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Binary Modal Companions for
Subintuitionistic Logics

Dick de Jongh and Fatemeh Shirmohammadzadeh Maleki

Abstract The weak subintuitionistic logic WF, for which no standard unary
modal companion is known, is found to have a strict implication logic as its
binary modal companion. It is also shown that for all modal logics extending
the weak logic EN, classical modal logic with necessitation, a strict impli-
cation logic exists which is essentially equivalent to it. This logic extends a
basic strict implication logic plus an axiom U, and conversely each such logic
corresponds to a modal logic extending EN. Among other things this means
that any subintuitionistic logic which has a modal companion has a strict
implication companion as well.

1 Introduction

Subintuitionistic logics as a theme were first studied by G. Corsi [7], who
introduced a basic system F. The system F, which cannot prove formulas
like A → (B → A) and A → (B → A ∧ B), has Kripke frames in which no
assumption of preservation of truth is made and which are neither reflexive
nor transitive. She also introduced Gödel-type translations of these systems
into modal logic. Restall [16] defined a similar system SJ (see also [9]). Basic
logic BPC, a much studied extension of F, had already been introduced before
by Visser [22] in a study mainly focussed on a further extension FPC of
BPC with a provability interpretation. The system BPC has irreflexive Kripke
frames with transitivity and preservation. A considerable amount work in
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the area, especially on BPC, has been done by Ardeshir in cooperation with
members of his school and with W. Ruitenburg (see e.g. [1, 3]).

In our papers [10, 11, 18] we introduced a basic logicWFmuch weaker than
F, and we developed two types of neighborhood semantics for this logic and its
extensions. In [10] we discussed the strength of the various subintuitionistic
logics by investigating which part of intuitionistic logic IPC they are able to
prove. A translation from IPC into BPC discovered by [2] played an important
role.

Furthermore, we discovered modal companions for a number of logics ex-
tending WFN, an extension of WF by a rule. The logic WF did not lend
itself to our treatment because its semantics is too different from the usual
neighborhood semantics for modal logic. In the present paper we looked for
a binary modal companion for WF instead of the usual unary one. This ex-
ploration was successful as we will show. It also lead us to investigate the
notion of binary modal logic, its neighborhood semantics and its relation to
ordinary unary modal logic, and more specifically what we call classical strict
implication logic, for which we give a complete basic system E2

Imp. In fact, we
show that all extensions L of the weak logic EN (classical modal logic with
necessitation) have a unique counterpart logic L∗ with a strict implication.
All logics extending E2

Imp plus an axiom U are such a counterpart L∗, each is
mutually interpretable with L, shares with it the usual logical properties and
functions as a modal companion to the same subintuitionistic logics. This
result exhibits which conditional logics can be represented in ordinary unary
modal logic, at least if one restricts one’s attention to modal logics extending
EN, which indeed does seem to be a bare minimum.

2 Neighborhood semantics for modal and
subintuitionistic logics

In this section we will give in Subsection 2.1 an introduction to the usual
neighborhood semantics for modal logic followed in Subsection 2.2 by a quick
survey of our neighborhood semantics for subintuitionistic logics and a sum-
mary of the results previously obtained by us.

2.1 Neighborhood semantics for modal Logic

Definition 1 The modal language L�(At) is the smallest set of formulas
generated by the following grammar, where p ∈ At:

p | ¬A | A ∧B | �A.
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The sublanguage Lc(At) of L�(At) containing its formulas without � is
the language of (classical) propositional logic. We add to Lc(At) the symbols
→, ↔, > and ⊥ as symbols defined in the usual way.

Definition 2 A pair F= 〈W,N〉 is a Neighborhood Frame of modal logic
if W is a non-empty set and N is a function from W into P(P(W )).
In a Neighborhood Model M = 〈W,N, V 〉, V : At → P(W ) is a valuation
function on the set of propositional variables At.

Definition 3 Let M = 〈W,N, V 〉 be a neighborhood model and w ∈ W .
Truth of a propositional formula in a world w is defined inductively as fol-
lows.

1. M, w |= p ⇔ w ∈ V (p),
2. M, w |= ¬A ⇔ M, w 2 A,
3. M, w |= A ∧B ⇔ M, w |= A and M, w |= B,
4. M, w |= �A ⇔ AM ∈ N(w),

where AM denotes the truth set of A.

We consider the following axiom schemas and rules.

PC Any axiomatization of propositional calculus

N �>

RE
A ↔ B

�A ↔ �B

MP
A A → B

B

Nec
A

�A

E is the smallest classical modal logic containing all instances of PC which
is closed under the rules MP and RE. The logic EN extends E by adding the
axiom scheme N , or by adding the rule Nec [15].

Theorem 1

1. The logic E is sound and strongly complete with respect to the class of all
neighborhood frames [15].

2. The logic EN is sound and strongly complete with respect to the class
of neighborhood frames that contain the unit, i.e. for all w ∈ W , W ∈
N(w) [15].

2.2 Neighborhood semantics for Subintuitionistic Logics

Definition 4 The language of intuitionistic propositional logic L(At)
is the smallest set of formulas generated by the following grammar, where
p ∈ At:
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p | A ∧B | A ∨B | A → B | ⊥

As usual we consider L(At) to be an extension of Lc(At), so we will write
→ for both intuitionistic and classical implication. From the context it should
be clear which is meant. To L(At) the the symbols ¬ and ↔ are added as
defined symbols in the usual manner. Again this should not create confusion
with the symbols of classical propositional logic.

Definition 5 AnNB-Neighborhood Frame F= 〈W,NB〉 for subintuition-
istic logic consists of a non-empty set W , and a function NB from W into
P((P(W ))2) such that:

∀w ∈ W, ∀X,Y ∈ P(W ) (X ⊆ Y ⇒ (X,Y ) ∈ NB(w)).

In an NB-Neighborhood Model M = 〈W,NB, V 〉, V : At → P(W ) is a
valuation function on the set of propositional variables At.

Definition 6 Let M = 〈W,NB, V 〉 be an NB -neighborhood model.
Truth of a propositional formula in a world w is defined inductively as fol-
lows.

1. M, w 
 p ⇔ w ∈ V (p);
2. M, w 
 A ∧B ⇔ M, w 
 A and M, w 
 B;
3. M, w 
 A ∨B ⇔ M, w 
 A or M, w 
 B;
4. M, w 
 A → B ⇔

(
AM, BM

)
∈ NB(w);

5. M, w 1⊥ .

A is valid in M, M 
 A, if for all w ∈ W, M, w
A, and A is valid in F,
F
A if for all M on F, M 
A. We write 
A if M 
A for all M. Also we
define Γ 
 A iff for all M, w ∈ M, if M, w 
Γ then M, w 
 A.

Definition 7 WF is the logic given by the following axiom schemas and rules,

1. A → A ∨B 2. B → A ∨B 3. A → A

4. A ∧B → A 5. A ∧B → B 6. A A→B
B

7. A→B A→C
A→B∧C 8. A→C B→C

A∨B→C 9. A→B B→C
A→C

10. A
B→A 11. A↔B C↔D

(A→C)↔(B→D) 12. A B
A∧B

13. A ∧ (B ∨ C) → (A ∧B) ∨ (A ∧ C) 14. ⊥→ A

Γ `WFA iff there is a derivation of A from Γ using the rules 7,8,9,10,11 only
when there are no assumptions, and the rule 6, MP, only when the derivation
of A → B contains no assumptions.

For a discussion of the definition of Γ `WF A see Definition 4 of [11] and
its introduction.
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Theorem 2 (Weak Deduction Theorem, [18] Theorem 2.19)
A `WF B iff `WF A → B.
A1, . . . , An `WF B iff `WF A1 ∧ · · · ∧An → B.

Theorem 3 The logic WF is sound and strongly complete with respect to the
class of NB-neighborhood frames.

We now define a second type of neighborhood semantics for subintuition-
istic logics, N -neighborhood frames and models. In fact these are exactly the
same frames and models as for modal logic, except of course for the truth
definition. This may be confusing but it enables us to compare the logics very
comfortably.

Definition 8 F= 〈W,N〉 is an N -Neighborhood Frame of subintuition-
istic logic if W is a non-empty set, N is a function from W into P(P(W )),
and for each w ∈ W, W ∈ N(w).
Valuation V : At → P(W ) makes M = 〈W,N, V 〉 an N -Neighborhood
Model. Truth of a propositional formula in a world w is defined inductively
as follows.

1. M, w 
 p ⇔ w ∈ V (p);
2. M, w 
 A ∧B ⇔ M, w 
 A and M, w 
 B;
3. M, w 
 A ∨B ⇔ M, w 
 A or M, w 
 B;
4. M, w 
 A → B ⇔ {v | v 
 A ⇒ v 
 B} = AM ∪BM ∈ N(w);
5. M, w 1⊥ .

A formula A is valid in M, M 
A, if for all w ∈ W, M, w 
 A, and A is
valid in F, F 
A if for all M on F, M 
 A. We write 
A if M
A for all
M. Also we define Γ 
A iff for all M,w∈M, if M, w 
 Γ then M, w 
 A.

The question whether validity in NB-neighborhood frames and N-neighborhood
frames is the same was resolved in [11]. The difference resides in the rule N.
To the system WF we add this rule to obtain the logic WFN:

A → B ∨ C C → A ∨D A ∧ C ∧D → B A ∧ C ∧B → D

(A → B) ↔ (C → D)
(N)

Theorem 4 (Weak Deduction Theorem, [11] Theorem 8)
A`WFN

B iff `WFN
A → B.

A1, . . . , An `WFN
B iff `WFN

A1 ∧ · · · ∧An → B.

Theorem 5 (Completeness of WFN, [11] Theorem 12)

The logic WFN is sound and strongly complete with respect to the class of
N-neighborhood frames.

We consider the translation � from L(At), the language of intuitionistic
propositional logic, to L�(At), the language of modal propositional logic
(see [7, 10]). It is given by:
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1. p� = p;
2. ⊥� = ⊥;
3. (A ∧B)� = A� ∧B�;
4. (A ∨B)� = A� ∨B�;
5. (A → B)� = �(A� → B�).

Note that in (5.) above the first → is a symbol from L whereas the second
→ is a defined symbol of Lc. This need not cause confusion since from the
context in which → occurs it will always be clear in which language it occurs.

Theorem 6 ([10], Theorem 5.17) For all formulas A,

`WFN
A iff `EN A�.

As one says, EN is a modal companion of WFN. For WF the question how
to provide it with a modal companion was left open in [10]. It is not easy to
imagine a modal logic which weakens EN but leaves N in.

3 A complete basic system for strict implication

In this section we define a neighborhood semantics for modal logic with a
binary operator and we introduce a basic system which is sound and com-
plete for this semantics. One might not consider it to be quite proper to call
this basic system a system of strict implication since it allows extensions to
systems for counterfactuals but it is the best we have come up with.

Definition 9 The strict implication language L⇒(At) is the smallest set
of formulas generated by the following grammar, where p ∈ At:

p | ¬A | A ∧B | A ⇒ B.

As in the case the modal language the language Lc(At) is a sublanguage of
L⇒(At), and we again have the usual defined symbols. The NB -neighborhood
frames and models of subintuitionistic logic can be used as frames and models
for strict implication logic, again with a different truth definition.

Definition 10 A pair F = 〈W,NB〉 is called a Neighborhood Frame of
strict implication logic if W is a non-empty set and NB is a neighborhood
function from W into P((P(W ))2) such that

∀w ∈ W, ∀X,Y ∈ P(W ), (X ⊆ Y ⇒ (X,Y ) ∈ NB(w)).

If we delete the final requirement on the neighborhood function we obtain a
more general semantics for binary modal logic, but in this article we focus on
implication because this is all we are interested in at this point. Generally,
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our results will stand when we delete this condition. The results will then
concern not EN but E.

Definition 11 A Neighborhood Model of strict implication logic is a tu-
ple M = 〈W,NB, V 〉, where 〈W,NB〉 is a neighborhood frame of strict im-
plication logic and V : At → P(W ) a valuation function.

Definition 12 Let M = 〈W,NB, V 〉 be a neighborhood model for strict im-
plication logic and w ∈ W . Truth of a propositional formula in a world w is
defined inductively as follows.

1. M, w |= p ⇔ w ∈ V (p),
2. M, w |= ¬A ⇔ M, w 2 A,
3. M, w |= A ∧B ⇔ M, w |= A and M, w |= B,
4. M, w |= A ⇒ B ⇔

(
AM, BM

)
∈ NB(w),

where AM denotes the truth set of A.

Definition 13 A formula A is valid in a model M= 〈W,NB, V 〉, M |=A,
if for all w ∈ W, M, w |= A. If all models force A, we write |= A and
call A valid. A formula A is valid on a frame F = 〈W,NB〉, F |= A if
A is valid in every model based on that frame. We write Γ |= A, A is a
valid consequence of Γ , if, for each model M= 〈W,NB, V 〉 and w ∈ W , if
M, w |= Γ , then M, w |= A.

The definitions above mean that a model M= 〈W,NB, V 〉 will simultane-
ously be a model for the subintuitionistic language and for the strict implica-
tion language. This will enable us to compare the languages and the systems
formulated in them directly in Section 4. We will then, to avoid confusion,
use different symbols for the two notions of |=.

In this section we will be interested in the following axiom schemas and
rules.

E2 A ↔ B C ↔ D

(A ⇒ C) ↔ (B ⇒ D)

Imp
A → B

A ⇒ B

Definition 14 E2
Imp is the smallest set of formulas containing all instances of

PC closed under the rules E2, Imp and MP . We call it Classical Strict
Implication Logic.

If one leaves out the rule Imp, then one obtains what one might call
Classical Binary Modal Logic. In fact, this logic occurs as CK in [5]. We
won’t discuss it here, but as said, basically our results will extend to that
more general case. We will now prove the completeness of E2

Imp in a rather
standard way (compare [18]).
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Definition 15 Let WE2
Imp

be the set of all E2
Imp-maximally consistent sets of

formulas. Given a formula A, we define the set [[A]] as follows,

[[A]] =
{
∆ | ∆ ∈ WE2

Imp
, A ∈ ∆

}
.

Lemma 1 Let C and D are formulas. Then

(a) [[C ∧D]] = [[C]] ∩ [[D]].
(b) [[C ∨D]] = [[C]] ∪ [[D]].
(c) If [[C]] ⊆ [[D]] then ` C → D.
(d) [[C]] = [[D]] iff ` C ↔ D.

Proof The proofs are easy. �

Definition 16 The Canonical model ME2
Imp = 〈WE2

Imp
, NBE2

Imp
, V 〉 of E2

Imp is

defined by:

1. For each Γ ∈ WE2
Imp

and all formulas A and B,

NBE2
Imp
(Γ ) = {([[A]], [[B]]) | A ⇒ B ∈ Γ} ∪ {(X,Y ) | X ⊆ Y } .

2. If p ∈ At, then V (p) = [[p]] =
{
Γ | Γ ∈ WE2

Imp
and p ∈ Γ

}
.

In the completeness proof we need to be sure that, if ([[A]], [[B]]) ∈
NBE2

Imp
(Γ ), then A ⇒ B ∈ Γ .

Lemma 2 If NBE2
Imp

: WE2
Imp

→ P((P(WE2
Imp
))2) is a function such that for

each Γ ∈ WE2
Imp
, NBE2

Imp
(Γ )= {([[A]], [[B]]) | A ⇒ B ∈ Γ} ∪ {(X,Y ) | X ⊆ Y }.

Then ([[A]], [[B]])∈NBE2
Imp
(Γ ) implies A ⇒ B ∈ Γ .

Proof Assume ([[A]], [[B]]) ∈ NBE2
Imp
(Γ ). This gives us two possibilities:

1. For some C, D, [[A]] = [[C]], [[B]] = [[D]], C ⇒ D ∈ Γ ,
2. [[A]] ⊆ [[B]].

If (1), then by Lemma 1, we have ` A ↔ C and ` B ↔ D. Hence by
rule E2 we will have ` (A ⇒ B) ↔ (C ⇒ D). By assumption, C ⇒ D ∈ Γ .
Hence, A ⇒ B ∈ Γ .

If (2), then by Lemma 1, we have ` A → B. Then by rule Imp we will
have ` A ⇒ B. Hence, A ⇒ B ∈ Γ . �
Theorem 7 (Truth Lemma) For any consistent formula D, if M is the
canonical model of E2

Imp, then DM = [[D]].

Proof We only consider the D := A ⇒ B case, the other cases are as usual.
Let Γ ∈ WE2

Imp
, then,

Γ |= A ⇒ B ⇐⇒ (AM, BM) ∈ NBE2
Imp
(Γ )

(by induction hypothesis) ⇐⇒ ([[A]], [[B]]) ∈ NBE2
Imp
(Γ )

(by Lemma 2) ⇐⇒ A ⇒ B ∈ Γ. �
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Theorem 8 The classical strict implication logic E2
Imp is sound and strongly

complete with respect to the class of neighborhood frames.

Proof Soundness is straightforward. For strong completeness, suppose Σ is
a consistent set of the classical strict implication logic E2

Imp. By Lindenbaum’s
Lemma there is a maximal consistent set Σ∗ extending Σ. Then by Lemma

7, ME2
Imp , Σ∗ |= Σ, and we have shown that each consistent set has a model.�

4 Modal Companions

We consider the translation ⇒ from L, the language of intuitionistic propo-
sitional logic, to L⇒, the language of classical strict implication logic. It is
given by:

1. p⇒ := p;
2. ⊥⇒ := ⊥;
3. (A ∧B)⇒ := A⇒ ∧B⇒;
4. (A ∨B)⇒ := A⇒ ∨B⇒;
5. (A → B)⇒ := (A⇒ ⇒ B⇒).

As said above we can use neighborhood models to interpret subintuitionistic
formulas and modal or strict implication formulas simulatneously. We distin-
guish these uses by writing 
 for truth for subintuitionistic formulas and |=
for truth for classical strict implication formulas.

Lemma 3 Let M = 〈W,NB, V 〉 be a neighborhood model. Then for all w ∈
W,

M, w 
 A iff M, w |= A⇒.

Proof The proof is by induction on A. The atomic case holds by induc-
tion and the conjunction and disjunction cases are easy. We only check the
implication case. So let A = C → D, then

M, w 
 C → D ⇐⇒ (CM, DM) ∈ NB(w)
(by induction hypothesis) ⇐⇒ ((C⇒)M, (D⇒)M) ∈ NB(w)

⇐⇒ M, w |= C⇒ ⇒ D⇒

⇐⇒ M, w |= (C → D)⇒. �

Theorem 9 For all formulas A,

`WF A iff `E2
Imp

A⇒.

Proof By Theorem 8 and Lemma 3. �

Lemma 4 If `E2
Imp

A ⇒ B then `E2
Imp

A → B.
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Proof Suppose that there is a model M = 〈W,NB, V 〉 and a point w ∈
W such that M, w 2E2

Imp
A → B. Then, M, w |=E2

Imp
A and M, w 2E2

Imp
B,

therefore AM * BM. Let F′ be F augmented by a g such that NB(g) =
{(X,Y ) | X ⊆ Y } and M′ = 〈F′, V ). Since AM * BM and hence M′, g 2E2

Imp

A ⇒ B, we have 2E2
Imp

A ⇒ B. �

The following theorem, proved by using the Weak Deduction Theorem (2)
and Lemmas 9 and 4, shows that the translation works under assumptions.

Theorem 10 Γ `WF A iff Γ⇒ `E2
Imp

A⇒.

Proof B1, . . . , Bk `WF A ⇔ `WF B1 ∧ · · · ∧Bk → A ⇔
`E2

Imp
(B1 ∧ · · · ∧Bk → A)⇒ ⇔ `E2

Imp
(B⇒

1 ∧ · · · ∧B⇒
k ⇒ A⇒) ⇔

`E2
Imp

B⇒
1 ∧ · · · ∧B⇒

k → A⇒ ⇔ B⇒
1 , . . . , B⇒

k `E2
Imp

A⇒. �

5 Translations

In this section we will show that E2
Imp and EN are very closely related by

translations. The first section will treat formulas, the second will extend this
to logics, and in the third we will show what happens to axiomatizations.

5.1 Translations between E2
Imp and EN

Definition 17 The mapping ∗ from L� to L⇒ is defined by

1. (p)∗ := p,
2. (¬A)∗ := ¬A∗,
3. (A ∧B)∗ := A∗ ∧B∗,
4. (�A)∗ := > ⇒ A∗.

Theorem 11 If `EN A, then `E2
Imp

A∗.

Proof We use induction on the derivation of A. We only consider the rules
Nec and E. First rule A

�A :

1. `E2
Imp

A∗ by induction hypothesis

2. `E2
Imp

> → A∗ by 1

3. `E2
Imp

> ⇒ A∗ by 2 and rule Imp

4. `E2
Imp

(�A)∗ by 3

Rule A↔B
�A↔�B :

1. `E2
Imp

A∗ ↔ B∗ by induction hypothesis
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2. `E2
Imp

> ↔ >
3. `E2

Imp
(> ⇒ A∗) ↔ (> ⇒ B∗) by 1, 2 and rule E2

4. `E2
Imp

(�A)∗ ↔ (�B)∗ by 3 �

Definition 18 The mapping ] from L⇒ to L� is defined by

1. (p)] := p,
2. (¬A)] := ¬A],
3. (A ∧B)] := A] ∧B],
4. (A ⇒ B)] := �(A] → B]).

Theorem 12 If `E2
Imp

A, then `EN A].

Proof We use induction on the derivation of A. We only consider the rules
Imp and E2. First, rule A→B

A⇒B :

1. `EN (A → B)] by induction hypothesis
2. `EN A] → B] by 1
3. `EN �(A] → B]) by 2 and rule Nec
4. `EN (A ⇒ B)] by 3

Rule
A ↔ B C ↔ D

(A ⇒ C) ↔ (B ⇒ D)
:

1. `EN A] ↔ B] by induction hypothesis
2. `EN C] ↔ D] by induction hypothesis
3. `EN (A] → C]) ↔ (B] → D]) by 1, 2
4. `EN �(A] → C]) ↔ �(B] → D]) by 3 and rule RE
5. `EN (A ⇒ C)] ↔ (B ⇒ D)] by 4
6. `EN ((A ⇒ C) ↔ (B ⇒ D))] �

We can combine the * and ]-translations:

Lemma 5 `EN A ↔ A∗].

Proof By induction on A. The atomic case holds by definition and the con-
junction and disjunction cases are trivial.

Assume A = �B, we need to show that ` �B ↔ (�B)∗]. By definition,
(�B)∗] is equal to (> ⇒ B∗)], which is equal to �(> → B∗]), which is
�(B∗]). Then this is equal to �B, by the induction hypothesis. �

Theorem 13 If `E2
Imp

A∗ then `EN A.

Proof Assume `E2
Imp

A∗, then by Lemma 12, `EN A∗]. Again, by Lemma 5,

we conclude that `EN A. �

Corollary 1
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1. `EN A iff `E2
Imp

A∗

2. Γ `EN A iff Γ ∗ `E2
Imp

A∗.

Proof (1) By combining Theorem 13 with Theorem 11.
(2) By applying the weak deduction theorem to (1). �

We call a translation a faithful interpretation if provablity is preserved in
both directions. So, with this terminology we can say that Corollary 1 states
that ∗ is a faithful interpretation of EN into E2

Imp.
Contrary to this result about ∗ it is not so that ] is a faithful interpretation

of E2
Imp into EN. Clearly `EN ((> ⇒ (p → q)) ↔ (p ⇒ q))], but if we consider

the neighborhood frame F = 〈W,NB〉 with
W = {w, v}, NB(w) = {({v} , {w})} ∪ {(X,Y ) | X ⊆ Y } ,
NB(v) = {(X,Y ) | X ⊆ Y } ,

and the valuation V (p) = {v}, V (q) = {w}, then it is easy to show that
w 2 (> ⇒ (p → q)) ↔ (p ⇒ q), that is 0E2

Imp
(> ⇒ (p → q)) ↔ (p ⇒ q).

5.2 Translations between extensions of E2
ImpU and EN

To make ] a faifthful interpretation we have to extend E2
Imp by an axiom. Let

us introduce the axiom U : (> ⇒ (A → B)) ↔ (A ⇒ B). It characterizes the
class of frames closed under equivalence. E2

ImpU is the system E2
Imp with the

axiom U.

Definition 19 Neighborhood frame F = 〈W,NB〉 is closed under equiva-
lence if for all w ∈ W , (X,Y ) ∈ NB(w) if and only if (W,X ∪ Y ) ∈ NB(w).

Lemma 6 The formula (> ⇒ (p → q)) ↔ (p ⇒ q) characterizes the class of
neighborhood frames F = 〈W,NB〉 satisfying closure under equivalence.

Proof Let F be closed under equivalence and M = 〈W,NB, V 〉 be any model
based on F. We have to prove for all w ∈ W , w |= (> ⇒ (p → q)) ↔ (p ⇒ q).
This is easy, because:

w |= > ⇒ (p → q) iff (W,V (p) ∪ V (q)) ∈ NB(w)
by the equivalence condition iff (V (p), V (q)) ∈ NB(w)

iff w |= p ⇒ q.
For the other direction, we use contraposition. Suppose that the class is

not closed under equivalence. Then there is a frame F and w ∈ F such that
(X,Y ) ∈ NB(w) but (W,X ∪ Y ) /∈ NB(w). Consider the valuation V such
that, V (p) = X and V (q) = Y . Then, w |= p ⇒ q and w 2 > ⇒ (p → q).
Therefore F 2 (p ⇒ q) → (> ⇒ (p → q)). Similarly to this we can show that
if (W,X ∪ Y ) ∈ NB(w) and (X,Y ) /∈ NB(w) then F 2 (> ⇒ (p → q)) →
(p ⇒ q). �
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The translations ∗ and ] have semantical meaning as well of course.
This is especially useful in the case of extensions of E2

ImpU. That is because
NB-neighborhood models satisfying closure under equivalence are essentially
equivalent to N-neighborhood models (see [11]). We state the crucial lemmas
from that paper.

Lemma 7 Let 〈W,N〉 be an N-neighborhood frame. Then there exists an
equivalent NB-neighborhood frame 〈W,NB〉. This NB-frame is closed un-
der N-equivalence, i.e., if (X,Y ) ∈ NB(w) and (X,Y ) ≡ (X ′, Y ′), then
(X ′, Y ′) ∈ NB(w). In addition, for all X,Y,w, if X ⊆ Y , then (X,Y ) ∈
NB(w).

Proof The proof is straightforward by considering, for each w ∈ W ,
NB(w) =

{
(X,Y ) | X ∪ Y ∈ N(w)

}
. �

Lemma 8 Let 〈W,NB〉 be an NB-neighborhood frame closed under N-equivalence.
Then there exists an equivalent N-neighborhood frame 〈W,N〉.

Proof The proof is straightforward by considering, for each w ∈ W ,
N(w) =

{
X ∪ Y | (X,Y ) ∈ NB(w)

}
. �

This allows us to interpret strict implication formulas in N-neighborhood
models and modal formulas in NB-neighborhood models for E2

ImpU. We just
state the consequences here without working out the details completely.

Lemma 9

1. For any N-neighborhood model M for modal logic and any modal formula
A(p1, . . . , pn), A

M = (A∗)M.
2. For any neighborhood model for strict implication logic which is closed

under N-equivalence and any strict implication formula A(p1, . . . , pn),
AM = (A])M.

This lemma extends to the Kripke model case when we define w |= A ⇒ B
as, for all v such that wRv, if w |= A, then w |= B (see Definition 22).

Lemma 10

1. For any Kripke model M for modal logic and any modal formula A(p1, . . . , pn),
AM = (A∗)M.

2. For any Kripke model M for strict implication logic and any strict impli-
cation formula A(p1, . . . , pn), A

M = (A])M.

Theorem 14 If `E2
ImpU

A, then `EN A].

Proof By Theorem 12, we just need to show that `EN U] and this is easy.
Because (> ⇒ (A → B))] ↔ (A ⇒ B))] is equal to �(> → (A] → B]) ↔
�(A] → B]), which is provable in EN. �
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Lemma 11 `E2
ImpU

A ↔ A]∗.

Proof By induction on A. The atomic case holds by definition and the con-
junction and disjunction cases are trivial.

Assume A = C ⇒ D, we need to show that `E2
ImpU

(C ⇒ D) ↔ (C ⇒ D)]∗.

By definition, (C ⇒ D)]∗ is equal to (�(C] → D]))∗, which is equal to
(> ⇒ (C]∗ → D]∗)), and by axiom U is equal to (C]∗ ⇒ D]∗). Then this is
equal to (C ⇒ D), by the induction hypothesis. �

Theorem 15 If `EN A] then `E2
ImpU

A.

Proof Assume `EN A], then by Theorem 11 `E2
ImpU

A]∗. Again, by Lemma 11

we conclude that `E2
ImpU

A. �

Corollary 2 `E2
ImpU

A iff `EN A].

Proof By combining Theorem 15 with Theorem 14. �

So, we have that ] is a faithful translation of E2
ImpU into EN. We will now

see that the classes of logics extending EN and E2
ImpU are closely related as

well. A logic extending EN will be a set of formulas containing EN closed
under its rules and uniform substitution. A logic extending E2

ImpU is similarly
defined.

Definition 20

1. Suppose that L is a logic extending EN. We define L∗ as the closure of
{A∗|A ∈ L} ∪ {U} under the rules of E2

Imp.

2. Suppose that L is a logic extending E2
ImpU. We define L] as the closure of{

A]|A ∈ L
}
under the rules of EN.

Lemma 12 If L is a logic extending EN, and A ∈ L∗, then A] ∈ L.

Proof Suppose A ∈ L∗, then there is a finite number of B∗
1 , ..., B

∗
n, with Bi ∈

L, 1 ≤ i ≤ n, such that B∗
1 ∧ ...∧B∗

n `E2
ImpU

A and so `E2
ImpU

B∗
1 ∧ ...∧B∗

n → A.

By Lemma 14 we have `EN B∗]
1 ∧ ... ∧ B∗]

n → A]. Again, by Lemma 5, we
conclude that `EN B1 ∧ ... ∧ Bn → A]. Since B1 ∧ ... ∧ Bn ∈ L, we have
A] ∈ L. �

Theorem 16 If L is a logic extending EN, then L = L∗].

Proof First we prove L ⊆ L∗]. Assume A ∈ L then A∗ ∈ L∗ and A∗] ∈ L∗].
By Lemma 5 `EN A ↔ A∗]. Hence A ∈ L∗].

For the opposite direction assume A ∈ L∗]. Then there exist B]
1, ..., B

]
n,

with Bi ∈ L∗, 1 ≤ i ≤ n, such that B]
1 ∧ ... ∧B]

n `EN A. By Lemma 12 each

B]
i is in L. Therefore A ∈ L. �
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This theorem basically means that each logic extending EN is represented
by a logic extending E2

ImpU , by L∗. We can now directly see by an analogous

proof that for extensions of E2
ImpU we can reverse the order of the translations

in Theorem 16.

Theorem 17 If L is a logic extending E2
ImpU, then L = L]∗.

The two theorems together mean that there is a 1-1-correspondence be-
tween the logics extending EN and extending E2

ImpU. To find the correspond-
ing logic on the opposite side one only has to check the derivability via the
translations on both directions. By the semantic meaning of the translations
completeness of the corresponding logic then immediately follows for the same
semantics. In fact, this holds for all the usual logical properties since the log-
ics are essentially the same. Also, if one has a unary modal companion one
finds in that manner a binary one and vice versa. Of course, this is restricted
to logics extending EN or extending E2

ImpU respectively.

As an illustration we show directly that the new system E2
ImpU is a modal

companion of WFN . First a very straightforward proposition.

Proposition 1 For all subintuitionistic formulas A, A� is identical to A⇒].

Theorem 18 E2
ImpU is a modal companion of WFN.

Proof We can reason completely syntactically in this case. From Theorem 6
we know that EN is a modal companion of WFN: WFN ` A iff EN ` A�.
Thus, by Proposition 1, WFN ` A iff EN ` A⇒]. Applying Corollary 2 we
then immediately get the desired conclusion: WFN ` A iff E2

ImpU ` A⇒. �

5.3 Translations, axiomatizations and standard modal logics

In this subsection we consider what happens if a logic extending EN is ax-
iomatized by an axiom A. Then A does not function as a single sentence but
it represents all its uniform substitution instances.

Theorem 19 (EN+A)∗ = E2
ImpU+A∗.

Proof Obviously E2
ImpU+ A∗ ⊆ (EN + A)∗. So, we just show the opposite

inclusion. Assume (EN + A)∗ ` B. Then there are substitution instances
A1, . . . An of A such that EN proves A1 ∧ · · · ∧An → B. It is a trivial fact of
translations and substitution that (A1)

∗, . . . (An)
∗ are substitution instances

of A∗. So, E2
ImpU +A∗ proves B∗. So, also (EN+A)∗ ⊆ E2

ImpU +A∗ . �

In other words, if L is a logic extending EN axiomatized over EN by A,
then L∗ is the logic axiomatized over E2

ImpU by A∗.
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We now apply the results we have obtained to logics having Kripke models.

We will find the strict implication variants
−→
K ,

−→
KT,

−→
K4 and

−→
S4 as the unique

correspondents of the logics K, KT, K4 and S4 obtained from the following
schemas.

K �(A → B) → (�A → �B)
T �A → A
4 �A → ��A

Definition 21 A Kripke frame F is a pair 〈W,R〉, where W is a nonempty
set and R is a binary relation on W . A Kripke Model M based on a frame
F is a tuple 〈W,R, V 〉 where V : At → 2W is called a valuation function.

Definition 22 (Truth in Kripke Models) Let M = 〈W,R, V 〉 be a Kripke
model and w ∈ W . Truth of a propositional formula in a world w is defined
inductively as follows.

1. M, w |= p ⇔ w ∈ V (p),
2. M, w |= ¬A ⇔ M, w 2 A,
3. M, w |= A ∧B ⇔ M, w |= A and M, w 
 B,
4. M, w |= A ⇒ B ⇔ for each w′ ∈ W with wRw′, if M, w′ |= A, then

M, w′ |= B.

By Theorem 19 it is almost immediate that:

Theorem 20

1.
−→
K = E2

ImpUK
∗,

2.
−→
KT = E2

ImpUK
∗T∗,

3.
−→
K4 = E2

ImpUK
∗4∗,

4.
−→
S4 = E2

ImpUK
∗T∗4∗.

Proof We only need to note that EN follows from K. �

Let us just list the ∗-translations here:
K∗ = (> ⇒ (p → q)) → ((> ⇒ p) → (> ⇒ q))
T∗ = (> ⇒ p) → p
4∗ = (> ⇒ p) → ((> ⇒ (> ⇒ p))

We do immediately get completeness of each of the systems
−→
K ,

−→
KT,

−→
K4,

−→
S4

for their Kripke frames and all the regular properties of their correspondents.
Surely, these logics can be given more elegant axiomatizations. For example,−→
K can also be axiomatized as E2

Imp+((A → B) ⇒ (C → D)) → ((A ⇒ B) →
(C ⇒ D)).

Also, we immediately get

Theorem 21

1.
−→
K is a strict implication companion of F,
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2.
−→
K4 is a strict implication companion of BPC,

3.
−→
S4 is a strict implication companion of IPC.

Similarly we obtain that also the correspondent
−−→
wK4 of wK4 is a strict

implication companion of BPC because wK4 is a modal companion of BPC
(see [17]).

6 Conclusion

We looked for a binary modal companion of the weak subintuitionistic logic
WF and found it in the strict implication logic E2

Imp. During this search we
established also that any extension of the weak modal logic EN can just as
well be represented as an equivalent strict implication logic, satisfying a new
axiom U and conversely. Among other things this implies that any sub- or
superintuitionistic logic which has a standard modal companion has a strict
implication companion as well. This is grounded in the fact that E2

ImpU is a
strict implication companion of WFN. A next research goal would be the op-
posite direction: to find sub- and superintuitionistic logics corresponding to
strict implication logics. This of course can only work if the strict implication
logics satisfy the rules E2 and Imp and the axiom U . Most of them do satisfy
the rules E2 and Imp (see [19]). Whether such logics satisfy the axiom U is
another matter. Logics with Kripke models do satisfy U , but certainly the
interpretability logics IL and its extensions (see e.g. [8]) do not qualify, since
�A is not definable as > ⇒ A, but as ¬A ⇒ ⊥. Also, logics for counterfactu-
als (see [14, 21]) do not satisfy axiom U . These may be approached differently.
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