interface to inspect

and use the model.

Usage

model = WALS(endog, exog_focus, exog_auxiliary,

no_cons=False, aux_cons=False,

prior='weibull', choice_q='minimax')

res = model.fit(plugin_type='ds',

conf_int_type='mc', conf_levels=95,

quad_pts=1000,

mc_reps =5000,

mc_seed=1,

mc_save=False,
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sigma=None)

res.predict(PI_level = 95,

exog_focus = None,

exog_auxiliary = None)

res.summary()

Arguments

endog An n ∗ 1 matrix or data frame containing the dependent variables.

exog_focus An n ∗ dim_X1 matrix or data frame containing the focus regressors. If no_cons

== False, a constant term is added to the focus regressors, and the number of focus

regressors is k1 = dim_X1 + 1. If no_cons == True, k1 = dim_X1. Default

value of X_focus is None, which cannot occur at the same time as the option

no_cons=True since the minimum number of focus regressors is 1.

exog_aux An n ∗ dim_X2 matrix or data frame containing the auxiliary regressors. If aux_cons

== True, a constant term is added to the auxiliary regressors, and the number of

auxiliary regressors is k2 = dim_X2 + 1. If aux_cons == False, k2 = dim_X2.

Default value of X_aux is None, which cannot occur at the same time as the option

aux_cons=False since the minimum number of auxiliary regressors is 1.

no_cons A boolean. Whether to add a constant to the focus regressors and include in the

model. Default value is False.

aux_cons A boolean. Whether to add a constant to the auxiliary regressors and include in

the model. Default value is False. The options no_cons = False and aux_cons =

True cannot occur at the same time since only one constant term is allowed in the

model.

prior The chosen prior distribution, can be one of "weibull", "subbotin", "laplace". De-

fault value is "weibull".

choice_q A string, choice of the parameter q for Weibull and Subbotin priors. Can be "min-

imax" or "0.5". This is ignored for Laplace priors. Default value is "minimax".

plugin_type The type of plug-in estimation to use, can be "ds" (double shrinkage) or "ml"

(maximum likelihood). Default value is "ds".

conf_int_type The type of the confidence interval, can be "mc" or "naive". Default value is "mc".

quad_pts The number of quadrature points to use in the Gauss-Laguerre quadrature method.

Default value is 1000. This is ignored for Laplace priors since closed-form solu-

tion is available and numerical integration is not necessary for Laplace priors.

conf_levels An integer (or a sequence of integers) between 0 to 100, the significance level of

the confidence intervals of the parameter estimates. Default value is 95.
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mc_reps An integer, the number of repetitions to use for Monte Carlo draws used in the

calculation of bias-corrected posterior moments and construction of confidence

intervals. Default value is 5000.

mc_seed An integer, the random seed to use for Monte Carlo draws. Default value is 1.

mc_save A boolean. If TRUE, save the Monte Carlo simulated draws of the bias correc-

tion. mc_save = TRUE is necessary if prediction intervals are needed for WALS

prediction. Default value is FALSE.

sigma If sigma==None, the standard deviation of the error term is inferred from the input

data. Otherwise, the user may specify a positive real number as the presumed

standard deviation of the error term. Default value is None.

Value

WALS returns an object of class WALS. Applying the .fit() method on a WALS object returns an object

of class WALSResults. The functions summary can be used on WALSResults object to obtain and

print a summary table of the results. An object of class WALSResults is a list containing at least the

following components:

params Coefficient estimates.

bias The estimated bias of the coefficient estimates.

variance The variance covariance matrix of the coefficient estimates.

mse The MSE of the model.

rmse The RMSE of the model.

varmse The variance to MSE ratio of the model.

std_error The standard error of the coefficient estimates.

t The t-statistic of the coefficient estimates.

ci The confidence intervals of the coefficient estimates.

skew The skewness of the (bias-corrected) WALS estimator.

kurt The kurtosis of the (bias-corrected) WALS estimator.

condnum The condition number of the data.

s The estimated sigma (if not provided ex ante) or user-specified sigma of the model.

5.4 Example

In this section we demonstrate an example of the WALS estimation, prediction, and post-estimation

analyses using the example datasets provided together with the packages.

We provide two example datasets, growth_data and growth_data_pred. Both are small datasets

as analyzed in Magnus et al. (2010). growth_data contains 72 observations and 11 columns, while

growth_data_pred contains 2 observations and 11 columns, which can be used for the illustration of

out-of-sample prediction.
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Examples

In Stata:

clear all

version 11.1

set mem 500m

set more off

set linesize 255

set seed 123456789

cd "path_to_working_directory"

adopath ++ "path_to_working_directory"

import delimited using "growth_data_pred.csv", delimiters(",") clear asdouble

drop growth

saveold "growth_data_pred", replace

import delimited using "growth_data.csv", delimiters(",") clear asdouble

local y "growth"

local X1 "gdp60 equipinv school60 life60 dpop"

local X2 "law tropics avelf confuc"

noi sum `y' `X1' `X2'

saveold "growth_data", replace

* WALS estimation

wals `y', foc(`X1') aux(`X2') mcseed(1234)

* WALS (in-sample) predictions & 95% prediction intervals

wals `y', foc(`X1') aux(`X2') mcsav(WALS_bc_draws_W) mcseed(1234)

predict wals_lp, xb pi(wals_lp_low wals_lp_upp)

noi sum wals_lp*

drop wals_lp*

* WALS (out-of-sample) predictions & 95% prediction intervals

use "growth_data", clear

wals `y', foc(`X1') aux(`X2') mcsav(WALS_bc_draws_W) mcseed(1234)

append using "growth_data_pred.dta"
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predict wals_lp if e(sample)!=1, xb pi(wals_lp_low wals_lp_upp)

format %7.3f `X1' `X2' wals_lp*

format %7.5f wals_lp*

list `X1' `X2' wals_lp* if e(sample)!=1, noobs abbr(20)

drop wals_lp*

In R:

growth_data <- read.csv(file="data/growth_data.csv")

growth_data_pred <- read.csv(file="data/growth_data_pred.csv")

res <- wals(growth_data["growth"],

growth_data[c("gdp60", "equipinv", "school60", "life60", "dpop")],

growth_data[c("law", "tropics", "avelf","confuc")], mc_save=TRUE)

# post estimation summary

summary_wals(res, digits=4)

# in-sample prediction

pred <- predict_wals(res)

y_pred <- pred$y_pred

pi_y_pred <- pred$pi_y_pred

# out-of-sample prediction

X_focus_oos <- growth_data_pred[c("gdp60", "equipinv", "school60", "life60", "dpop")]

X_aux_oos <- growth_data_pred[c("law", "tropics", "avelf","confuc")]

pred_oos <- predict_wals(res, out_of_sample=TRUE,

X_focus=X_focus_oos,

X_aux=X_aux_oos)

y_pred_oos <- pred_oos$y_pred

pi_y_pred_oos <- pred_oos$pi_y_pred

cbind(X_focus_oos, X_aux_oos, y_pred_oos, pi_y_pred_oos)

In Python:

from wals import WALS

import pandas as pd
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data = pd.read_csv('data/growth_data.csv', engine='python')

y = data.growth

X_focus = data[["gdp60", "equipinv", "school60", "life60", "dpop"]]

X_aux = data[["law", "tropics", "avelf","confuc"]]

wals_model = WALS(y, X_focus, X_aux)

res = wals_model.fit(mc_save=True)

res.summary()

# in-sample prediction

y_pred, pi_y_pred = res.predict()

# out-of-sample prediction

data_oos = pd.read_csv('data/growth_data_pred.csv')

X_focus_oos = data_oos[["gdp60", "equipinv", "school60", "life60", "dpop"]]

X_aux_oos = data_oos[["law", "tropics", "avelf","confuc"]]

y_pred_oos, pi_y_pred_oos = res.predict(exog_focus=X_focus_oos, exog_auxiliary=X_aux_oos)

pred_oos_summary = pd.DataFrame(data=np.hstack((res.exog_pred, y_pred_oos, pi_y_pred_oos)),

columns = res.model.coef_names + ['wals_pred'] + pi_y_pred_oos.columns.tolist())

pred_oos_summary

The results are as follows.
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Table 5.1: Estimation results for the growth data example using Stata

Table 5.2: Out-of-sample prediction results for the growth data example using Stata
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Table 5.3: Estimation results for the growth data example using R

Table 5.4: Out-of-sample prediction for the growth data example using R
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Table 5.5: Estimation results for the growth data example using Python

Table 5.6: Out-of-sample prediction for the growth data example using Python

We show the differences in the parameter estimates and standard errors in the following table.
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Table 5.7: Comparison of estimation results for the growth data example using Stata, R, and Python

var coef. diff. in coef. diff. in coef. std. error diff. in s.e. diff. in s.e.
(Stata) (R-Stata) (Python-Stata) (Stata) (R-Stata) (Python-Stata)

0.054796 0.054796 0.000000 0.000004 0.022468 0.000000 0.000032
-0.015299 -0.015299 0.000000 -0.000001 0.003324 0.000000 -0.000024
0.161536 0.161536 0.000000 -0.000036 0.054810 0.000000 -0.000010
0.017575 0.017575 0.000000 0.000025 0.009804 0.000000 -0.000004
0.000895 0.000895 0.000000 0.000005 0.000355 0.000000 0.000045
0.285320 0.285320 0.000000 -0.000020 0.247463 0.000000 0.000037
0.012920 0.012920 0.000000 -0.000020 0.006067 0.000000 0.000033

-0.005408 -0.005408 0.000000 0.000008 0.003218 0.000000 -0.000018
-0.005535 -0.005535 0.000000 0.000035 0.004576 0.000000 0.000024
0.047883 0.047883 0.000000 0.000017 0.016634 0.000000 -0.000034

5.5 Choice of prior

We analyze three priors: Weibull, Subbotin, and Laplace. All three are of the reflected generalized

Gamma family, and have the general form

π(θ) =
qcδ

2Γ(δ)
|θ|−αe−c|θ|q , δ =

1− α

q
. (5.5)

The Weibull, Subbotin, and Laplace priors are special cases of the general form, where α + q = 1
for Weibull, α = 0 for Subbotin, and α = 0 and q = 1 for Laplace. Closely related to the choice of prior

is the choice of the parameter q, which is relevant for Weibull and Subbotin priors. When q is known for

a given prior, the entire prior distribution is also known.

One natural question is how to choose the prior and its parameter q when performing WALS esti-

mation. In our WALS estimation packages, we provide 5 options regarding this choice: Weibull prior

with q = 0.887630085544086 (minimax regret parameter); Weibull prior with q = 0.5; Subbotin

prior with q = 0.799512530172489 (minimax regret parameter); Subbotin prior with q = 0.5; and the

Laplace prior. The minimax regret solutions, as their names suggest, minimize the maximum regret over

all possible values of x, where regret is defined as the risk subtracted by its theoretical lower bound

η2/(1 + η2). Using a simulated dataset, we compare the bias and RMSE of the estimated coefficient of

the focus regressor under different choices of prior.

5.5.1 Estimated Bias and RMSE under different choices of prior: an example

The simulation setting is as follows: there are 2 focus regressors (first of which is a constant term) and 8

auxiliary regressors. The model coefficient of the second focus regressor β2 is of interest. All regressors

(apart from the constant term) are multivariate normally distributed with mean 0, variance σ2
x = 0.7, and

pairwise correlation ρ = 0.7. The true DGP is y = β1 + β2X1 + β3X3... + β10X10 + ε where ε is i.i.d.

standard normally distributed. β1 and β2 are 1 while all other β’s are equal to ξ = 0.5. We generate

n = 2000 observations for each simulation run, and perform 500 replications of each simulation. We

use the box plot to illustrate the distribution of the WALS estimator of the focus parameter β2. It can

99



be seen in Figure 5.1 that the mean of the β̂2 is closer to its true DGP under the Weibull and Subbotin

with q = 0.5, and the bias is slightly larger under the Weibull and Subbotin when q is equal to the

minimax regret value. The bias under the Laplace prior is the largest. Similar observations is found

when inspecting the RMSE in Figure 5.2.
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Figure 5.1: WALS estimator of the coefficient of the focus regressor from different priors
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Figure 5.2: RMSE from different priors

5.5.2 What is the optimal prior?

The simulated example above seems to indicate that Weibull and Subbotin priors with q = 0.5 are more

preferable than other choices of q, if the bias and RMSE are the focus metric for assessing the choice.

Can this conclusion be generalized? This question has been partially addressed in De Luca et al. (2018).

What we found in the empirical study seems to indicate that the Laplace prior, although having nice

theoretical properties and much faster to compute, generally has a higher bias and RMSE then the other

two choices of prior. The performance of Weibull and Subbotin are very similar in terms of bias, RMSE
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and computing time.

In asymptotic studies we have found that the choice of q with Subbotin and Weibull prior is not

trivial since the speed of convergence does not increase fast enough as q approaches the minimax regret

value. The fact that the choice of q = 0.5 seems to perform better than the minimax regret parameter

value is interesting since the minimax regret parameters are theoretically derived optimal choices, since

they minimize the maximum regret for all choices of x.

Under the framework of the normal location problem we can analyze the sampling properties of

the posterior mean under a wider choice of q. In Figures 5.3, 5.4 and 5.5 we show the sampling bias

and variances of the posterior mean corresponding to each different η between 0 to 30 (with a step

size of 0.01). The simulation is based on 1,000,000 replications and the procedure of the Monte Carlo

tabulations has been described in detail in De Luca et al. (2021b). Based on Figures 5.3, 5.4, it seems the

minimax regret choice of q has lower bias (compared with q = 0.5) for smaller values of η, and higher

bias (compared with q = 0.5) for larger values of η. Therefore, the choice of q will be data-dependent.

The estimator is unbiased at η = 0 with δ(η) = 0, while the variance σ2(η) is constant for large values

of η. When η increases, the bias seems to converge to zero for all values of q, but the convergence is not

fast enough (i.e. the slope is not steep enough) especially for large values of q. For the Laplace prior,

the convergence is not visible at all as the bias seems constant for large values of η.
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Figure 5.3: Simulated bias and variance of the Monte Carlo tabulated values, Weibull prior with different
choices of the parameter q
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Figure 5.4: Simulated bias and variance of the Monte Carlo tabulated values, Subbotin prior with differ-
ent choices of the parameter q
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Figure 5.5: Simulated bias and variance of the Monte Carlo tabulated values, Laplace prior

Furthermore, we plot the regret as a function of η, where the regret is defined as

regret(η; α, q) = δ(η)2 + σ2(η)− η2

1 + η2 .

In can be seen from Figures 5.6 and 5.7 that for both Weibull and Subbotin, the maximum regret

is achieved around η = 4 ∼ 5 for all q’s, and the maximum regret is decreasing in q as q increases

from 0.1 to the minimax value (0.8876 for Weibull and 0.7995 for Subbotin), and then increases in q for

values larger than the minimax value. This confirms that the theoretically derived minimax regret values

indeed minimizes the maximum regret.
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Figure 5.6: Simulated regret of the Monte Carlo tabulated values, Weibull prior with different choices
of the parameter q
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Figure 5.7: Simulated regret of the Monte Carlo tabulated values, Subbotin prior with different choices
of the parameter q

5.6 Comparison and efficiency of integration routines

Step 5 of the WALS estimation procedure calculates the posterior mean of η given x, given the assump-

tions on the prior density. The calculation of the posterior mean requires the evaluation of an integral.

Under the Laplace prior, there exists a closed form solution to such integral. Under the Weibull and

Subbotin priors, on the other hand, it involves numerical methods to calculate this integral. We intro-

duce the considerations in implementing this numerical calculation, with special attention to the tail of

the prior where an asymptotic formula is derived to approximate the integrals for large values of x. We

present several numerical integration methods, namely the Gauss-Laguerre Quadrature method and the

Adaptive Quadrature, and show that the Gauss-Laguerre quadrature method is appropriate under cer-
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tain conditions. The Gauss-Laguerre quadrature method is used in all packages we provide for WALS

estimation.

5.6.1 Integration methods

Gauss-Laguerre Quadrature

The Gauss-Laguerre Quadrature is a numerical method for approximating the value of integrals in the

following form:

∫ ∞

0
e−x f (x)dx. (5.6)

Using the Gauss-Laguerre method, the integral above is approximated by

∫ ∞

0
e−x f (x)dx ≈

nQp

∑
i=1

wi f (xi) (5.7)

where nQp is the number of quadrature points, xi is the Gauss-Laguerre quadrature points and wi is the

Gauss-Laguerre weights. The quadrature points and weights are obtained by solving for the eigenvalues

and eigen vectors of a symmetric matrix of order nQp. The accuracy and efficiency of the Gauss-

Laguerre method depends on the choice of the number of quadrature points nQp.

Adaptive Quadrature

The integrate command in R calculates adaptive quadrature of functions of one variable over a finite or

infinite interval. For this method the relative and absolute accuracy may be specified. We set the relative

accuracy at 10−13 and absolute accuracy at 10−14.

We compare the difference between the posterior means calculated under both methods, for a range

of values of x. Under the Gauss-Laguerre method, we consider several choices of the number nQp ∈
{100, 500, 1000, 1500, 2000}. For each choice of nQp we plot mGL(x)−mAQ(x) against x. The results

under both the Weibull and Subbotin priors (both using the minimax regret parameters) are shown below.
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Figure 5.8: Difference between posterior means calculated under different integration routines

As can be seen from the plots above, the difference between the posterior means calculated using

Gauss-Laguerre and Adaptive Quadrature decreases as the number of quadrature points under Gauss-

Laguerre increases. When x > 10, the difference is in the order of 10−15 for both Weibull and Subbotin

priors. When x ≤ 10 and the number of quadrature points is at least 1000, the maximum difference is

in the order of 10−4 for Weibull and 10−7 for Subbotin.
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Figure 5.9: Difference in computation time under different integration routines

As can be seen from the graph, computation time under the Gauss-Laguerre increases as the number

of quadrature points increases. For nQp = 1000, the Gauss-Laguerre approach is slightly faster than

Adaptive quadrature, under both Weibull and Subbotin priors.

Based on the above comparison, we decide to use the Gauss-Laguerre quadrature method for the

numerical approximation of integrals in our WALS packages. The default number of quadrature points

is set at 1000 while the user has the option to change this value if a different trade-off between accuracy

and efficiency is desired. The comparison we show above focuses on the posterior means of a limited

number of observations x. In actual applications of the WALS estimation, the number of observations

can be much larger, where the merit of Gauss-Laguerre method is more prominent: the calculation

of Gauss-Laguerre points and weights only needs to be performed once for a given choice of prior

parameters and quadrature points, which can then be re-used for the calculation of all integrals within

the program. Contrarily, the Adaptive Quadrature method does not benefit from this economy of scale.
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5.6.2 Derivation of the integral and its asymptotic approximation

Consider a general class of priors, namely the reflected generalized gamma distribution, where the den-

sity π(·) is of the form

π(θ) =
qcδ

2Γ(δ)
|θ|−αe−c|θ|q . (5.8)

We consider three special cases of this class of priors, namely the Weibull (α + q = 1), the Subbotin

(α = 0), and Laplace (α = 0, q = 1).

According to Theorem 1 of Pericchi and Smith (1992), the posterior mean of η, i.e. the conditional

distribution of η given an observation of x ∼ N(η, 1) , is given by

m(x) = E[η|x] = x +
d log(A0(x))

dx
(5.9)

where

A0(x) =
∫ ∞

−∞
φ(x− η)π(η)dη =

∫ ∞

−∞
φ(u)π(u + x)du (5.10)

and φ(·) is the normal density. Equation 5.9 is known as the Brown-Tweedie formula.

We also define

A1(x) =
∫ ∞

−∞
(x− η)φ(x− η)π(η)dη = −

∫ ∞

−∞
uφ(u)π(u + x)du (5.11)

and we immediately have

A′0(x) =
∫ ∞

−∞
φ′(x− η)π(η)dη =

∫ ∞

−∞
−(x− η)φ(x− η)π(η)dη = −A1(x). (5.12)

A0(x) and A1(x) can also be further simplified into integrals from 0 to infinity, since

A0(x) =
∫ ∞

−∞
φ(x− η)π(η)dη =

∫ ∞

0
(φ(x− η) + φ(x + η))π(η)dη (5.13)

A1(x) =
∫ ∞

−∞
(x− η)φ(x− η)π(η)dη =

∫ ∞

0
((x− η)φ(x− η) + (x + η)φ(x + η))π(η)dη

(5.14)

It follows from the Brown-Tweedie formula that

m(x) = x +
d log(A0(x))

dx
= x− A1(x)

A0(x)
. (5.15)

The fraction A1(x)
A0(x) can be calculated by numerically solving the two integrals separately and dividing

one by another, when x is not too large and both integrals are moderately different from zero. However,

as x → ∞, both A0(x) and A1(x) converge to 0. We define a cut-off point xc. For x ≤ xc, the posterior

moments can be directly calculated from equation 5.15. For x > xc, following De Luca et al. (2021a)
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we scale both the numerator and the denominator with π(x), and obtain

A0(x)/π(x) =
∫ ∞

0
φ(η) [π(x + η)/π(x) + π(x− η)/π(x)] dη (5.16)

A1(x)/π(x) =
∫ ∞

0
ηφ(η) [π(x− η)/π(x)− π(x + η)/π(x)] dη (5.17)

m(x) = x− A1(x)
A0(x)

= x− A1(x)/π(x)
A0(x)/π(x)

. (5.18)

This calculation is valid for large values of x because A1(x)/π(x) → 1 and A0(x)/π(x) → 0 as

x → ∞.

5.6.3 Choice of the cut-off point

For x ≤ xc, we calculate the posterior moments based on equation 5.15 (method 1); for x > xc, we

calculate the posterior moments based on equation 5.18 (method 2). The cut-off point xc is chosen

empirically. Using two different specifications of the parameter q, namely the minimax regret prior

parameters and q = 0.5, we investigate the difference in posterior means for both the Weibull and

Subbotin priors for a range of values of x. As shown in the plots below, the difference between x and

the posterior mean m(x) diverges under method 1 when x is above 80, while x−m(x) remains close to

0 under method 2 even when x is large. Furthermore, the difference between the two methods for small

values of x is only visible when x is smaller than 10.
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Figure 5.10: Difference between two methods for Weibull prior
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Figure 5.11: Difference between two methods for Subbbotin prior

To assess the performance of the two methods for small x, we calculate the posterior mean under the

Laplace prior, for which the closed-form solution is available. The numerically obtained integral values

are then compared with the theoretical value to see how the two methods perform when x is small. It

can be seen from the plot that the deviations from theoretical values from both method 1 and method

2 are close to 0, while the deviation under method 1 is more stable and that under method 2 is more

volatile for x ∈ [0, 8.24]. For 8.25 ≤ x ≤ 82.43, the deviation in posterior mean from the theoretical

values range from−5.7586502× 10−4 to 1.8913227× 10−10 under method 1 and−1.4210855× 10−14

to 1.4210855× 10−14 under method 2. Therefore the cut-off point can be chosen anywhere between

[8.25, 82.43]. We choose the cut-off point xc = 10.
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Figure 5.12: Difference between two methods for Laplace prior

5.7 Monte Carlo tabulations

The sampling moments of the posterior mean m(x) is obtained numerically. We obtain tabulations of

the bias δ(η) and variance σ2(η) over a range of values of η via Monte Carlo simulation and store the

tabulated values for a number of choices of priors in the packages. Detailed procedures on the Monte

Carlo tabulation is explained in De Luca et al. (2021b).

We use a large number of replications (106) for values of η between 0 to 30 with a step size of 0.01,

under the Weibull/Subbotin priors. In this section we investigate whether the number of replications can

be considered sufficient to achieve a certain accuracy level in the tabulated biases.

In Figure ?? we show the mean and 95% confidence interval of the simulated bias and variance

corresponding to each value of η under the Weibull prior with Mimimax regret parameter q = 0.8876.

It can seen from the left panel that the bias (defined as m(x)− η) is always negative. As the values of

η increases, the bias drops to a minimum around -0.6 for η around 4, then gradually reverts to 0. The

variance quickly rises from around 0.4 to around 1.1 when η increases from 0 to 4, then drops slightly

to a stable level around 1.0.

The confidence intervals indicated by the shaded area are the empirical [2.5%, 97.5%] quantiles

based on the simulations, where 106 replications were obtained in 200 batches of simulations each with

5, 000 replications. The bias and variances within each batch instead of the individual instances were

stored.
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Figure 5.13: Mean and 95% confidence interval of the simulated bias and variance corresponding to
each value of η

We show the absolute and relative errors under 0.01 significance level and our current choice of

number of replications, N = 1, 000, 000.
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Figure 5.14: Relative and absolute error of the simulated bias when the significance level is 0.01 and
total number of replications is 10e6

We calculate the number of required replications of the Monte Carlo simulation if a certain level of

accuracy in the final estimates is required. We are interested in the average bias θ and its estimator θ̂.

For each value of η between 0 to 30 with a step size of 0.01, B = 200 simulation runs were performed,

where each run contains NB replications. So in total xi is simulated N = B× NB times, for each value

of η. We don’t have to store each xi, but it is sufficient to store

S1(j) =
∑NB

i=1 xi

NB
, S2(j) =

∑NB
i=1 x2

i
NB

−
(

∑NB
i=1 xi

NB

)2
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for j = 1, 2, ..., B. Next we compute

θ̂N =
1
N

N

∑
i=1

xi =
1
B

B

∑
j=1

S1(j)

and

s2
N =

1
N

N

∑
i=1

(xi − x̄)2 =
1
B

B

∑
j=1

(S2(j) + S1(j)2)−
(

∑B
i=1 S1(j)

B

)2

From the central limit theorem we know that

N1/2(θ̂N − θ)

sN
∼ N(0, 1).

Hence, for given α (say, α = 0.01 or 0.05) we have

Pr(−zα/2 <
N1/2(θ̂N − θ)

sN
< zα/2) = 1− α.

This gives

Pr
(

θ̂N −
zα/2sN√

N
< θ < θ̂N +

zα/2sN√
N

)
= 1− α.

This result is based on Central Limit Theorem and has been studied in, along others, Kiviet et al.

(2012). Following the notation of Kiviet, we denote the absolute error as τ and the relative error as ε.

When τ and α are chosen ex ante, we choose the total number of replications N such that

zα/2sN√
N

< τ,

that is, we choose

N = z2
α/2s2

Nτ2.

Alternatively, when ε and α are chosen ex ante, we choose the total number of replications N such

that
zα/2sN√

N
< εθ,

that is, we choose

N = z2
α/2s2

N/(ε2θ2).
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Figure 5.15: Number of required simulations under requirements on the relative or absolute error, when
the significance level is 0.01

It can be seen in Figure 5.15 that the number of replication required to achieve a relative error or

1e-3 or an absolute error of 1e-1 depends on the value of η. For smaller values of η it is more difficult

to achieve the required absolute error. While in both bases the required R is in the magnitude of 1e6 to

1e7 for most choices of η, we choose the number of replications N to be 1e6.

5.8 Number of Monte Carlo replications

In the WALS estimation procedures it is possible to choose the number of replications and the random

seed to use in the Monte Carlo simulation. The choice of the number of Monte Carlo replications has an

impact on the precision of the confidence intervals since the confidence intervals are simulation-based.

Using a simulated example, we analyze the relationship between the spread in the boundaries of the

confidence intervals.

The simulation set-up is as follows. There are 2 focus regressors (first of which is a constant term)

and 8 auxiliary regressors. The model coefficient of the second focus regressor β2 is of interest. All re-

gressors (apart from the constant term) are multivariate normally distributed with mean 0, variance σ2
x =

0.7, and pairwise correlation ρ = 0.7. The true DGP is y = β1 + β2X1 + β3X3...+ β10X10+ ε where ε

is i.i.d. standard normally distributed. β1 and β2 are 1 while all other β’s are equal to ξ = 0.5. We gener-

ate n = 2000 observations for each simulation run, and perform 500 replications for each of the choice of

Monte Carlo simulations: N = 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, ..., 24000, 25000.

In each replication a different Monte Carlo seed is chosen for the WALS estimation.

We use box plots to illustrate the distribution of the WALS estimator of the 95% lower and upper

bound of the focus parameter β2. It can be seen in Figure 5.16 and 5.17 that as the number of the chosen

simulation for WALS estimation becomes larger, the spread in the boundaries of the confidence interval

under different random seeds tends to become smaller and smaller. For a sufficiently large number of

simulations, the impact of random seeds on the confidence interval is almost completely eliminated.

Under the default choice (mc_rep = 5000), 95% of the difference in the interval boundaries between
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different random seeds is within 0.01.
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Figure 5.16: Box plot of the lower bound of the 95% confidence interval, under different choices of
number of Monte Carlo replications

1
.1

2
0

1
.1

2
5

1
.1

3
0

1
.1

3
5

1
.1

4
0

1
.1

4
5

number of Monte Carlo replications

u
p

p
e

r 
b

o
u

n
d

 o
f 

c
o

n
fi
d

e
n

c
e

 i
n

te
rv

a
l

1000 3000 5000 7000 9000 11000 13000 15000 17000 19000 21000 23000 25000

Figure 5.17: Box plot of the upper bound of the 95% confidence interval, under different choices of
number of Monte Carlo replications

We also show the average computation time needed under different choices of mc_rep. 5.18 shows

that, as expected, the computation time is linear in the chosen number of Monte Carlo replications to be

used in the estimation of confidence intervals. Therefore, the choice of mc_rep should be based on an

evaluation of the trade-off between precision of inference and computational efficiency.
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Figure 5.18: Computation time under different choices of number of Monte Carlo replications

5.9 Limits to the program

In this section we explore the limits to the WALS program under extreme conditions in the input data. In

particular, we investigate two special cases: when the number of auxiliary regressors is large and when

the input data is nearly singular.

We use simulated data under the framework in De Luca et al. (2021c). Our goal is to assess the bias

and RMSE of the focus regressor in the model.

5.9.1 Large k2

We perform the simulation with k1 = 2, σ2
x = ρ = 0.7, ξ = 0.5, β f ocus = [1, 1], βauxiliary =

[ξ, ξ, ...], and the error term is standard normal distributed. k2 is chosen between a range of values

{10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200}. The number of

observations n ranges from {200, 400, 600, 800, ..., 10000}. For each combination of k2 and n we per-

form 500 replications.

In Figure 5.19 it can be seen that the bias and RMSE increase as k2 increases if n is fixed, and

decreases as n increases if k2 is fixed. For large k2 and small n, although the program is still able to

produce estimates, the bias and RMSE are much higher than with smaller k2 or larger n.

From Figure 5.19 we can also see that the number of observations required to achieve a certain level

of bias/RMSE in the WALS estimator of the focus regressor increases with the number of auxiliary

regressors. For a given bias level (for example β̂2 = 1 + 0.05), the number of required observations

under each k2 is obtained from a linear interpolation of the known values of n and their corresponding

biases. For target bias ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} we plot the n that achieves the target bias as a

function of k2 in 5.20. It can be seen that the relationship is approximately linear for each value of the

targeted bias, but the linear relation is much steeper for smaller bias values, which can be expected. This

provides some guidance on the required number of observations for different values of k2, if the user

aims to achieve a certain bias level. For example, if k2 is doubled, to achieve roughly the same level of
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bias, the number of observations to use in the estimation should also be doubled.
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Figure 5.19: Bias and RMSE of the (bias-corrected WALS estimator) of the focus regressor when the
number of auxiliary regressors increase
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5.9.2 Near-singularity

We perform the simulation with n = 100, k1 = 2, k2 = 8, σ2
x = ρ, ξ = 0.5, β f ocus = [1, 1], βauxiliary =

[ξ, ξ, ...], and the error term is standard normal distributed. ρ is chosen between a range of values

{0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.97, 0.99, 0.999, 0.9999}. In Fig-

ure 5.21 it can be seen that, while the program is able to produce estimation results, the bias and RMSE

increase exponentially as ρ increases.
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The programs have built-in checks that ensures the input data has full column rank. However as

shown in this section, the check does not stop the program even when the correlation between in the

regressors is extremely high. The user is therefore encouraged to perform correlation analysis and

check for possible multicollinearity before performing WALS estimation, since the existence of high

correlation impacts the bias and RMSE exponentially, as shown in Figure 5.21.
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Figure 5.21: Bias and RMSE of the (bias-corrected WALS estimator) of the focus regressor when the
correlation between regressors change

5.10 Comparison of the three packages

In this section we compare the three implementations in terms of computation time. One of the advan-

tages of the WALS estimation is that it reduces the dimension of the model-averaging problem from 2k2

to k2. Using a simulated example we investigate whether the computation time is also reduced to linear.

The simulation set-up is as follows. There are 2 focus regressors (first of which is a constant term)

and the number of auxiliary regressors k2 ranges from [10, 20, 30, ..., 100]. The model coefficient of the

second focus regressor β2 is of interest. All regressors (apart from the constant term) are multivariate

normally distributed with mean 0, variance σ2
x = 0.7, and pairwise correlation ρ = 0.7. The true DGP is

y = β1 + β2X1 + β3X3...+ β10X10+ ε where ε is i.i.d. standard normally distributed. β1 and β2 are 1

while all other β’s are equal to ξ = 0.5. We generate either n = 500 or n = 1000 observations for each

simulation run. The computation time (in seconds) using the R, Python, and Stata packages are shown

in Figure 5.22, where the WALS estimation uses the default settings with Weibull prior and q=minimax

values. The calculations were performed on a Laptop with Intel(R) Core(TM) i7-8565U CPU/1.80 GHz

with 4 core 8 processor and 8 GB of RAM.

From this figure we can see that the number of observations has almost no effect on the computa-

tion time. The computation time is approximately linear in the number of auxiliary regressors under all

packages. The difference in computation time across different packages is quite substantial, with Stata
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being the fastest, R being the slowest and Python in the middle. The underlying programming language

of our Stata program, Mata, is a byte-compiled language with syntax similar to C/C++. On the other

hand, R and Python are both interpreted high-level programming languages which can be notoriously

slow when it involves for loops. Attempts at vectorization and parallelization have been tried but they

did not seem to significantly improve the computation efficiency for our R and Python packages. In

future improvements of the packages we will consider extending the R and Python packages with func-

tionalities to call externally compiled functions, for example by using the Rcpp library (for R) or Cython

module (for Python).
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Figure 5.22: Computation time using different packages

5.11 Concluding remarks

In this chapter we have analyzed the properties of the WALS estimator, with a focus on its computational

aspects. Three computational programs (from Stata, R, and Python) that implement WALS estimation

and prediction are introduced and compared. In our analyses, we explored the choice of prior and prior

parameters as well as the effect of the choice on estimation. We found that the Weibull and Subbotin

priors lead to less bias than the Laplace prior, while the theoretically derived minimax regret parameter

leads to more bias than the other choice of parameter, q = 0.5. We have also explored the effect of

the choice on the numerical integration routine. We show that adaptive quadrature, compared with the

Gauss-Laguerre quadrature used in the programs, is less efficient when the scale of the data is large.

The program contains pre-stored Monte Carlo tabulations that are used for the plug-in estimators of

posterior moments. We show the level of absolute and relative errors that may have arisen give the

number of replications used in the simulation of the Monte Carlo tabulations. On the other hand, the

estimation program itself contains one step with Monte Carlo simulations where random draws are

necessary for the computation of confidence intervals. We show that the number of simulations used

in this step impacts the precision of the boundaries calculated for the confidence intervals. Finally, we

have explored the limits to the program with respect to the dimension of the model and near singularity.

We found that the number of observations required to achieve a certain level of bias is approximately a

linear function in the number of auxiliary regressors. On the other hand, although the program is able to

generate results when the input data is nearly singular (but still has full column rank), the bias increases
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exponentially as the level of correlation increases.

There are several directions for future extensions.

First, the WALS framework we use assumes homogeneity in the error components. It is possible to

extend this to the heterogeneous case.

Second, the simple regression model can be extended to generalized linear models, as analyzed in

De Luca et al. (2018). The results using, for example, Logit, Probit, and Poisson models, can be added

to enrich the framework and the computer programs we provide.

Lastly, we have not investigated the treatment of missing values in WALS estimation. Dardanoni

et al. (2012) discussed the estimation of a linear regression model using data with missing values where

imputations can be used to fill the missing values. Options for imputing missing values can be embedded

in future extensions of the programs we provide.
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Samenvatting (Summary in Dutch)

Dit proefschrift bevat de resultaten van twee ongerelateerde projecten: risico- en vastgoedprijzen, en

computationele aspecten van model averaging (modelmiddeling).

In het eerste project onderzoeken we het effect van objectief en subjectief aardbevingsrisico ingebed

in Japanse vastgoedprijzen. Dit wordt gemeten in het kader van een hedonisch prijsmodel, het referen-

tiemodel voor het analyseren van vastgoedprijzen. In hedonische prijsmodellen worden de kenmerken

van onroerend goed gezien als componenten die elk onafhankelijk bijdragen aan een deel van de prijs

van het onroerend goed.

We verzamelen een rijke dataset met transactieprijzen van woningen en verschillende kenmerken

die relevant zijn voor vastgoedprijzen. We maken onderscheid tussen drie soorten woningen: woon-

grond (alleen grond), woongrond (grond en gebouw) en appartementen in eigendom. Elk type heeft

verschillende kenmerken, maar deelt ook veel kenmerken. Onder de kenmerken van het onroerend goed

bevinden zich transversale gegevens, zoals informatie over de aantrekkelijkheid van de wijk waar het

onroerend goed is gelegen, tijdreeksgegevens zoals macro-economische variabelen, en ook individu-

ele kenmerken zoals oppervlakte, dekkingsgraad van gebouwen of de afstand naar het dichtstbijzijnde

station.

Om de beschikbare dataset te benutten, gebruiken we een regressiemodel voor multivariate storings-

componenten (multivariate error components). De storingstermen zijn de som van drie onafhankelijke

componenten, die de tijd-specifieke, doorsnede-specifieke en individueel-specifieke effecten vastleggen.

Bovendien is elke component een vector in plaats van een scalair, waardoor vergelijkingen van nauw ver-

wante foutstructuren kunnen worden gepoold met behoud van een relatief klein aantal parameters. Deze

vector heeft drie elementen, die elk overeenkomen met één van de drie eigenschapstypen. De dimen-

sie van deze enorme variantiematrix veroorzaakt door de vectorvorm kan drastisch worden verminderd

dankzij de structuur van de storingscomponenten.

Wij introduceren aardbevingsrisico gemeten als de kans dat een aardbeving een bepaalde drem-

pelwaarde of intensiteit over een bepaalde tijdsperiode overschrijdt. Aangezien aardbevingen frequent

voorkomen in Japan en zowel ruimtelijk als temporeel variëren, is aardbevingsrisico een niet te verwaar-

lozen kenmerk bij de waardering van vastgoed. Wij maken onderscheid tussen lange termijn risico en

korte termijn risico. De lange termijn gegevens over het aardbevingsrisico worden geleverd door het

Japan Seismic Hazard Information Station en dit risico wordt gedefinieerd als de kans dat een aard-

beving in de komende dertig jaar bepaalde intensiteitsdrempels overschrijdt in een bepaald gebied. We

nemen het gemiddelde van deze lange termijn kans over de gehele steekproef periode om een tijds-
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invariante maatstaf te creëren voor de algehele risicograad van een bepaald gebied. De korte termijn

kans is een negentig-dagen kans die varieert per tijdsperiode en per stad, gesimuleerd door een tem-

poreel epidemisch naschoksequentie (ETAS) model. Het ETAS-model is een pad-afhankelijk gemar-

keerd puntproces dat vaak wordt gebruikt voor het modelleren van seismische activiteiten. Het idee

achter het ETAS-model is dat elke aardbeving naschokken kan veroorzaken zoals bij epidemieën en dat

de intensiteit van de impact van elke getriggerde gebeurtenis na verloop van tijd afneemt.

Hoewel de kans op aardbevingen op lange en korte termijn worden gezien als objectieve maatstaven

voor het aardbevingsrisico, proberen we ook een subjectieve risicomaatstaf uit de gegevens te halen. Dit

wordt bereikt door gebruik te maken van een parametrische familie van kanswegingsfuncties, die veel

worden gebruikt in economische analyse en beslissingstheorie. Het idee is dat we, door de gewogen

(subjectieve) kans in te voeren in plaats van de oorspronkelijke (objectieve) kans in de regressiefunctie,

(met maximale waarschijnlijkheid) uit de gegevens de onbekende parameter kunnen schatten door een

rasterzoekopdracht uit te voeren. De bijbehorende variantie van deze schatter moet worden afgeleid

omdat de situatie niet standaard is in die zin dat één van de regressoren afhangt van de parameter van

belang. De geschatte parameter werpt licht op de vorm van de kanswegingsfunctie en geeft zo inzicht

in hoe de perceptie van mensen van een kleine en grote kans wordt weerspiegeld in de vastgoedprijzen.

Wanneer de kanswegingsfunctie omgekeerd S-vormig is, betekent dit dat mensen een kleine kans te

zwaar wegen en een grote te licht. Wanneer de kanswegingsfunctie S-vormig is, betekent dit dat mensen

een kleine kans te licht inschatten en een grote kans te zwaar. Wanneer de parameter gelijk is aan 1,

degenereert de functie tot de identiteitsfunctie, wat betekent dat er geen subjectieve vervorming van de

kans is.

We ontdekten dat het objectieve aardbevingsrisico op lange termijn een aanzienlijk negatief effect

heeft op de vastgoedprijzen. De extra impact van het objectieve aardbevingsrisico op korte termijn is

niet significant verschillend van nul. De vertekende waarschijnlijkheden van aardbevingen op korte

termijn (waarbij de waarschijnlijkheid wordt gewogen) hebben echter een aanzienlijk negatief effect op

de vastgoedprijzen. We vonden dat deze kanswegingsfunctie S-vormig was, waardoor een kleine kans te

licht werd gewogen en een grote kans te zwaar. Deze bevinding is in strijd met de conventionele wijsheid

in de beslissingstheorie, waar kanswegingsfuncties gewoonlijk omgekeerd S-vormig zijn, hetgeen kan

worden verklaard door het feit dat de intensiteit van de aardbeving op de achtergrond groter is dan

nul, zodat mensen geen tijdelijke afwijkingen van een korte termijn aardbevingsrisico lopen met een

referentiekans van nul maar met een positieve referentiekans.

In het tweede project bestuderen we de eigenschappen van een model-gemiddelde schatter, namelijk

de gewogen gemiddelde kleinste kwadraten (WALS) schatter. Het idee van modelmiddeling komt voort

uit het inzicht dat model selectie en -schatting niet als twee afzonderlijke stappen moeten worden gezien,

maar als één geïntegreerde procedure. Modelmiddeling selecteert niet één best passend kandidaatmodel,

maar schat een hele reeks kandidaatmodellen en kent gewichten toe aan elk van de kandidaatschattingen.

De meest voorkomende naïeve toepassing van de t-ratio in de toegepaste econometrie als diagnos-

tische statistiek gaat als volgt. Wanneer de t-ratio van een regressor boven een bepaalde drempel ligt

(meestal 1.96 op het 5% significantieniveau), wordt de regressor als “significant” beschouwd en in het

model gehouden; en wanneer de t-ratio onder die drempel ligt, wordt deze uit het model verwijderd.
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Deze benadering negeert dus het feit dat dezelfde gegevens zijn gebruikt voor diagnostische testen en

schattingen, zodat gevolgtrekkingen verkregen uit de tweede stap waarschijnlijk misleidend nauwkeurig

zullen zijn omdat het de onzekerheid negeert die in de eerste stap wordt gegenereerd.

De hierboven beschreven procedure wordt pretesting genoemd en leidt tot schatters die niet differen-

tieerbaar zijn en dus niet toelaatbaar (inadmissible). Het is de eenvoudigste vorm van een WALS-

schatter, namelijk het geval waarin de gewichten van kandidaatmodellen slechts 0 of 1 kunnen zijn. De

WALS-procedure generaliseert deze discrete versie naar een continue versie, waarbij de gewichten nu

continue functies zijn van de t-ratio. De literatuur over modelmiddeling bestaat vooral uit een frequen-

tistische benadering (FMA) of een Bayesiaanse benadering (BMA). Wij onderzochten de eigenschappen

van WALS, die een Bayesiaanse combinatie is van frequentistische schatters. Deze schatter heeft voor-

delen ten opzichte van de traditionele BMA-schatters in termen van interpretatie en rekenefficiëntie.

Het raamwerk van WALS is het lineaire regressiemodel met onafhankelijke en identiek verdeelde

normale storingstermen. We maken onderscheid tussen focusregressoren, die we in het model willen

behouden, ongeacht de uitkomst van diagnostische toetsen, en hulpregressoren, die al dan niet in het

model kunnen voorkomen.

Wij ontwikkelden statistische pakketten die de berekening van WALS-schattingen, standaardfouten,

bias, gemiddelde kwadratische fouten, betrouwbaarheidsintervallen en voorspellingen mogelijk maken.

De schatting hangt af van een keuze van prior verdelingen en prior parameters, die afkomstig zijn van een

gereflecteerde gegeneraliseerde Gamma familie — de Weibull, Subbotin en Laplace prior verdelingen.

We laten zien dat de Laplace prior leidt tot schattingen met een hogere bias, terwijl voor Weibull en

Subbotin prior de theoretisch verkregen minimax-regret-prior parameters, die de maximale regret over

alle mogelijke waarden minimaliseren, tot meer vertekening kunnen leiden dan andere keuzes van de

prior parameter.

WALS-schatting maakt gebruik van numerieke integratieresultaten, behalve in het geval van de

Laplace prior. We laten het effect zien van de keuze tussen twee alternatieve integratieroutines, de Gauss-

Laguerre kwadratuur en de adaptieve kwadratuur op de precisie en rekenkundige efficiëntie van het

programma. We verkennen ook de grenzen van de WALS-schattingsprocedure door gebruik te maken

van simulatie-opstellingen waarbij de matrix van regressoren bijna singulier is terwijl het aantal hulp-

regressoren groot is. We ontdekten dat, zolang de invoergegevens van volledige kolom rang zijn, de

WALS procedure schattingen kan produceren, hoewel de bias exponentieel toeneemt wanneer de corre-

latie tussen de regressoren toeneemt. We hebben een relatie gelegd tussen het aantal vereiste observaties

en het aantal hulpregressoren onder hetzelfde beoogde bias-niveau, en vonden dat deze relatie ongeveer

lineair is.

Het project heeft zich gericht op de computationele eigenschappen van de WALS-schatter. Afgezien

van de hierboven genoemde bevindingen, laten we enkele andere aspecten zien van de schattingsproce-

dures van WALS, zoals het effect van Monte Carlo replicaties op de precisie van betrouwbaarheidsinter-

vallen, en de vergelijking van de rekensnelheid van verschillende pakketten (R, Python, of Stata). Door

deze aspecten te onderzoeken, willen we inzicht verschaffen in de prestaties van de WALS-schatter en

de verschillende beschikbare schattingsopties, zodat een doorsnee gebruiker weloverwogen beslissingen

kan nemen bij het gebruik van WALS in empirische toepassingen.
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Het proefschrift is als volgt opgebouwd. Hoofdstuk 2 zet een model op met een structuur met

meerdere storingscomponenten en leidt de bijbehorende maximale aannemelijkheid schattingsproce-

dure af. Het ontwerpt ook een rasterzoekprocedure en leidt de variantie af van de parameter van belang

wanneer een van de regressoren afhankelijk is van deze parameter. Hoofdstuk 3 legt het gegevensverza-

melingsproces uit voor de empirische studie van het aardbevingsrisico dat is ingebed in vastgoedprijzen.

Hoofdstuk 4 toont het volledige beeld van het empirische onderzoek en presenteert de empirische resul-

taten. Hoofdstuk 5 onderzoekt de (computationele) eigenschappen van de WALS-schatter.
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