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Summary

Fresh water – if available in sufficient quantities – makes life pos-
sible. Too much water, on the other hand, can destroy property
and end lives through flooding.
Throughout history, human civilizations have tried to stabilize
nature’s often erratic supply of fresh water by constructing dams
to retain water in river valleys. In addition to retaining fresh
water, such dams can reduce flooding by capturing flood wave
peaks. Yet this can only work if sufficient retention capacity is
available ahead of the flood wave’s arrival. This leads to one of
the central challenges of water management, both for the long
term and in real-time: balancing the desire to retain water for
future use with the need for retention capacity.
This balance is dynamic in time. In a dry season, it is possible to
operate a reservoir at a high level as the risk of a flood event is
low. In a wet season, on the other hand, a reservoir is typically
operated at a lower level in order to ensure sufficient retention
capacity. But if a normally wet season turns dry, such a static low
level will become problematic: as water consumption continues
and the reservoir is not replenished, water supply is at risk.
A natural evolution of the use of seasonal target water levels is
real-time water management. In real-time water management,
inflow forecasts are used to determine the optimal reservoir level
dynamically. Decisions may be adjusted on a daily, hourly, or
sometimes even quarter-hourly basis.
Real-time management of water resources hinges upon four fac-
tors: (1) an understanding of the water balance, i.e., the inflows
and extractions from the system, (2) the amount of storage avail-
able in a water system, (3) an understanding of wave propagation
through river and canal, i.e., open channel, systems, and (4) a
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way to accomodate multiple, potentially conflicting, uses.
This dissertation concerns itself with the challenge of real-time
multi-objective optimal control of open channel systems, i.e., fac-
tors (3) and (4), while taking factors (1) and (2) into considera-
tion.
The dynamics of water systems are nonlinear. Many real-time
optimal control problems for water systems are therefore non-
convex. From a mathematical point of view, this is problematic.
In general, non-convex optimization problems admit an arbitrar-
ily large number of local optima with different objective function
values. Consequently, for such problems, the use of efficient local
optimization methods is traditionally discouraged, and the use of
expensive global optimization solvers, or of heuristic methods, is
proposed instead.
In this dissertation, we address this non-convexity in two ways.
The first approach is to accept a certain loss of model accuracy,
and to approximate the non-convex problem with a convex prob-
lem. This is covered in Chapters 3 and 4.
The second approach is of a mathematically fundamental nature.
This approach rests on a direct analysis of the quality of locally
optimal solutions. The analysis is limited to a particular class of
non-convex problems, for which it is proven that locally optimal
solutions have strong nonlocal (global, or “nearly so”) properties,
a phenomenon referred to as “hidden invariant convexity”. This
analysis is covered in Chapters 5 and 6.
The hidden invariant convexity results of Chapter 5 apply to a
class of discrete-time optimal control problems. This class covers,
but is not limited to, problems arising in water resources man-
agement. The result is particularly important because it shows
that for this class of non-convex problems, heuristics or compu-
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tationally expensive global solvers are not needed, and that local,
deterministic methods – such as first and second-order methods –
are sufficient in practice.
The non-convex multi-objective approach has been succesfully ap-
plied for several real-world decision support systems. One of these
systems, commissioned by the water authority of Rijnland in the
Randstad area of the Netherlands, is described in Chapter 7.
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CHAPTER 1

Introduction

We begin this introductory chapter by sketching current chal-
lenges and drivers in operational water management and explain
how these lead to mathematical optimization (Section 1.1). In
Section 1.2, we sketch the model predictive control (MPC) frame-
work within which such optimization problems are operational-
ized. In Section 1.3, the overall structure of the optimization prob-
lems that arise in the context of an MPC controller is described.
This structural description will have placeholders for mathemat-
ical models of flow in channel reaches (Section 1.4), and for the
behaviour of the various types of control structures (Sections 1.5).
Most of these models are nonlinear, which makes solving these
optimization problems challenging in general. A variety of tech-
niques rising to the challenge are described in Section 1.6. In
Section 1.7, the core contributions of this thesis are presented.
Section 1.8 provides an overview of the research papers contained
in this thesis.

1.1 Operational water management

Open-channel flow is a type of liquid flow within a channel with a
free surface; the other type of flow is pipe flow, where there is no
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free surface. Examples of open-channel networks are natural river
systems, as well as man-made canal systems such as those found
in and around the low-lying, actively drained polder systems of
the Netherlands. These open-channel networks are often endowed
with flow control structures, such as weirs (overflow dams), gates,
dams, and pumping stations, that enable operators to control wa-
ter flows and levels. An example of an open-channel network is
shown in Figure 1.1.

flow boundary

adjustable weir

flow boundary

adjustable weir

confluence

pumping station

level boundary

Figure 1.1 – Schematic overview of an open-channel net-
work with two upstream inflow boundary conditions, two
adjustable weirs, a confluence, a pumping station contain-
ing one or more pumps, and a downstream level boundary
condition. The adjustable weirs and the pumping station
are control structures. The lines represent the channel
reaches.

Typically, flows and levels are regulated to satisfy several, poten-
tially conflicting, requirements. These requirements may include,
for example, (a) water availability for agriculture, industry, and
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drinking water production, (b) flood control, (c) ecosystem health,
(d) stable water levels for recreation, (e) operation of pumps at
minimal cost, and (f) operations of hydroelectric turbines for max-
imal energy generation or energy sales revenue.
Optimally satisfying a combination of such requirements is a com-
plex task. Traditionally, organizations rely on the expertise of hu-
man operators (van der Zwan 2017, e.g.). In recent years, various
stresses have been driving water authorities to look for alternative
ways to operate their systems. Examples of such stresses include
(a) climate change driving an increased prevalence of extreme
events, (b) tightened environmental regulation requiring water
system operators to operate more carefully, (c) budget cuts caus-
ing water agencies to look for ways to reduce expenditures, and (d)
bans on the construction of new dams causing hydropower com-
panies to look for alternative ways to grow revenue. Such stresses,
as well as a general desire to innovate, drive water management
agencies towards the adoption of mathematical optimization tech-
niques.

1.2 Model predictive control

Model predictive control (MPC) is a popular control technique
that uses optimization to compute a dynamically evolving control
strategy (Garćıa et al. 1989). At every controller time step, a
discrete-time optimal control problem is solved over a finite time
horizon. The here-and-now decisions, i.e., the decisions of first
time step of the computed control strategy, are implemented in
practice. At the next controller time step, new measurements are
recorded, the time period is shifted, and the process is repeated.
MPC has been studied extensively for water systems (Ackermann
et al. 2000, van Overloop 2006a, Litrico and Fromion 2009, Schwa-



4 Introduction

nenberg et al. 2015, e.g.).

1.3 Discrete-time optimal control

Given an open-channel network of channel reaches R and control
structures S, the discrete-time optimal control problems arising
in an MPC controller have the following general scheme:

min
x,u

f(x, u) (1.1)

s.t. crt=tj (x(tj−1), x(tj), u(tj−1), u(tj)) = 0 j = 1, . . . , T, r ∈ R,
(open-channel equations)

dst=tj (x(tj−1), x(tj), u(tj−1), u(tj)) = 0 j = 1, . . . , T, s ∈ S,
(control structure equations)

u ≤ u(tj) ≤ u j = 1, . . . , T,

where u(tj) represents the vector of control decisions at time tj,
and u and u its lower and upper bounds, respectively. The vector
x represents the optimization variables that are not control deci-
sions, but that arise in the equations of the open-channel model.
We will refer to these variables as states. The vector of states at
time tj is denoted by x(tj). The vector-valued function crt=tj repre-
sents the open-channel equations for reach r at time step tj, and
the vector-valued function dst=tj represents the control structure
equations for structure s at time step tj. The objective function
f is problem-specific, and is generally chosen to be a jointly con-
vex function of the states x and the controls u. Problem (1.1)
contains placeholders for equations describing flow in the open-
channel reaches and describing the behaviour of the control struc-
tures. In Sections 1.4 and 1.5, we will discuss a variety of ways to
model open-channel reaches and control structures, respectively.
Optimization problems for water systems generally involve mul-
tiple objective functions f . In an MPC setting, it is generally
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undesirable to trade these objectives off against each other, as the
weighting factors for the various objectives would generally be
hard to interpret. Experience shows that such opaque parameters
require constant tuning and erode the confidence of the operators
of a water system.
An established approach for multi-objective optimization in wa-
ter systems is lexicographic goal programming (LGP) (Collette and
Siarry 2003, Eschenbach et al. 2001). In LGP, optimization ob-
jectives are ordered according to priority. The problem is then
solved for different objectives in lexicographic order. Following
every optimization run, a constraint is added that fixes the at-
tained objective value. In this way, the optimization of subsequent
objectives cannot decrease the values of the objectives that have
already been optimized for. This approach is described in detail
in Chapter 2.
Realistic problems typically contain hundreds or thousands of con-
trol variables, thousands to hundreds of thousands of state vari-
ables, and an equal number of equality constraints. These num-
bers depend on the size of the network, the resolution of the spa-
tial discretization (when using hydrological or hydraulic channel
models), and the number of time steps.

1.4 Open-channel equations

In optimization problem (1.1), the channel reaches (cf. Figure
1.1) are represented using equality constraints. In the following,
we cover the three most common models that can be used to
provide these equalities, in increasing order of physical detail.
Integrator-delay models. The integrator-delay model is a sim-
ple way to model flow propagation in a controlled water system.
It arises out of the observation that water in an open-channel
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takes a finite amount of time to travel from one control struc-
ture to the next. Whereas in reality the relationship between the
flow velocity and the water level is nonlinear, the integrator-delay
model assumes that the water moves with a certain fixed velocity.
It does not capture any other physical phenomena, such as wave
diffusion.
The integrator-delay model is given by the equation (Falk et al.
2016, e.g.):

dV

dt
(t) = Qin(t)−Qout(t+ τ),

with reach volume V , time t, upstream inflow Qin and downstream
outflow Qout. This equation decribes the conservation of volume,
and delays the downstream outflow by the time offset τ . The
function of the variables is illustrated in Figure 1.2.

Qin Qout

Flow direction →
V

Figure 1.2 – Conceptual view of an open-channel reach.

Continuous-time variants of the integrator-delay model exist as
well. The integrator-delay-zero model of Litrico and Fromion
(2004), for example, is a continuous-time linear time-invariant
model that introduces a (frequency-dependent) phase delay to the
outflow Qout.
The integrator-delay model is appropriate for water allocation ap-
plications such as the one described in Chapter 2, where short-
term hydrodynamic effects such as wave propagation and diffu-
sion are largely irrelevant. It is not appropriate for applications
that require damping of flood waves. Nor is it appropriate for
the timing of hydroelectric power generation along a cascade of
run-of-river power plants, where water released during generation
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peaks travels as a wave from one plant to the next.
Hydrological flow routing. In natural rivers, it is common to
observe an empirical correlation between flow Q and the volume
V stored in a reach. When modelling a reach as having an inflow
Qin and an outflow Qout, as in Figure 1.2, the reach flow Q may
be expressed as a weighted average of the in- and outflows, i.e.,
Q = XQin+(1−X)Qout. The empirical correlation is expressed as
the so-called Muskingum flow routing equation (McCarthy 1938,
e.g.):

V = K (XQin + (1−X)Qout) ,

with parameters K > 0 and 0 ≤ X ≤ 1. In the classical Musk-
ingum approach, K and X are taken fixed and are fitted to avail-
able measurement data. The Muskingum flow routing equation is
typically accompanied by a mass balance equation of the form

dV

dt
= Qin −Qout.

Reach confluences are modelled by summing the downstream out-
flows of upstream reaches, and feeding the sum of outflows as an
upstream inflow to the downstream reach.
The approach was later extended by Cunge, who derived equations
for K and X from a hydraulic analysis (Cunge 1969, Todini 2007,
e.g.):

K = ∆x
c
,

X = 1
2

(
1− Qout

BS0c∆x

)
,

with wave celerity c, reach length ∆x, channel width B, and chan-
nel bed slope S0. Whereas the classical Muskingum method re-
sults in a linear model, the generally more accurate Muskingum-
Cunge model has bilinear terms QinQout and Q2

out.
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Hydrological routing schemes are typically appropriate when (a)
the flow is always in one direction, and (b) there are no backwa-
ter effects to speak of, i.e., water levels do not build up due to a
downstream flow restriction. As such, hydrological routing is of-
ten an appropriate choice when modelling natural rivers that flow
downhill. It is, however, not suitable for flow that changes direc-
tion depending on relative water levels, as is the case for many flat
canal systems in the Netherlands. It is also generally not suitable
to model run-of-river hydropower schemes, where a plant may re-
strict the flow and cause water levels upstream of the plant to
rise.
Hydraulic models. At a fundamental level, fluid flow is de-
scribed by the Navier-Stokes equations. Using the assumptions
that water is incompressible and that the pressure is hydrostatic,
i.e., proportional to the weight of the column of water above
an infinitesimally small control volume, the Navier-Stokes equa-
tions can be simplified to obtain the shallow water equations. In
their most basic form, the shallow water equations describe flow
in open channels and shallow lakes (Chanson 2004, Vreugdenhil
2013, e.g.).
By averaging variables in the vertical direction and in the hori-
zontal direction orthogonal to the channel, the one-dimensional
shallow water equations may be obtained. These are also known
as the Saint-Venant equations, and are given by the momentum
equation

∂Q

∂t
+ ∂

∂x

Q2

A
+ gA

∂H

∂x
+ g

Q|Q|
ARC2 = 0, (1.2)

with the longitudinal coordinate x increasing in the flow direction
of the river, time t, flow (discharge) Q, water level H, cross section
A, hydraulic radius R := A/P , wetted perimeter P , Chézy friction
coefficient C, gravitational constant g, and by the mass balance
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(or continuity) equation

∂Q

∂x
+ ∂A

∂t
= 0. (1.3)

These hyperbolic partial differential equations (PDE) describe the
time evolution of the level and flow of water at each point of an
open-channel reach. The Saint-Venant equations capture most
physically relevant hydrodynamic phenomena, including dynamic
wave propagation velocity, wave diffusion, and backwater effects.
These equations can therefore be used to model cyclic networks,
and networks where the flow direction is not fixed a priori, such
as the drainage networks of the polders in the Netherlands.
A common simplification is to consider the momentum equation
(1.2) in steady state, by setting the total derivative of the velocity
u := Q/A to zero:

0 = du

dt
= d

dt

Q

A
= 1
A

(
∂Q

∂t
+ ∂

∂x

Q2

A

)
,

where the continuity equation (1.3) is used to derive the last equal-
ity. In this way one obtains the diffusive wave equation:

gA
∂H

∂x
+ g

Q|Q|
ARC2 = 0.

An intermediate form, the inertial wave equation (Montero et al.
2013), is also used:

∂Q

∂t
+ gA

∂H

∂x
+ g

Q|Q|
ARC2 = 0. (1.4)

The inertial wave equation is identical to the Saint-Venant mo-
mentum equation, except for the convective acceleration term
∂/∂x (Q2/A), which is omitted. For subcritical flow, this term
is small in magnitude relative to the others. This omission effects
a reduction in computational effort.
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In order to compute with the Saint-Venant equations or any of its
simplifications, an approximation, discrete in time and space, is
required. In this dissertation we will use the semi-implicit approx-
imation scheme of Casulli and Cheng (1992). This discretization
is detailed and illustrated with a numerical example in Chapter 5.
In our optimization problem (1.1), the (discretized) open-channel
equations are included as equality constraints. As such, the non-
linear Saint-Venant equations produce a non-convex optimization
problem. Some other nonlinear PDE, such as the Hazen-Williams
or Darcy-Weisbach equations for pressurized flow in pipes, can be
discretized as convex functions of the states. These convex func-
tions may be included in an optimization problem as inequality
constraints (Sela Perelman and Amin 2015, e.g.), thereby produc-
ing a convex relaxation of the original problem. The Saint-Venant
equations, however, are not convex functions and therefore result
in a non-convex optimization problem, regardless of whether they
are included as equality or as inequality constraints. From an op-
timization perspective, the Saint-Venant equations are therefore
fundamentally difficult to work with.

1.5 Control structure equations

In optimization problem (1.1), the control structures (cf. Figure
1.2) are also represented using equality constraints. We will give
three examples of control structures and the equations describing
their behaviour.
Weir equation. A weir is a small dam, generally set up such
that there is a reduced flow of water over its crest. Some weirs are
adjustable, i.e., their crest level is controllable. Such a structure
presents a means to regulate the flow.



Control structure equations 11

The weir equation is

Q = CL(∆H)n, (1.5)

with hydraulic head difference

∆H = Hup −Hc,

and flow coefficient C, crest width L, and power n (Chanson 2004,
e.g.). The power n varies with the structure. For a horizontal weir,
n = 3

2 . The crest level Hc is the control variable; the upstream
water level Hup is a state variable.
The weir equation is nonlinear.
Pump equation. The power consumption of a pump is a multi-
ple of the hydraulic power required to produce a given flow, i.e.,

η(Q,Hup, Hdown)P = gρQ∆H, (1.6)
with hydraulic head difference

∆H = Hdown −Hup,

and efficiency function η with η(Q,Hup, Hdown) ∈ [0, 1], power con-
sumption P , gravitational constant g, water density ρ (constant),
pump flow Q, upstream water level Hup and downstream water
level Hdown (Chanson 2004, e.g.). Either the power consumption
P , or the pump flow Q, may be taken as control variable; the
upstream and downstream water levels Hup and Hdown are state
variables.
If the efficiency η is taken constant, the power consumption P is
bilinear in the flow Q and the hydraulic head ∆H.
Turbine equation. The power generation of a turbine is a frac-
tion of the available hydraulic power, i.e.,

P = gρη(Q,Hup, Hdown)Q∆H,
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with hydraulic head difference

∆H = Hup −Hdown,

and power generation P , gravitational constant g, water density
ρ (constant), efficiency function η with η(Q,Hup, Hdown) ∈ [0, 1],
pump flow Q, upstream water level Hup and downstream water
level Hdown (Chanson 2004, e.g.). Either the power generation
P , or the turbine flow Q, may be taken as control variable; the
upstream and downstream water levels Hup and Hdown are state
variables.
If the efficiency η is taken constant, the power generation P is
bilinear in the flow Q and the hydraulic head ∆H.

1.6 Optimization techniques

In this section, we discuss various techniques for solving optimiza-
tion problems of the form (1.1).
All of the models discussed above, except the integrator-delay
model for flow routing, are nonlinear. Therefore, a direct inclusion
of any of these models as equality constraints between optimiza-
tion variables, would, in general, result in a non-convex optimiza-
tion problem (Boyd and Vandenberghe 2004, e.g.). Non-convex
optimization is, in the general case, of limited practical use as a
local minimum need not be a global minimum.
A common “work-around” is to work with simplified models so
as to obtain a linear or a convex optimization problem (Eschen-
bach et al. 2001, e.g.), for which every local minimum is a global
minimum (Boyd and Vandenberghe 2004, e.g). For example, the
integrator-delay model can be used, and the power consumption
P of a pump may be modelled using a constant energy coefficient
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E as
P = EQ, (1.7)

with flow Q, i.e., completely dropping the dependency on the
hydraulic head – compare Equation (1.6).
Another approach is to linearize the nonlinear equations around
a nominal point, and then optimize this linearized model (Amann
et al. 2016, e.g.). Here, one makes the assumption that the states
occuring in the optimization do not deviate “too much” from the
nominal point. This assumption is violated for, e.g., flood waves,
where flow increases and then decreases sharply. Iterative refine-
ment through sequential linear programming is an option, but this
is conceptually no different from local nonlinear optimization.
Other authors apply a general-purpose global solver such as
Couenne (Belotti et al. 2009), or apply Lasserre hierarchies
(Lasserre 2001, Ghaddar et al. 2017, e.g.), in order to find so-
lutions that are provably globally optimal. While such techniques
eventually find a global optimum, the process may take hours,
days, or worse (Ghaddar et al. 2017, e.g.). Such run times are not
suitable for closed-loop MPC, where, for a typical water system,
the controller is invoked at an hourly frequency.
Yet other authors have tried to address the difficulty of non-convex
optimization by using genetic algorithms (Van Zyl et al. 2004,
Nicklow et al. 2010, Vermuyten et al. 2018, e.g.). The solutions
discovered using a genetic algorithm are, however, not guaran-
teed to be locally, let alone globally, optimal. Practical experi-
ments show that substantial random variation exists in solutions
obtained using such algorithms (Vermuyten et al. 2018, e.g).
In Schwanenberg et al. (2015), local nonlinear, non-convex opti-
mization is applied directly. Similar non-convex approaches are
applied for drinking water distribution networks in Burgschweiger
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et al. (2009), and for gas transport networks in Hante et al. (2017).
In all of these works, local nonlinear optimization is applied, but
the optimality properties of the solutions are not studied. In
Ghaddar et al. (2017), drinking water distribution problems are
studied, and the solutions obtained by the local solver IPOPT
(Wächter and Biegler 2006) are compared with global solutions
computed using Couenne on the one hand, and using Lasserre
hierarchies on the other hand. In said work, an intriguing result
is obtained: the solutions obtained using the local method are
practically indistinguistable from the global solutions.

1.7 Contributions

Prior to the research described in this dissertation, there were no
adequate analytical tools to analyze non-convex hydrodynamic
optimization problems. Initially, this circumstance drove the con-
vex approximation work described in the first part of this thesis.
Subsequently, it drove the creation of the new analytical frame-
work to analyze nonlinear water system optimization problems
directly. The framework is based on the theory of invex (Hanson
1981, Craven 1981a, Ben-Israel and Mond 1986) functions, and is
covered in the second part of this thesis.
The relationship between linear optimization, convex approxima-
tion, and invex optimization is illustrated in Figure 1.3.
Convex approximation. A contribution of this thesis is a more
accurate convex approximation approach for the modelling of con-
trol structures. In Chapters 3 and 4, it is shown how the classical
linear approximation (1.7) may be replaced by a more – but not
fully – accurate convex approximation.
Invex optimization. The second – and primary – contribution
of this dissertation is a principled approach towards the analysis
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Invex

Convex

Linear

QST (Chapter 2)

Rijnland (Chapter 7)

Figure 1.3 – Invex optimization comprises all of con-
vex optimization, which contains all of linear optimization.
The two operational applications described in this disser-
tation, the Quick Scan Tool (QST) and the MPC con-
troller for Rijnland, are shown in their respective classes.
The QST is either linear or convex depending on the p-
norm chosen for its objective functions.

and solution of non-convex hydrodynamic optimization problems.
In Chapter 5 it is shown how, under certain conditions satisfied
by appropriately discretized Saint-Venant and appropriately for-
mulated control structure equations, the objective becomes an in-
vex function of the control variables in the original sense of Han-
son (1981) and Craven (1981b). On an open set, invex functions
have the property that every stationary point is a global minimum
(Ben-Israel and Mond 1986, e.g.). At the boundary of the domain,
tangent cones are used to prove global optimality over a “large”
subset of the domain. We minted the term conic-intersection op-
timality to refer to this phenomenon.
For a broad class of non-convex hydrodynamic optimization prob-
lems, the result shows that local methods find solutions with conic-
intersection optimality guarantees at worst, and full global opti-
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mality at best. For these problems, there is no need for Lasserre
hierarchies, genetic algorithms, or other complex or heuristic tech-
niques, and local methods are sufficient for most practical pur-
poses. It also obsoletes the need for the convex approximations of
Chapters 3 and 4.
The new theory confirms the earlier computational results of Ghad-
dar et al. (2017), where the local solver IPOPT was shown to find
solutions that are practically indistinguistable from those obtained
using Couenne and Lasserre hierarches for pipe flow problems.
The equations used to model pipe flow are closely related to the
Saint-Venant equations.
Numerical benchmarks. In Chapter 6, the solution quality
and run time of IPOPT is compared with the solution quality
and run time of RGA (Vermuyten et al. 2018), a type of genetic
algorithm, for a suite of hydrodynamic benchmark problems. It
demonstrates the excellent solution quality obtained using local
methods and thereby provides further numerical evidence for the
invex optimization theory of Chapter 5.
Practical applications. In Chapter 2, linear mass balance mod-
els are applied in practice for water allocation in the Netherlands
at national scale. The resulting tool is used by Rijkswaterstaat,
the executive branch of the Dutch Ministry of Infrastructure and
Water Management, to create and analyze strategies for the mit-
igation of the effects of drought. The approach is, furthermore,
being used at Deltares to construct a more detailed optimization
model for the Nationaal Hydrologisch Instrumentarium (national
hydrological instrument), including not only the primary water-
ways but also lesser water bodies.
In Chapter 7, the non-convex local method is applied in practice
for the MPC of the primary canal system of the water authority
Hoogheemraadschap van Rijnland in the Netherlands. The area
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under its authority lies between the North Sea, Amsterdam, and
The Hague, and includes the city of Leiden as well as Amster-
dam Schiphol Airport. To the author’s knowledge, this is the
first system of its kind being operational anywhere in the world.
The numerical performance of the system and the quality of the
solutions is such that the operators at Rijnland leave the water
level control of the system in the hands of the algorithm for ex-
tended periods of time. Similar applications, in various stages
of operationalization, have been developed for the water author-
ity Noorderzijlvest (by Deltares), for the water authority Hoog-
heemraadschap de Stichtse Rijnlanden (by KISTERS), and for a
major Canadian hydropower utility (by KISTERS), with several
more applications in the planning phase, including for the Ganges
basin in India (by KISTERS).

1.8 Overview of chapters

The rest of this thesis consists of six chapters. Here, the contri-
butions of each chapter are given.
In Chapter 2, the primary waterways in the Netherlands are mod-
elled using a linear mass balance formulation, i.e., an integrator-
delay model with zero delay. Together with a multi-objective goal
programming formulation, this results in a cascade of convex opti-
mization problems. The resulting tool is used by Rijkswaterstaat,
the executive branch of the Dutch Ministry of Infrastructure and
Water Management.
In Chapter 3, the linear mass balance formulation is extended to
cover a convex approximation of the pump equation (1.6). The re-
lationship between flow, hydraulic head, and power consumption
of a pump is roughly bilinear. A suitable convex approximation
allows energy and cost minimization to be posed as convex prob-
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lems.
In Chapter 4, the machinery of Chapter 3 is extended to cover
adjustable weirs, i.e., equation (1.5).
Chapter 5 provides a general framework for analyzing the global
optimality properties of solutions to non-convex discrete-time op-
timal control problems. This enables a principled approach to-
wards using the full Saint-Venant equations, as well as bilinear
pump and turbine equations, in optimization problems.
Chapter 6 compares the solution quality and run time of a local
method with the solution quality and run time of a type of genetic
algorithm, for a suite of hydraulic benchmark problems that sat-
isfy the regularity conditions of Chapter 5. It demonstrates the
excellent solution quality obtained using local methods for such
problems.
Chapter 7 describes a real-life application of optimization sub-
ject to the Saint-Venant equations. This application is used on
a daily basis by the Hoogheemraadschap van Rijnland, i.e., the
water authority of Rijnland, for the control of the primary canal
system in one of the economically most important regions of the
Netherlands.
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1.8 Disclosure

Chapterwise, this thesis is based on the following four research
papers:

Chapter 2 P.J.A. Gijsbers, J.H. Baayen and G.J. ter Maat.
Quick Scan Tool for water allocation in the Nether-
lands. Environmental Software Systems: Computer
Science for Environmental Protection, Springer,
2017.

Chapter 3 K. Horváth, B. van Esch, D.J. Vreeken, I. Pothof and
J.H. Baayen. Convex modeling of pumps in order to
optimize their energy use. Water Resources Research,
volume 55, issue 3, pp. 2432–2445, 2019.

Chapter 4 K. Horváth, B. van Esch, I. Pothof, D.J. Vreeken,
J. Talsma and J.H. Baayen. Closed-loop model pre-
dictive control with mixed-integer optimization of a
river reach with weirs. IFAC-PapersOnLine, volume
52, issue 23, pp. 81–87, 2019.

Chapter 5 J.H. Baayen and K. Postek. Hidden invariant convex-
ity for global and conic-intersection optimality guar-
antees in discrete-time optimal control. Accepted for
publication in Journal of Global Optimization, 2021.

Chapter 6 contains material from: J.H. Baayen, D. J. Vreeken
and P. Archambeau. Optimization methods for hydraulic sys-
tems. 6th International symposium on the hydrological modelling
of the Meuse basin, 2019.
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Chapter 7 contains Section 8.2 from: J.H. Baayen, B. Becker, K.-
J. van Heeringen, I. Miltenburg, T. Piovesan, J. Rauw, M. den
Toom and J. VanderWees. An overview of continuation methods
for nonlinear model predictive control of water systems. IFAC-
PapersOnLine, volume 52, issue 23, pp. 73–80, 2019.

Each chapter contains contributions from all of its respective au-
thors. All numerical experiments were executed by me, except
for the RGA runs of Chapter 5, and except the case studies of
Chapters 3 and 4. These two chapters were revised substantially
for this dissertation. The applications of Chapters 2 and 7 were a
joint effort of all respective authors. The numerical experiments
of Chapters 2, 3, and 4, as well as the application of Chapter 7,
were implemented using RTC-Tools 2 (Baayen et al. 2018), a
software package of which I was the architect and lead developer.
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CHAPTER 2

Quick Scan Tool for water allocation in
the Netherlands

2.1 Introduction

2.1.1 Freshwater availability in the Netherlands

The Netherlands is rich in water. In the current situation there
is hardly any water scarcity, i.e., a situation in which usual con-
sumption rates exceed the average water availability. However,
the country has to cope with droughts, the natural phenomena in
which there is temporarily decrease in fresh water availability, as
occurred during extreme dry historical years 1976 and 2003.
The majority of the water system allows controlled redirection
of water where most regions can be supplied from the national
water system during dry periods, using the Rhine River and Meuse
River as the main sources. After the Rhine and Meuse enters
the Netherlands the water is distributed over the branches Waal,
Nederrijn, and IJssel by means of a weir by Driel. In general,
2/3 of the inflow goes to the Waal, and 1/3 to the Nederrijn and
IJssel. The IJssel supplies the IJsselmeer and Markermeer lakes
with fresh water. From the rivers and lakes, water is distributed to
other parts of the country through an extensive network of ditches
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and canals (Haasnoot et al. 2014).
Water is used for controlling levels, for controlling water quality by
means of flushing, and for actual extractions (e.g., irrigation and
drinking water). In the Netherlands there is no absolute shortage
of water but a “problem” of the right quality at the right time
at the right place. Specific phenomena for the Netherlands as a
low-lying country is the risk of salt water intrusion in the western
part of the Netherlands; during low flow of rivers sea water enters
the main water ways due to the lack of driving forces pressurizing
the water supply of the western part of the Netherlands. As de-
scribed above, in the north water can be stored in the IJsselmeer
and Markermeer, a man-made lake (total 2000 ha), that was cre-
ated in 1932 by building a large dike (the Afsluitdijk) and is fed
by the River IJssel. The lake supplies the northern provinces dur-
ing summertime. Groundwater is the main water source in the
elevated areas in the south and east, since these grounds cannot
be reached by re-routed surface water from the rivers. Finally the
islands and peninsulas in the south west have to deal with both
saltwater intrusion and limited fresh water supply options due to
their surrounding by salt water bodies.
Policy arrangements are in place and coordinated by the National
Coordination Committee for Drought Conditions (LCW) to deal
with reduced water availability conditions. Leading principle is
the so-called Verdringingsreeks, a priority lists which puts infras-
tructure and nature integrity preservation purposes such as water
level and water quality control (flushing) above extractions for
drinking and industry water above irrigation for agriculture.
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2.1.2 The Adaptation Challenge

Climate change scenarios provided by the Royal Netherlands Me-
teorological Institute (Hurk et al. 2014) indicate that the Nether-
lands should expect both an increase in the number and extent of
high flow events as well as low flow periods. It is expected that
global climate change demands that various measures will be taken
to guarantee the control of water levels and a supply of freshwater
for the long term (at least until 2100). Socio-economic develop-
ments could raise water demands even further, beyond just climate
change impacts. A quantitative assessment of both problems and
solutions in collaboration with stakeholders should indicate if this
expectation could come true and if yes, underpin to what extent
one should expect this to happen.
In the previous phase of the policy process, the Dutch Delta Pro-
gramme Phase 1, which ended in 2015, an adaptive pathways
plan was presented to cope with droughts and water scarcity on
the short term (until 2021), midterm (2050) and long term (2100)
(Haasnoot et al. 2012). Funds were allocated for measures and on
different levels: for the main water system, regional water system
and for water users, that are agreed upon as implementation of
the preferred pathway. For the short term it was also agreed upon
to make the current system more flexible and robust by “smart”
operational water management.

2.1.3 The Need to Support Screening of Alternative Strate-
gies

In 2008-2009 various Dutch institutes conducting water manage-
ment research started a collaboration to jointly develop a National
Hydrological Model (De Lange et al. 2014). This National Hydro-
logical Model (NHM) is a detailed integrated surface-groundwater
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system of the Netherlands, combining a 250×250 m grid model for
groundwater (Modflow) and unsaturated zone (Metaswap) with
a surface water balance and water allocation model consisting of
8800 network elements. This water allocation model uses a heuris-
tic, rule-based approach to allocate water to various prioritized
purposes where the uses with high priority receive water before
uses with lower priority. The NHM is applied for policy analysis
and for operational forecasting.
For the operational forecasting application, the NHM is encap-
sulated in a Delft-FEWS based operational forecasting system
call RWsOS-Waterbeheer (Weerts et al. 2011). Rijkswaterstaat,
the Dutch national authority responsible for the national water-
ways and water bodies, uses RWsOS-Waterbeheer on a daily basis
to produce a real-time forecast with a 10 day horizon using the
NHM. This operational system provides useful information to the
National Coordination Committee for Drought Conditions to an-
alyze the current water availability situation in the Netherlands.
The Committee has the authority to change the water allocation
at a national level if the drought situation is sufficient severe. For
this purpose, it wants to be able to conduct what-if analysis runs
such that trade-offs between different regions and sectors can be
assessed when allocation patterns are changed. Since the run-
time of the detailed NHM is substantial, taking hours to days, a
need arose for a so-called Quick Scan Tool to accommodate this
screening purpose. This operational tool will be referenced as the
LCW-Quick Scan Tool.
In the policy analysis domain the NHM is encapsulated in a larger
modeling system called the National Water Model. The model is
used for detailed policy analysis under future climate scenarios
and socio-economic developments. Simulations, conducted for a
30 - 100 year time series targeted at a mid-term 21st century
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outlook (2050), take days to weeks. This makes it hard to use the
model for an initial screening of interventions to address the issues
that arise in terms of water supply and saline intrusion within a
dynamic multi-stakeholder policy process. Also for these studies a
need arose for a Quick Scan Tool that could be applied to analyze
potential interventions for current or future bottlenecks in the
water supply system. This policy analysis tool will be referenced
as the PA-Quick Scan Tool. Once interesting interventions have
been identified, they could be implemented in the NHM of the
Netherlands to conduct a detailed analysis.

2.1.4 Quick Scan Tool Requirements

While the two tools have different end users, they have also many
similarities. The end users for the LCW-Quick Scan Tool are
civil servants, namely the core members of the LCW itself. These
people intend to use the tool as a preparation to the Commit-
tee meetings to investigate alternative water allocation strategies
when hydrological conditions are becoming dry. Their tool needs
to be based on the most recent datasets provided by RWsOS-
Waterbeheer. The LCW-Quick Scan Tool must be easy and quick
to use and provide insight in the current situation as well as the
regional trade-off of water balance effects of alternative allocation
strategies. The end users for the PA-Quick Scan Tool are Deltares
experts conducting the policy analysis for different climate and
socio-economic development scenarios. The input datasets for the
PA-Quick Scan Tool will be 30 year time series of water demands
and river discharge, provided by the National Water Model.
Both applications require a water balance model that can cope
with priority-based water management rules for extractions and
management of lake levels. The challenge for modeling the na-
tional Dutch water system, characterized by a high-density net-
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work of waterways, is to design a model schematization that rep-
resents the national water system with the main water delivery
routes and storages appropriately while regional detail should be
neglected when the issues at stake do not ask for those details.
This network model has to accommodate regional trade-off analy-
sis as well as analysis of the issues at stake, while potential inter-
ventions should transparently be facilitated in the parameteriza-
tion of the model. Possible interventions can vary from changing
requests (water demands for extraction and in-stream uses) to ma-
nipulation of the operating rules for the storages and modification
of maximum intake capacities. To enable quick turnaround times
in the analysis, all above interventions should be facilitated via
a Graphical User Interface. Changing the order of water use pri-
orities was left out of scope as reduction of water demands could
be applied to accommodate analysis of the same intervention in
water shortage conditions.

2.2 Methods and techniques

The model underlying the Quick Scan Tool is composed of a coarse
network of the Dutch water system including the major water
storages, water distribution points and delivery routes to the var-
ious uses. Requests for water abstractions (agriculture, industry,
drinking water, regional water systems) and instream flows for
flushing are prioritized and assigned to the nodes and links in the
network.
In the present section we discuss the methods and techniques used
to develop a model for solving our water allocation problem. In
particular, we will be using mathematical optimization to imple-
ment priority-based water allocation.
The central design tenet of our tool is separation of concerns, i.e.,
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implementation of conceptually disjunct functionalities in sepa-
rate modules. In our case, the physical system model is kept
separate from the specification of the water allocation goals. In
the subsequent sections, we will discuss the methodologies under-
pinning the implementation of these two modules.

2.2.1 Modeling the water system

The Dutch water system may be viewed as a network composed
of elementary objects, such as:

• storage nodes,

• channel reaches,

• weirs and pumping stations.

Objects of the same type share the same parameterized equations
governing their dynamics. Storage nodes, for instance, are gov-
erned by the mass balance equation:

dV

dt
= QI −QO,

with storage volume V , inflow QI and outflow QO. This is a
differential equation.
Instantaneous routing in a channel reach is governed by algebraic
equations of type

Qdown = Qup,

with upstream inflow Qup and downstream outflow Qdown.
Collecting the equations for all the network elements, results in
a system of differential-algebraic equations (DAE). For the Quick
Scan Tool a need was identified for a system to describe classes
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of model elements using DAE, and to combine instances of these
classes into a network model. A modeling language that allows
this is Modelica (Elmqvist 1997). The Modelica objects used for
the Quick Scan Tool are reaches with instantaneous routing with
an extra term for a lateral flux (discharge/extraction), connection
nodes for network confluences and diversions, and storage nodes.

2.2.2 Optimization with prioritized goals

The priority ordering of the control goals of the Dutch water sys-
tem (the Verdringingsreeks) leads us to consider sequential opti-
mization of the prioritized goals in order. In operations research,
this technique is known as lexicographic goal programming (LGP)
(Collette and Siarry 2003, Eschenbach et al. 2001). The idea of
LGP is to optimize the convex goal1 functions fi in a given order,
prioritizing earlier goals over later goals. The goals are ordered by
assigning each a non-negative integer priority value pi. The goals
are then solved in their priority order. Following the optimization
of a goal function fi, its attainment level is fixed and added as
a constraint to the optimization problem. The optimization of
all following goals, in this way, will not worsen the attainment
of any preceding goal. At each stage of LGP, optimization takes
place within the degrees of freedom left open by the fixation of
the attainment levels of the previous goals.
Solving ordered goals. Application of LGP to a multi-objective
optimization problem results in a series of optimization problems.
Let k be the priority level under consideration, and let the overall
problem be constrained by the inequality g(x) ≤ 0 with affine

1Within this chapter, the terms goal and objective are used interchange-
ably.
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vector function g. The k’th optimization problem is then

min
x

fk(x)

s.t. g(x) ≤ 0
fi(x) ≤ εi ∀i < k,

with the attainment level of the ith goal

εi := fi(xopt,i)

and xopt,i being the optimal solution of the ith optimization prob-
lem.
LGP has been applied to decision support for the short-term oper-
ation of hydropower resources (Eschenbach et al. 2001, e.g.) and
to surface water allocation (McGregor and Dent 1993, e.g).

Inequality goals. In water systems, one often encounters the
need to keep variables within a desired range. A channel reach
is a typical case, where one aims to keep the water level within
desired lower and upper bounds. It may not always be possible to
keep the water level within the desired range, as in case of drought
or flooding. Inequality, or range, goals are therefore an important
ingredient in a multi-objective optimization framework.
Let hi be a goal function defined for a single time step (e.g. a water
level at a certain point in space in time) and let [mi,Mi] be its
desired range, withmi ∈ R∪{−∞}, Mi ∈ R∪{+∞} andmi ≤Mi.
Let k be the priority order level under consideration, and let the
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overall problem be constrained by the equation g(x) ≤ 0. The
k’th optimization problem is then

min
x,δk

‖δk‖pp

s.t. g(x) ≤ 0,
hk(x(tj)) ≥ mk + δk(tj)(hk −mk) ∀j = 1, . . . , T,
hk(x(tj)) ≤Mk + δk(tj)(hk −Mk) ∀j = 1, . . . , T,
δk(tj) ≥ 0 ∀j = 1, . . . , T,
δk(tj) ≤ 1 ∀j = 1, . . . , T,
hi(x(tj)) ≥ mi + δi(tj)(hi −mi) ∀j = 1, . . . , T,

∀i = 1, . . . , k − 1,
hi(x(tj)) ≤Mi + δi(tj)(hi −Mi) ∀j = 1, . . . , T,

∀i = 1, . . . , k − 1,

with vector violation variable δk and goal function enclosure (Moore
and Bierbaum 1979) [hk, hk] such that hk ≤ hk(x(tj)) ≤ hk for all
feasible x and all time steps tj, j = 1, . . . , T , where T denotes
the final time step along the prediction horizon. The order p ≥ 1
denotes the norm under consideration. One would select p = 1
for linear penalization, or p = 2 to penalize large violations dis-
proportionately more than small ones. Since the variables δk(tj),
j = 1, . . . , T , are non-negative, the optimization problem is con-
vex for all p ≥ 1. The concept of violation variables is illustrated
in Figure 2.1 (left). For any j = 1, . . . , T , the goal function merely
lies within its enclosure when δk(tj) = 1, whereas the goal is fully
satisfied when δk(tj) = 0.
In addition, for every i < k and every j = 1, . . . , T , the following
constraint is added to fix the goal attainment level:

mi + δi(tj)(hi −mi) ≤ hi(x(tj)) ≤Mi + δi(tj)(hi −Mi).
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For all i < k, the violation values δi(tj), j = 1, . . . , T , are taken
constant.
The effect of an inequality goal is best described as a soft con-
straint. First, the optimizer will try to find a state trajectory that
lies within the desired range. All trajectories that lie within the
range incur no penalty cost and are therefore equally preferable.
If it is not possible to find a trajectory that fully lies within the de-
sired range, the optimizer will select a trajectory that lies outside
of it as little as possible. The desired range, relaxed just enough to
accommodate the actual trajectory, is taken as a standard (hard)
constraint for subsequent goals. This idea is illustrated in Figure
2.1 (right).

t

δk(hk −Mk)

Function enclosure

Target range

Water level

t

Target range

Relaxed range

Water level

Figure 2.1 – Variable violation concept (left) and relax-
ation of state beyond the target range (right).

LGP with inequality goals has been applied to decision support
for the short-term operation of hydropower resources (Eschenbach
et al. 2001).
Multiple goals per priority level. In the Quick Scan Tool,
every priority level i may come with multiple goal functions {fki }k,
each covering a different element of the model. These goals are
assumed to be equally important, hence allowing the respective
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goal functions to be summed into a single objective function fi:

fi =
∑
k

fki .

Optimization solver. The interior point solver IPOPT
(Wächter and Biegler 2006) is used to solve the convex optimiza-
tion problems resulting from the lexicographic optimization pro-
cedure. IPOPT solves convex problems with nonlinear objective,
which is required for goals with order p > 1.
Initialization. The optimization problem for every subsequent
priority level is initialized with the solution from the previous
level. New violation variables at priority k are initialized as
δk(tj) = 1, j = 1, . . . , T , to ensure that the new optimization
problem is feasible.
Software suite. The techniques covered in the preceding sec-
tions are available as standard components in the environmen-
tal flow optimization software suite RTC-Tools 2.0 (Baayen et al.
2018), which supports Modelica model formulations. RTC-Tools
is available under a dual-licensing scheme. The open source ver-
sion is available online under the terms of the GNU General Public
License version 3.

2.3 The Quick Scan Tool application

The Quick Scan Tool application is a combination of two soft-
ware products. Delft-FEWS provides the Graphical User Inter-
face, the database and general data processing capabilities. The
model component uses an internal model based on the RTC-Tools
2 model engine (Baayen et al. 2018).
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2.3.1 The model schematization

The Quick Scan Tool holds an internal network model for the
water balance. The model, built in Modelica, is composed of
model element of type branches, connection nodes, demand nodes,
storages as well as boundary nodes (inflow and terminal). Each
Modelica element holds its own water balance where flow enters
via the “in”-port and leaves via the “out”-port. Lateral flows
(extractions of discharges) can be applied to branches, demand
nodes and storages.
The final network model schematization (Figure 2.2) is the re-
sult of five collaborative design sessions with the end users. The
challenge was to design a network which is as simple as possible
while providing an appropriate representation of the main water
system including the main water delivery routes. The network
model should accommodate analysis of the issues at hand while
potential interventions should be facilitated transparently in the
parameterization. The result is a schematization where areas in
the north-east and in the south-east are grossly simplified com-
pared to the actual water system as there are only few relevant
water inlets. More network detail has been introduced in the west
as many water delivery routes need to be analyzed in relation
to saline intrusion of the most westward inlets. Capacities and
management rule have been derived from the NHM.
The model introduces 374 variables and 226 linear constraints
per time step considered. A further 369 violation variables and
linear constraints are introduced by LGP at the last priority level,
also per time step considered. For 40 time steps, this results in
approximately 30, 000 variables and 24, 000 constraints.



36 Quick Scan Tool for water allocation

minimal simplification of 
main water system

Network model for The Netherlands

large 
simplification
of main water 

system

large 
simplification of 

main water 
system

Figure 2.2 – QST network schematization of the main
water delivery system in the Netherlands.

2.3.2 The work and dataflow of the application

The data flow of the Quick Scan Tool is composed of the following
steps:

1. Acquire the input data sets (requests for extractions and
flushing), river discharges and lake levels) from the National
Hydrological Model.

2. Conduct a spatial assignment, using a coupling table, of all
requests to a node or branch of the coarse network model.

3. Transform request by water use function to a request by
priority.
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4. Allocate the available water resources using the LGP method.
The result is a water distribution over the network, with per
element the inflow, the outflow and the lateral flux achieved.
Since this lateral flux is the total flux for all extracting (and
discharging) water uses functions, this flux needs to be split.

5. Split the lateral flux into the portions allocated to each water
use.

6. Aggregate the results by area for presentation purposes.

7. Compute a delivery rate percentage, broken up by water use,
for presentation purposes.

Table 2.1 illustrates the order of priorities that is adopted in the
PA-Quick Scan Tool.

Table 2.1 – Ordering of goals as applied in the PA-Quick
Scan Tool.

Priority Model variable Lower bound Upper bound
1 Lateral Natural loss/contribution Maximum extraction
2 Inflow Min. capacity (physical) Max. capacity (physical)
3 Level Min. storage level (physical) Max. storage level (physical)
4 Outflow Request water level preservation
5 Level Min. storage (low priority) Max. storage (low priority)
6 Lateral Request Utilities
7 Outflow Request navigation locks
8 Level Min. storage (middle priority) Max. storage (middle priority)
9 Lateral Request rural water system
10 Level Min. storage (high priority) Max. storage (high priority)
11 Outflow Request network flushing
12 Level Target storage level Target storage level
13 Outflow

The first three priorities are critical, i.e., similar to standard
(hard) constraints, as they intend to force the solution within the
physical bounds of the water system. The remaining goals are wa-
ter uses with their order prescribed by law and policies. As can be
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noted, the operating rules for the storages are divided in multiple
goals such that lake levels can drop to meet high priority water
demands. Target storage levels should be attained if sufficient wa-
ter is available within the system. The goal with the last priority
intends to minimize the outflow in a selected set of branches such
that the water remains in the main rivers and only enters the wa-
ter inlets to meet local water demands. All canal outlets that do
not conduct a water delivery function to downstream uses should
be included in this selection.
For in-stream flow requests (e.g., flushing and navigation locks),
each new goal is identified by taking the maximum of all in-stream
water use flow requests up till the priority at stake. For the lateral
fluxes the LGP approach intends to squeeze the solution space
with each priority such that the end result is at the desired request
if the system is not under water shortage. The equations in Figure
2.3 indicate that the requested lateral fluxes for different water
uses need to be stacked to obtain a series of goals that squeeze
the solution space in the ordering of goals.
Once the LGP has completed its computation, the resulting flows
need to be split according to the different water uses. For any
in-stream flow request the request is fulfilled if the realized flow is
larger than the request. For lateral flux requests, the delivery per
water use needs to be based on the “peeling off” of the realized
lateral flux by order of priority and allocating the remaining flux
to a specific water use up to the request.
The total procedure, including the optimization steps, takes ap-
proximately 10s on a modern notebook.
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Figure 2.3 – Solution space squeezing and associated goal
stacking for lateral fluxes.

2.4 Validation of model results

The QST-model has been validated by comparison of the opti-
mized water allocation against the water allocation result com-
puted in the detailed NHM. Some differences are to be expected,
given that the QST uses a lower resolution model and optimiza-
tion to allocate water. The NHM, on the other hand, uses a
high-resolution model and rule-based heuristics to allocate water.
Important items checked are the distribution of the main river
inflows, the behavior of the lakes, the flushing on the outlets and
the main inlets for the rural area in the west. Figure 2.4 illustrates
the water shortage at a downstream reach (Nieuwe Waterweg) for
the flushing goal at the driest moment in the 30 year historical
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series, flushing being the goal with the lowest priority. In general
the QST model results in fewer shortages, which is likely due to
the use of optimization. During the driest period, the difference
with the NHM model result is 2− 6% at this location, while most
other network elements show hardly any difference. Also lake lev-
els follow the same pattern between the two models if the QST is
to lower the volume in order to meet in-stream flow requests. The
accuracy is considered acceptable for screening purposes.

Figure 2.4 – Comparison of shortage at sea outlet be-
tween NHM (blue) and QST-model (red). The y-axis rep-
resents discharge (debiet in Dutch).
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2.5 Discussion and conclusions

Within the Netherlands, a need arose at the national level to sup-
plement the current high-resolution National Hydrological Model
with a water allocation model to enable the screening of national
water allocation decisions for their regional trade-offs. This chap-
ter illustrates how a so-called Quick Scan Tool has been devel-
oped for this purpose. The tool is composed of a water allocation
model engine and a software component that offers a front end as
well as pre- and post-processing capabilities. The water allocation
model is built with the RTC-Tools 2 software framework using a
lexicographic goal programming approach to priority based water
allocation rules. In the pilot version Excel was chosen as the front
end offering application-specific pre- and postprocessing capabili-
ties. Data processing required extensive handling of lookup tables
while conducting the necessary aggregations from detailed source
data to coarse model input to aggregated output for presentation
on areal scale. The prototype application showed that RTC-Tools
2 was meeting the model needs, while Excel was not the appropri-
ate data processing platform. In the final version, the Delft-FEWS
software framework was chosen as a data processing and visual-
ization platform. This platform offered much more insight when
debugging in- and output data flows.
The resulting Quick Scan Tool has been validated against the de-
tailed National Hydrological Model to confirm that the tool out-
comes are sufficiently similar to this accepted model to support
the policy process. The visualization capabilities Delft-FEWS,
with its map based flow animations and graphs, were very benefi-
cial while discussing model setup and validation results with the
water management experts of Rijkswaterstaat, the governmental
body who initiated the development of the tool.
The tool has been in continuous use for policy analysis from 2017
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up to and including the time of this writing (2021).
In the near term, functional extensions are foreseen using meta-
relations to transform reduced river flows into impacts on salinity
rates and navigation depths.
RTC-Tools 2 and Delft-FEWS are software platforms which ini-
tially were developed for near real-time water system operations.
Based on this Quick Scan Tool, it can be concluded that the flexi-
bility and customization capabilities of these platforms also allow
development of decision support tools for strategic planning pro-
cesses.



CHAPTER 3

Convex modeling of pumps in order to
optimize their energy use

3.1 Introduction

Freshwater is a basic resource. However, freshwater is often dis-
tributed unevenly. To correct this distribution and prevent the
problems originating from it, operational water management en-
sures the right amount of water at the right place and time. The
distribution of water is carried out by hydraulic structures, such
as weirs and pumps. The decision about the operation of these
structures determines the distribution of water. These principles
hold for different water systems, such as irrigation and drainage
systems or water distribution networks. To make operational de-
cisions, mathematical optimization is used to enable water man-
agers to take into account future water demands and weather fore-
casts at the time of decision making. For example, for a drainage
canal the task of the optimization is to determine the pump oper-
ation such that the water level in the canal stays in the prescribed
bounds while the nearby areas are drained into that canal. In
doing so, disturbances, such as rainfall, should be taken into ac-
count. Mathematical optimization of water systems requires a
suitable model for every system component. This work focuses on
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the derivation of approximate pump models that are appropriate
for energy consumption minimization purposes. The approach is
demonstrated on a drainage system, but it can be applied to other
systems, such as ground water pumping or to water distribution
networks.
Modeling and optimization of pump operation can be found in the
literature mainly in the context of water distribution networks.
Mala-Jetmarova et al. (2017) provides an overview of this topic.
The reason why optimization is studied mainly in connection with
water distribution systems is that the operational expenditures
of such a network are strongly related to pumping costs (Orms-
bee and Lansey 1994). Pumps fall into one of two categories:
constant-speed pumps, whose speed does not vary, and variable-
speed pumps, whose speed varies depending on the discharge and
the head.
Constant-speed pumps are often used in water distribution net-
works. For such pumps, the optimization algorithm only has to
determine when the pump should be switched on and off. This
is a mixed-integer optimization problem, which may furthermore
have a non-convex continuous structure, whence it can be very
time-consuming to find a global optimum. For this reason, pumps
in water distribution networks are often optimized by faster al-
gorithms providing only suboptimal solutions. In Marchi et al.
(2017), for instance, a genetic algorithm is used combined with an
accurate dynamic pump model. Heuristics can be used to increase
the solution speed (Fatemi et al. 2017). They also, however, result
in suboptimal solutions in general.
There are few methods in the literature that can provide a global
optimum within acceptable time-frames. Cembrano et al. (2000)
avoids using mixed-integer optimization by calculating the vol-
ume to be pumped in the formulation (instead of the on-off state
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of the pump) resulting in a continuous problem, and then the
pump-schedule is obtained via post-processing. However, in this
case the number of pump-switching times must be known a pri-
ori, which is not the case most of the time. Lansey and Awumah
(1994) develop simplified hydraulic models for each possible pump
combination, but the applicability of the model is limited by the
number of pumps in the system. Dorini et al. (2012) describe
convex modelling and optimization of pumps, supposing they are
always on. Another way to reach the optimum without having to
solve a mixed-integer problem is to use switching time as the op-
timization variable to determine the start and length of the pump
operation (Dekens et al. 2014, Price and Ostfeld 2014). This ap-
proach provides a mathematical solution to the problem that leads
to a global optimum; however, it becomes very complex when it
is combined with other elements of the water system, because the
objective of the other elements might not be expressible using
switching times as optimization variables. Moreover, similarly to
the previous case, the number of pump switches should be set a
priori. Although the last two methods are able to reach a global
optimum (even having their own limitations), they can only be ap-
plied to constant-speed pumps. They are not suitable to minimize
the energy use of variable-speed pumps.
The optimization of variable-speed pumps is a challenging task.
Similar to constant-speed pumps, variable-speed pumps can be
seen as discrete systems - as they have on and off positions -
and hence their optimization is a mixed-integer problem. As op-
posed to constant-speed pumps, not only the time of operation
should be determined, but also the shaft speed. Due to this
complexity several authors have used heuristic methods to solve
the optimization problem. Commonly used heuristic optimization
methods can only achieve a suboptimal solution, for example ant-
colony optimization (Hashemi et al. 2014), stochastic optimization
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techniques such as Particle Swarm Optimization (Wegley et al.
2000), or genetic algorithm (Olszewski 2016). In Bagloee et al.
(2018), Candelieri et al. (2018), Marchi et al. (2016), Oikonomou
et al. (2018) machine learning techniques are combined with opti-
mization methods. Other applications include pumped-storage
hydropower plants (Alizadeh-Mousavi and Nick 2016, Schmidt
et al. 2017), and the use of pumps as turbines (Fecarotta et al.
2016). Malrait et al. (2017) minimize the motor losses of the pump
for a given hydraulic operating point (i.e., pump speed), thus it
does not optimize the whole hydraulic system. Another way to
tackle the problem of approximating an optimum of the discrete
system is using the solution of the continuous system: Ulanicki
and Kennedy (1994) solve a non-convex continuous problem and
rounds the solution of the continuous optimization to integers.
This method also leads to suboptimal solutions.
None of the above mentioned methods for variable-speed pumps
are able to reach a global optimum due to the use of heuristic opti-
mization methods. One algorithm that does find global optima is
presented in (Menke et al. 2015, 2016). The authors use simplified
modeling of pumps which enables the use of mixed-integer convex
optimization to reach a global optimum. Moreover, they show
that linear approximations outperform nonlinear approximations
in computation time without significant loss of accuracy. They
use convex approximations of the pump curves combined with a
relatively high (5%) optimality gap in the branch and bound al-
gorithm to be able to find the optimal solution within affordable
computation time. The power consumption of the fixed-speed
pump is assumed to be constant, and for variable-speed pumps
depends only on the discharge. However, the actual power con-
sumption of the pump highly depends on discharge and head.
Therefore, this method introduces a large error in power approx-
imation, thus in the estimated energy consumption.
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In this work, we present a convex approximation of the pump
scheduling problem. Locally optimal solutions to this approxima-
tion (in the continuous sense) are globally optimal and minimize
energy use by taking into account its dependence on head and
flow conditions.

3.2 Methodology

In this section the convex approximation of the pump schedul-
ing problem is described. First, the operation of variable-speed
pumps is recalled. Next, the case is described when the pump is
always switched on and formulated as a continuous convex opti-
mization problem. Then, the possibility to switch off the pump
is included. This requires mixed-integer convex modeling of the
pump optimization problem, which accounts for the main contri-
bution of this chapter. Finally, the formulation is extended to
constant-speed pumps.

3.2.1 Description of variable-speed pumps

In this section the operation of variable-speed pumps is described.
A pump is a dynamic device that increases the pressure of a liq-
uid by transferring the mechanical energy of the rotating impeller
to the liquid (Wright and Gerhart 2009). See Figure 3.1. The
pressure head generated by the pump at a certain shaft speed de-
pends on the discharge. This dependency is presented graphically
by the so-called (Q,∆H)-curve of the pump. Figure 3.2 presents
an example of such a curve for a large axial flow pump used for
polder dewatering, running at 356 rpm.
Apart from the (Q,∆H)-curves, characteristic curves for power
and efficiency are also included in the figure and are seen to depend
on discharge as well. The manometric head, ∆Hman, generated
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Figure 3.1 – Centrifugal pump. Source: Wikipedia.

by the pump is partially used to compensate the pressure losses
in the pumping station and partially to overcome the total, static
head ∆H, i.e., the difference in water levels between the two sides
of the pumping station.
For every shaft speed, there is a corresponding (Q,∆H)-curve.
Thus the relationship between discharge, head and shaft speed
is unique, any two determine the third. This relationship is de-
scribed by the affinity laws. The performance of an axial flow
pump is given in Figure 3.3 for a range of different shaft speeds,
showing how the pump can be used for a range of discharges and
heads. However, in practice the operating range is limited by
several factors, like minimum discharge Qmin to prevent unstable
operation, cavitation if available net positive suction head (NPSH)
is not sufficient, and maximum power Pmax of the motor. All these
curves together define an area where the pump can be operated:
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Figure 3.2 – Pump characteristic curves for an axial
flow pump with impeller diameter 1040 mm running at
356 rpm. Shown are characteristics for manometric head
∆Hman, total or static head ∆H, power P , manometric
efficiency ηman, and total efficiency η.

this is called working area in the following. In case of constant-
speed pumps there is only one (Q,∆H)-curve, and the working
area is reduced to a section of the curve.
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3.2.2 Convex modeling and optimization of a pump that
is always on

This section describes how the operation of the variable-speed
pump can be modeled with convex functions in case the pump is
switched on.
Consider an optimization problem

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m,
hj(x) = 0, j = 1, . . . , p,

(3.1)

where x ∈ Rn is the optimization variable, f0 : Rn 7→ R is the
objective function, fi : Rn 7→ R are the inequality constraints and
hj : Rn 7→ R are the equality constraints. If the functions f0 and
fi, i = 1, . . . ,m, are convex, and the functions hj, j = 1, . . . , p, are
affine, then the optimization problem (3.1) is said to be convex
(Boyd and Vandenberghe 2004). The next step is to approximate
the operation of the pump in such form.
For ease of notation, we consider a single pump and a single spatial
water level discretization point Hup only. Practical applications
would typically involve a multitude of spatial discretization points
along a channel system. The method presented in this chapter
extends naturally to such cases.
The optimization problem for pumps is the following: how to
choose the pump speed for the instantaneous head during a time
period T so that the minimal amount of energy is used, while the
upstream water level Hup is kept between its lower bound Hup

and the upper bound Hup. Using an equidistant discretization in
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time, the optimization problem can be expressed as follows:

min
Q,Hup,∆H,N

T∑
k=1

P (N(tk),∆H(tk))∆t (3.2)

s.t. Hup ≤ Hup(tk) ≤ Hup, k = 1, . . . , T, (3.3)
wl

∆t(Hup(tk)−Hup(tk−1)) (3.4)

= Q0(tk)−Q(tk), k = 1, . . . , T, (3.5)
∆H(tk) = Hdown(tk)−Hup(tk), k = 1, . . . , T, (3.6)
gi(Q(tk),∆H(tk), N(tk)) ≤ 0, k = 1, . . . , T,

i = 1, . . . ,m, (3.7)
h(Q(tk),∆H(tk), N(tk)) = 0, k = 1, . . . , T, (3.8)

where tk is the discretized time, N is the pump speed, Q is the
pump discharge, P is the power, ∆H is the static head, w is the
width of the upstream reach, l is the length of the upstream reach,
∆t is the time step of the discretization and T is the horizon of
the optimization. The parameter Hup(t0) represents the fixed ini-
tial state of the system. The parameters Q0(tk) and Hdown(tk),
k = 1, . . . , T , are fixed time series describing the upstream inflow
boundary condition and downstream level boundary condition, re-
spectively. The linear constraint (3.5) describes the mass balance
of the volume upstream of the pump. The linear constraint (3.6)
relates the static head ∆H to the upstream water level Hup and
the downstream level Hdown. The inequality constraints (3.7) en-
sure that the pump operates inside its working area. The equality
constraint (3.8) expresses the nonlinear (Q,∆H)-characteristic of
the pump, which depends on the pump speed N following affinity
theory.
In order for Problem (3.2) – (3.8) to be convex, the function P

would have to be convex, the working area constraint functions
gi, i = 1, . . . ,m, would have to be convex, and the (Q,∆H)-
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characteristics encoded in the equality constraint function h would
have to be affine. However, none of these conditions are satisfied
naturally.
Therefore, we will approximate Problem (3.2) – (3.8) with a new
convex optimization problem. To do so, we take three steps: (1)
discharge is taken as decision variable instead of pump speed,
through which we can eliminate the equality constraint (3.8); (2)
the inequality constraints (3.7) are approximated with convex in-
equality constraints fi(Q(tk),∆H(tk)) ≤ 0; and (3) a convex ap-
proximatation Papp is used instead of the original power consump-
tion P . For a pump that is always switched on, we obtain

min
Q,Hup,∆H

T∑
k=1

Papp(Q(tk),∆H(tk))∆t (3.9)

s.t. Hup ≤ Hup(tk) ≤ Hup, k = 1, . . . , T, (3.10)
wl

∆t(Hup(tk)−Hup(tk−1)) (3.11)

= Q0(tk)−Q(tk), k = 1, . . . , T, (3.12)
∆H(tk) = Hdown(tk)−Hup(tk), k = 1, . . . , T, (3.13)
fi(Q(tk),∆H(tk)) ≤ 0, k = 1, . . . , T,

i = 1, . . . ,m. (3.14)

Problem (3.9)–(3.14) has a convex quadratic objective, linear equal-
ity constraints, and convex quadratic inequality constraints.
In what follows the change of variables and the approximations
are explained one by one.
The first step, the use of discharge instead of pump speed as de-
cision variable, allows us to eliminate the pump speed variable
N from the optimization problem, and therefore also allows us
to eliminate the equality constraint (3.8). The computation of
pump speeds is deferred to the post-processing stage, where it is
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calculated using the unique relationship N(Q,∆H) stated by the
affinity rules:

Qb

Qa

= Nb

Na

, (3.15)

∆Hb

∆Ha

=
(
Nb

Na

)2
, (3.16)

where Na and Nb are shaft speeds, and Q and ∆H are the cor-
responding discharge and head. A consequence of these affinity
rules is that each (Q,∆H) point in the working area is related
to a pump speed via a parabolic relation. An example for such a
calculation is given in Appendix 3.A.
The second step is to approximate the non-convex inequality con-
straints (3.7) with convex inequality constraints (3.14). This
is implemented in the following way: the bounding curves of the
working area are approximated with quadratic functions. If such
an approximation is not convex, then it is replaced with a lin-
ear approximation. These functions are then used as inequality
constraint functions in (3.14). An example is shown in Figure 3.4.
The dashed lines approximate the boundaries of the working area:
the maximum power curve, the NPSH curve and the minimum
shaft speed curve. The maximum power curve is approximated
with a quadratic function, which is convex in Q. The NPSH and
the minimum shaft speed curve should be concave in Q, and thus
they are approximated with a linear function. The convex working
area (dashed lines) is only slightly different from the original one
(gray area). This means that the optimizer can select somewhat
different choices of (Q,∆H) points at some of the boundaries,
than it would when using a non-convex working area.
The third change is the convex approximation of the power. The
power is a function of two variables: the discharge and the head.



Methodology 55

0

2

4

6

8

10

12

14

16

18
H

 [m
]

0              0.5           1.0            1.5            2.0            2.5            3.0            3.5            4.0            4.5

Q [m3/s]

285

142

214

NPSH

356 rpm

Nmin

Pmax

Figure 3.4 – The working area of the pump. The orig-
inal area is shaded with gray, and the convex quadratic
approximation of the bounds is shown with dashed lines.

It can be approximated by a quadratic function

Papp = Pc00 + Pc10Q+ Pc01∆H
+ Pc20Q

2 + 2Pc11Q∆H + Pc02∆H2.

This function is convex if its Hessian with respect to (Q,∆H) is
positive semi-definite.
The approximation of the power is calculated as follows. First the
power Pi is determined in different points (Qi,∆Hi) in the working
area on the basis of data sheets and/or experiments. Then the
coefficients Pcij are obtained through the following optimization
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problem:

min
Pcij

∑
i

(Pc00 + Pc10Qi + Pc01∆Hi (3.17)

+ Pc20Q
2
i + 2Pc11Qi∆Hi + Pc02∆H2

i − Pi)2 (3.18)

s.t.
(
Pc20 Pc11

Pc11 Pc02

)
� 0. (3.19)

The convexity of the power approximation is guaranteed by con-
straint (3.19), which states that the Hessian must be positive
semi-definite. The set of positive semi-definite matrices of a given
size forms a (convex) cone (Boyd and Vandenberghe 2004, e.g.),
whence the optimization problem (3.18)–(3.19) itself is also con-
vex.
In the following, the error of the resulting power approximation
is assessed. The error between the power and the approximated
power did not exceed 10% for the case considered in this study.
An error of 10% is, however, relatively large. This is a factor
that has motivated the development of the invexity approach in
Chapter 5.

3.2.3 Mixed-integer optimization: including the possibil-
ity to switch off the pump

In this section, the optimization problem is extended to the case
when the pump may be switched off. This can be described as
a mixed-integer optimization problem, where at least one of the
variables can only take integer values. An approximate solution
to such a problem may be found by solving a relaxation to a
continuous problem, in which the integer variables are allowed
to vary continuously. In order for a typical solver to be able to
find a global optimum of the mixed-integer problem, these re-
laxed problems should be convex. Such solvers typically solve
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many relaxations over the course of a solution procedure (e.g., in
a branch-and-cut scheme (Floudas 1995)), which can lead to high
computation times. The convexity of the continuous relaxations
of the mixed-integer problem will be guaranteed by making sure
that the integer variables enter into the constraints linearly using
a so-called big-M reformulation (Floudas 1995, e.g), as explained
below.
In order to describe the pump optimization as a mixed-integer
problem we introduce δ(tk), a boolean variable indicating if the
pump is on (δ(tk) = 1) or off (δ(tk) = 0) at time tk. Suppose the
power is approximated with a convex polynomial Papp(Q,∆H)
which is not necessarily zero at zero discharge. Then, it can occur
that when the discharge is zero, the consumed power is neverthe-
less estimated to be positive. If the pump is allowed to be switched
off, Papp should therefore be multiplied by δ(tk), so that it is zero
when the pump is off. However, the product of these two variables
does not necessarily lead to convex relaxations. This optimization
problem can be written as:

min
Q,Hup,∆H,δ

T∑
k=1

δ(tk)Papp(Q(tk),∆H(tk))∆t (3.20)

s.t. Hup ≤ Hup(tk) ≤ Hup, k = 1, . . . , T, (3.21)
wl

∆t(Hup(tk)−Hup(tk−1)) (3.22)

= Q0(tk)−Q(tk), k = 1, . . . , T, (3.23)
∆H(tk) = Hdown(tk)−Hup(tk), k = 1, . . . , T, (3.24)
fi(Q(tk),∆H(tk))δ(tk) ≤ 0, k = 1, . . . , T,

i = 1, . . . ,m, (3.25)

δ(tk) =
1 if Q(tk) > 0,

0 otherwise,
k = 1, . . . , T. (3.26)

In order to transform Problem (3.20)–(3.26) to a problem whose
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Figure 3.5 – Definition of the extended working area
(dashed lines). The extended working area is shown in
case the pump is switched off. The markers show the ac-
tual operating points of the pump during the presented
case study.

continuous relaxation is convex, the objective function and the
constraints need to be replaced with convex functions.
First, the transformation of the working area constraints (3.25) is
described, and subsequently the transformation of the objective
function (3.20). The working area constraints define the working
area of the pump when it is on: the working area is shaded and
its boundaries are shown with dashed lines in Figure 3.5. If the
pump is off, the discharge is zero, but the head is not, therefore the
(Q,∆H) points will be on the ∆H-axis. However, this is outside
the working area. In order to allow the pump to be off, the working
area should be extended to contain the physically feasible portion
of the ∆H-axis when the pump is off. This is achieved by shifting
the left boundaries of the working area. The constraints should be
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shifted such that they include the ∆H-axis with the minimum and
maximum possible head, ∆Hmin and ∆Hmax, respectively. These
head values are obtained from the minimum and maximum water
levels of the physical system.
Next, an offset value foffset,i is computed that satisfies the relation

foffset,i ≥ max
Q,∆H

fi(Q,∆H)

s.t.(Q,∆H) ∈ E,
(3.27)

where E denotes the extended working area. This maximiza-
tion problem is, in general, non-convex, whence an offset foffset,i

is typically chosen to overestimate the maximum. Alternative
approaches include the use of adjustable robust optimization to
compute a tight upper bound (Selvi et al. 2020).
Once an appropriate offset value has been determined, the working
area constraints (3.25) may be rewritten as:

fi(Q(tk),∆H(tk)) ≤ (1− δ(tk))foffset,i, i = 1, . . . ,m. (3.28)

This inequality constraint is convex. If the pump is on (δ(tk) = 1),
it is equivalent to the original convex constraint (Equation (3.14)).
If the pump is off (δ(tk) = 0), the constraint is satisfied thanks
to the choice of foffset,i as per Equation (3.27). This formulation
makes it possible to extend the working area to the situation when
the discharge is zero and the pump is off.
Now the transformation of the objective function from non-convex
to convex is described. Currently it is a convex function multiplied
with a boolean, an expression which is not necessarily convex. For
this, we will use a big-M reformulation (Floudas 1995, e.g). As
a first step, we move the approximated power to the constraints
by replacing Papp in the objective with an auxiliary variable Phelp.
The sum of this single variable over time is going to be minimized
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and a new constraint is added:

Papp(Q(tk),∆H(tk)) ≤ Phelp(tk). (3.29)

As Phelp is minimized, its possible smallest value will be equal to
Papp. The objective function in Problem (3.20)–(3.26) is multi-
plied with a boolean. This step was necessary to express that the
power is zero when the pump is off, while the power approximation
function is not zero in that case. In order to create a convex con-
straint, the function Papp should not be multiplied with a boolean,
but we still need to get Phelp(tk) = 0 whenever Q(tk) = 0. The fol-
lowing formulation achieves this. Let us denote the minimum and
maximum of the approximated power by m and M respectively.
These values can be obtained from the physical characteristics of
the pump. The power constraint (3.29) is replaced by the follow-
ing three inequalities:

0 ≤ Q(tk) ≤ δ(tk)Q,
mδ(tk) ≤ Phelp(tk) ≤Mδ(tk),
Papp(Q(tk),∆H(tk)) ≤ Phelp(tk) +M(1− δ(tk)).

According to these constraints, if δ(tk) = 0, the pump is off, 0 ≤
Phelp(tk) ≤ 0, so Phelp(tk) = 0. If δ(tk) = 1, the pump is on,
m ≤ Phelp(tk) ≤ M and Papp(tk) ≤ Phelp(tk) is equivalent to the
original constraint.
The final optimization problem for a variable-speed pump, valid
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for all conditions, is:

min
Q,Hup,∆H,δ

T∑
k=1

Phelp(tk)∆t

s.t. Hup ≤ Hup(tk) ≤ Hup, k = 1, . . . , T,
wl

∆t(Hup(tk)−Hup(tk−1))

= Q0(tk)−Q(tk), k = 1, . . . , T,
∆H(tk) = Hdown(tk)−Hup(tk), k = 1, . . . , T,
fi(Q(tk),∆H(tk))
≤ (1− δ(tk))foffset,i, k = 1, . . . , T,

i = 1, . . . ,m,
Papp(Q(tk),∆H(tk))
≤ Phelp(tk) +M(1− δ(tk)), k = 1, . . . , T,

mδ(tk) ≤ Phelp(tk) ≤Mδ(tk), k = 1, . . . , T,
0 ≤ Q(tk) ≤ δ(tk)Q, k = 1, . . . , T,
δ(tk) ∈ {0, 1}, k = 1, . . . , T.

(3.30)
Problem (3.30) is a mixed-integer optimization problem with con-
vex quadratic objective and constraints. The number of opti-
mization variables depends on the optimization horizon and the
temporal discretization step size ∆t.
For the mixed-integer formulation, several auxiliary parameters
are used (such as m, M , Q). These parameters must satisfy the
inequalities described above. If these parameters are, however,
estimated too conservatively, e.g., by choosing a very small m
or a very large M , then the computation time of the solution is
negatively affected. This is due to the fact that in this case, the
solutions to the continuous relaxations will have objective func-
tion values that are much lower than those that can be obtained
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using mixed-integer decisions. Such “loose” relaxations reduce the
effectivity of branch pruning (Floudas 1995, e.g.) in mixed-integer
solvers.

3.2.4 The case of constant-speed pumps

The methodology described above can be applied to constant-
speed pumps. The working area of a constant-speed pump is
a special case: the curves defining the minimum and maximum
shaft-speed coincide, and the area is reduced to a line. An ex-
ample of the working area of a constant-speed pump is shown
in Figure 3.6. The curves bounding the working area define the
beginning and end point of the segment, with other words the min-
imum and maximum possible discharge. The pump can operate
either on this segment, or, in case it is off, the vertical axes. The
markers show examples of operation of a constant-speed pump.
As the minimum and maximum shaft speed lines coincide, the
equation serves as minimum and maximum bound, thus this con-
straint has to be affine for the relaxations to be convex, which is
in fact a new level of approximation.

3.3 Results and discussion

The proposed method can be implemented in an MPC formula-
tion with a receding horizon. After each time step, the horizon
shifts and the optimization is performed again. In this section we
demonstrate one single optimization as an indication of perfor-
mance. The numerical example is shown and compared with two
other methods in order to demonstrate the advantages of our ap-
proach. First, we introduce the water system and the case study.
This water system consists of a lower lying area (polder) and an
area with higher water level (sea). The goal is to keep the water
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case study.
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Figure 3.7 – Schematic of the case study.

level of the polder within some pre-defined bounds by pumping
while water is flowing into the polder. A schematic view of the
system is shown in Figure 3.7. The polder water level is at the
midpoint between the lower and upper bounds at the beginning of
the period. Water is flowing into the polder, while the sea water
level also changes due to the tidal motion. A terminal constraint
forces the water level to reach the midpoint between the lower and
upper bounds at the end of the time-period. In order to reach the
goal the excess water should be pumped out by consuming as little
energy as possible.
Without pumping, the water level would rise to exceed the max-
imum polder level. It is favorable to wait for the polder water
level to rise and/or the sea water level to drop (low tide) before
starting pumping, as a lower head will lead to a lower energy con-
sumption. However, letting the water level increase excessively in
the polder might also risk exceeding the maximum level. In what
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follows, the pump operation is calculated by optimization using
three different methods: the method proposed in this chapter, a
method using head-independent power (Menke et al. 2016), and
a method using continuous optimization (Ulanicki and Kennedy
1994). The time horizon is 34 hours in all cases. The time step is
2 hours.
Our mixed-integer formulation is solved using Bonmin (Bonami
et al. 2008) wrapped in RTC-Tools 2, an open-source toolbox
for control and optimization of water systems (Baayen et al. 2018).
The results calculated by the proposed method are shown in Fig-
ure 3.8. It can be seen that the objective is met: the polder water
level stays within the prescribed bounds, while the energy used
by the pump is 1120 kWh (Table 3.1). The pump switches on at
the start of the period, and switches off after two hours when the
tide and therefore the head across the pump is highest. Then it
switches on again and pumps until the water level almost reaches
the minimum level, thus taking advantage of the entire low tide
period. The final water level reaches the midpoint between the
lower and upper bounds as a result of the terminal constraint.
The operating points of the pump are shown in Figure 3.5 with
diamonds. It can be seen that the pump operates close to the
maximum efficiency whenever possible.
A second set of computations was carried out with a mixed-integer
optimization method similar to the proposed one, but in this case
the power was modelled as quadratic function of the discharge
alone, i.e., without depending on the head ∆H. Figure 3.9 shows
that in this case the pump switches on in the beginning of the
period and it keeps on pumping even during the highest tide. It
stops when the water level is close to the minimum level, and
it restarts when the polder is full. As in this formulation the
power does not depend on the head, the pump prefers to operate
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Table 3.1 – Energy consumption and computation time
of the different methods.

Proposed method No head dependency Continuous
Energy (kWh) 1120 1274 1235

Time (s) 660 230 60

at low discharges rather than at low head. This leads to less
efficient pumping: it can be seen that the duty points of this pump
(triangles in Figure 3.5) are further from the best efficiency line
and predominantly at minimum discharge. This approach was also
to able to meet the objective: the polder water level stayed within
the prescribed bounds. However, the energy consumption was
1274 kWh, which is about 14% higher than that of the proposed
method (Table 3.1).
Several practitioners suggest to use continuous optimization, and
to then round the results to booleans that indicate when the pump
is on or off. The advantage of this approach is the reduced compu-
tation time. Therefore, we also carried out a third set of compu-
tations with a continuous algorithm. The rounding of the solution
took place step by step: the optimization was ran once, then the
first decision was rounded and fixed, then it was ran again for
the remainder of the horizon, etc. In this case the pump does
not switch on in the beginning of the period, but only after 4
hours (Figure 3.10). Then it pumps until the second high tide
arrives. The water level remains within bounds throughout the
optimization horizon, and in the end it reaches the midpoint of
the operating level range. The pump consumed 1235 kWh, i.e.,
about 10% percent more than the proposed method.
Comparing the energy consumption of the three methods (Ta-
ble 3.1), it is clear that the proposed method outperforms the
existing methods for this case study: the energy consumption is



Results and discussion 67

-4.9

0.0

0
100

02:00
06:00

10:00
14:00

18:00
22:00

02:00
06:00

10:00

200
300
400

1.0

2.0

3.0

-1.0
0.0
1.0
2.0
3.0

-4.8
-4.7
-4.6
-4.5
-4.4

w
at

er
 le

ve
l

w
at

er
 le

ve
l

di
sc

ha
rg

e
[m

3 /
s]

pu
m

p 
sp

ee
d

polder level
min/max levels

sea level

pump
inflow

speed

[m
]

[m
]

[r
pm

]
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lower compared to the other two methods. All methods meet the
desired objective of keeping the water level within the given level
operating range.
It should be noted that the calculation time of the continuous
method is almost an order of magnitude lower than for the other
two mixed-integer methods. For this example, however, the run
times of all three methods are acceptable for real-time implemen-
tation. It should be considered that by increasing the size of the
problem, i.e. when including more pumps, the proposed method
might lead to prohibitive computation times. As this example
demonstrates, for problems consisting of small numbers of pumps,
our approach is promising.
The method can be used for different kinds of pumps and for
different applications. It can be applied for water distribution
networks with storage capacity, including water tanks or water
towers. In that case the water levels would be replaced by pressure
heads in the problem formulation. It can be applied for pumped-
storage where the driving parameter is energy price. The objective
function can also be extended by including a constant energy price
time series.

3.4 Conclusions

In this chapter a convex approximation to the pump schedul-
ing problem was introduced. The convex approximation method
has several advantages compared to existing heuristic methods:
it finds a global optimum, it includes pump switches, and it is
applicable to variable-speed pumping. Due to these advantages,
more energy can be saved by using this method when performing
optimization. The methodology and its advantages were demon-
strated on a numerical example for a drainage pump. In this
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example, the energy use is shown to be 10 to 14 percent lower
in comparison with results from other optimization methods. A
further implication of the method is that not only energy use can
be optimized, but also energy costs or use of renewable energy.
The method can be used in several applications of pumps such as
polder systems, ground water pumping systems, pumped-storage
systems and water transmission or distribution networks with wa-
ter towers or storage tanks.
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Appendix

3.A Calculation of pump speed using affinity rules

In this appendix we describe an example calculation of the pump
speed in order to run at a specific working point (Q,∆H), using
affinity rules. The pump has a (Q,∆H)-curve as given in Table 3.2
for a reference speed of 356 rpm.

Table 3.2 – Pump performance curve at reference speed
of 356 rpm.

Q ∆H
0.041 16.322
0.273 14.42
0.546 12.577
0.897 10.544
1.234 8.769
1.597 7.592
1.943 6.911
2.253 5.848
2.517 4.612
2.768 3.014
3.034 1.062

This performance curve is shown in Figure 3.11. It is the same
pump as presented in the chapter, however with a lower number of
points for simplicity. Suppose the result of the optimization is that
the pump should operate at the working point (Qwp,∆Hwp)=(2.39
m3/s, 4 m). The pump speed can be found via post-processing
using the affinity rules as follows. First, the working point is scaled
by using the following relation resulting from the combination of
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Equations (3.15) and (3.16):

∆Hb

∆Ha

=
(
Qb

Qa

)2

.

For Ha = Hwp and Qa = Qwp, this relation is shown in Figure 3.11
as the dashed curve. From the graph it shows that the correspond-
ing working point at reference speed is at a head of 4.51 m and
a discharge of 2.53 m3/s. Now using Equation (3.16) with ∆Ha

= 4.51 m, ∆Hb = 4 m, Na = 356 rpm, the new shaft speed Nb

is calculated as 335 rpm. The scaled pump performance curve at
335 rpm can be calculated using Equations (3.15)-(3.16) and is
presented in Table 3.3 and shown in Figure 3.11.
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Table 3.3 – Scaled pump performance curve at 335 rpm.

Q ∆H
0.038 14.453
0.257 12.769
0.513 11.137
0.844 9.337
1.161 7.765
1.503 6.723
1.828 6.12
2.12 5.179
2.368 4.084
2.605 2.669
2.855 0.94



CHAPTER 4

Closed-loop model predictive control
with mixed-integer optimization of a

river reach with weirs

4.1 Introduction

Optimization is a powerful tool to assist the management of water
systems. Model predictive control (MPC) is especially suitable for
this purpose due to the following properties: (1) it is able to proac-
tivately act on forecasted disturbances, (2) it is able to handle time
delay, and (3) the control actions are re-calculated and adjusted
at every control time step to include newly available data (e.g.,
a new inflow forecast or level measurement). Many studies have
been carried out on applications of MPC to water systems (Rodel-
lar et al. 1989, Wahlin 2004, van Overloop 2006b, e.g.). In these
studies linear models are used to preserve convexity even though
the problem at hand is essentially non-convex. By relaxing non-
linear equality constraints to inequality constraints, however, it is
sometimes possible to formulate a convex optimization problem
that preserves the nonlinearity of the system model.
When water systems are controlled by under- or overshot gates
(i.e., weirs, see Figure 4.1), their dynamics should be included into
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the system. When doing so, a control variable should be selected.
For decentralized control schemes, control of the gate position has
the advantage that it is possible to take the dynamics of the gate
actuator into account (Malaterre and Baume 1999).
Every gate setting and water level combination generates a par-
ticular discharge. If one chooses the resulting discharge as opti-
mization variable and disregards the water level dynamics, one
obtains the advantage that the river reaches become decoupled.
It is, however, more accurate to use the gate position as control
variable (Horváth et al. 2013). Weyer (2006) also uses discharge
as control variable to keep the model linear.
This chapter focuses on linear MPC. In order to have a linear
model either the weir equation should be linearized (Horváth et al.
2013), or the crest level of the weir should be calculated via post-
processing. In the second case the control variable is the discharge.
In the first case, the physical limitations of the system (i.e., min-
imum and maximum crest level) can be included directly as con-
straints. In the second case, however, the crest level is no longer
a control variable, and the translation of the physical constraints
to the discharge variable leads to a hybrid system that can be
optimized using mixed-integer optimization.
We present a mixed-integer weir modeling approach using dis-
charge as control variable, including an approximation of the phys-
ical constraints of the crest level. Our approach is such that the
continuous relaxations of the mixed-integer problems are convex.
The continuous part of this approach is similar to the pump mod-
elling of Chapter 3. In the present chapter the approach is ex-
tended to a mixed-integer setting, where no flow over the weir is
allowed. Additionally, a closed-loop testing is presented, in which
the decisions from the optimization are sent to a hydrodynamic
model of the water system, and the results of that model are sent
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Figure 4.1 – Weir on the Vecht river, the Netherlands.
Source: Wikipedia.

back to the optimization as the new initial state. The approach
is implemented in RTC-Tools 2, the open-source water systems
optimization package developed at Deltares (Baayen et al. 2018).
The goal of this chapter is to present a mixed-integer approach
for weir-flow optimization and to demonstrate its advantages by
comparing it with the continuous approach.

4.2 Material and methods

4.2.1 Convex optimization approach

The RTC-Tools 2 optimization system offers a convex optimiza-
tion option, which guarantees that for appropriately formulated
problems, a global optimum is reached. This property is crucial
for a decision support system. If the problem were not convex,
a local optimum might be reached instead, and a small change
in the initial conditions might direct the solution into an entirely
different local optimum. This fact would reduce the credibility of
the decision support system to the user. Therefore, we aim at ap-
proximating the water problem as a convex optimization problem
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Figure 4.2 – Schematic view of a weir, where Q is the
upstream discharge, H is the upstream water level, Hw

is the crest level of the weir, and Hd is the downstream
water level.

in the form (Boyd and Vandenberghe 2004):

min
x

f0(x)

s.t. fi(x) ≤ 0 i = 1, . . . ,m,
aTj x = bj j = 1, . . . , p,

where f0, . . . , fm are convex functions: f0 is the objective function
and f1, . . . , fm are the inequality constraint functions. x ∈ IRn is
the optimization variable, m and p are the number of inequality
and equality constraints, respectively.

4.2.2 Modeling of the water flow

The water movement in the reaches is modelled with an integrator-
delay model:

wl
dH

dt
(t) = Qin(t)−Qout(t+ τ),

where Qin and Qout are the in- and outflow to the reach, H is the
water level, τ is the time delay, w is the width of the river reach,
and l its length.
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4.2.3 Weir modeling

Weir discharge is computed from the physical characteristics of
the weir and from the water depth upstream (Figure 4.2). If
the upstream water level H is higher than the crest Hw and also
higher than the downstream water level Hd, there is flow over
the weir in downstream direction. In this direction there are two
operation modes: if the upstream water level H is higher than
the downstream water level Hd, water flows freely over the weir
crest Hw. This is called the free flow regime. If the downstream
water level Hd is high enough, the weir is said to be submerged.
In this chapter only the free flow regime is treated, in a single flow
direction. This flow regime is described using the common weir
equation (Te Chow 1959):

Q =
Cw(H −Hw)3/2 if H > Hw,

0 if H ≤ Hw,
(4.1)

where
Cw = Cd

2
3
√

2gBw,

and where Cw contains all the constants in the weir equation, Cd
is the weir discharge coefficient (typically around 0.61, based on
Sepúlveda (2008)), g is the acceleration of gravity, Bw is the width
of the weir, Hw is the crest level, and H is the upstream water
level. The equation is plotted in Figure 4.3 in black: the left curve
is the weir equation evaluated with the minimum crest level, the
right curve is evaluated with the maximum crest level. Figure
4.3 shows that until a certain water level, the discharge remains
zero. This occurs when the water level is not reaching the crest
level. When the water level reaches the crest level, the discharge
becomes proportional to the 1.5th power of the the difference be-
tween the water level and the crest level.
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4.2.4 The development of the optimization problem

In this section the mixed-integer optimization problem is described.
First, the continuous non-convex optimization problem is shown.
Next, the steps are explained to arrive at a mixed-integer convex
optimization problem.
Using the crest level as optimization variable, it is straightforward
to impose constraints on the crest level of the weir. The resulting
optimization problem, however, is not convex. The discretized op-
timization problem for an open water channel of m reaches divided
by weirs can be written as:

min
Hw,Q,H

1

s.t. H i ≤ Hi(tk) ≤ H i, k = 1, . . . , T,
i = 1, . . . ,m,

wili
∆t (Hi(tk)−Hi(tk−1))

= Qi−1(tk)−Qi(tk), k = 1, . . . , T,
i = 1, . . . ,m,

Hw,i ≤ Hw,i(tk) ≤ Hw,i, k = 1, . . . , T,
i = 1, . . . ,m,

Qi(tk) = Cw,i(Hi(tk)−Hw,i(tk))3/2, k = 1, . . . , T,
i = 1, . . . ,m,

(4.2)
where tk is the discretized time, i is the spatial discretization point,
∆t is the (uniform) length of the time step, and T is the prediction
horizon. The parameters Hi(t0) represent the fixed initial state of
the system, and Q0(tk), k = 1, . . . , T , is a time series representing
the upstream flow boundary condition. For ease of notation, the
delay in the integrator-delay model has been set to τ = 0. This
is not restrictive as the integrator-delay model remains linear for
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any value of τ . The objective is to find weir positions that keep
the water level between the lower bound H and the upper bound
H. This is a feasibility problem. It can be extended to a mini-
mization problem, for instance by including an objective function
that penalizes a deviation from the target level.
In order to approximate Problem (4.2) as a convex optimization
problem, the last constraint should be replaced. We do this by
taking the discharge as the control variable, and computing the
crest level via post-processing. The crest level variable is elimi-
nated by splitting the weir equation into inequality constraints.
The resulting intermediate non-convex optimization problem is
the following:

min
Q,H

1 (4.3)

s.t. H i ≤ Hi(tk) ≤ H i, k = 1, . . . , T,
i = 1, . . . ,m, (4.4)

wili
∆t (Hi(tk)−Hi(tk−1)) (4.5)

= Qi−1(tk)−Qi(tk), k = 1, . . . , T,
i = 1, . . . ,m, (4.6)

0 ≤ Qi(tk) ≤ Qi, k = 1, . . . , T,
i = 1, . . . ,m, (4.7)

Cw,i(Hi(tk)−Hw,i)3/2 ≤ Qi(tk), k = 1, . . . , T,
i = 1, . . . ,m, (4.8)

Qi(tk) ≤ Cw,i(Hi(tk)−Hw,i)3/2, k = 1, . . . , T,
i = 1, . . . ,m. (4.9)

The last three constraints concern the weir. Constraint (4.7)
bounds the discharge with a certain constant Qi. Note that this
physically might not be necessary, but it will be needed for the
model formulation, and in practice it is straightforward to give an
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upper bound for the possible discharge. Constraint (4.8) imple-
ments a physical limitation: it limits the possible discharge with
the maximum crest level, Hw,i. The discharge cannot be less for a
certain water level as it is permitted by the maximum crest level,
(e.g., there is too much flow and the weir starts to raise to close
the flow, but the crest cannot be raised higher than physically
feasible). Constraint (4.9) is related to the physical limitation of
the minimum crest level, Hw,i: the discharge corresponding to a
certain water level cannot be higher than the minimum crest level
permits. These three constraints are shown in Figure 4.3, and
the gray area enclosed by these lines (both light and dark gray)
is known as the working area. For any (Qi, Hi) point from the
working area, a crest level Hw,i exists that realizes the flow Qi.
This working area is, however, not convex, since (4.9) in not con-
vex. Therefore, the left curve is approximated linearly. In order to
enable the use of MILP solvers, also the right curve is linearized.
The derivation of the two bounding approximating lines (Q

w,i
and

Qw,i) is detailed in Appendix 4.A. The approximation results in a
convex working area, as illustrated in Figure 4.3.
Note that the approximation is conservative: the approximated
working area lies completely within the nonlinear feasible area.
This means that any resulting flow-head pair from within the
working area has a corresponding crest level that is physically
realizable and respects the nonlinear weir equation (4.1). On the
other hand, the exclusion of the low-head/low-flow zone in the
bottom-left corner prevents certain flow-head combinations from
being realized, which may lead to oscillatory control in low-flow
scenarios: For particular low head values, a larger flow may need
to be selected than is desired to maintain a given water level,
which may draw down the water level below target – requiring
upwards compensation in a later time step. The risk of oscillatory
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behaviour is another factor that has motivated the development
of the invexity approach in Chapter 5.
The resulting optimization problem is the following:

min
Q,H

1

s.t. H i ≤ Hi(tk) ≤ H i, k = 1, . . . , T,
i = 1, . . . ,m,

wili
∆t (Hi(tk)−Hi(tk−1))

= Qi−1(tk)−Qi(tk), k = 1, . . . , T,
i = 1, . . . ,m,

0 ≤ Qi(tk) ≤ Qi, k = 1, . . . , T,
i = 1, . . . ,m,

Q
w,i

(Hi(tk)) ≤ Qi(tk) ≤ Qw,i(Hi(tk)), k = 1, . . . , T,

i = 1, . . . ,m.
(4.10)

The lines demarcating the working area from the left and from
the right are

Q
w,i

(Hi(tk)) = (Hi(tk)−Hw,i)Q
1/3
i C

2/3
w,i , (4.11)

Qw,i(Hi(tk)) = −1
2Q0,i + Cw,i

3
2

(
Q0,i

Cw,i

)1/3

(Hi(tk)−Hw,i),

(4.12)

where Hw and Hw are the minimum and maximum possible crest
levels, respectively, Cw,i is the weir coefficient, and Q0,i is the
nominal discharge (see Appendix 4.A).
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Figure 4.3 – Original working area (light gray) and ap-
proximated working area (dark gray) of a weir.

Mixed-integer modeling

The approach shown above does not take into account the case
when the water level drops below the weir crest and the dis-
charge is zero. This operation is equivalent to the horizontal
dark-gray line in Figure 4.3, which should also be part of the
working area. To make the operation possible in this region, the
left constraint should be shifted more to the left and the discharge
should be guaranteed to be zero if the weir is operating outside the
parallelogram-shaped working area. Such a shape of working area
leads to a mixed-integer convex optimization problem. Thus the
boolean variables δi(tk) are introduced, whose value is one when
there is flow over the weir and zero when there is no flow, yielding
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the following problem:

min
Q,δ,H

1

s.t. H i ≤ Hi(tk) ≤ H i, k = 1, . . . , T,
i = 1, . . . ,m,

wili
∆t (Hi(tk)−Hi(tk−1))

= Qi−1(tk)−Qi(tk), k = 1, . . . , T,
i = 1, . . . ,m,

0 ≤ Qi(tk) ≤ δi(tk)Qi, k = 1, . . . , T,
i = 1, . . . ,m,

Q
w,i

(Hi(tk)) ≤ Qi(tk)

≤ Qw,i(Hi(tk), δi(tk)), k = 1, . . . , T,
i = 1, . . . ,m,

δi(tk) ∈ {0, 1}, k = 1, . . . , T,
i = 1, . . . ,m,

(4.13)

with Q
w,i

as in Equation (4.11), and

Qw,i(Hi(tk), δi(tk)) = −1
2Q0,i

+ Cw,i
3
2

(
Q0,i

Cw,i

)1/3

(Hi(tk)−Hw,i +Mi(1− δi(tk))), (4.14)

where δi(tk) are boolean variables indicating whether there is flow
over the weir, m is the number of the reaches, and Mi are suffi-
ciently large constants such that the switching decisions are en-
forced correctly. The values of Mi can be understood as follows:
they shift the left boundary of the working area by Mi in case
there is no flow, i.e., when δ = 0, such that Q = 0 is feasible
for all feasible values of H. This is shown by a dotted line in
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Figure 4.3. In this case the working area is the gray parallelo-
gram extended with a gray segment along the H axis starting at
Hw −M . In the practical example the bounds on the water level
are implemented as soft constraints. The final formulation of the
optimization problem is:

min
Q,δ,H,ε1,ε2

∑
i=1,...,m,
k=1,...,T

[
ε1,i(tk)2 + ε2,i(tk)2

]

s.t. H i − ε1,i(tk) ≤ Hi(tk)
≤ H i + ε2,i(tk), k = 1, . . . , T,

i = 1, . . . ,m,
wili
∆t (Hi(tk)−Hi(tk−1))

= Qi−1(tk)−Qi(tk), k = 1, . . . , T,
i = 1, . . . ,m,

0 ≤ Qi(tk) ≤ δi(tk)Qi, k = 1, . . . , T,
i = 1, . . . ,m,

Q
w,i

(Hi(tk)) ≤ Qi(tk)

≤ Qw,i(Hi(tk), δi(tk)), k = 1, . . . , T,
i = 1, . . . ,m,

δi(tk) ∈ {0, 1}, k = 1, . . . , T,
i = 1, . . . ,m,

ε1,i(tk) ≥ 0, k = 1, . . . , T,
i = 1, . . . ,m,

ε2,i(tk) ≥ 0, k = 1, . . . , T,
i = 1, . . . ,m,

(4.15)

with Q
w,i

as in Equation (4.11), Qw,i as in Equation (4.14), and
with slack variables ε1,i(tk). If the optimal value of the slack vari-
ables is zero, then the water level H will stay within the bounds
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according to the first constraint. The squares of the slack vari-
ables are minimized, as in this way, larger water level deviations
are penalized more heavily.
Problem (4.15) is a mixed-integer optimization problem with convex-
quadratic objective and linear constraints. The number of opti-
mization variables depends on the size of the system that is being
modelled (number of weirs, number of reaches) as well as on the
optimization horizon and the temporal discretization step size.

4.3 Case study

The river Linge is part of the drainage system in the South of the
Netherlands (see Figure 4.4). The Upper Linge has 12 reaches
divided by weirs, and the Lower Linge consists of a single long
reach. The Linge is used to collect the water from the polders
and to conduct it to the North Sea through the river Merwede.
The water leaves the Linge by free flow or by pumping depending
on the water level in the Linge and the Merwede river. This case
study only considers the Upper Linge.
The characteristics of the weirs and the geometry of the system
are shown in Table 4.1. The backwater area and the time delay
are obtained from Bronkhorst (2010).

4.3.1 Setting

The following test was conducted: while constant 0.1 m3/s dis-
charge was flowing in and out of the river, an hour-long discharge
wave of 4.5 m3/s coming from upstream was fed to the system
after 6 hours. Two systems were tested during two days using
(1) the proposed mixed-integer optimization, and (2) continuous
optimization without water-level-dependent constraints on weir
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Figure 4.4 – Location of the river Linge (dark blue) in
the Netherlands.

Table 4.1 – Geometry of the reaches is obtained from
Bronkhorst (2010), levels are given related to NAP (Am-
sterdam Ordnance Datum).

Branch Backwater cidz Min. crest Max. crest Weir
name area level level width

(m2) (s) (NAP+m) (NAP+m) (m)
1 41682 1763 8.1 9.2 6.0
2 26416 1493 8.4 9.0 6.0
3 47601 2199 7.4 8.84 6.0
4 43848 418 7.41 8.4 6.0
5 47712 1565 6.8 7.97 6.0
6 76457 825 6.24 6.81 6.0
7 270461 1146 5.51 6.01 5.94
8 55691 1520 4.8 5.72 5.94
9 99111 1124 3.72 4.58 6.0
10 436163 64 2.42 3.35 9.5
11 103840 1235 1.47 2.26 9.5
12 210146 1767 - - -
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discharge. If the continuous approach produced a discharge vio-
lating the crest level constraints, the weir discharge was snapped
to the closest feasible value. The control time step was 1h, and
the prediction horizon was 8h. MPC was implemented and tested
in closed loop with Sobek (Deltares 2016), a software package
that solves the full Saint-Venant and weir equations. For the test
case lexicographic goal programming was used (cf. Chapter 2).
The first goal was to keep the water levels in the bounds shown in
Table 4.1. In order to keep the water levels closer to the middle
of the range, a second goal was added, where the bounds are 7 cm
tighter on both sides.
The mixed-integer optimization problems had 176 continuous vari-
ables, and 88 binary variables each. They were solved using
CPLEX wrapped in RTC-Tools 2 (Baayen et al. 2018).

4.3.2 Results and discussion

The results are shown in Figures 4.5-4.7. Each figure shows the
controlled water level and the minimum and maximum bounds of
water level (with a dashed line). Figure 4.5 shows how the water
level increases suddenly due to the discharge wave. It can be seen
how the wave travels through the river by the change of the water
level in the reaches. It can also be seen that the water level is
lowered before the wave is coming in order to accommodate the
water volume as a result of the predictive capability of the control
system.
The weir dynamics are compared in Figures 4.8-4.9. It can be seen
that the weir dynamics of the continuous approach (red line) are
different from those of the mixed-integer approach (black line).
The mixed-integer controller lowers the weirs more before the dis-
charge wave comes, to make more space for the incoming water.
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Figure 4.5 – Results of mixed-integer (red) and continu-
ous (black) model, reaches 1-4.
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Figure 4.6 – Results of mixed-integer (red) and continu-
ous (black) model, reaches 5-8.



92 MPC of a river reach with weirs

0 5 10 15 20 25
4.45

4.5

4.55

4.6

4.65

4.7

4.75
Branch 9

W
at

er
 le

ve
l (

m
)

Time (h)
0 5 10 15 20 25

2.2

2.4

2.6

2.8

3

Branch 10

W
at

er
 le

ve
l (

m
)

Time (h)

0 5 10 15 20 25
1.9

1.95

2

2.05

2.1

2.15

2.2

2.25
Branch 11

W
at

er
 le

ve
l (

m
)

Time (h)
0 5 10 15 20 25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
Branch 12

W
at

er
 le

ve
l (

m
)

Time (h)

Figure 4.7 – Results of mixed-integer (red) and continu-
ous (black) model, reaches 9-12.
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This does not occur with the continuous controller: as the weir dy-
namics have no limit, the optimizer considers it sufficient to start
lowering the weirs later. Is is therefore clear that the “knowledge”
of the controller about the physical limitation of the weirs plays a
crucial role in keeping the water levels within the bounds. These
are the physical limitations, shown in Figure 4.3. The mixed-
integer controller will only choose a weir discharge that is phys-
ically possible, and hence this chosen discharge will be equal to
the one occurring at reality (in the Sobek model). In case of the
continuous approach, on the other hand, if the chosen discharge
cannot be achieved due to the physical limitations of the weir,
then the discharge chosen by the controller will not be equal to
the discharge in reality.

4.4 Conclusions

A mixed-integer convex approximation was presented to the weir
optimization problem. This approach was used to implement
MPC for a river section with weirs. The MPC controller was im-
plemented with the open source software package RTC-Tools 2,
and was tested in a closed loop with a hydraulic simulation model.
The controller was able to keep water levels within bounds using
physically feasible weir crest levels. Finally, the mixed-integer ap-
proach resulted in a tighter tracking of the target water level than
a continuous approximation approach.
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Figure 4.8 – Resulting crest levels, reaches 1-4. The
continuous results are in red; the mixed-integer results
are in black.
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Figure 4.9 – Resulting crest levels, reaches 5-8. The
continuous results are in red; the mixed-integer results
are in black.



96 MPC of a river reach with weirs

0 5 10 15 20
7.05

7.1

7.15

7.2

Branch 5

W
ei

r 
he

ig
ht

 (
m

)

Time (h)
0 5 10 15 20

6.5

6.55

6.6

Branch 6

W
ei

r 
he

ig
ht

 (
m

)

Time (h)

0 5 10 15 20
5.62

5.64

5.66

5.68

5.7

5.72

5.74

5.76

Branch 7

W
ei

r 
he

ig
ht

 (
m

)

Time (h)
0 5 10 15 20

5.34

5.36

5.38

5.4

5.42

5.44

5.46

5.48

Branch 8

W
ei

r 
he

ig
ht

 (
m

)

Time (h)

Figure 4.10 – Resulting crest levels, reaches 5-8. The
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Appendix

4.A Derivation of the boundaries of the working area

In this section we derive the equations describing the left and right
boundaries of the weir working area.

4.A.1 Derivation of the maximum discharge boundary

The maximum discharge line, Qw(H), is the linearization of the
weir equation when H = Hw at the point Q/2. Let us denote
Q0 := Q/2, the nominal discharge. In case the most common
operating discharge of the weir is known, this value can be chosen
as nominal discharge, so that the linear approximation will be
more accurate in the range where the weir is most often operated.
The water level corresponding to this discharge is denoted H0.
The following weir equation holds:

Q0 = Cw(H0 −Hw)3/2. (4.16)

Rearranging this equation the nominal water level (around which
we linearize), H0 can be calculated:

H0 =
(
Q0

Cw

)2/3
+Hw. (4.17)

By differentiating (4.16) to H0, the slope of the line Qw(H) can
be calculated:

S = Cw
3
2
√
H0 −Hw. (4.18)

The equation of the tangent line Qw(H) to the curve at the point
(Q0, H0) can be written as:

Qw = S(H −H0) +Q0.
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In order to be able to shift this line to the left by M in case of no
flow, the boolean δ is introduced, the value of which is one if there
is flow over the weir and zero otherwise. The previous equation
can be written as:

Qw = S(H −H0 +M(1− δ)) +Q0.

Substituting the slope (4.18) into the above equation yields the
following:

Qw = Cw
3
2
√
H0 −Hw(H −H0 +M(1− δ)) +Q0.

Also the nominal water level (4.17) can be substituted:

Qw = Cw
3
2

(
Q0

Cw

)1/3 (
H −

(
Q0

Cw

)2/3
−Hw +M(1− δ)

)
+Q0.

Rearranging this equation, the following equation is derived for
the maximum discharge bound corresponding to the minimum
crest level:

Qw = −1
2Q0 + Cw

3
2

(
Q0

Cw

)1/3
(H −Hw +M(1− δ)).

4.A.2 Derivation of the minimum discharge boundary

The minimum discharge boundary is a line Q
w

that connects two
points: (Hw,0) and ((Q/Cw)2/3 +Hw, Q). Let us write the equa-
tion for this line in the following form:

Q
w

= a(H −Hw) + b. (4.19)

By inserting the first point into the equation of the line, (4.19),
we obtain b = 0. The slope of the line is obtained by inserting the
second point as:

a = Q

(Q/Cw)2/3 .
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Finally, inserting a and b into (4.19), an expression for Q
w

is
obtained:

Q
w

= Q

(Q/Cw)2/3 (H −Hw).

Rearranging the above equation, the final expression for Q
w

is:

Q
w

= (H −Hw)Q1/3
C2/3
w .



Part II

Invex optimization of flow
network problems





CHAPTER 5

Hidden invariant convexity for global
and conic-intersection optimality

guarantees in discrete-time optimal
control

5.1 Introduction

Discrete-time optimal control typically involves the solution of
an optimization problem, which need not be convex. Such non-
convex optimization problems arise, for example, in systems driven
by nonlinear partial differential equations (PDEs), such as water,
gas, and power systems (Ackermann et al. 2000, Burgschweiger
et al. 2009, Hante et al. 2017). A typical objective in such prob-
lems is to steer the system into tracking target values for certain
state variables, e.g., stabilizing a water level around the desired
level (Garćıa et al. 1989).
One of the desiderata for a solution to an optimization problem
is global optimality. Although locally optimal solutions are often
used, globally optimal ones typically yield substantially better
objective values. While approaches aiming for global optimality
in general nonlinear optimization have been proposed (Sahinidis
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1996, Belotti et al. 2009, Misener and Floudas 2014, Ghaddar
et al. 2017), these approaches are often incompatible with tight
computation time limits or large problem sizes. Therefore, com-
mon work-arounds are to use linearizations (Eschenbach et al.
2001, Amann et al. 2016, Falk et al. 2016), convex restrictions, or
convex relaxations (Madani et al. 2014, Horváth et al. 2019, Lee
et al. 2019), which provide tractability yet at the cost of model
accuracy, or to resort to genetic algorithms (Van Zyl et al. 2004,
Nicklow et al. 2010, Vermuyten et al. 2018).
It is most desirable, however, to obtain a globally optimal solution
to the “most exact” nonlinear model without resorting to compu-
tationally expensive techniques. Ample numerical evidence exists
that locally optimal solutions to non-convex discrete-time optimal
control problems are often of high quality, hardly distinguishable
from true global optima and/or better than other applied meth-
ods (Burgschweiger et al. 2009, Joseph-Duran et al. 2014, Ghaddar
et al. 2017, Baayen et al. 2019b).
In this chapter, we provide a theoretical underpinning for this phe-
nomenon by showing that, in the problems we study, the objective
function composed with the dynamics is invex in the original sense
of Hanson (Hanson 1981) and Craven (Craven 1981b). Invexity is
a generalization of convexity that certifies, roughly speaking, that
on an open set a stationary point of an invex function is its global
minimum (Ben-Israel and Mond 1986, Mishra and Giorgi 2008).
Despite the large body of theoretical work, we are not aware of
research leveraging invexity in large-scale applied (engineering)
context.
We use invexity to prove optimality guarantees for KKT points
of problems belonging to a class of discrete-time optimal control
problems, including full global optimality for KKT points in the
interior of the feasible set. Because the invexity of the involved
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functions is not readily seen and arises from a function implicitly
defined by the problem’s constraints, we refer to it as hidden in-
vexity. This is analogous to the term hidden convexity (Ben-Tal
and Teboulle 1996) that is used when the convexity of a problem
is not immediately apparent. The hidden convexity result of Ben-
Tal and Teboulle (1996) showed that by reformulating an original,
non-convex problem, one can solve a convex problem whose opti-
mal solution is a global optimum of the non-convex problem.
Our result, in turn, relies on a direct analysis of the non-convex
problem using the notion of invexity and the language of tangent
cones. It allows us to prove global optimality properties for KKT
points directly. This is also how our result differs from convex
restriction and convex relaxation methods.
The research contribution of our work, seen from the perspective
of different fields, is as follows:

(a) From the mathematical optimization angle, we show that for
a large class of non-convex problems, certifying the hidden
invexity and using standard local solvers is a viable alterna-
tive to the use of solvers for general non-convex optimization
problems.

(b) From the optimal control angle, we show that for a large
class of discrete-time optimal control problems, invex for-
mulations exist, preserving the exact nonlinear dynamics.
This allows to tractably determine high-quality solutions to
large-scale problems.

(c) From the nonlinear analysis angle, we show that the hidden
invexity of a discrete-time optimal control problem yields
so-called conic-intersection optimality guarantees for KKT
points with active inequality constraints, and global opti-
mality for KKT points in the interior of the domain of the
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control variables. The notion of conic-intersection optimal-
ity will be formally defined in Section 5.3.

The remainder of this chapter is structured as follows. Section 5.2
introduces the notion of regular problems for which we establish
our result. In Section 5.3 we prove the main result of the chapter.
Section 5.4 presents a numerical study for a single river segment
modelled using a nonlinear PDE.

5.2 Regular discrete-time optimal control problems

In this section we describe the class of discrete-time optimal con-
trol problems for which we demonstrate invexity. Consider the
problem

min
x,u

(f ◦ g)(x) (P)

s.t. c(x, u) = 0
d(u) ≤ 0,

where we refer to the variables x ∈ Rm as states and the variables
u ∈ Rn as controls. These names are motivated by the fact that
the controls implicitly determine the values of the states through
the equality constraints c(x, u) = 0. The function f : Rn → R is
the objective and the function g : Rm → Rn is the output function
mapping states x to outputs y := g(x). These concepts originate in
control theory and are essential to our analysis. The relationship
between the controls u, the implicitly defined states x, and the
output variables y, is illustrated in Figure 5.1.
We denote the set of admissible controls as U := {u ∈ Rn : d(u) ≤
0}, where d is a vector-valued function whose components are the
control inequality constraint functions, with the inequality holding
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u1
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x3
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f

Figure 5.1 – The relationship between the controls u, the implicitly de-
fined states x, and the output variables y, for n = 2 and m = 3.

component-wise, and denote the set of indices of the coordinates
of d by I.
Our goal is to show that the objective of problem (P) is invex as
a function of the controls u, under certain conditions. However,
the equality constraints in (P) can involve nonlinear functions,
making the analysis cumbersome. We shall alleviate this difficulty
by eliminating the constraints using implicit function theory and
analyzing the problem using total gradients with respect to u,
wherein the derivatives of the state variables xi with respect to u
are expressed explicitly. This step is used for the analysis, but is
not required in numerical implementation.
If the Jacobian ∇xc is invertible, then the total Jacobian of the
states x with respect to the controls u may be expressed using the
implicit function theorem as

Dux = −∇−1
x c∇uc, (5.1)

in which the prefix ∇x denotes the matrix of partial derivatives
with respect to the components of x, and Dx the matrix of total
derivatives with respect to x, of a given function. In what follows,
by ∇−1 and D−1 we denote the inverses of the respective matrices,
if they exist.
In order to establish our result, we need some conditions. In the
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following, we define the regular problems for which invexity can
be demonstrated. After the definition, we discuss each of the
conditions.

Definition 5.1. Consider problem (P) with states x and controls
u. Let the functions f , g, c and d be continuously differentiable.
We say that (P) is regular if the following conditions are satisfied:

the linear independence constraint qualifications (LICQ):

1. the Jacobian matrix of the equality constraints c with respect
to the state vector x, i.e., ∇xc(x, u), is square and full-rank
for all (x, u) such that c(x, u) = 0, u ∈ U ,

2. the gradient vectors of the active inequality constraints di at
the point u, i.e., ∇udi(u) for all i ∈ I such that di(u) = 0,
are linearly independent for all u ∈ U ,

the uniqueness condition:

3. for all u ∈ U , the constraints c(x, u) = 0 have a unique
solution x,

the output-controllability condition:

4. the output function g : Rm → Rn is such that the square
matrix

−∇xg(x)∇−1
x c(x, u)∇uc(x, u), (5.2)

is invertible for all (x, u) such that c(x, u) = 0, u ∈ U ,

and the convexity condition:

5. the objective function f : Rn → R is convex.
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Note that in problem (P), no explicit bounds or inequality con-
straints are imposed on the state vector x. State bounds e(x) ≤ 0
do not fit the formalism d(u) ≤ 0 of problem (P) whence, in
general, a problem with explicit state bounds is not regular. In
practice, imposing explicit state bounds can lead to a situation
where the projection of the feasible set in terms of (u, x) onto the
space of u becomes a disconnected set. However, terms penalizing
deviation from output variable “bounds” may be included in the
objective function f .
We now discuss each of the conditions of Definition 5.1.
Condition 1 is a linear independence constraint qualification (LICQ,
Nocedal and Wright (2006)). It is required for the state vector x
to be well-defined as an implicit function of u, and for us to be
able to apply the implicit function theorem. Condition 1 is often
straightforward to demonstrate if the dynamics of the underlying
model are integrable in time. For the dynamics to be integrable
in time, it is required that the number of states be equal to the
number of equations, and furthermore that the Jacobian of the
equations with respect to the states is non-singular.
Condition 2 is the second LICQ and is satisfied for standard do-
mains such as balls and boxes. It prevents the constraints d(u) ≤ 0
from defining a lower-dimensional subspace of Rn.
Condition 3 states that the implicit function u 7→ x is uniquely
defined on U . It is a standard assumption in discrete-time optimal
control, as this required uniqueness property typically is satisfied
if the dynamics are (uniquely) integrable in time. Note that by
Condition 1 alone, implicit function theory would only provide for
an implicit function that is locally unique. It would not guarantee
an implicit function that is uniquely defined on all of U .
Condition 4 states that different states should map to different
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outputs. Conditions 1 and 2 imply that the implicit function
u 7→ x is injective. Therefore x[U ], i.e., the image of the set of ad-
missible controls under the implicit function x, is an n-dimensional
manifold in Rm. Any mapping g that is invertible on this manifold
x[U ] is therefore a valid choice.
Another interpretation of Condition 4 is the following. If we would
require the LICQ and uniqueness conditions to hold on Rn (rather
than only on U), Condition 4 would imply that for every y ∈ Rn,
there would exist a control input u ∈ Rn such that y = (g ◦
x)(u). This hypothetical condition is exactly the classical output-
controllability (Ogata and Yang 1997) condition.
Condition 5 is standard and includes objectives such as p-norms
raised to the p-th power with p ≥ 2.
Before looking at examples of regular problems, it is instructive
to consider a few irregular problems to show that the regular-
ity conditions indeed eliminate some of the well-known NP-hard
problems.

Example 5.2.1. Let [0, 1] ⊂ U ⊂ R. If problem (P) contains a
binary restriction constraint u(1−u) = 0, then Condition 4 is not
satisfied at u = 0.5.

Example 5.2.2. Let U ⊂ R. If problem (P) contains binary
restriction constraints of the form

−u ≤ 0,
u ≤ 1,

u(1− u) ≤ 0,

then Condition 2 is not satisfied at u = 0 and at u = 1.

Example 5.2.3. Let [−1, 1] ⊂ U ⊂ R. If problem (P) contains
a sinusoidal constraint u = sin x, then Condition 3 is, in general,
not satisfied.
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Example 5.2.4. Let 0 ∈ U ⊂ R. If problem (P) contains a
bilinear constraint of the form u = x1x2, then the LICQ Condition
1 is, in general, not satisfied.

Example 5.2.5. Let (0, 0) ∈ U ⊂ R2. If problem (P) contains a
bilinear constraint of the form x = u1u2, then Condition 4 is, in
general, not satisfied.

Example 5.2.6. Let 0 ∈ U ⊂ R. If problem (P) contains a
piecewise constraint of the form

x =
0 if u1 < 0,
u2

1 otherwise,

then Condition 4 is, in general, not satisfied whenever u1 < 0.

We now proceed to introduce examples of systems meeting the
regularity conditions. A first example is provided by affine con-
straint functions satisfying the appropriate rank conditions.

Example 5.2.7. Consider problem (P) with control vector u ∈
Rn, state vector x ∈ Rm, output vector y ∈ Rn, and trajectory
tracking objective

f(y) =
n∑
i=1
|yi − yti |p

with p ∈ [2,∞) and affine output function

y = Cx+ c,

subject to the bounds

−∞ < uLj ≤ uj ≤ uUj <∞ j ∈ {1, . . . , n},

and affine constraints

c(x, u) = Ax+Bu+ b,
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with matrix A square and invertible, matrices B and C full rank
and matrix C such that the square matrix CA−1B is invertible.
This problem is regular.

Our next example considers trigonometric constraints, which com-
monly arise in control of systems with axes of rotation such as
vehicles, ships, and aircraft.

Example 5.2.8. Problem (P) with control vector u ∈ R2, state
vector x ∈ R2, output vector y ∈ R2, and trajectory tracking ob-
jective

f(y) =
∑

i∈{1,2}
|yi − yti |p

with p ∈ [2,∞) and output function

y = x,

subject to the bounds

0 < uL1 ≤ u1 ≤ uU1 <∞,
0 ≤ u2 < 2π,

and constraints

x1 = u1 cosu2,

x2 = u1 sin u2,

is regular. Note that for Condition 4 to hold, u1 must be bounded
away from zero.

Some problems with piecewise-defined constraints that are also
continuously differentiable, are regular:
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Example 5.2.9. Problem (P) with control vector u ∈ R2, state
vector x ∈ R3, output vector y ∈ R2, and trajectory tracking ob-
jective

f(y) =
∑

i∈{1,2}
|yi − yti |p

with p ∈ [2,∞) and output function

y1 = x1,

y2 = x3,

subject to the bounds
uL ≤ u ≤ uU ,

and constraints

x1 = u1,

x2 =
0 if x1 < 0,
x2

1 otherwise,
x3 = u2 + x2,

is regular. Unlike in Example 5.2.6, the state vector x of this
example is always sensitive to the control variables u1 and u2.

Problems with structure similar to that of Example 5.2.9 com-
monly occur when modelling water flow over a weir (a small dam),
the crest of which may or may not lie below the upstream water
surface.
Since bilinear constraints are very common, we also show how
certain bilinear problems satisfy the regularity conditions.

Example 5.2.10. Problem (P) with control vector u ∈ R2, state
vectors x ∈ R2 and z ∈ R2, output vector y ∈ R2, and objective

f(y) =
∑

i∈{1,2}
|yi − yti |p
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with p ∈ [2,∞) and output function

y = z,

subject to the bounds

0 ≤ uLj ≤ uj ≤ uUj <∞ j ∈ {1, 2},

and constraints

u1 = x1z0, (5.3)
x1 = z0 − z1, (5.4)
u2 = x2z1, (5.5)
x2 = z1 − z2, (5.6)

with the fixed initial condition z0 ∈ R, is regular as long as z0 is
chosen such that zi 6= 0, i ∈ {1, 2}, for all feasible u. Conditions
1–2 and 4–5 are readily verified. To verify Condition 3, i.e., that
for any u ∈ U the constraints admit a unique solution, note that
the constraints (5.3)–(5.6) may be solved in the given order, start-
ing from the fixed initial value z0, inserting the computed value for
x1 into the subsequent equation, etc.

Problems with structure similar to that of Example 5.2.10 com-
monly occur when modelling the power generation of a hydroelec-
tric turbine in a power station. Instantaneous generation (u) is
non-negative and bounded, and it is bilinear in flow (x) and the
water level difference (z) across a dam, which is never zero. At
the same time, an increase in flow (x) results in a decrease of the
water level difference (z). Similar reasoning applies to the power
consumption of pumps.
The conditions of Definition 5.1 are satisfied by certain optimiza-
tion problems constrained by discretized hyperbolic PDEs, if a
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suitable discretization is chosen. An example of an optimization
problem constrained by appropriately discretized Saint-Venant
equations (Vreugdenhil 2013) is presented and analyzed in Sec-
tion 5.4.
In the next Section, we present our main theoretical result.

5.3 Hidden invexity

5.3.1 Introduction

In this section we present our main result that regular problems,
in the sense of Definition 5.1, have hidden invexity when reduced
to optimization over control variables. We first give the definition
of invexity.

Definition 5.2. Consider an open set X ⊂ Rn. A function h :
X → R is called invex on X if there exists a vector function
ηh(x2, x1) : X ×X → Rn such that

h(x2)− h(x1) ≥ ηTh (x2, x1)∇h(x1), (5.7)

for all x1, x2 ∈ X.

Note that the above becomes a definition of convexity in case
ηh(x2, x1) = x2 − x1.
The name invex follows from invariant convex (Craven 1981b). A
function is invex if and only if every stationary point is a global
minimum. To see the first implication, set ∇h = 0 in (5.7). A
concise proof of the reverse implication can be found in (Ben-Israel
and Mond 1986, Theorem 1).
The definition of invexity is usually stated for functions defined
on open sets, wheareas our goal is to optimize over a closed set
U defined by inequality constraints. There exists an entire family
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of extensions of the notion of invexity to constrained optimization
problems (KT-invexity (Martin 1985), HC-invexity (Hanson 1981,
Craven 1981b, Martin 1985), Type I/Type II invexity (Hanson
1999)). However, each of them is difficult to apply to real-world
problems like ours, due to the need to find a common function
η for the objective and the constraints. Therefore, we shall stay
with the standard notion of invexity and eliminate the equality
constraints from the problem in order to show invexity of the ob-
jective function on the interior of U . In this process, we extend the
analysis to the boundary of the feasible set U using the geometry
of the tangent cones.

5.3.2 Main result

In our analysis, instead of constructing the function ηh of Defini-
tion 5.2 explicitly, we will use the fact that invexity of functions
arises naturally in the composition of convex functions with trans-
formations that are full-rank, i.e., that have an invertible Jacobian
(Craven 1981a). We will now show how regular problems fit this
scheme.
In the following we assume that all conditions of Definition 5.1
hold. Per Condition 5 of Definition 5.1, the objective function
f of a regular problem (P) is convex. In order to obtain an in-
vex function on the set of admissible controls U , we compose the
objective f with a full-rank transformation. We construct this
full-rank transformation by using the implicit function theorem
to express the state vector x as a function u 7→ x. Condition 1
ensures that the conditions of the implicit function theorem are
met, and Condition 3 ensures that the function u 7→ x is globally
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unique. Problem (P) can therefore be rewritten as:

min
u

(f ◦ g ◦ x)(u) (PU)

s.t. d(u) ≤ 0.

In (PU), the composition T : U → Y := T [U ], T (u) := (g ◦
x)(u), will be playing the role of the invertible transformation,
and the composition f ◦ T will be shown to be invex. This setup
is illustrated in Figures 5.1 and 5.2.

U Y R
T 1:1 f

Figure 5.2 – Convex objective function f composed with invertible trans-
formation T .

The strength of our result for a particular KKT point with (u∗, λ∗)
will depend on the place where point y∗ = T (u∗) is in the set Y :
in the interior, or on the boundary. In general, the set Y is non-
convex and optimality guarantees are stated in terms of “the set of
points in Y that can be seen” from y∗. To make this rigorous, we
first recall the definition of the tangent cone (Geiger and Kanzow
2013, Nocedal and Wright 2006).

Definition 5.3. Let Y ⊂ Rn be a non-empty set. A vector d ∈ Rn

is called tangent to Y at y ∈ Y , if there exist sequences {yk} ⊂ Y ,
{tk} ⊂ R+ such that

yk → y, tk → 0, yk − y
tk

→ d.

The set of all tangent vectors at y ∈ Y is the tangent cone of Y
at y, denoted as TY (y).
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Tangent cones provide the vocabulary to define our notion of
conic-intersection minimum.

Definition 5.4. Consider a regular problem (PU). We say that a
point u∗ is a conic-intersection minimum if it is a global minimum
on the set

V (u∗) := {u ∈ U : T (u)− T (u∗) ∈ TY (T (u∗))}, (5.8)

where TY (T (u∗)) denotes the tangent cone of Y at T (u∗).

The definition states, in rough terms, that a conic-intersection
minimum is a global minimum with respect to the interior of the
domain and all inactive boundary segments (invexity), minus any
points “hidden from view” due to local non-convexity of the active
boundary segments in Y . The geometric meaning is illustrated in
Figure 5.3.

y∗
Y

y∗
Y

Figure 5.3 – The highlighted areas illustrate sets T [V (u∗)] within which
a solution y∗ = T (u∗) is globally optimal, for an interior (left) and a
boundary solution (right). The sets are shown in the output space Y =
T [U ] to highlight the role of the tangent cones. Note that in the left panel
the point y∗ is in the interior of Y , hence a global minimum in Y , despite
the fact that there are some points in Y that are not “visible” from the
tangent cone at y∗. This is thanks to invexity.

We now state our main result whose proof is presented in Section
5.3.3.

Theorem 5.1. Consider a regular problem (PU). Let (u∗, λ∗)
be a KKT point of this problem. Then u∗ is a conic-intersection
minimum.
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Before proceeding to the corollary, we note that the reverse state-
ment of Theorem 5.1, i.e., that every minimum is a KKT point,
follows from the LICQ Conditions 1 and 2 in Definition 5.1. These
LICQ conditions form the regularity condition required for every
minimum to be a KKT point (Nocedal and Wright 2006, Theorem
12.1).
The corollary is a direct consequence of the fact that for an interior
point, TY (T (u∗)) = Rn.

Corollary 5.1. Consider a regular problem (PU). Consider a
KKT point (u∗, λ∗) such that u∗ ∈ intU . Then u∗ is a global
minimum of f ◦ T on U .

Corollary 5.1 is exactly the characterization of an invex function
on intU . In other words, then, the function h := f ◦T is invex on
intU , with

ηh(u2, u1) = ∇−1T (u1) (T (u2)− T (u1)) .

The expression for ηh follows from the convexity, hence invexity,
of f on Y = T [U ] with ηf (y2, y1) = y2 − y1 = T (u2) − T (u1) (cf.
Definition 5.2). By continuity of h we also know that none of
the points on the boundary of U map to lower objective values,
whence a KKT point in the interior of U is a global minimum on
all of U .
We will now explain the meaning of the general result. For this,
it is instructive to first recall the reference situation: general non-
linear optimization. A KKT point of a nonlinear optimization
problem need not be a local minimum; it may also be a local max-
imum, or a saddle point. Furthermore, in case that a KKT point
is a local minimum, it is only guaranteed to be minimal within
an arbitrarily small neighbourhood of itself. From a numerical
point of view, generic nonlinear optimization problems are hard:
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local solvers may converge to KKT points that are local maxima
or saddle points.
For a regular problem, Theorem 5.1 provides a stronger charac-
terization of KKT points. Although there is no guarantee that a
KKT point (u∗, λ∗) on the boundary of U is not a saddle point or
a local maximum with respect to U , Theorem 5.1 states that u∗ is
a local minimum, and therefore not a maximum or a saddle point,
with respect to V (u∗). This is important from a numerical point
of view, since it implies that a local solver will converge to a local
minimum (and certainly not a maximum) with respect to V (u∗).
Secondly, it states that the point u∗ is in fact a global minimum
over V (u∗).
The meaning of the global optimality of the KKT point u∗ over
V (u∗) is best understood by analyzing two distinct cases. The
first is when u∗ ∈ intU , i.e., u∗ lies in the interior of U , in which
case V (u∗) = U so that u∗ is a global minimum over U . The
second is when u∗ lies on the boundary of U . In that case, its
objective value is no greater than the objective values for all points
u corresponding to points y that lie in the intersection of the
translated tangent cone with the set Y itself, i.e., that lie in the
set (T (u∗) + TY (T (u∗)))∩ Y . Both cases are illustrated in Figure
5.3.
A conic-intersection minimum on the boundary need not be glob-
ally optimal, as is demonstrated by the following example:

Example 5.3.1. Problem (P) with control vector u ∈ R2, state
vector x ∈ R2, output vector y ∈ R2, and objective

f(y) = −y2,

and output function
y = x,
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subject to the bounds

−0.5 ≤ u1 ≤ 1,
0 ≤ u2 ≤ 1,

and constraints

x1 = u1,

x2 = u2 + u2
1,

is regular. The point u∗ = (−0.5, 1) is a KKT point on the bound-
ary, and therefore a conic-intersection minimum by Theorem 5.1.
It is thus a global minimum on the set

V (u∗) = {(u1, u2) : −0.5 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1,
u2 + u2

1 ≤ 1.25− (u1 + 0.5)}.

The point u∗ is not, however, globally optimal on U , since a lower
objective function value is obtained at the point (1, 1).

A real-world application of Theorem 5.1 is discussed in Section
5.4.

5.3.3 Proof of Theorem 5.1

Recall that the function u 7→ x exists by virtue of the implicit
function theorem, the conditions of which are satisfied due to
Condition 1 of Definition 5.1. By Condition 3, this function is
uniquely defined on the feasible set U .
Consider the transformation T = g ◦ x. By Condition 4 of Def-
inition 5.1, the matrix DuT is invertible whence, by the inverse
function theorem, the transformation T itself is invertible. The
transformation and its use within the optimization problem is il-
lustrated in Figure 5.2.



122 Hidden invexity in discrete-time optimal control

As per the definition of problem (P), the feasible set is described
using the constraints d(u) ≤ 0. We will first show that a point
(u∗, λ∗) is a KKT point of the optimization problem

min
u

(f ◦ T )(u) (PU)

s.t. d(u) ≤ 0,

if and only if (T (u∗), λ∗) is a KKT point of the optimization prob-
lem

min
y

f(y) (PY )

s.t. (d ◦ T−1)(y) ≤ 0.

Afterwards, we will analyze the global optimality structure of the
KKT points. Let

LU(u, λ) := (f ◦ T )(u) + λTd(u)

denote the Lagrangian of problem (PU), and let

LY (y, λ) := f(y) + λT (d ◦ T−1)(y)

denote the Lagrangian of problem (PY ). We will use the standard
definition of KKT points following Nocedal and Wright (2006).
KKT points (u, λ) of (PU) correspond to stationary points (u, λ)
of the Lagrangian LU by which we have, using the fact that the
transformation T is invertible, that:

0 = DyLY

= ∇yf + λT∇udDu

(
T−1

)
= ∇yf + λT∇udD

−1
u T

= ∇yf
[
DuT D

−1
u T

]
+ λT∇udD

−1
u T

=
[
∇yf DuT + λT∇ud

]
D−1
u T

= DuLU D−1
u T.
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Since DuT is invertible, a point (u∗, λ∗) is a stationary point of
LU if and only if (T (u∗), λ∗) is a stationary point of LY . Simi-
lar reasoning applies to the primal and dual feasibility conditions
(d(u∗) ≤ 0 and λ∗ ≥ 0) as well as to the complementarity condi-
tion (λ∗i di(u∗) = 0). This completes the first part of the proof.
We now analyze the KKT points. For this, rather than using the
definition of invexity directly, we will use properties of the tangent
cones. In this way, we will also be able to reason about points on
the boundary of the feasible set; recall that invexity is defined on
open sets, i.e., sets without their boundary (cf. Definition 5.2).
We first recall a few definitions. Relevant references are Aubin and
Ekeland (1984), Geiger and Kanzow (2013), Nocedal and Wright
(2006).

Definition 5.5. The set

A(y∗) := {i ∈ I : (di ◦ T−1)(y∗) = 0}

is called the active set for the problem (PY ) at the point y∗ ∈ Y .

Definition 5.6. The set

F(y∗) := {t ∈ Rn : tTDy(di ◦ T−1)(y∗) ≤ 0 ∀i ∈ A(y∗)},

is called the set of linearized feasible directions for the problem
(PY ) at the point y∗ ∈ Y .

Definition 5.7. The cone

K◦ := {y ∈ Rn : yTx ≤ 0 ∀x ∈ K}

is called the polar cone of the cone K.

Let (u∗, λ∗) be a KKT point of (PU). Our aim is to show that u∗ is
global minimum of f on the set V (u∗) as defined in (5.8). For this,
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it is convenient to reason about y∗ = T (u∗) and problem (PY ). By
Condition 2 of Definition 5.1, the LICQ holds for the constraint
function d ◦ T−1. Therefore, F(y∗) = TY (y∗). See (Nocedal and
Wright 2006, Theorem 12.1) for proof of this fact.
Since, by the first part of the proof, (y∗, λ∗) is also KKT point,
we have

−∇yf(y∗) = λ∗TDy(d ◦ T−1)(y∗). (5.9)

Following the definition of the set of linearized feasible direc-
tions F(y∗), for all t ∈ F(y∗) = TY (y∗) we have that tTDy(di ◦
T−1)(y∗) ≤ 0 for all i ∈ A(y∗). Because of this and the facts that
λ∗i ≥ 0 for all i ∈ A(y∗) and λ∗i = 0 for all i ∈ I \ A(y∗), it fol-
lows from (5.9) that −tT∇yf(y∗) ≤ 0 for all t ∈ F(y∗) = TY (y∗).
Therefore −∇yf(y∗) ∈ (TY (y∗))◦, the polar cone of the tangent
cone.
Since T [V (u∗)] ⊂ Y , it follows directly from Definition 5.3 that
TT [V (u∗)](y∗) ⊂ TY (y∗). The inclusion reverses when taking polar
cones, so that

−∇yf(y∗) ∈ (TY (y∗))◦ ⊂ (TT [V (u∗)](y∗))◦.

This means that for every tangent vector t ∈ T[V (u∗)](y∗), we have
tT∇yf(y∗) ≥ 0. By convexity of f (Condition 5 of Definition 5.1),
for every y ∈ T [V (u∗)],

f(y)− f(y∗) ≥ (y − y∗)T∇yf(y∗) ≥ 0.

The second inequality follows from the fact that y − y∗ ∈ TY (y∗)
by construction of the set V (u∗). We conclude that y∗ is a global
minimum of f on T [V (u∗)], whence u∗ is a global minimum of
f ◦ T on V (u∗).
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5.4 Numerical experiment: river water level control

5.4.1 Introduction

In this section, we describe a numerical experiment involving a
discrete-time optimization problem for a system driven by hyper-
bolic partial differential equations. The experiment illustrates how
a search for a KKT point using a local solver always leads to the
same conic-intersection optimum. This suggests that this solution
is in fact a conic-intersection or global optimum, as predicted by
the theory. In turn, this highlights the practical relevance of our
result: without further analysis, one would only be able to claim
any global properties of a solution using computationally expen-
sive general-purpose solvers for non-convex problems such as, e.g.,
Couenne (Belotti et al. 2009), or, alternatively, seeding a local
search with a large number of different starting points in order to
obtain increased confidence in the quality of the solution.

Upstream Downstream (gate)River flow →

Figure 5.4 – Conceptual view of river segment.

We consider a single river segment under the decision maker’s
control, illustrated in Figure 5.4. The river segment has two end-
points: (i) the upstream endpoint – flow through this point over
time is treated as an external parameter for which a time series is
available, (ii) the downstream endpoint – a gate where we control
the outflow with decision variables. The goal is to schedule the
water release at the downstream endpoint over time so that the
level over the river segment deviates as little as possible from the
target level. This models the control problem faced by operators
of impounded rivers, i.e., rivers where segments are separated by
weirs or dams, such as the Meuse and the Moselle in Europe.



126 Hidden invexity in discrete-time optimal control

Given the upstream inflow, downstream outflow, and initial con-
ditions, the time evolution of the level and flow of water at each
point of the river is governed by hyperbolic partial differential
equations (Vreugdenhil 2013). These are known as the Saint-
Venant equations, and are given by the momentum equation

∂Q

∂t
+ ∂

∂x

Q2

A
+ gA

∂H

∂x
+ g

Q|Q|
ARC2 = 0, (5.10)

with the longitudinal coordinate x increasing in the flow direction
of the river, time t, flow (discharge) Q, water level H, cross section
A, hydraulic radius R := A/P , wetted perimeter P , Chézy friction
coefficient C, gravitational constant g, and by the mass balance
(or continuity) equation

∂Q

∂x
+ ∂A

∂t
= 0.

In a setting with bidirectional flow, the |Q| factor in the momen-
tum equation (5.10) may be approximated by a smooth function
(Burgschweiger et al. 2009). In this section, however, we will only
consider unidirectional flow with Q > 0, so that |Q| = Q. We will
also not consider wetting and drying of the channel, whence we
assume that A > 0 and P > 0.

5.4.2 Discretization and analysis

In order to build up a finite-dimensional optimization problem, we
conduct a spatial discretization with N + 1 equidistant points at
which the flows Qi are computed. Between each pair of adjacent
flow computation points we consider the level Hi points, such that
Hi is always between Qi−1 and Qi. For each of these points, we
consider a time discretization with T equidistant steps. We denote
the corresponding flow and level over time by Qi(tj) and Hi(tj).
This staggered grid is illustrated in Figure 5.5.
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Q0 Q1 Q2 Q3 Q4

H1 H2 H3 H4

QN−1QN−2QN−3QN−4 QN· · ·
· · · HN−3 HN−2 HN−1 HN

Figure 5.5 – Staggered grid for the example problem.

The approximation scheme is semi-implicit in time, following Ca-
sulli and Cheng (1990). Semi-implicit means that for the equa-
tions at time step tj, some terms are evaluated explicitly at time
step tj−1, and other terms are evaluated implicitly at time step tj,
requiring the solution of a system of equations to determine their
values. The semi-implicit schemes of Casulli and Cheng (1990)
and Casulli and Zanolli (1998) strike a balance between numerical
stability on the one hand, and non-singular tridiagonal Jacobian
structure on the other hand.
The discretized mass balance equation is

Qi(tj)−Qi−1(tj)
∆x + Ai(Hi(tj))− Ai(Hi(tj−1))

∆t = 0, (5.11)

and the discretized momentum equation is

Qi(tj)−Qi(tj−1)
∆t + ei,j + gAi+ 1

2
(tj−1)Hi+1(tj)−Hi(tj)

∆x (5.12)

+g
Pi+ 1

2
(tj−1)Qi(tj−1)Qi(tj)
Ai+ 1

2
(tj−1)2C2

i

= 0,

with

Ai+ 1
2
(tj) := 1

2 (Ai(Hi(tj)) + Ai+1(Hi+1(tj))) ,

Pi+ 1
2
(tj) := 1

2 (Pi(Hi(tj)) + Pi+1(Hi+1(tj))) ,

spatial index i, temporal index j, spatial step size ∆x, temporal
step size ∆t, and convective acceleration ei,j. The parameter Ci
indicates the local friction coefficient, and Hb

i indicates the local
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bottom level. The convective acceleration term ei,j is discretized
explicitly in time as

ei,j := 2Qi(tj−1)
Ai+ 1

2
(tj−1)

Qi(tj−1)−Qi−1(tj−1)
∆x

− Qi(tj−1)2

Ai+ 1
2
(tj−1)2

Ai+1(Hi+1(tj−1))− Ai(Hi(tj−1))
∆x .

Similar to Example 5.2.10, the equations are such that they can
be solved forward in time, starting from initial and boundary con-
ditions. Some boundary conditions may be fixed a priori, whereas
others may be given by control variables. In the example grid of
Figure 5.5, Q0 is a fixed boundary condition, whereas QN is con-
trolled. The values at time step t0 are taken fixed; these are the
initial conditions.
We define the optimization problem as

min
Qi(tj)
Hi(tj)

f =
T∑
j=1
|HN(tj)−HN |2 (RP)

s.t. (5.11)− (5.12)
Q ≤ QN(tj) ≤ Q ∀j ∈ {1, . . . , T},

where the objective is to keep the level at the H node upstream
of the gate, i.e., HN , as close as possible to the target level HN .
The function of the remaining states Hi(tj), i < N , is to ensure
physically accurate wave propagation in the up- and downstream
directions.
First, we relate problem (RP) to the general problem (P). The
decision variables QN(tj) play the role of the control vector u, the
remaining variables Qi(tj) where i < N and Hi(tj) play the role of
the state vector x, and the output vector y consists of the subset
of state variables HN(tj).



Numerical experiment: river water level control 129

We now proceed to analyze the problem (RP) in light of the
conditions of Definition 5.1.
Condition 1 follows from the fact that the Jacobian of the equa-
tions (5.11) – (5.12) with respect to the states at time step tj is
tridiagonal. In (Casulli and Cheng 1990, p. 128) this Jacobian
is shown to be non-singular, thanks to the semi-implicit approxi-
mation scheme. The equations (5.11) – (5.12) do not depend on
future states at time step tk, k > j. Therefore, the full rank of
the Jacobian ∇xc, i.e., the Jacobian of all equality constraints c
with respect to the complete state vector x, follows by induction
on the final time index T .
Condition 2 follows from the linearly independent inequality con-
straints on the outflow variables QN(tj).
Condition 3 follows from the fact that, given states at time step
tj−1, the states at time step tj are uniquely defined. If the cross
section A is a linear function of the water level H, this follows
readily: in this case the equations (5.11) – (5.12) are linear in the
states at time step tj, and the Jacobian to these states is full-
rank as per Condition 1. In Casulli and Zanolli (1998) it is shown
that the uniqueness result also extends to a class of nonlinear,
monotonic cross section functions A = A(H).
Condition 4 follows from two considerations. First of all, only
equation (5.11) depends on the control variables. Since the de-
pendency is linear, and every control variable occurs in exactly
one constraint (5.11), the Jacobian ∇uc is full-rank. Secondly,
for a given control variable QN(tj), only the states at tk, k ≥ j

are sensitive to it. Consequently, the mapping from the control
variables QN(tj) to the output variables HN(tj) is injective.
Condition 5 follows from the fact that the objective function f in
problem (RP) is convex in the output variables HN(tj).
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Table 5.1 – Parameters for the example problem.

Parameter Value Description
T 72 Index of final time step
∆t 600 s Time step size
Hb

i (−4.90,−4.92, . . . ,−5.10) m Bottom level
l 10 000 m Total channel length
Ai(Hi) 50 · (H −Hb

i ) m2 Channel cross section function
Pi(Hi) 50 + 2 · (H −Hb

i ) m Channel wetted perimeter function
Ci (40, 40, . . . , 40) m0.5/s Chézy friction coefficient
Hi(t0) (0.000,−0.025, . . . ,−0.222) m Initial water levels at H nodes
Qi(t0) (100, 100, . . . , 100) m3/s Initial flow at Q nodes
Q 100 m3/s Minimum outflow
Q 200 m3/s Maximum outflow
HN 0 m Target water level
N 10 Number of level computation points

5.4.3 Application

We now present a concrete problem, based upon the experimental
setting from the draft Baayen et al. (2020). In this problem, we
consider a single river segment with N = 10 uniformly spaced level
nodes and rectangular cross section, an upstream inflow boundary
condition provided with a fixed time series, as well as a control-
lable downstream release boundary condition. The hydraulic pa-
rameters and initial conditions are summarized in Table 5.1. The
model starts from steady state: the initial flow rate is uniform and
the water level decreases linearly along the length of the channel.
Our objective is to keep the water level at the H node upstream
of the gate, i.e., HN , at the target value HN = 0 m.
A solution to the optimization problem was obtained using the
interior point solver IPOPT (Wächter and Biegler 2006) and is
plotted in Figure 5.6. By releasing water in anticipation of the
inflow using the decision variable QN , the optimization is able to
reduce water level fluctuations and keep the water levels close to
the target.1

1An example implementation in Python using the algorithmic differen-
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Figure 5.6 – Solution to the example problem.
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The IPOPT solve, starting from an all-zero starting point, takes
approximately 0.1 s to complete on a 2.6 GHz Intel Core i7 CPU.
Since some of the bounds on the control variables are active, the
conic intersection V (u∗) of Theorem 5.1 need not cover the entire
set U . The solution quality was analyzed numerically by seeding
the optimization with a large number of different starting points.
Latin hypercube sampling (McKay et al. 2000) was used to com-
pute 1 000 different starting points, for each of which IPOPT
computed a solution. The standard deviation of the solution vec-
tors was found to be in the order of 10−11−10−13 ≈ 0 per solution
vector coordinate, illustrating how every starting point resulted in
an – for all practical purposes – identical solution. This provides
evidence that the found solution is in fact globally optimal, or at
least nearly so.
There is also ample other numerical evidence that solutions of
this type are globally optimal or very close to it. In Baayen et al.
(2019b), the solution quality and run time of an interior point-
type method (IPM) is benchmarked against a so-called reduced
genetic algorithm (RGA, Vermuyten et al. (2018)) for a class of
water optimization problems. The IPM search finds qualitatively
consistent solutions that always obtain better objective function
values than the RGA. This benchmark includes problems with
multiple river segments, multiple spatial control points, and both
coarser and finer discretizations of the Saint-Venant equations in
time and space.
Similar results are reported in Ghaddar et al. (2017) for drink-
ing water distribution networks, where local search using IPOPT

tiation package CasADi (Andersson et al. 2019) and homotopy continua-
tion (Allgower and Georg 2012, Baayen et al. 2019a) to solve the nonlin-
ear equality constraints numerically using IPOPT, is available online at
https://github.com/jbaayen/homotopy-example.

https://github.com/jbaayen/homotopy-example
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finds solutions with objective values within a relative distance of
10−3 of those found using the global solver Couenne – in a frac-
tion of the computation time. The general-purpose global solvers
require multiple minutes or hours to run, but the local search
completes in a few seconds at most.

5.5 Conclusions and outlook

In this work, we used the invariant convexity (invexity) to provide
a theoretical framework to understand the good (often optimal)
performance of local solvers on a class of non-convex problems
that arise in discrete-time optimal control. We showed that KKT
points for such problems are conic-intersection optima. Conic-
intersection optimality implies global optimality for solutions in
the interior of the feasible set, and is somewhat weaker – yet
significantly stronger than local optimality – on the boundary.
For a concrete PDE-constrained problem that is representative of
a real-world water management problem, we demonstrated hidden
invexity and verified the high quality of solutions obtained by local
search numerically. To the best of our knowledge, this is the first
time that the theory of invex functions has been leveraged in a
large-scale applied engineering context.
To make our results applicable beyond the domain of discrete-
time optimal control (where an expert can typically check whether
the conditions of Definition 5.1 hold for a given discretization),
there are two natural next steps that, however, fall outside the
scope of this work. First, it would be of great help to provide
automated tools for detecting hidden invexity. Second, one could
also investigate the use of hidden invexity to accelerate branch-
and-bound algorithms for general non-convex global optimization.
On an analytical level, another interesting direction would be to
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extend our result to continuous-time optimal control.
Last but not least, we note that the problems described in the
previous chapters are regular with respect to their continuous de-
cision variables. Integer decision variables can be solved for us-
ing a branch-and-bound scheme, as described in the draft Baayen
and Marecek (2020). Hidden invexity, therefore, obsoletes the
need for the approximations of Chapters 3 and 4. Furthermore,
hidden invexity allows water allocation applications, such as the
application of Chapter 2, to be built using a physically accurate
hydraulic description of the water system (instead of using coarse
linear models). Perhaps most excitingly, hidden invexity allows
water optimization problems to be based on existing, calibrated
hydraulic models set up using industry-standard packages such as
Sobek (Deltares 2016) or HEC-RAS (Brunner 2002).
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CHAPTER 6

Benchmark: Open channel water level
control

6.1 Introduction

In this chapter we benchmark the performance of the local solver
IPOPT against the performance of RGA (Vermuyten et al. 2018),
a type of genetic algorithm, for a suite of open channel optimiza-
tion problems. Each of the problems in the suite is an extension
of Problem (RP) described in Section 5.4. These problems are
regular in the sense of Definition 5.1 and as such, we know the
IPOPT solutions to be conic-intersection optima as per Theorem
5.1.
In Section 6.2 we describe the benchmark in detail. In Section 6.3
the results are presented and discussed. Finally, in Section 6.4,
we draw conclusions.

6.2 Benchmark setup

Every problem in the benchmark suite is a multiple of Problem
(RP) in the sense that it contains river reaches with flow dynam-
ics governed by Saint-Venant equations joined together with flow
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control variables. In this way, the regularity analysis for (RP) of
Section 5.4.2 carries over to the multi-reach problems. Every flow
control variable is understood as the simplest possible represen-
tation of a weir. This setup is illustrated for a 2-weir probem in
Figure 6.1. The discretization grid for the 2-weir problem is illus-
trated in Figure 6.2, and the upstream inflow boundary condition,
Q0, is shown in Figure 6.3.

Upstream WeirRiver flow → WeirRiver flow →

Figure 6.1 – Conceptual view of a river with two reaches and two weirs.
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Figure 6.2 – Staggered grid for a 2-weir problem. The control variables
are QN
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Figure 6.3 – Inflow boundary condition Q0.

The geometry of each reach is as described in Table 5.1, and the
objective is to track a reference water level of 0 m as in Problem
(RP). The hydraulic and control time steps are decoupled, such
that the control time step size can be a multiple of the hydraulic
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Table 6.1 – Parameter variations for the benchmark.

Parameter Values
Total number of computation points 16, 32, 64, 128, 256, 512
Number of weirs 1, 2, 4, 8, 16
Hydraulic time step 5 min, 10 min, 15 min
Control time step 1 hour, 2 hours, 4 hours, 8 hours

step size. For this benchmark, parameters were varied according
to Table 6.1, resulting in a total of 360 configurations.
The total number of computation points per river reach is equal
to the total number of computation points, divided by the number
of weirs.
As in Section 5.4, IPOPT (Wächter and Biegler 2006) was used
as the local solver. RGA was implemented in Fortran following the
description of the algorithm in Vermuyten et al. (2018), and the
settings of the algorithm were taken from the table of “optimal
parameter settings” in said paper. The variability of the RGA
results that we observe is in line with the variability reported by
the authors.
Every configuration was solved 10 times, in order to capture any
variance in solution quality and run time. The experiment was
carried out in September 2019 on an Amazon Web Services EC2
“c4.xlarge” node with 16 Intel Xeon cores at 3 GHz, 32 GB of
RAM, and running Ubuntu Linux 18.04.3 LTS.

6.3 Results

In the following, we present and discuss the results: first, with
respect to the tracking error, and secondly with respect to the
wall time.
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6.3.1 Tracking error

The tracking error measures how close the system is to the target
water level, squared and summed over all time steps and over
the discretization points upstream of the weirs. It is identical
to the objective function value of the benchmark problems (cf.
Problem (RP)). Figures 6.4 and 6.5 present the tracking error in
relation to the number of computational nodes, number of weirs,
hydraulic step size, and control step size, respectively. Because our
benchmark data set lives in a 6-dimensional space (4 parameters
and 2 indicators), the plots provide projections of the results onto
various 2-dimensional planes. Every plot relates a parameter to
an indicator.
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Figure 6.4 – Comparison of benchmark results: tracking error (I).
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Figure 6.5 – Comparison of benchmark results: tracking error (II).
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We may observe how the tracking error of the RGA results exhibits
substantial variance. This is expected, given the randomized na-
ture of the RGA algorithm. In contrast, the tracking error of the
IPOPT result shows little variance. Furthermore, the tracking er-
ror of the RGA results worsens as the number of weirs (control
variable) is increased (Figure 6.4d). This effect is largely absent
for the IPOPT results (Figure 6.4c). A third effect is how the
tracking error of the RGA results worsens as the control step size
is increased (Figure 6.5d). This effect is also largely absent for the
IPOPT results (Figure 6.5c).
Figures 6.6–6.10 report the tracking errors for each individual con-
figuration, grouped by the number of weirs. In these figures, we
see clearly how the IPOPT solutions do not, in fact, exhibit any
variance at all. We also see how the tracking error, i.e., the ob-
jective function value, is always superior to the results obtained
using RGA. This provides a clear indication that the solutions
found by IPOPT are globally optimal, or nearly so.
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Figure 6.6 – Tracking error for all parameter configura-
tions with 1 weir.
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Figure 6.7 – Tracking error for all parameter configura-
tions with 2 weirs.
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Figure 6.8 – Tracking error for all parameter configura-
tions with 4 weirs.
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Figure 6.9 – Tracking error for all parameter configura-
tions with 8 weirs.
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Figure 6.10 – Tracking error for all parameter configu-
rations with 16 weirs.
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6.3.2 Run time

The wall time is the difference between the system time when the
optimization run completed, and the system time when the run
started. It is a more intuitive measure of run time than CPU
or process time. Figures 6.11 and 6.12 present the wall time in
dependence of the number of computational nodes, number of
weirs, hydraulic step size, and control step size.
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Figure 6.11 – Comparison of benchmark results: wall time (I).
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Figure 6.12 – Comparison of benchmark results: wall time (II).

Here, we observe an advantage of the RGA algorithm. RGA runs
sometimes (but not always) finish in less time than IPOPT. The
RGA run time also exhibits less variance. In general, however,
the median run times of both algorithms are in the same order of
magnitude.

6.4 Conclusions

Our benchmark demonstrates how IPOPT applied to the open
channel water level control problem yields solutions with excellent
quality. The solutions appear to be globally optimal, or nearly so.



146 Benchmark: Open channel water level control

This is in line with the regularity of these problems and the hidden
invexity results of Chapter 5, thereby providing further numerical
evidence for the theoretical results.
A drawback of IPOPT is the variance in wall time. Future research
may address the development of a local solver with the ability to
terminate with a usable solution within a fixed amount of time.



CHAPTER 7

Case study: Hoogheemraadschap van
Rijnland

In this chapter a real-life application is discussed, in which the
high quality of the solutions is supported by the hidden invexity
results of Chapter 5. This application is a decision support system
(DSS) developed for the district water authority Hoogheemraad-
schap van Rijnland, in the west of the Netherlands.
In the Netherlands, Rijkswaterstaat, the Dutch national authority
responsible for the national waterways and water bodies, and the
district water authorities are charged with general water manage-
ment. Among other tasks, they are responsible for ensuring a suf-
ficient supply of water and keeping the country protected against
flooding. The area under the authority of Rijnland covers the area
between Amsterdam in the North and The Hague in the South,
including Amsterdam Schiphol Airport in the Haarlemmermeer
polder. See Figure 7.1.

7.1 System description

Water managers at Rijnland run an operational DSS for the boezem
section of their network (primary canal, main water distribution
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Figure 7.1 – The primary canal of Rijnland, the boezem,
highlighted in blue (left). The model schematization of
the primary canal, with pink squares indicating storage
and blue bars representing channel reaches (right).

system). This DSS aims at optimizing the use of the pumping sta-
tions with respect to energy, costs and availability, while making
sure that various operational goals are met. The responsibilities of
Rijnland include the following: flood defense and water quantity,
water quality, waste water and ground water. Which operational
goals should be met depends on the season, meteorological condi-
tions and current state of the system. Besides the polder pumps,
the water managers have four large pumping stations at their dis-
posal, with a total discharge capacity of 199 m3/s (17.2 × 106

m3/day or 15.9 mm/day).
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In wet periods, the water is mainly pumped from polders (the
low lying areas) to the boezem. Surplus water is pumped towards
the outside water system. The main objectives of the optimiza-
tion model relate to maintaining water levels between acceptable
bounds for a forecast horizon of 48 hours, taking into account the
sloping effect of wind on the canal water levels, as well as fore-
cast polder inflow. Secondary goals include minimizing energy use
and pump cost, by using the available buffers in the canal system
to schedule the absolute pump discharges with respect to energy
prices and outside water levels.
In dry periods, the system calculates the effect of water distribu-
tion towards the polders, originating from a branch of the Rhine
river. Like during the wet season, the main objectives of the
optimization model relate to maintaining water levels between ac-
ceptable bounds for a forecast horizon of 48 hours, taking into
account the wind effects and forecast polder outflow. An impor-
tant secondary goal is taking the salinity of the water and mass
transport into account. It is vital that the salinity levels at certain
key points in the system stay within bounds, to ensure no dam-
age to the intensive agricultural and horticulture practices. When
needed, the system should optimize for the quantity and time of
fresh water intake (with a low chloride concentration) from the
Hollandse IJssel river at pumping station Gouda.
Some key characteristics for the Rijnland system are:

• 1, 175 km2,

• 1, 300, 000 inhabitants,

• 523, 500 households,

• 30 municipalities over 2 provinces,
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• 90% below sea level,

• Annual precipitation: 850 mm,

• Annual evaporation: 550 mm,

• 202 polders (5.5% open water).

7.2 Model setup

The Rijnland boezem system is modeled in the Modelica lan-
guage (Elmqvist 1997) and the RTC-Tools Channel Flow
model component library (den Toom et al. 2018).
In order to be able to take the sloping effects of the wind into ac-
count, the system was modelled hydraulically. The inertial wave
equation (1.4) was chosen for numerical simplicity, and was deter-
mined experimentally to be sufficiently accurate for this system.
Figure 7.2 shows a comparison between solutions to the inertial
wave and the full Saint-Venant equations. The model used in this
comparison is characteristic of the reaches found in the Rijnland
boezem system.
To optimize the control of the Rijnland boezem system, lexico-
graphic goal programming is used to specify a hierarchy of opti-
mization requirements. Higher-priority objectives, such as water
level range goals, typically admit multiple equivalent solutions.
Lower-priority objectives are optimized within the set of equiva-
lent solutions to the problem corresponding to the previous prior-
ity level. The complete goal programming algorithm is explained
in Chapter 2.
The goals used in the Rijnland boezem system optimization prob-
lem are listed in Table 7.1. Smaller priority numbers take prece-
dence over larger priority numbers. The priority numbers do not
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Figure 7.2 – Comparison of solutions to the inertial wave
equation (1.4) and for the Saint-Venant momentum equa-
tion (1.2). Between 21:00 and 07:00, a flat wave enters the
system. The response of the channel reach is shown with
flow rates in the top plot, and water levels in the bottom
plot.

need to be consecutive. Non-consecutive priority numbers provide
the operators with some flexibility to insert goals “in the middle”,
without needing to renumber the priorities for every lower priority
goal.
Example results of a 48h operational optimization run for the
Rijnland boezem system are shown in Figure 7.3.

7.3 Results

A DSS using the inertial wave equation implemented with RTC-
Tools 2 (Baayen et al. 2018) and IPOPT (Wächter and Biegler
2006) is operational and used daily at Rijnland. It controls the
system autonomously in a closed-loop fashion for extended peri-
ods of time, without operator intervention. A screenshot of the
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Figure 7.3 – Rainfall forcing (neerslag, top). Weighted
average simulated water level and alarm levels (water-
peilen, middle). Optimized pump discharges, one color
per pumping station (debiet, bottom).

system, showing water levels in the system and advice on how to
operate the pumps of the primary canal, is shown in Figure 7.4.
Further information on this DSS, from the perspective of the Ri-
jnland water authority, can be found in van der Zwan (2017).
The Rijnland DSS bears witness to to the practical relevance of
the concept of hidden invexity.
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Figure 7.4 – Screenshot of Rijnland DSS. Current water
levels are shown color coded on the left, and advice on
pump operation is shown on the right.
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Table 7.1 – Goals and lexicographical priorities for the
Rijnland primary canal optimization problem (smaller pri-
orities take higher precedence). The variable np represents
the number of pumps, and the variable nep represents the
number of emergency pumps.

Priority Goal Description

1 Hmin
i (tj) ≤ Hi(tj) ≤ Hmax

i (tj) Water level range at ten selected
nodes

2 Hmin
sys (tj) ≤ Hsys(tj) ≤ Hmax

sys (tj) Water level goal for a weighted
average of certain selected nodes

2 Hsys(tT ) = Hsetpoint
sys (tT ) Water level setpoint at final

timestep for system water level
20 Qmin

i (tj) ≤ Qi(tj) Saline water flushing related dis-
charge request for pumping sta-
tion Gouda

30 min∑nep

p=1
∑T
j=1Q

2
p,j Minimization of emergency

pump discharge
40 Qp(tj) = Qsetpoint

p (tj) General discharge request goals
for pumping stations

41 Qkatwijk(tv) = 0 Sea tide-related goals for pump-
ing station Katwijk: Discharge
request of zero at rising tide
(time stamps tv)

41 ∂
∂t
Qkatwijk(tw) = 0 Constant discharge request when

sea level above threshold of 0.2m
from lowest tide (time stamps tw)

50 min∑np

p=1
∑T
j=1 cp(tj)Qp(tj) Minimization of pumping cost

with pump-specific cost time se-
ries cp
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