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1
INTRODUCTION

1.1 a short introduction for the layperson

This thesis is concerned with the mathematical field of graph theory. Graphs
can be used to model many different situations or represent different types
of networks (e.g. transport networks, social networks, communications net-
works). They consist of a collection of vertices and edges, where an edge is
a connection between two vertices. Sometimes the edges are directed and
sometimes they are weighted.

The main theme in this thesis is Hamilton cycles. A cycle is a cyclic
sequence of non-repeating vertices where any two successive vertices are
connected by an edge. See Figure 1 for an example. A Hamilton cycle in
a graph is a cycle that contains all vertices of the graph. Hamilton cycles
are one of the simplest, most natural spanning structures, that is, struc-
tures that contain every vertex. Therefore, understanding Hamilton cycles
can help in understanding more complicated spanning structures. Another
reason to study Hamilton cycles is their connection to the famous traveling
salesman problem, which we now describe.

Imagine you are a delivery driver, and you have a certain number of
deliveries to make in your area and must then return to your starting point.
You know all the places you need to visit, and your cell phone can tell
you how long it takes to drive between any two delivery addresses, but it
is not clear in which order you should visit your destinations in order to

G G

Figure 1: Left: An example of a graph G. Right: two cycles in G: one cycle is
indicated by dashed blue lines, the other by a solid red line. The red
cycle is a Hamilton cycle, the blue cycle is not.
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2 introduction

complete your deliveries as quickly as possible. This problem is known as
the traveling salesman problem or TSP1, and has been widely studied [14].
In order to view this through the lens of graph theory, we take the desti-

nations and our starting point as vertices, and connect every pair of vertices
with an edge that is weighted according to the travel time between those
two points. In order to find an optimal route, we can now look for a mini-
mum weight Hamilton cycle in our graph. In other words, we want to find
a way of ‘traveling’ along the edges of the graph such that we visit every
vertex exactly once, we finish our route in the vertex we start at and we
choose the edges we traverse so as to minimize their total weight.
Trying to work out an example by hand will quickly convince you that

this is work best left to computers. So one is interested in algorithms for
solving the traveling salesman problem as quickly as possible. An algorithm
is a list of precise instructions that can be followed by computers. One
important property of an algorithm is how quickly (i.e. with how many
elementary steps) it completes its calculation. This is usually measured in
terms of the size of the input data.
TSP belongs to the class of NP-hard problems [49], which are problems

believed to be computationally difficult. In fact, even the apparently easier
problem of deciding whether an (unweighted) graph has a Hamilton cycle
is NP-complete [49]. In practice, this means that it is highly unlikely that
there is an algorithm that, given any graph as input, is able to decide
whether the graph has a Hamilton cycle efficiently.2 This computational
intractability is part of what gives the study of Hamilton cycles its richness.
In this thesis we consider three problems. They are quite different, but

they are all unified by the theme of Hamilton cycles. One is motivated
by algorithmically finding Hamilton cycles in graphs, one is motivated by
counting Hamilton cycles in graphs, and one is related to Hamilton decom-
positions of graphs, i.e. partitioning the edges of a graph into Hamilton
cycles.

1 Strictly speaking, what we describe here is known as metric TSP, a closely related variant.
2 ‘Efficiently’ here means that the number of elementary steps needed by the algorithm (for

any input graph on n vertices) can be bounded by a polynomial in n. Such an algorithm
for the Hamilton cycle problem does not exist if, as is widely believed, P 6= NP.
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1.2 basic notation

In this section we fix some standard graph theory notation that will be
used throughout.

A graph G is a tuple G = (V ,E) consisting of a set V of vertices and a set
E ⊆ {{x, y} | x, y ∈ V ,x 6= y} of edges, where each edge is a pair of distinct
vertices. We sometimes write V (G) for the vertex set of G and E(G) for
its edge set. We denote an edge e ∈ E that contains two vertices v,w ∈ V
as vw (rather than {v,w}); in this case we say v and w are adjacent. We
say two edges are incident if they share a vertex. We call the number of
vertices in a graph G the order of G and denote it by |G|.

A graph H = (V ′,E′) such that V ′ ⊆ V and E′ ⊆ E is a subgraph of G,
denoted H ⊆ G. We also say G contains H. A cycle is a graph with vertex
set {v1, . . . , vn} and edge set {v1v2, v2v3, . . . , vn−1vn, vnv1}; see Figure 1.
We say that a graph G contains a Hamilton cycle, or is Hamiltonian, if it
contains a cycle that contains all vertices in G. A graph G is connected,
if for any two vertices v, v′ ∈ V (G) there is a sequence of vertices v =

v0, v1, . . . , vk = v′ such that vi and vi+1 are adjacent for i = 0, . . . , k − 1.
The degree dG(v) of a vertex v ∈ V (G) is the number of vertices adjacent
to v, i.e. dG(v) := |{u ∈ V | uv ∈ E}|. For a graph G we set δ(G) =

minv∈V dG(v) and ∆(G) = maxv∈V dG(v), called respectively the minimum
and maximum degree of G. If every vertex in G has the same degree r, we
say that G is regular, or r-regular.

A directed graph, or digraph is a tuple D = (V ,E) consisting again of a
set V of vertices and a set E of directed edges. A directed edge is an ordered
pair (x, y) of two different vertices x, y ∈ V and we understand the edge
to be directed from x to y. We set d+G(v) = |{w | (v,w) ∈ E(G)}| as the
outdegree of v and d−G(v) = |{w | (w, v) ∈ E(G)}| as the indegree of v. For
any graph theory definitions not mentioned here we refer the reader to e.g.
Diestel [20].
We give Dirac’s seminal theorem on Hamilton cycles, which will be re-

ferred to several times.

Theorem 1.2.1 ([21]). Every graph with n ≥ 3 vertices and minimum
degree at least n/2 has a Hamilton cycle.
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1.3 outline of contents

This thesis is based on the following works:

(1) Alberto Espuny Díaz, Viresh Patel, Fabian Stroh. Path decomposi-
tions of random directed graphs (2021). arXiv: 2109.13565. In: Ex-
tended Abstracts EuroComb 2021, (2021), pp. 702–706. Submitted to
Random Structures & Algorithms.

(2) V. Patel, F. Stroh. A polynomial-time algorithm to determine (al-
most) Hamiltonicity of dense regular graphs (2020). arXiv: 2007.14502.
To appear in SIAM Journal on Discrete Mathematics.

(3) P. Kleer, V. Patel, F. Stroh. Switch-based Markov chains for sampling
Hamiltonian cycles in dense graphs. Electronic Journal of Combina-
torics 27.4 (2020), Paper No. 4.29, 25.

Each of the authors contributed equally to each of the publications. Chapter
2 is based on (1), Chapter 3 is based on (2) and Chapter 4 is based on (3).
The chapters are self-contained and can be read in any order. They each
begin with an introduction to the problem, followed by the statement of the
main results and some background and context. Then, we give preliminaries,
followed by the proofs and a short concluding section. We conclude this
chapter by giving a short overview of each of the main chapters.
Chapter 2: Path decompositions of random directed graphs
An area of extremal combinatorics that has seen a lot of activity both
historically and recently is the study of decompositions of combinatorial
structures. The prototypical question in this area asks whether, for some
given class C of graphs, directed graphs, or hypergraphs, the edge set of
each H ∈ C can be decomposed into parts satisfying some given property.
The goal is usually to minimize the number of parts.

One classical decomposition problem concerns edge colorings of graphs.
A proper edge coloring of a graph G is an assignment of colors to its edges
such that incident edges receive different colors. Notice that the color classes
form a partition of the edges into matchings (a matching being a set of
edges in which no two edges are incident). The chromatic index of a graph
G, denoted χ′(G), is the smallest number of colors needed in a proper
edge coloring of G. Notice that χ′(G) ≥ ∆(G). The classical theorem of
Vizing [75] asserts that χ′(G) ∈ {∆(G), ∆(G) + 1}. This gives us a lot of
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Figure 2: Left: An example of a digraph with excess 4. Right: One way to decom-
pose the edges into four edge-disjoint paths.

information about optimal decompositions of graphs into matchings, but it
is generallyNP-complete3 to determine whether χ′(G) = ∆(G) or χ′(G) =
∆(G) + 1 [39], so we should not expect a simple characterization.
However, almost all graphs achieve χ′(G) = ∆(G). To explain what we

mean by almost all we introduce random graphs. For n ∈N and p ∈ [0, 1],
let Gn,p be the random graph on n (labeled) vertices constructed as follows:
we start with n isolated vertices, and for each of the (n2) possible edges, we
include each edge with probability p and make these (n2) choices indepen-
dently. So Gn,p is a probability distribution on n-vertex graphs and is called
the Erdös-Rényi random graph model. Note that Gn,1/2 is the uniformly
random distribution on n-vertex graphs. There is a large literature on the
properties of Gn,p, see [9, 44], even if we restrict ourselves to properties
relating to graph decompositions, e.g. [13, 25, 29, 33, 37].
Returning to the chromatic index, Erdös and Wilson [25] showed that for

G = Gn,1/2, it holds that P[χ′(G) = ∆(G)]→ 1 as n→∞, i.e. almost all n-
vertex graphs achieve the natural lower bound for the chromatic index as n
increases. So, while the chromatic index is not generally easy to understand,
we see that for most graphs, we know what value it takes. Our goal in
Chapter 2 is to obtain a similar result for path decompositions of directed
graphs.
In Chapter 2, we consider the problem of partitioning the edges of di-

rected graphs D into as few directed paths as possible. The number of
paths in such a partition is called the path number of D and is denoted by
pn(D). See Figure 2 for an example. Again, there is a natural lower bound
for pn(D) called the excess of D and denoted ex(D). The excess, ex(D), is

3 We will not define NP-complete formally, but instead mention that we do not expect to
find an efficient algorithm to solve these problems unless P = NP. Again, efficient here
means the algorithm has a running time polynomial in the size of the input.
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easy to compute: it is simply half of the sum over all vertices of the absolute
difference of the in- and outdegrees, i.e.

ex(D) =
1
2
∑
v∈V
|d+(v)− d−(v)|.

See the introduction of Chapter 2 to see why this is a lower bound. Simi-
larly to Gn,p, we define Dn,p as the random directed graph constructed by
starting with n isolated vertices and randomly and independently adding
directed edges with probability p. However, for Dn,p there are n(n − 1)
possible directed edges, up to two between each pair of vertices. The main
result of Chapter 2 is as follows:
Theorem 2.1.2. Let log4 n/n1/3 ≤ p ≤ 1− log5/2 n/n1/5. Then,
P[ex(Dn,p) = pn(Dn,p)]→ 1 as n→∞.

The bounds on p obtained are unlikely to be optimal (but include p =

1/2). This is discussed further in Chapter 2. So far, it is not obvious what
the connection of this chapter is with Hamilton cycles. We go into more
detail about this in the introduction of Chapter 2.
Chapter 3: Almost-Hamiltonicity in dense regular graphs
A basic problem in algorithmic graph theory is to decide whether a given
input graph contains some desired subgraph. For example, there is a polyno-
mial-time algorithm (with running time O(n3)) to decide whether a graph
has a triangle: simply check whether any triple of vertices forms a triangle
or not. The problem becomes more difficult if we wish to detect a specific
spanning subgraph. A perfect matching of an n-vertex graph (with n even)
is a spanning matching, i.e. a collection of n/2 edges, no two of which are
incident. Edmonds’ perfect matching algorithm [24] is a polynomial-time
algorithm to decide whether a given graph contains a perfect matching. Not
all subgraphs are easy to detect, however. As mentioned earlier it is NP-
complete to decide whether a given graph contains a Hamilton cycle, and so
we do not expect to find a polynomial-time algorithm to detect Hamilton
cycles. Hamilton cycles are one of the simplest spanning structures that are
NP-complete to detect.
Yet, this problem is still an active and important area of research. One

goal is to find graph classes and situations in which Hamilton cycles are
guaranteed or easier to find. Dirac’s theorem 1.2.1 gives us one such graph
class. It is trivial to decide Hamiltonicity in graphs of minimum degree at
least n/2 (such graphs are guaranteed to contain a Hamilton cycle), and
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the proof of Dirac’s theorem supplies a straightforward polynomial-time
algorithm for finding a Hamilton cycle in such graphs. There are many
results beyond Dirac’s Theorem that give conditions under which graphs
have Hamilton cycles; see e.g. the surveys [34, 59]. Usually, such results
translate into efficient algorithms to find Hamilton cycles.

Chapter 3 concerns the Hamiltonicity of regular graphs with linear degree.
Given α ∈ (0, 1] let Gα be the set of graphs G such that every vertex of
G has degree exactly D and D ≥ αn, where n = |G|. The question is
whether for each α there is a polynomial-time algorithm to decide whether
graphs in Gα have a Hamilton cycle. This is motivated by a question in
extremal combinatorics, which we discuss in the introduction of Chapter 3.
We cannot solve this question, but we can answer a closely related question
affirmatively. Specifically, we replace Hamilton cycles with almost Hamilton
cycles. Almost Hamilton cycles are cycles that contain all but a very small
number of vertices of a graph. Given α ∈ (0, 1], we give a number c(α)
and a polynomial-time algorithm that determines whether a graph in Gα
contains a cycle on all but a constant number c = c(α) of vertices. Further,
we give a randomized polynomial-time algorithm to find such a cycle if it
exists.
Note that the result cannot be improved in the sense that, if we allow

irregular graphs (of linear minimum degree) it becomes NP-complete to
detect (almost) Hamilton cycles, and similarly if we allow regular graphs
of arbitrary degree.
Chapter 4: Reconfiguration of Hamilton cycles under k-switches
In reconfiguration problems, we study a collection of objects and their re-
lationship under a reconfiguration operation transforming one object into
another. Typically, the objects in question will be solutions to some combi-
natorial problem and the operation will usually correspond to some minor
change. The most fundamental question is then, can any such object be
transformed into any other, and if so, how many steps are needed? We may
understand the objects as the vertices of the reconfiguration graph G, and
connect them by an edge if one arises from the other by our chosen oper-
ation. Then the questions of reconfiguration can be phrased as questions
of the properties of G. Is G connected? What is the diameter of G (i.e.,
what is the furthest any two objects are apart)? Given two objects, can we
efficiently find a path from one to the other in G?
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An example where it is easy to show the reconfiguration graph is con-
nected is the case of proper k-colorings of a graph G. In a proper k-coloring,
each vertex is assigned one of k colors, such that no two adjacent vertices
share a color. Note that if k ≥ ∆(G) + 1, we will always be able to find
a proper k-coloring, e.g. by successively coloring each vertex with a color
not yet used among its neighbors. Our reconfiguration operation in this
case consists of changing the color of a single vertex such that the resulting
coloring is also proper. In this example, we can see that the reconfiguration
graph is connected if k ≥ ∆(G) + 2. To see this, we construct a path be-
tween two arbitrary colorings, i.e. we transform one coloring into another
by successively recoloring single vertices. We can always change the color
of any vertex, as there are always at least two colors not among its neigh-
bors. We transform one coloring into another by handling the vertices in
an arbitrary order. Each vertex v, in order, is recolored to its target color i
by first recoloring all of v’s neighbors that are currently colored i and then
coloring v with color i. Note that we do not recolor v once it has received
its target color.
Other examples of objects that have been studied in the context of recon-

figuration include triangulations of planar graphs, independent sets and ver-
tex covers. More on reconfiguration problems can be found in [65]. Mostly
we are interested in graphical objects, and often the reconfiguration graph
is very large. More specifically, if our underlying graph G has n vertices,
the number of vertices in the reconfiguration graph is usually exponential
in n.
In the first part of Chapter 4 we study the reconfiguration of Hamilton

cycles of a graph. Our reconfiguration operation is the k-switch. Given a
graph G and a Hamilton cycle H of G, we perform a k-switch by removing
up to k edges from H and adding the same number of edges from G such
that the resulting subgraph H ′ is a Hamilton cycle of G again. See Figure 3
for an example. The switch operation is one of the simplest reconfiguration
operations for Hamilton cycles and is used e.g. in the k-opt heuristic for
TSP [61]. One of our main results is as follows:
Theorem 4.1.1 Let G be a graph on n vertices with δ(G) ≥ n/2+ 7. Then
the k-switch reconfiguration graph on Hamilton cycles of G is connected
for k ≥ 10.
We give examples to show that the minimum degree cannot be lowered

much. We expect that the bound of 10 can be reduced, but we show that
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Figure 3: Left and right: A graph and two of its Hamilton cycles, indicated in blue
and red. Center: four edges that can be used to transform the cycles into
one another. We obtain the red Hamilton cycle from the blue Hamilton
cycle by a 2-switch by removing the green edges and adding the yellow
edges.

it is not possible to replace 10 with 2 without significantly increasing the
minimum degree bound. These examples are found in Subsection 4.1.4.
One of the motivations to study reconfiguration of Hamilton cycles is in

an application to computational counting and sampling. In computational
counting, one is interested in algorithms for (approximately) computing the
number of solutions of a combinatorial problem. A closely related problem
is that of sampling a uniformly random solution. A powerful method to
achieve this is to set up a suitable Markov chain on the reconfiguration
graph so that its stationary distribution is the uniform distribution on the
vertices of the reconfiguration graph. If such a Markov chain converges
quickly to its stationary distribution (this is known as rapidly mixing, de-
fined in Section 4.2.1), then we have a means to quickly sample an (approx-
imate) uniformly random solution. This can often be used to approximate
the number of solutions that we wish to count; we give the informal argu-
ment on how to do this in Section 4.2.2.
One of the applications of our reconfiguration result is to show that the

natural Markov chain that arises from the Hamilton cycle reconfiguration
under k-switches is rapidly mixing for the class of dense monotone graphs.
We postpone the statement of this result to Chapter 4. This rapid mixing
result can be used to give an efficient approximate algorithm that samples
and counts Hamilton cycles in such graphs.





2
PATH DECOMPOS IT IONS OF RANDOM DIRECTED
GRAPHS

2.1 introduction

Let D be a directed graph (or digraph for short) with vertex set V (D) and
edge set E(D). A path decomposition of D is a collection of directed paths
P1, . . . ,Pk of D whose edge sets E(P1), . . . ,E(Pk) partition E(D). Given
any directed graph D, the minimum number of paths in a path decomposi-
tion of D is called the path number of D and is denoted pn(D). A natural
lower bound on pn(D) is obtained by examining the degree sequence of
D. For each vertex v ∈ V (D), write d+D(v) (resp. d−D(v)) for the number
of edges exiting (resp. entering) v. The excess at vertex v is defined to be
exD(v) := d+D(v)− d

−
D(v). We note that, in any path decomposition of D,

at least |exD(v)| paths must start (resp. end) at v if exD(v) ≥ 0 (resp.
exD(v) ≤ 0). Therefore, we have

pn(D) ≥ ex(D) :=
1
2

∑
v∈V (D)

|exD(v)|,

where ex(D) is called the excess of D. Any digraph for which equality
holds above is called consistent. Clearly, not every digraph is consistent; in
particular, any Eulerian digraph D has excess 0 and so cannot be consistent.

For the class of tournaments (that is, orientations of the complete graph),
Alspach, Mason, and Pullman [3] conjectured that every tournament with
an even number of vertices is consistent. Tournaments with an odd number
of vertices may be regular and so have excess 0.

Conjecture 2.1.1. Every tournament T with an even number of vertices
is consistent.

Many cases of this conjecture were resolved by Lo, Patel, Skokan, and
Talbot [62], and the conjecture has very recently been completely resolved
(for sufficiently large tournaments) by Girão, Granet, Kühn, Lo, and Os-
thus [32]. Both results relied on the robust expanders technique, developed

11



12 path decompositions of random directed graphs

by Kühn and Osthus with several coauthors, which has been instrumental
in resolving several conjectures about edge decompositions of graphs and
directed graphs; see, e.g., [17, 57, 58].

The conjecture seems likely to hold for many digraphs other than tourna-
ments: indeed, the conjecture was stated only for even tournaments prob-
ably because it considerably generalized the following conjecture of Kelly,
which was wide open at the time. Kelly’s conjecture states that every reg-
ular tournament has a decomposition into Hamilton cycles (see [64]). We
briefly describe how Kelly’s conjecture follows from Conjecture 2.1.1. Given
a regular tournament T , delete an arbitrary vertex v and its incident edges
from T to obtain the subtournament T − v. As regular tournaments have
an odd number of vertices, this yields an even tournament, which is con-
sistent if Conjecture 2.1.1 holds. The paths in the path decomposition of
T − v can then be completed to Hamilton cycles in T by including v. The
solution of Kelly’s conjecture for sufficiently large tournaments was one of
the first applications of the robust expanders technique [57].
A natural question then arises from Conjecture 2.1.1: which directed

graphs are consistent? It is NP-complete to determine whether a digraph
is consistent [76], and so we should not expect to have a simple character-
ization of consistent digraphs. Nonetheless, here we begin to address this
question by showing that the large majority of digraphs are consistent.
We consider the random digraph Dn,p. This is constructed by taking n

isolated vertices and inserting each of the n(n− 1) possible directed edges
independently with probability p. Typically statements about Dn,p claim
that, perhaps for some bounds on p, some property P holds for Dn,p asymp-
totically almost surely (a.a.s.), which means that P[P holds for Dn,p] → 1
for n→∞. Our main result is the following theorem.

Theorem 2.1.2. Let log4 n/n1/3≤ p ≤ 1− log5/2n/n1/5. Then, a.a.s. Dn,p
is consistent.

Notice that some upper bound on p, as in the above theorem, is necessary
because, when p = 1, we have that ex(Dn,p) = 0 (with probability 1) and
so Dn,p cannot be consistent. Moreover the property of being consistent
is not a monotone property, that is, adding edges to a consistent digraph
does not imply the resulting digraph is consistent. Therefore, unlike many
other properties (see [10]), we should not necessarily expect a threshold for
the consistency of random digraphs. We believe that the theorem holds for
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much smaller (and larger) values of p. For this reason, we have not tried to
optimize the polylogarithmic terms in our bounds on p.

Recall from the example for χ′(G) in the introduction that Erdős and
Wilson [25] showed that a.a.s. the random graph G = Gn,p satisfies χ′(G) =
∆(G) for p = 1/2. Frieze, Jackson, McDiarmid, and Reed [29] extended
this to all constant values of p ∈ (0, 1). Recently, this was extended to all
p = o(1) by Haxell, Krivelevich, and Kronenberg [37]. This is an example
of a graph decomposition result of random graphs that holds for all p, and
suggests the possibility that perhaps no lower bound on p is necessary in
Theorem 2.1.2.

The proof of Theorem 2.1.2 does not use randomness in a very signifi-
cant way. In fact, we give a set of sufficient conditions for a digraph to be
consistent and show that the random digraph (for suitable p) satisfies these
conditions asymptotically almost surely. Here we give a simplified version
of our main deterministic result (see Theorem 2.4.3 for the full statement).
For a digraph D, a subset of vertices S ⊆ V (D), and a vertex v ∈ V (D),

we write eD(v,S) (resp. eD(S, v)) for the number of outneighbors (resp.
inneighbors) of v in S.

Theorem 2.1.3. There exist constants n0 and c such that the follow-
ing holds. Let D = (V ,E) be a digraph on n ≥ n0 vertices. Set t :=
c(n logn)2/5 and let

A+ := {v ∈ V | exD(v) ≥ t},
A− := {v ∈ V | exD(v) ≤ −t}, and
A0 := V \ (A+ ∪A−).

Assume there is some d ≥ t such that

(i) for every v ∈ A+ we have d/4 ≤ eD(v,A−) ≤ d,

(ii) for every v ∈ A− we have d/4 ≤ eD(A+, v) ≤ d,

(iii) for every v ∈ A+ ∪A− we have eD(v,A0), eD(A0, v) ≤
min{d/3, t2/106}, and

(iv) for every v ∈ A0 we have eD(A+, v), eD(v,A−) ≥ d/3.

Then, D is consistent.
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Here is a concrete class of examples to which Theorem 2.1.3 applies.
Take the edge-disjoint union of D = (V ,E) and D′ = (V ,E′), where
D is any digraph obtained by taking a regular bipartite graph of degree
t ≥ c(n logn)2/5 and orienting all edges from one part to the other, and
D′ is any Eulerian digraph of maximum degree at most 3t. One can easily
check that Theorem 2.1.3 applies to such digraphs (here A0 is empty), and
so such digraphs are consistent.
Informally, when working with random (di)graphs, a usual strategy is to

make use of expansion or pseudorandom properties, see e.g. [52, 57] (mean-
ing the graph is well connected). However, we do not make use of such tech-
niques. Therefore Theorem 2.1.3 can be applied to many digraphs that are
far from having any expansion or pseudorandom properties; e.g., digraphs
satisfying the conditions of Theorem 2.1.3 could easily be disconnected or
weakly connected.

Broadly speaking, our proof relies on the use of the so-called absorption
technique, an idea due to Rödl, Ruciński, and Szemerédi [67] (with special
forms appearing in earlier work, e.g., [53]). We adapt and refine some of the
absorption ideas used in [62], but we also require several new ingredients.
We explain the main ideas of our proof in Section 2.2 below. In contrast to
the previous work on this question [32, 62], our proof does not make use
of robust expanders. Some preliminary ideas for this work came from de
Vos [76].

The rest of this chapter is organized as follows. We give a sketch of the
proof of Theorem 2.1.2 in Section 2.2. Section 2.3 is dedicated to giving
common definitions and citing results we use. In Section 2.4 we describe
the absorbing structure and we show how to use it to decompose directed
graphs D satisfying certain properties into ex(D) paths. Finally, in Sec-
tion 2.5 we show that a.a.s. the random digraph contains the absorbing
structure and satisfies the properties required to use the absorbing struc-
ture for decomposition. The proof of Theorem 2.1.2 appears in Section 2.5
and the proof of Theorem 2.1.3 appears in Section 2.4.
Beginning in Section 2.4 we will sometimes defer details of calculations to

endnotes at the end of this chapter in order to improve readability. Endnote
markers are superscript numbers in square brackets, like this:[1].
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2.2 proof sketch

Let D = Dn,p with p as in Theorem 2.1.2. We divide the vertices of D into
sets A+, A− and A0 depending on whether exD(v) ≥ t, exD(v) ≤ −t, or
−t < exD(v) < t, respectively, for a suitable choice of t (as a function of n
and p). One can show that, a.a.s., A+ and A− have roughly the same size
and A0 is small.
We start by setting aside an absorbing structure A which consists of a

set of edge-disjoint (short) paths of D. Each vertex v ∈ V (D) will have
a set of paths f(v) from A assigned to it, where the sets f(v) partition
A. In particular, for each v ∈ A+ (resp. v ∈ A−), the set f(v) consists of
single-edge paths from v to A− (resp. A+ to v) and, for each v ∈ A0, the set
f(v) consists of a path with two edges which goes from A+ to A− through
v. We think of A interchangeably as a set of paths and as a digraph that
is the union of those paths. We will require that |f(v)| is sufficiently large
for every vertex v but at the same time that exA(v) ≤ exD(v) for every
vertex v. We give a set of conditions that ensure the existence of one such
absorbing structure in Definition 2.4.1 (see Lemmas 2.4.5 and 2.4.6), and
Section 2.5 is devoted to showing, by using concentration inequalities for
martingales, that Dn,p fulfills these conditions (a.a.s.) for all values of p in
the desired range (and, in fact, for a slightly larger range than stated in
Theorem 2.1.2).

Next it is straightforward to obtain a set of edge-disjoint paths P in
D \E(A) such that |P|+ |A| = ex(D), and such that, writing D′ := D \
(E(A) ∪E(P)), we have ex(D′) = 0. So P ∪A gives the correct number
(i.e., ex(D)) of edge-disjoint paths but the edges in D′ are not covered, and
moreover D′ is Eulerian. Our goal now is to slowly combine edges of A with
edges of D′ to create longer paths in such a way that we maintain exactly
ex(D) paths at every stage (absorbing the edges of D′). If we manage to
combine all the edges of D′ in this way, then we have decomposed D into
ex(D) paths, thus proving that D is consistent.
To begin the process of absorption, we apply a recent result of Knierim,

Larcher, Martinsson and Noever [51] (improving on an earlier result of
Huang, Ma, Shapira, Sudakov and Yuster [41]) which allows us to decom-
pose the edges of D′ into O(n logn) cycles. The core idea then is to combine
certain paths from A with each cycle C given by the decomposition, and
to decompose their union into paths; we refer to this as absorbing the cycle.
Crucially, in order to keep the number of paths invariant, we will combine
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v1

v2

v′1

v′2

v1

v2

v′1

v′2

Figure 4: Left: One example of absorbing a cycle using two absorbing edges. We
have v1, v2 on our cycle C with v1 ∈ A+, v2 ∈ A−. We find paths
(v1, v′1) ∈ f(v1) and (v′2, v2) ∈ f(v2) with v′1 ∈ A− \ V (C) and v′2 ∈
A+ \ V (C).
Right: The solid red and dashed blue lines show the two paths P1 :=
v′2v2Cv1v′1 and P2 := v1Cv2, which use all involved edges.
Note that under certain circumstances, if v′1, v′2 lie on C, we can still
decompose all involved edges into two paths.

each cycle C with a set AC of two paths from A and decompose C ∪AC
into two paths, as illustrated in Figure 4. Thereafter, the edges AC are no
longer available for use in absorbing other cycles.
Therefore, we must allocate suitable absorbing paths to the cycles. The

two main challenges here are the following.

(i) The absorbing paths need to fit the specific cycle, meaning they and
the cycle can be decomposed into two paths. Generally, given a cycle
C, if we can find vertices v1, v2 ∈ V (C) \A0 and paths P1 ∈ f(v1) and
P2 ∈ f(v2) where P1 and P2 have distinct endpoints not on C, then
P1 and P2 will fit C (see Figure 4 for an example). If both endpoints
are on C, it is still sometimes possible (but not always) that P1 and
P2 fit C. If v1 or v2 lie in V (C) ∩A0, a similar idea can be used to
find fitting paths.

(ii) We only have a limited number of absorbing paths available at each
vertex.

In order to address (i), we prepare more absorbing paths than we plan to use,
as having the option to select from a sufficiently large number ensures that
at least two fit a given cycle. Any paths from A that we do not eventually
use to absorb a cycle remain as paths in the final decomposition. In order
to address point (ii), we employ different strategies to assign absorbing
edges to cycles, depending on the number of vertices that the cycle has in
A+ ∪A−.
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For cycles C that are long (meaning they have many vertices in A+ ∪A−),
we greedily choose two paths that fit the cycle. This is possible as each
cycle contains a large number of vertices, so there are many choices for
the possible absorbing paths, and we can always find two that fit the cycle.
Here, we allow both endpoints of the paths to be on C.
For cycles of medium length, we use a flow problem to assign vertices to

cycles in such a way that each cycle is assigned a suitably large number
of vertices dependent on its length, but such that no vertex is assigned to
too many cycles. This choice of assignment allows us to find two assigned
vertices v1 and v2 per cycle and pick paths Pi ∈ f(vi) for i = 1, 2 that fit
the cycle. This strategy is wasteful in the sense that we sometimes assign
more than two vertices to a cycle and thereby reserve more absorbing paths
than we use.
For cycles that are short, it is easier to find fitting paths, as we are

guaranteed to find absorbing paths that have their other endpoint off the
cycle, as in the example in Figure 4. However, it is harder to ensure that
we do not use too many paths per vertex. In this case, we also use a flow
problem to assign vertices to cycles, but we take multiple rounds and only
decompose certain ‘safe’ cycles in each round. In addition, we absorb certain
closed walks in each round, so we need to apply the result by Knierim et
al. between rounds in order to re-decompose the remaining edges into cycles,
and this may generate new cycles which are long or of medium length.
Absorbing the short cycles is the most complicated process of the three,
but it is the process we apply first so that the long and medium cycles that
are produced as a byproduct can be absorbed by the appropriate processes
described above. It is also the only process in which we use the absorbing
paths attached to vertices in A0.

2.3 preliminaries

2.3.1 Basic definitions and notation

For any n ∈ Z, we will write [n] := {i ∈ Z | 1 ≤ i ≤ n} and [n]0 := {i ∈
Z | 0 ≤ i ≤ n}. Whenever we write a = b± c for any a, b, c ∈ R, we mean
that a ∈ [b− c, b+ c]. Given any set X, we let 2X denote the set of all
subsets of X. Our logarithms are always natural logarithms. We use the
standard O-notation for asymptotic statements, where the asymptotics will
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always be with respect to a parameter n. Throughout, we ignore rounding
whenever it does not affect our arguments.

In this chapter, a digraph D = (V (D),E(D)) is a loopless directed graph
where, for each pair of distinct vertices x, y ∈ V (D), we allow up to two
edges between them, at most one in each direction. We usually denote edges
(x, y) ∈ E(D) simply as xy. The complement of D is a digraph on the same
vertex set as D which contains exactly all the edges which are not contained
in D. Given any digraph D, we write H ⊆ D to mean that H is a subdigraph
of D, that is, V (H) ⊆ V (D) and E(H) ⊆ E(D). If H is a set of subdi-
graphs of D, we will sometimes abuse notation and treat H as the digraph
obtained as the union of the digraphs which comprise H. In particular, we
will write V (H) :=

⋃
H∈H V (H) and E(H) :=

⋃
H∈HE(H). Given any

disjoint sets A,B ⊆ V (D), we denote ED(A) := {ab ∈ E(D) | a, b ∈ A}
and ED(A,B) := {ab ∈ E(D) | a ∈ A, b ∈ B}. If one of the sets con-
sists of a single element (say, A = {a}), we will simplify the notation
by setting E(a,B) := E({a},B), and similarly for the rest of the nota-
tion. We will write eD(A) := |ED(A)| and eD(A,B) := |ED(A,B)|. We
denote D[A] := (A,ED(A)) for the subdigraph induced by A and, simi-
larly, D[A,B] := (A ∪B,ED(A,B)) for the bipartite subdigraph induced
by (A,B). Given any E ⊆ E(D), we write D \ E := (V (D),E(D) \ E).
Given any vertex x ∈ V (D), we define its outneighborhood and inneighbor-
hood as N+

D (x) := {y ∈ V (D) | xy ∈ E(D)} and N−D (x) := {y ∈ V (D) |
yx ∈ E(D)}, respectively. The outdegree and indegree of x are given by
d+D(x) := |N+

D (x)| and d−D(x) := |N−D (x)|, respectively. Throughout, we
may sometimes abuse notation by referring to a digraph by its edge set,
especially in subscripts; the vertex set of such digraphs will always be clear
from context.
As in the introduction, we define the excess at x to be exD(x) := d+D(x)−

d−D(x), and similarly define the positive excess and negative excess at x as
ex+D(x) := max{exD(x), 0} and ex−D(x) := max{−exD(x), 0}, respectively.
Observe that

∑
x∈V (D) exD(x) = 0. We define the excess of D as

ex(D) :=
∑

x∈V (D)

ex+D(x) =
∑

x∈V (D)

ex−D(x) =
1
2

∑
x∈V (D)

|exD(x)|.

When we refer to paths, cycles, and walks in digraphs, we mean directed
paths, cycles, and walks, i.e., the edges are oriented consistently. Given
a digraph D, a walk W in D is given by a sequence of (not necessarily
distinct) vertices W = v1v2 · · · vk where v1v2, v2v3, . . . , vk−1vk are distinct
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edges of D. We also think of W as being a subdigraph of D with vertex
set {v1, . . . , vk} and edge set {v1v2, v2v3, . . . , vk−1vk}. We also call W a
(v1, vk)-walk and sometimes denote it by v1Wvk to emphasise that it starts
at v1 and ends at vk, and we say W is closed if v1 = vk. For two edge-
disjoint walks W1 = aW1b = av1 · · · vkb and W2 = bW2c = bv′1 · · · v′`c, we
write W1W2 = av1 · · · vkbv′1 · · · v′`c for the concatenation of W1 and W2.
This notation extends in the natural way for concatenating more than two
walks. For a walk W = v1 · · · vk, and 1 ≤ i < j ≤ k, we write viWvj for the
(vi, vj)-walk vivi+1 · · · vj between vi and vj .

In fact, we will mostly be concerned with paths and cycles rather than
walks. A walk W = v1 · · · vk is a path if v1, . . . , vk are distinct vertices, and
it is a cycle if v1, . . . , vk are distinct except that v1 = vk. The length of a
walk, path, or cycle is the number of edges it contains. We sometimes also
consider degenerate single-vertex paths. Note that, if P1 is an (a, b)-path
and P2 is a (b, c)-path, where P1 and P2 are vertex-disjoint except at b,
then P1P2 is an (a, c)-path. For sets of vertices X and Y , we say that a
path P is an (X,Y )-path if it starts in X and ends in Y .
In this chapter, we say a digraph D is Eulerian if d+D(v) = d−D(v) for

every v ∈ V (D) or, equivalently, if ex(D) = 0.1 A well-known consequence
of this definition is the fact that the edge set of any Eulerian digraph can
be decomposed into cycles.
We will sometimes need to consider a multidigraph D, which is allowed

to have multiple edges between any two vertices, in both directions (but it
is still loopless). Whenever D is a multidigraph, all edge sets should be seen
as multisets, while all vertex sets will remain simple sets. The notation and
terminology above extend in the natural way to multidigraphs.

2.3.2 Path and cycle decompositions

The following definitions are convenient.

Definition 2.3.1. A perfect decomposition of a digraph D is a set P =

{P1, . . . ,Pr} of edge-disjoint paths of D that together cover E(D) with
r = ex(D). (Thus, a digraph D is consistent if and only if it has a perfect
decomposition.)

We will need the following basic facts.
1 This is different from the standard definition, which also asks that D is strongly con-
nected.
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Proposition 2.3.2. Let D be a digraph with ex(D) > 0. Then, there
exists a path in D from a vertex of positive excess to a vertex of negative
excess.

Proof. First, repeatedly remove cycles from D until this is no longer pos-
sible and call the resulting digraph D′; note that this does not affect the
excess of any vertex. Now any maximal path P in D′ starts at a vertex that
has no inneighbors (so it has positive excess) and ends at a vertex that has
no outneighbors (so it has negative excess).

Proposition 2.3.3. Suppose D is a digraph, and let X,Y ⊆ V (D) be
disjoint. If P1, . . . ,Pk are edge-disjoint (X,Y )-paths and E(P1) ∪ . . . ∪
E(Pk) = E(D), then {P1, . . . ,Pk} is a perfect decomposition of D.

Proof. If we constructD by adding the k paths one at a time, we notice that
the excess increases by one each time a path is added, so that ex(D)=k.

As mentioned in Section 2.2, we will use absorbing structures (see Defi-
nition 2.4.4) to absorb Eulerian digraphs. For this, we will first decompose
the Eulerian digraphs into cycles. We will use Theorem 2.3.4 of Knierim,
Larcher, Martinsson and Noever [51] to achieve this.

Theorem 2.3.4. There exists a constant c′ such that every Eulerian di-
graphD on n vertices can be decomposed into at most c′n logn edge-disjoint
cycles.2

2.3.3 Flows

We recall some common definitions and facts about flow networks. We note
that flows are only used in the proofs of Lemmas 2.4.11 and 2.4.14.
A flow network is a tuple (F ,w, s, t), where F = (V ,E) is a digraph,

w : E → R is the capacity function, and s ∈ V is a source (i.e., it only has
outedges incident to it) and t ∈ V is a sink (i.e., it only has inedges incident
to it). A flow for the flow network (F ,w, s, t) is a function φ : E → R≥0
such that, for all e ∈ E, we have φ(e) ≤ w(e) and, for all v ∈ V \ {s, t},
we have

∑
u∈N−F (v) φ(uv) =

∑
u∈N+

F (v) φ(vu). We define the value of φ as

2 In fact, the result of Knierim, Larcher, Martinsson and Noever [51] is slightly stronger, in
the sense that logn can be replaced by log ∆, where ∆ is the maximum (out- or in-)degree
of D.
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val(φ) :=
∑
v∈N+

F (s) φ(sv). A maximum flow on a given flow network is a
flow φ that maximises val(φ).

A partition (U ,W ) of V with s ∈ U , t ∈ W is called a cut, and we call
the edge set EF (U ,W ) its corresponding cut-set. The capacity w((U ,W ))

of a cut (U ,W ) is the sum of the capacities of the edges of its cut-set,
i.e., w((U ,W )) := w(EF (U ,W )) :=

∑
e∈EF (U ,W ) w(e). A minimum cut of

the given flow network is a cut of minimum capacity. We make use of the
following well-known theorem.

Theorem 2.3.5 (Max-flow min-cut [28]). For every flow network with max-
imum flow φ and minimum cut (U,W) we have that val(φ)=w((U,W)).

An easy consequence is that, if all edge capacities are integers, then there
exists a maximum flow such that all flow values are integers.
Given a flow φ on a flow network (F ,w, s, t), we define the residual

digraph Gφ of G under φ as a directed graph with vertex set V and edge
set {uv ∈ E | φ(uv) < w(uv)} ∪ {vu | uv ∈ E, φ(uv) > 0}. An (s, t)-path
in a residual graph Gφ is called an augmenting path, and it is easy to see
that an augmenting path exists in Gφ if and only if φ is not a maximum
flow.

2.3.4 Random digraphs and probabilistic estimates

In Section 2.5, we begin working with random digraphs in the binomial
model (although we also introduce slight variants of this model in the proofs
of Lemmas 2.4.5 and 2.4.6). We denote by Dn,p a random digraph on ver-
tex set [n] obtained by adding each of the possible n(n− 1) edges with
probability p, independently of all other edges. Most of our results will be
asymptotic in nature. In particular, given a (di)graph property P and a se-
quence of random (di)graphs {Gi}i>0 with |V (Gi)| → ∞ as i→∞, we say
that Gi satisfies P asymptotically almost surely (a.a.s.) if P[Gi ∈ P ] → 1
as i→∞.
We will need to prove concentration results for different random variables.

For this, we will often use Chernoff bounds (see, e.g., the book of Janson,
Łuczak and Ruciński [44, Corollary 2.3]).

Lemma 2.3.6. Let X be the sum of n mutually independent Bernoulli
random variables, and let µ := E[X ]. Then, for all δ ∈ (0, 1) we have that
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P[X ≥ (1 + δ)µ] ≤ e−δ
2µ/3 and P[X ≤ (1− δ)µ] ≤ e−δ

2µ/2. In particular,
P[|X − µ| ≥ δµ] ≤ 2e−δ2µ/3.

The following Chernoff-type bound extends Lemma 2.3.6 to allow us to
bound probabilities of large deviations (see, e.g., the book of Alon and
Spencer [2, Theorem A.1.12]).

Lemma 2.3.7. Let X be the sum of n mutually independent Bernoulli
random variables. Let µ := E[X ], and let β > 1. Then, P[X ≥ βµ] ≤
(e/β)βµ.

We will sometimes consider random variables which are not indepen-
dent, in which case we cannot obtain concentration results as above. For
such random variables we will need the following version of the well-known
Azuma-Hoeffding inequality (see, e.g., [44, Theorem 2.25]). Given any se-
quence of random variables X = (X1, . . . ,Xn) taking values in a set Ω and
a function f : Ωn → R, for each i ∈ [n]0 define Yi := E[f(X) | X1, . . . ,Xi].
The sequence Y0, . . . ,Yn is called the Doob martingale3 for f and X. All
the martingales that appear in this chapter will be of this form.

Lemma 2.3.8 (Azuma’s inequality). Let Y0, . . . ,Yn be a martingale and
suppose |Yi − Yi−1| ≤ ci for all i ∈ [n]. Then, for any t > 0,

P[|Yn − Y0| ≥ t] ≤ 2 exp
(

−t2

2
∑n
i=1 c

2
i

)
.

We will also make use of the following well-known inequality; see, e.g.,
[36, Theorem 368].

Lemma 2.3.9 (rearrangement inequality). Let n ∈N, and let x1 ≤ . . . ≤
xn and y1 ≤ . . . ≤ yn be real numbers. Let σ ∈ Sn be an arbitrary permu-
tation. Then,

n∑
i=1

xiyn+1−i ≤
n∑
i=1

xiyσ(i) ≤
n∑
i=1

xiyi.

2.4 optimal path decompositions of digraphs

In this section we give sufficient conditions for a digraph to be consistent.
These conditions will ensure that our digraph has a certain absorbing struc-
ture, and the absorbing structure will help us to decompose D into ex(D)

paths.
3 The definition here is all we require and so we will not define martingales.
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We begin by defining the classes of digraphs we will be working with
throughout the rest of the chapter.

Definition 2.4.1. Fix p ∈ [0, 1] and 0 ≤ λ,κ ≤ n. We say that D = (V ,E)
is an (n, p,κ,λ)-digraph if |V | = n and the vertex set V can be partitioned
into three parts, A+, A− and A0 (where A0 may be empty), in such a way
that the following properties are satisfied:

(P1) For every v ∈ A+ we have exD(v)≥155κ and np/4≤eD(v,A−)≤np.

(P2) For every v∈A− we have exD(v)≤−155κ and np/4≤eD(A+, v)≤np.

(P3) For every v ∈ A+ ∪A− we have eD(v,A0), eD(A0, v) ≤ λ.

(P4) For every v ∈ A0 we have eD(A+, v) ≥ np/3 and eD(v,A−) ≥ np/3.

We say thatD is an (n, p,κ,λ)-pseudorandom digraph if it is an(n, p,κ,λ)-
digraph and, additionally, the following property holds:

(P5) For every set U ⊆ V with |U | ≥ logn/(50p) we have eD(U) ≤
100|U |2p.

Whenever we are given an (n, p,κ,λ)-digraph, we implicitly consider a
partition of its vertex set into sets A+, A− and A0 which satisfy the prop-
erties described in Definition 2.4.1. This partition is not necessarily unique;
throughout this section, we simply assume that one such partition is given.
We will write Ȧ := A+ ∪A−.
Remark 2.4.2. If D is an (n, p,κ,λ)-(pseudorandom) digraph and κ′ ≤ κ

and λ′ ≥ λ, then D is an (n, p,κ′,λ′)-(pseudorandom) digraph.
We will see in Section 2.5 that a.a.s. Dn,p is an (n, p,κ,λ)-pseudorandom

digraph, for a suitable choice of parameters. Our goal in this section is to
prove the following theorem.

Theorem 2.4.3. There exists n0 ∈N with the following property. Suppose
n ∈N, p ∈ (0, 1) and κ,λ ∈ R are parameters satisfying n ≥ n0 and

(C1) κ = 3N2/5,

(C2) np ≥ 365N2/5, and

(C3) λ = min{np/3,κ2/12},
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where N := c′n logn and c′ is the constant from Theorem 2.3.4. Then, any
(n, p,κ,λ)-digraph D admits a perfect decomposition.

The same conclusion holds if D is an (n, p,κ,λ)-pseudorandom digraph
and (C1) and (C2) are replaced by

(C′1) κ = 6(N2p)1/5, and

(C′2) p ≥ n−1/3 log4 n.

Observe that, by Remark 2.4.2, we can extend Theorem 2.4.3 to any
(n, p,κ,λ)-(pseudorandom) digraph where κ is larger than the value given
in (C1) or (C′1), respectively, and λ is smaller than the value given in (C3).
We further remark that the constants in Theorem 2.4.3 as well as in

Definition 2.4.1 are not optimal. In fact, there is a trade-off between some
of them: by making one worse, others can be improved. In order to ease
readability, we refrain from stating the most general result possible, and
simply note that a host of similar statements, with different constants, can
be obtained by going through the proofs of the lemmas in this section.
Furthermore, we note that some of the conditions in Definition 2.4.1 can
be relaxed; in particular, (P3) is only used in the proof of Lemma 2.4.11,
where only one of the two bounds stated in (P3) is required. Thus, as long
as all vertices in A+ ∪A− satisfy one (and the same) of the two bounds,
Theorem 2.4.3 still holds, so it can be applied to a larger class of digraphs
than stated in Definition 2.4.1.

Assuming Theorem 2.4.3, we give the proof of Theorem 2.1.3.

Proof of Theorem 2.1.3. We set n0 as in Theorem 2.4.3 and c := 500(c′)2/5,
where c′ is the constant from Theorem 2.3.4. Then, properties (i)–(iv) of
Theorem 2.1.3 and our choice of A+,A− and A0 correspond to (P1)–(P4)
with t := c(n logn)2/5, d, and min{d/3, t2/106} playing the roles of 155κ,
np, and λ, respectively, so D is an (n, p,κ,λ)-digraph. By Remark 2.4.2
and our choice of t and d, we then conclude that D is also an (n, p,κ′,λ′)-
digraph which satisfies properties (C1)–(C3) of Theorem 2.4.3[1]. Thus, we
may apply Theorem 2.4.3 and D is consistent.

2.4.1 Finding absorbing structures

The next definition describes the absorbing structure that we will find in
(n, p,κ,λ)-digraphs D. It will be used to absorb the majority of edges of
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D into a set of (A+,A−)-paths that will end up being part of our perfect
decomposition. We will essentially show that, when we take an edge-disjoint
union of our absorbing structure with any Eulerian subdigraph of D, the
resulting digraph has a perfect decomposition.

Definition 2.4.4. Let D be an (n, p,κ,λ)-digraph, and let Z ⊆ V (D)

and t ∈ N. A (Z, t)-absorbing structure is a pair A = (Eab, f), where
Eab ⊆ E(D) and f : Z → 2Eab , such that

(A1) if z ∈ Z ∩A+, then f(z) contains exactly t edges from ED(z,A−);

(A2) if z ∈ Z ∩A−, then f(z) contains exactly t edges from ED(A+, z);

(A3) if z ∈ Z ∩A0, then f(z) contains exactly t edges from ED(A+, z) and
exactly t edges from ED(A+, z), and

(A4) the collection {f(z)}z∈Z is a partition of Eab; in particular, the sets
f(z) are disjoint.

Note that, for convenience, for z ∈ A+ ∪A−, we often think of the t edges
in f(z) as t edge-disjoint (A+,A−)-paths of length 1. For z ∈ A0, we
arbitrarily pair up the in- and outedges in f(z) to create t edge-disjoint
(A+,A−)-paths of length 2 through z.

The following lemmas show the existence of absorbing structures in
(n, p,κ,λ)-digraphs.

Lemma 2.4.5. Let D be an (n, p,κ,λ)-digraph with 100 logn < κ ≤
np/120. Then, D contains an (Ȧ, 12κ)-absorbing structure which contains
at most 150κ edges incident to each v ∈ Ȧ.

Proof. Consider D[A+,A−]. We define Dq as a random subdigraph of
D[A+,A−] by including each of the edges of ED(A+,A−) with probability
q := 120κ/(np), independently of each other. For each v ∈ A+, let Bv be
the event that d+Dq (v) /∈ [25κ, 150κ]. Similarly, for each v ∈ A−, let Bv be
the event that d−Dq (v) /∈ [25κ, 150κ]. By (P1), (P2) and Lemma 2.3.6, it
follows that, for each v ∈ Ȧ, we have P[Bv] ≤ e−κ/50[2]. Then, by a union
bound over all v ∈ Ȧ and the lower bound on κ, we conclude that there
exists a digraph D′ ⊆ D[A+,A−] such that, for each v ∈ A+, it holds
that d+D′(v) ∈ [25κ, 150κ], and for each v ∈ A−, it holds that d−D′(v) ∈
[25κ, 150κ].
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We are now going to randomly split the edges of D′ into two sets E+

and E−, and then prove that, with positive probability, E+ contains an
(A+, 12κ)-absorbing structureA+, and E− contains an (A−, 12κ)-absorbing
structure A−. It then immediately follows that A+ ∪ A− is the desired
(Ȧ, 12κ)-absorbing structure.

For each e ∈ E(D′), with probability 1/2 and independently of all other
edges, we assign e to E+, and otherwise we assign it to E−. Let D+ :=
(Ȧ,E+) and D− := (Ȧ,E−) (so, in particular, D′ = D+ ∪D−). Now, for
each v ∈ A+, let B′v be the event that d+D+(v) < 12κ, and for each v ∈ A−,
let B′v be the event that d−D−(v) < 12κ. In particular, by Lemma 2.3.6, it
follows that, for each v ∈ Ȧ, we have P[B′v] ≤ e−κ/100[3]. By a union bound,
we conclude that there exists a partition of E(D′) into E+ and E− such
that, for each v ∈ A+, we have d+D+(v) ≥ 12κ, and for each v ∈ A− we have
d−D−(v) ≥ 12κ[4].
In order to obtain the desired absorbing structure, for each v ∈ A+ let

f(v) be an arbitrary set of 12κ of the edges of E+ which contain v, and for
each v ∈ A− let f(v) be an arbitrary set of 12κ of the edges of E− which
contain v.

Lemma 2.4.6. Let D be an (n, p,κ,λ)-digraph with 8 log(4n) < κ ≤
np/12, λ ≤ np/3 and κλ ≥ 4np log(2n). Then, D contains an (A0, 3κ)-
absorbing structure which contains at most 5κ edges incident to each v ∈ Ȧ.

Proof. Let D′ := D[A+,A0] ∪D[A0,A−], and let Dq be a random sub-
digraph of D′ obtained by adding each edge of D′ with probability q :=
12κ/(np) and independently of each other. For each v ∈ A+, let Bv be the
event that d+Dq (v) > 5κ. Similarly, for each v ∈ A−, let Bv be the event
that d−Dq (v) > 5κ. Finally, for each v ∈ A0, let B+v and B−v be the events
that d−Dq (v) < 3κ and d+Dq (v) < 3κ, respectively.

It follows from (P3) and Lemma 2.3.6 that, for each v ∈ Ȧ, we have
P[Bv] ≤ e−κλ/(4np)[5]. Similarly, by (P4) and Lemma 2.3.6, for each v ∈ A0

we have that P[B+v ], P[B−v ] ≤ e−κ/8[6]. By a union bound (the trivial bound
is given by 2ne−κ/8 + ne−κλ/(4np), and this is < 1 by the assumptions in
the statement), we conclude that there exists D∗ ⊆ D′ such that, for each
v ∈ A+, we have d+Dq (v) ≤ 5κ; for each v ∈ A−, we have d−Dq (v) ≤ 5κ, and
for each v ∈ A0, we have d+Dq (v), d

−
Dq

(v) ≥ 3κ.
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In order to obtain the absorbing structure, for each v ∈ A0, let f(v) be
the union of an arbitrary subset of ED∗(A+, v) of size 3κ and an arbitrary
subset of ED∗(v,A−) of size 3κ.

2.4.2 Using absorbing structures

In this subsection, we show how to use absorbing structures to obtain per-
fect decompositions, and we use this to prove Theorem 2.4.3. As mentioned
earlier, the idea will be to use these absorbing structures to absorb Eule-
rian digraphs. The Eulerian digraphs will be decomposed into cycles, using
Theorem 2.3.4, and absorbed one cycle at a time.

Given an (n, p,κ,λ)-digraph D, we set N := c′n logn, where c′ is the
constant given by Theorem 2.3.4, so any Eulerian subdigraph of D can
be decomposed into at most N cycles. We call a cycle C ⊆ D short if
|V (C) ∩ Ȧ| ≤ κ, long if |V (C) ∩ Ȧ| ≥ N/κ, and medium otherwise. We
will need a different strategy to absorb the set of cycles of each type. We
will show how to absorb long, medium and short cycles in Lemmas 2.4.9,
2.4.11 and 2.4.14, respectively.

The following lemma shows how to absorb a single long or medium cycle,
under suitable conditions, and will be used in Lemmas 2.4.9 and 2.4.11.

Lemma 2.4.7. Let D be an (n, p,κ,λ)-digraph. Let C ⊆ D be a cycle
with ` := |V (C) ∩ Ȧ| > κ and S ⊆ V (C) ∩ Ȧ with |S| ≥ `/κ + 1. Let
A = (Eab, f) be an (S,κ+ 2)-absorbing structure such that E(C)∩Eab =

∅. Then, there exist distinct vertices v1, v2 ∈ S and edges e1 ∈ f(v1) and
e2 ∈ f(v2) such that E(C)∪{e1, e2} can be decomposed into two (A+,A−)-
paths.

Proof. Assume first that there are two distinct vertices v1, v2 ∈ S such
that, for each i ∈ [2], there is an edge ei ∈ f(vi) whose other vertex is not
contained in V (C). Observe that the definition of A ensures that e1 ∪ e2 is
not a path of length 2[7]. Now, for each i ∈ [2], if ei = vixi, let P+

i := vixi
and P−i := vi, and if ei = xivi, let P+

i := vi and P−i := xivi. Let P be
the (v1, v2)-subpath of C, and let P ′ be the (v2, v1)-subpath of C. The
paths described in the statement are now given by P1 := P−1 PP

+
2 and

P2 := P−2 P
′P+

1 . Since e1 ∪ e2 is not a path of length 2, these two structures
must indeed be paths and in all cases they are (A+,A−)-paths since the
paths have the same start- and endpoints as e1 and e2. See Figure 5 for a
visual representation of two of the four possible outcomes.
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v1 v2

e1 e2

v1 v2

e1 e2

Figure 5: A representation of the path decomposition of a cycle and two edges as
proposed in Lemma 2.4.7, in the case where we can find said edges with
their endpoints outside V (C).

Therefore, we may assume that there are at least `/κ > 1 vertices v ∈
S such that all e ∈ f(v) have both endpoints in V (C). Let us denote
the set of these vertices by S′. For each v ∈ S′, let Pv be the shortest
subpath of C which does not contain v and contains all other endpoints of
the edges e ∈ f(v) (recall that all said endpoints lie in Ȧ). In particular,
|V (Pv) ∩ Ȧ| ≥ κ+ 2. Now label the vertices of V (C) ∩ Ȧ as y1, . . . , y` in
such a way that, when traversing C, they are visited in this (cyclic) order.
A simple counting argument shows the following.

Claim 2.4.8. There exist two distinct vertices v1, v2 ∈ S′ such that Pv1

and Pv2 share at least two consecutive vertices of V (C) ∩ Ȧ.

Proof of Claim 2.4.8. Assume the statement does not hold. Then, any two
paths from {Pv | v ∈ S′} can intersect only at their endpoints, and any
vertex of V (C) ∩ Ȧ can be an endpoint of at most two paths. This means∑

v∈S′
|V (Pv) ∩ Ȧ| ≤ `+ |S′|.

However, using the bounds we have obtained so far, we can confirm that∑
v∈S′
|V (Pv) ∩ Ȧ| ≥ |S′|(κ+ 2) ≥ `+ 2|S′| > `+ |S′|. J

By Claim 2.4.8, we can choose two edges e1 ∈ f(v1) and e2 ∈ f(v2)

which form a ‘crossing configuration’, that is, such that the vertices of e1
and e2 alternate when traversing C (e.g., wy and zx are crossing edges
in Figure 6). In order to complete the proof, label the vertices of e1 and
e2 as w,x, y, z in such a way that, when traversing the cycle, they appear
in this (cyclic) order and such that the edges are oriented towards x and
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z y

w x

Figure 6: A representation of the path decomposition of a cycle and two edges
as proposed in Lemma 2.4.7, in the case where we can find a ‘crossing
configuration’.

towards y, respectively (note that in any crossing configuration there exist
two consecutive vertices into which the edges are directed). The two paths
of the statement are now given by P1 := wyCzx and P2 := zCy, and these
are (A+,A−)-paths since they have the same start- and endpoints as e1
and e2. See Figure 6 for a visual representation.

We now prove Lemma 2.4.9, which shows how an absorbing structure
can be used to absorb a collection of long cycles.

Lemma 2.4.9. Let D be an (n, p,κ,λ)-digraph with 10 ≤ κ < N1/2. Let
C1 be a collection of edge-disjoint cycles in D with |C1| ≤ 2N and such
that, for each C ∈ C1, we have |V (C)∩ Ȧ| ≥ N/κ. Let A = (Eab, f) be an
(Ȧ, 7κ− 1)-absorbing structure with E(C1) ∩Eab = ∅. Then, the digraph
with edge set E(C1) ∪Eab has a perfect decomposition in which each path
is an (A+,A−)-path.

Proof. For each C ∈ C1, we are going to use Lemma 2.4.7 to find two
edges e1, e2 ∈ Eab such that E(C) ∪ {e1, e2} can be decomposed into two
(A+,A−)-paths. We proceed iteratively as follows.

Assume that, for some of the cycles in C1, we have already found two
edges as described above, and we now wish to do this for the next cycle
C ∈ C1. Let ` := |V (C) ∩ Ȧ| ≥ N/κ. We say that an edge e ∈ Eab is
available if it has not been used to absorb any of the earlier cycles. We say
that a vertex v ∈ V (C) ∩ Ȧ is available if at least κ+ 2 edges of f(v) are
available, and we say that it is unavailable otherwise. Let SC ⊆ V (C)∩ Ȧ be
the set of available vertices. Then, we can define an (SC ,κ+ 2)-absorbing
structure AC using edges from Eab by selecting, for each v ∈ SC , any set
of κ+ 2 available edges from f(v).
Note that the total number of edges assigned to cycles so far is at most

2|C1| ≤ 4N . On the other hand, for each v ∈ V (C)∩ Ȧ which is unavailable,
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at least 5κ[8] edges of f(v) have already been assigned to cycles. Therefore,
the total number of unavailable vertices is at most 4N/(5κ), so |SC | ≥
`− 4N/(5κ) ≥ `/5 ≥ `/κ+ 1[9]. Therefore (noting that ` ≥ N/κ > κ),
we can apply Lemma 2.4.7 (with SC and AC playing the roles of S and
A, respectively) to obtain two (available) edges e1, e2 ∈ Eab such that
E(C) ∪ {e1, e2} can be decomposed into two (A+,A−)-paths.
After each cycle has been handled in this way and, together with two

edges, decomposed into two (A+,A−)-paths, we are left with some edges in
Eab, which we treat as (A+,A−)-paths. We therefore have a decomposition
of E(C1) ∪Eab into (A+,A−)-paths, which is a perfect decomposition by
Proposition 2.3.3.

We will use flow problems in order to prove Lemmas 2.4.11 and 2.4.14.
All our flow problems will follow a similar structure, so we introduce the
following definition in addition to the common definitions given in Subsec-
tion 2.3.3.

Definition 2.4.10. Let D be a multidigraph and C be a set of edge-disjoint
cycles of D. Set B := V (C). We define a flow network (F ,w, s, t) as follows.
We define a digraph F = F (C) on vertex set {s} ∪̇ C ∪̇B ∪̇ {t}, where s
and t are the source and sink of the flow problem, respectively. We set
E1 := {sC | C ∈ C}, E2 := {Cb | C ∈ C, b ∈ V (C)}, E3 := {bt | b ∈ B} and
E(F ) := E1 ∪E2 ∪E3. Given any two functions g : C → R and h : B →
R, we will write FP(C; g,h) to denote the maximum flow problem on the
digraph F = F (C) defined above where each edge sC ∈ E1 has capacity
w(sC) = g(C), each edge Cb ∈ E2 has capacity w(Cb) = 1, and each edge
bt ∈ E3 has capacity w(bt) = h(b). If g or h are constant functions, we will
simply replace them by the corresponding constant in the notation.

The following lemma shows how an absorbing structure can be used to
absorb a collection of medium cycles.

Lemma 2.4.11. Let D be an ( n, p, κ, λ )-digraph D with κ ≥ max{12,
(12λ)1/2, (72N2)1/5}, or an (n, p,κ,λ)-pseudorandom digraph D with κ ≥
max{12, (12λ)1/2, (7200N2p)1/5,

√
12/(25p) logn}. Let C2 be a collection

of at most 2N edge-disjoint cycles in D such that, for each C ∈ C2, we have

κ < |V (C) ∩ Ȧ| < N/κ. (2.4.1)
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Figure 7: The graph F (C′2). The thick dotted line illustrates the cut-set M0. The
regular thick line illustrates the cut-set M .

LetA = (Eab, f) be an (Ȧ, 2κ+ 1)-absorbing structure with E(C2)∩Eab =

∅. Then, the digraph with edge set E(C2)∪Eab has a perfect decomposition
in which each path is an (A+,A−)-path.

Proof. Given any digraph H with V (H) ⊆ V (D), we define g(H) :=
d|V (H) ∩ Ȧ|/κe + 1. We use a flow problem to assign, to each C ∈ C2,
a set of g(C) vertices of V (C)∩ Ȧ in such a way that no vertex is assigned
to more than κ cycles. We will then use Lemma 2.4.7 to find two edges
in Eab with which to absorb C. To this end, we construct a multiset of
auxiliary cycles C′2 as follows. We obtain C′2 from C2 by replacing each cy-
cle C ∈ C2 by the auxiliary cycle i(C) with vertices V (C) \A0 and whose
cyclic vertex order is inherited from C. Note that the cycles in C′2 are not
necessarily cycles of D and, indeed, the set E(C′2) (which forms a multidi-
graph) includes all the edges of E(C2) inside Ȧ as well as an extra edge
every time a cycle in C2 leaves and reenters Ȧ. We note for later that, since
eD(v,A0) ≤ λ by (P3), the number of these extra edges contained in any
T ⊆ Ȧ is at most λ|T |. Consider FP(C′2; g,κ).

Claim 2.4.12. FP(C′2; g,κ) has a flow φ with val(φ) =
∑
C∈C′2

g(C).

Proof of Claim 2.4.12. Throughout this proof we use the notation set up
in Definition 2.4.10 and Subsection 2.3.3. As M0 := {sC | C ∈ C′2} is the
cut-set of a cut of F = F (C′2) of capacity

∑
C∈C′2

g(C), by Theorem 2.3.5
it remains to show that this is a minimum cut. We assume the existence of
a cut-set M of F with smaller capacity and will show that this contradicts
our assumption on the value of κ. Let T ⊆ V (C′2) ⊆ Ȧ be the set of vertices
that are separated from t by M and T ′ := V (C′2) \ T . Let S ⊆ C′2 be the set
of cycles which are not separated from s byM , and S′ := C′2 \S. These sets
are illustrated in Figure 7. Let DS be the multidigraph that is the union of
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the cycles in S. We have that

w(M) =
∑
C∈S′

g(C) + eF (S,T ′) + |T |κ <
∑
C∈C′2

g(C) = w(M0),

which is equivalent to∑
C∈S

g(C) > eF (S,T ′) + |T |κ. (2.4.2)

(Note that we may assume T 6= ∅, as otherwise (2.4.2) cannot hold[10].)
Now observe that[11]

∑
C∈S

g(C) =
∑
C∈S

(⌈ |V (C)|
κ

⌉
+ 1

)
<
e(DS)

κ
+ 2|S|. (2.4.3)

By (2.4.1), we have |V (C)| > κ for all C ∈ C′2, so it follows that

|S| <
∑
C∈S
|V (C)|/κ = e(DS)/κ. (2.4.4)

Combining (2.4.2), (2.4.3) and (2.4.4), it follows that

3e(DS)

κ
> eF (S,T ′) + |T |κ. (2.4.5)

Next, since |V (C)| ≤ N/κ for all C ∈ C′2 by (2.4.1) and |C′2| = |C2| ≤ 2N ,
we have

e(DS) < 2N2/κ, (2.4.6)

Furthermore, since e(DS) = eDS (T ) + eDS (T
′) + eDS (T

′,T ) + eDS (T ,T ′),
we have[12]

eF (S,T ′) =
∑
v∈T ′

1
2 (d

+
DS

(v) + d−DS (v))

≥ 1
2 (eDS (T

′) + eDS (T
′,T ) + eDS (T ,T ′)) = 1

2 (e(DS)− eDS (T )).

Combining this with (2.4.5), we have

6e(DS)

κ
> 2eF (S,T ′) ≥ e(DS)− eDS (T ),
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which implies

eDS (T ) ≥
(

1− 6
κ

)
e(DS) ≥

1
2e(DS). (2.4.7)

By the discussion before the claim concerning the construction of C′2, we
have eDS (T ) ≤ eD(T ) + λ|T |. This implies that either eDS (T ) ≤ 2eD(T )
or eDS (T ) ≤ 2λ|T |. If eDS (T ) ≤ 2λ|T |, then using (2.4.7) we obtain that
|T | ≥ e(DS)/(4λ), and combining this with (2.4.5) we have

3e(DS)

κ
> |T |κ ≥ κe(DS)

4λ ,

so that κ2 < 12λ, contradicting our choice of κ. Therefore, we may assume

eDS (T ) ≤ 2eD(T ). (2.4.8)

Now we distinguish between the two cases in the statement of the lemma,
i.e., when D is an (n, p,κ,λ)-digraph and when D is an (n, p,κ,λ)-pseudo-
random digraph.
Case 1:D is an (n, p,κ,λ)-digraph. By (2.4.8) we have eDS (T ) ≤ 2eD(T ) ≤
2|T |2. Combined with (2.4.7), we conclude that |T | ≥

√
e(DS)/4. By

(2.4.5), we have

3e(DS)

κ
> |T |κ ≥ κ

√
e(DS)/4

Combining this with (2.4.6), we obtain that

2N2/κ > e(DS) > κ4/36,

contradicting our choice of κ ≥ (72N2)1/5.
Case 2: D is an (n, p,κ,λ)-pseudorandom digraph. We further split this
into two cases. Assume first that |T | ≥ logn/(50p), so by (P5) and (2.4.8)
we have that eDS (T ) ≤ 2eD(T ) ≤ 200|T |2p. Combined with (2.4.7), we
have that |T | ≥

√
e(DS)/(400p). By (2.4.5), we have

3e(DS)

κ
> |T |κ ≥ κ

√
e(DS)/(400p)

Combining this with (2.4.6), we obtain that

2N2/κ > e(DS) > κ4/(3600p),
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contradicting our choice of κ ≥ (7200N2p)1/5.
We may thus assume that |T | < logn/(50p). In this case, we may

consider any superset of T of size logn/(50p) and, by applying (P5) to
this superset and considering (2.4.8), we have that eDS (T ) ≤ 2eD(T ) ≤
2 log2 n/(25p). Then, by (2.4.7),

e(DS) ≤ 4 log2 n/(25p).

Now, using (2.4.5) and the fact that T 6= ∅, we also have that

e(DS) > |T |κ2/3 ≥ κ2/3.

But these two bounds on e(DS) lead to a contradiction on our choice of
κ ≥

√
12/(25p) logn. J

We interpret the flow given by Claim 2.4.12 as follows. As all capacities
are integers, there exists an integer flow with value

∑
C∈C′2

g(C), so assume
φ is such an integer flow. For each cycle C ∈ C2, writing C ′ = i(C), let
VC := {v ∈ V (C ′) ⊆ V (C) | φ(C ′v) = 1} be the vertices assigned to C. As
φ saturates all edges sC ′, we have |VC | = g(C ′) = g(C). The capacity κ of
the edges vt with v ∈ Ȧ ensures that no vertex is assigned to more than κ
cycles of C2.

We will now iteratively assign two edges e1, e2 to each cycle C ∈ C2 so
that E(C) ∪ {e1, e2} can be decomposed into two (A+,A−)-paths, where
e1 ∈ f(v1), e2 ∈ f(v2) and v1, v2 ∈ VC . We do this as follows using
Lemma 2.4.7. Assume that, for some of the cycles in C2, we have already
found two edges as described above, and assume that we next want to do
this for C ∈ C2. We say that an edge e ∈ Eab is available if it has not been
assigned to any of the previous cycles. Then, for each v ∈ VC , the number
of edges e ∈ f(v) that are available is at least κ+ 2 (since no vertex is as-
signed to more than κ cycles and A = (Eab, f) is an (Ȧ, 2κ+ 1)-absorbing
structure). Thus, we may define a (VC ,κ+ 2)-absorbing structure AC us-
ing available edges from Eab by selecting, for each v ∈ VC , any set of κ+ 2
available edges at v. Then, with VC and AC playing the roles of S and
A, respectively, Lemma 2.4.7 gives two edges e1 ∈ f(v1) and e2 ∈ f(v2)

with v1, v2 ∈ VC such that E(C) ∪ {e1, e2} can be decomposed into two
(A+,A−)-paths. After repeating this for every cycle C ∈ C2 and treating
each of the remaining edges in Eab as an (A+,A−)-path, we have an edge
decomposition of E(C2) ∪Eab into (A+,A−)-paths, which is a perfect de-
composition by Proposition 2.3.3.
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We have seen earlier in Lemma 2.4.7 how a single long or medium cycle
can be absorbed using an absorbing structure. The following lemma shows
how to absorb a single short cycle using our absorbing structure. In fact, it
is slightly more general: it shows how to absorb a short Eulerian digraph,
namely one that is the union of two short edge-disjoint paths. Another
difference is that now we must work with vertices in A0. As before, in order
to absorb a cycle C, we take two suitable vertices v1, v2 ∈ V (C). For long
and medium cycles, both v1 and v2 had been in Ȧ, and we used a single
edge in f(v1) and a single edge in f(v2) for absorption. For short cycles,
if v1, v2 ∈ Ȧ, we do the same, but here one or both may be in A0. If, for
instance, v1 ∈ A0, we use a pair of edges from f(v1) (which should be
thought of as an (A+,A−)-path of length two through v1) for absorption.

Lemma 2.4.13. Let D be a (n, p,κ,λ)-digraph and v1, v2 ∈ V (D). Let
P1 ⊆ D be a (v1, v2)-path and P2 ⊆ D be a (v2, v1)-path which are edge-
disjoint. Let k ≥ maxi∈[2] |V (Pi) ∩ Ȧ|. Let A = (Eab, f) be a ({v1, v2}, k+
1)-absorbing structure such that, for each i ∈ [2], it holds that E(Pi) ∩
Eab = ∅. Then, for each i ∈ [2] there exists a set Ei ⊆ f(vi), where
|Ei| = 1 if vi ∈ Ȧ and |Ei| = 2 otherwise, such that the digraph with edge
set E(P1) ∪E(P2) ∪E1 ∪E2 can be decomposed into two (A+,A−)-paths.

Proof. For each i ∈ [2], we consider three cases. If vi ∈ A+, by our choice
of k, there is some edge viyi ∈ f(vi) with yi /∈ V (P3−i)[13]. In such a
case, we let P+

i := viyi and P−i := vi. If vi ∈ A−, similarly, there is some
edge xivi ∈ f(vi) with xi /∈ V (Pi), and we let P+

i := vi and P−i := xivi.
Otherwise, we have vi ∈ A0 and, again by assumption, there must be two
edges xivi, viyi ∈ f(vi) such that xi /∈ V (Pi) and yi /∈ V (P3−i). In this case,
we let P+

i := viyi and P−i := xivi. In all cases we set Ei := E(P+
i )∪E(P−i ).

Now let P := P−1 P1P
+
2 and P ′ := P−2 P2P

+
1 . Clearly, P and P ′ decompose

E(P1)∪E(P2)∪E1 ∪E2. Furthermore, both P and P ′ are (A+,A−)-paths
by the definition of A and our choice of xi, yi. Indeed, for each i ∈ [2], by
definition we have that the first vertex of P−i lies in A+, and the last vertex
of P+

i lies in A−, which immediately yields the result.

The following lemma shows how an absorbing structure can be used to
absorb a collection of short cycles.

Lemma 2.4.14. Let D be an (n, p,κ,λ)-digraph with κ ≥ 4N/n. Let
C3 be a collection of at most N edge-disjoint cycles such that, for each
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C ∈ C3, we have |V (C) ∩ Ȧ| ≤ κ. Let A = (Eab, f) be an (A0 ∪ Ȧ, 3κ)-
absorbing structure with E(C3) ∩ Eab = ∅. Then, the digraph with edge
set E(C3) ∪Eab can be decomposed into a set of cycles C∗ and a digraph
Q such that

(S1) E(C∗) ⊆ E(C3);

(S2) for all C ∈ C∗ we have |V (C) ∩ Ȧ| > κ, and

(S3) Q has a perfect decomposition in which each path is an (A+,A−)-
path.

Proof. We will construct Q and C∗ over multiple rounds. We start with a set
of cycles C := C3 and a set of edges F ab := Eab, and we set Q := (V (D), ∅)
and C∗ := ∅. In each round, we will update C, F ab, Q and C∗ by moving
some edges from E(C)∪F ab to E(Q)∪E(C∗). In particular, in each round,
we will combine edges from F ab with some Eulerian subdigraph of E(C)
to form (A+,A−)-paths (by using Lemma 2.4.13) and move the (edges of
these) paths into Q. Since we only ever add (A+,A−)-paths to Q, then
Q always has a perfect decomposition by Proposition 2.3.3. (Throughout
we will also maintain that F ab can be decomposed into (A+,A−)-paths.)
After these paths have been added to Q, what remains of E(C) will be
Eulerian and reside on a significantly smaller number of vertices. We will
then apply Theorem 2.3.4 to decompose what remains of E(C) into cycles:
any medium or long cycle in this decomposition (i.e., those that have more
than κ vertices in Ȧ) will be added to C∗, while the remaining cycles in the
decomposition form the set C for the next round. Since |V (C)| decreases in
each round, this process will stop after a finite number of rounds. At that
point, we add any remaining edges from F ab, decomposed into (A+,A−)-
paths, into Q, which will have a perfect decomposition.
It is important that we use edges/paths from our absorbing structure

carefully in each round so that there are sufficiently many choices available
at each vertex in future rounds. By solving a suitable flow problem, we will
make sure that, over the course of all rounds, we use at most κ edges/paths
from Eab at each vertex. This will ensure there are always at least 2κ choices
of edges/paths available in F ab at every vertex in every round, which will
allow us to construct suitable absorbing (sub)structures in order to apply
Lemma 2.4.13.
Let us now give the details of this iterative process. At the start of each

round we are given a digraph Q, a set of edges F ab ⊆ Eab and two sets of
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cycles C and C∗, which have been updated in previous rounds and satisfy
the following properties:

(a) E(C3) ∪Eab is the disjoint union of E(Q), F ab, E(C), and E(C∗);

(b) Q can be decomposed into (A+,A−)-paths;

(c) writing n′ := |V (C)|, we have |C| ≤ c′n′ logn′ (where c′ is the constant
from Theorem 2.3.4) and |V (C) ∩ Ȧ| ≤ κ for all C ∈ C, and

(d) |V (C) ∩ Ȧ| > κ for all C ∈ C∗.

The digraph Q and the sets F ab and C are updated several times throughout
each round, and the notation will always refer to their updated form.

Recall that, as stated in Definition 2.4.4, we may think of A = (Eab, f)
as a set of edge-disjoint paths of length 1 or 2. In the same way, we also
think of the edges of F ab as paths of length 1 or 2. For any v ∈ A+ ∪A−, we
think of each edge in F ab ∩ f(v) as an (A+,A−)-path of length 1. Because
of the way we use edges for absorption (i.e., by using Lemma 2.4.13), for
any v ∈ A0, the set F ab ∩ f(v) will always contain the same number of
edges from A+ to v as from v to A−, and these will be (implicitly) paired
up arbitrarily and thought of as (A+,A−)-paths of length 2. Note that the
pairing is updated (arbitrarily) every time F ab is updated. For each vertex
v, let a(v) denote the current number of available paths in F ab ∩ f(v), that
is,

a(v) =


d+
F ab∩f (v)(v) if v ∈ A+,

d−
F ab∩f (v)(v) if v ∈ A−,

d+
F ab∩f (v)(v) = d−

F ab∩f (v)(v) if v ∈ A0.

As we want to use at most κ paths at each vertex v ∈ V (C), we define the
number of ready paths at v as r(v) := a(v)− 2κ. Throughout, we implicitly
update the values of a(v) and r(v) each time we update F ab.

We further assume the following property about C at the start of the
round:

(e) for all v ∈ V (C) we have at least one of d+C (v) ≤ r(v), or r(v) = κ

(i.e., the number of cycles in C passing through v is bounded above
by r(v) or r(v) = κ).
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Note that, at the start of the first round, we have Q = (V (D), ∅), F ab =

Eab, C = C3 and C∗ = ∅, so (a)–(e) hold.
We now show how to update Q, C, and C∗ and check that (a)–(e) hold at

the end of the round. Consider the flow problem FP(C; 2,κ) and let φ be a
maximum integer flow. Let Fφ be the residual digraph of F = F (C) under φ.
Set T := {v ∈ V (C) | Fφ contains an (s, v)-path} and T ′ := V (C) \ T .

We establish a bound on |T | for later. Since the cut-set M0 := {sC | C ∈
C}, by (c), has capacity 2|C| ≤ 2c′n′ logn′, the max-flow min-cut theorem
(Theorem 2.3.5) implies that val(φ) ≤ 2c′n′ logn′. Furthermore, all vertices
in T must have κ units of flow going through them in φ, as otherwise we
would immediately be able to increase the flow. Therefore,

κ|T | ≤ val(φ) ≤ 2c′n′ logn′,

which implies

|T | ≤ 2c′n′ logn′

κ
≤ n′

2 , (2.4.9)

as κ ≥ 4N/n ≥ 4c′ logn′.
We use φ to assign vertices to cycles as follows. First, we greedily de-

compose φ into single-unit flows. As each single-unit flow goes through one
cycle C ∈ C and one vertex v ∈ V (C), we understand this as assigning v
to C. Note that for every v ∈ V (C), the flow φ(vt) through the edge vt
satisfies

φ(vt) ≤ min{d+C (v),κ} ≤ r(v), (2.4.10)

where the last inequality holds by (e).
We partition C into three sets C = C0 ∪ C1 ∪ C2, where Ci is the set

of cycles C ∈ C that are assigned exactly i vertices from T ′. Recall that
we decomposed the flow φ into single-unit flows. For each i ∈ [2]0, let
φi be the flow that is given by the sum of the single-unit flows of the
decomposition that pass through cycles in Ci. In particular, this means
that φ = φ0 + φ1 + φ2 and, for each v ∈ V (C), the number of cycles in Ci
to which v is assigned is φi(vt). We next show how to process the cycles in
each Ci, but first we need the following claim.

Claim 2.4.15. For all cycles C ∈ C1, we have |V (C)∩ T ′| = 1 (and so the
unique vertex in V (C) ∩ T ′ must be assigned to C). In particular, for all
v ∈ T ′ we have φ1(vt) = d+C1(v).

For all cycles C ∈ C0, we have |V (C) ∩ T ′| = 0.
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Proof of Claim 2.4.15. For all C ∈ C0 ∪ C1, note first that there is a path
from s to C in Fφ. Indeed, if C is assigned fewer than two vertices, then
the path is immediate, while if C is assigned two vertices, at least one of
them, say u, is in T , and so the (s,u)-path in Fφ (which exists by the
definition of T ) can be extended to C. Now any vertices v ∈ V (C) that
are not assigned to C must lie in T by definition, as we can extend the
(s,C)-path in Fφ to v. Therefore, for each i ∈ {0, 1} and all C ∈ Ci(v) we
must have |V (C) ∩ T ′| = i.

Now, any vertex v ∈ T ′ that belongs to a cycle C ∈ C1 is also assigned
to it, establishing that φ1(vt) = d+C1(v) for all v ∈ T ′. J

We start by processing the cycles in C2. For each cycle C ∈ C2, let
v1, v2 ∈ T ′ be such that φ(Cvi) = 1 for each i ∈ [2], i.e., these are the
vertices assigned to C. We split C into a (v1, v2)-path P12 and a (v2, v1)-
path P21. We select any κ+ 1 available paths at each vi from F ab to define
a ({v1, v2},κ+ 1)-absorbing structure AC (we show below that this is al-
ways possible). We then apply Lemma 2.4.13 to the paths P12,P21 and the
absorbing structure AC with k = κ. Thus, for each i ∈ [2] we obtain an
available path Ei ⊆ f(vi) ∩ F ab such that E(P12) ∪E(P21) ∪E1 ∪E2 can
be decomposed into two (A+,A−)-paths P ′1 and P ′2. For each i ∈ [2], we
add the edges of P ′i to Q, remove Ei from F ab and remove C from C. We
repeat this for all cycles in C2.
We now check that it is always possible to find the desired absorbing

structure AC . Notice that, in order to process C2, the number of available
paths that we use at any vertex v is the number of cycles of C2 to which
v is assigned, which at the start of the round is φ2(vt) ≤ min{d+C (v),κ} ≤
r(v) = a(v)− 2κ (by (2.4.10)). This means there are always 2κ available
paths at every vertex each time we apply Lemma 2.4.13.
After processing C2, for any vertex v ∈ T ′, we have used at most φ2(vt)

available paths from f(v). Recalling that we always update a(v), we now
have for any v ∈ T ′ that

a(v) ≥ φ(vt) + 2κ− φ2(vt) = φ1(vt) + 2κ = d+C1(v) + 2κ, (2.4.11)

where we have used (2.4.10) for the first inequality and Claim 2.4.15 for
the last equality. The first equality holds as φ0(vt) = 0 by definition, since
v ∈ T ′. Note that (e) holds for the current value of a(v) and the current set
of cycles C = C0 ∪ C1, since a(v) is unchanged for v ∈ T , and that (2.4.11)
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confirms (e) for v ∈ T ′ (by using Claim 2.4.15 to note that d+C0(v) = 0 for
all v ∈ T ′).
Next we process cycles in C1. Recall that, by Claim 2.4.15, such cy-

cles contain exactly one vertex of T ′. Let R be an empty set of edges;
this set will be updated while processing C1 and will always form an Eu-
lerian digraph. We say a pair of cycles C1,C2 ∈ C1 is T -intersecting if
∅ 6= V (C1) ∩ V (C2) ⊆ T (and thus their unique vertices in T ′ are dis-
tinct). Whenever we have a T -intersecting pair of cycles C1,C2 ∈ C1, we
process them as follows. Let v1 6= v2 be the vertices of C1 and C2 in
T ′, respectively. Starting from v1, let v′1 be the first vertex along C1 in
V (C1) ∩ V (C2) and define P12 := v1C1v

′
1C2v2. Define v′2 analogously, and

let P21 := v2C2v
′
2C1v1. It is easy to see that P12 and P21 are edge-disjoint.

Again, we construct a ({v1, v2}, 2κ+ 1)-absorbing structure AC1C2 by tak-
ing 2κ+ 1 available paths at each vi from F ab; this is always possible by
(2.4.11), as we find an absorbing structure for vi at most d+C1(vi) times.
We apply Lemma 2.4.13 to the paths P12,P21 and the absorbing structure
AC1C2 with k = 2κ to obtain available paths Ei ⊆ f(vi) ∩ F ab, for i ∈ [2],
such that E(P12)∪E(P21)∪E1∪E2 can be decomposed into two (A+,A−)-
paths P ′1 and P ′2. For each i ∈ [2], we add the edges of P ′i to Q and remove
the edges of Ei from F ab. The remaining edges of the cycles C1 and C2,
namely (E(C1)∪E(C2)) \ (E(P12)∪E(P21)), are then added to the resid-
ual digraph R. Notice that the set of edges added to R is Eulerian, so R
remains Eulerian. Furthermore, note that all edges added to R have both
endpoints in T . Finally, we remove C1 and C2 from C (and from C1).

We repeat this as long as we can find a T -intersecting pair of cycles in
C1. When no such pair can be found, then, among the remaining cycles of
C1, any two either share a vertex in T ′ or are vertex-disjoint. This implies
that, at this stage, the set T := V (C1) ∩ T ′ satisfies |T | ≤ |T |/2. (To see
this, for each vertex v ∈ T , pick a cycle Cv ∈ C1 containing v. Notice
that each such cycle has all its (at least two) remaining vertices in T and,
furthermore, the cycles Cv are vertex-disjoint.) We move all the remaining
cycles of C (i.e., all that remain in C1 and all in C0) to R. Then, R is
Eulerian and V (R) ⊆ T ∪ T (recall any cycle in C0 has all its vertices in T
by Claim 2.4.15). Then,

n′′ := |V (R)| ≤ |T |+ |T | ≤ 3|T |/2 ≤ 3n′/4, (2.4.12)

where the last inequality follows by (2.4.9).
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Now we decompose R into at most c′n′′ logn′′ cycles using Theorem 2.3.4;
any resulting cycles with more than κ vertices in Ȧ are added to C∗, while
all other cycles are added to (the currently empty) C. This completes the
round and the description of the sets C, C∗, F ab, and Q ready for the next
round. Notice that at the end of the round V (C) is smaller than at the
start, by (2.4.12). It remains to check that (a)–(e) hold.

It immediately follows by construction that (a)–(d) hold ((a) holds be-
cause we only move edges between the sets, and (b) holds because we only
add (A+,A−)-paths to Q). Finally, we prove that (e) holds too. As noted
after (2.4.11), we know (e) holds after C2 is processed. After that, when
processing C1, whenever an application of Lemma 2.4.13 reduces a(v) by 1,
it also reduces d+C (v) by 1, so condition (e) is maintained to the end of the
round.

Thus, we may iterate the described process through the rounds, until
we obtain the final sets Q, C = ∅, C∗ and F ab satisfying (a)–(e). (Recall
that the process must terminate since, by (2.4.12), the set of cycles that is
considered for each subsequent round is contained in a smaller set of vertices
than the previous.) The remaining paths of F ab are (A+,A−)-paths; these
paths are removed from F ab and added to Q.
It is straightforward to check that Q and C∗ now satisfy the conclu-

sion of the lemma. Indeed, over the course of all rounds, we moved all
edges from E(C3) ∪Eab to E(Q) ∪E(C∗). At every stage, Q was updated
by adding (A+,A−)-paths (which gives a perfect decomposition of Q by
Proposition 2.3.3), and C∗ was updated by adding cycles that have more
than κ vertices in Ȧ.

We are finally ready to prove the main result.

Proof of Theorem 2.4.3. Recall that D is either an (n, p,κ,λ)-digraph sat-
isfying (C1)–(C3) or an (n, p,κ,λ)-pseudorandom digraph satisfying (C′1),
(C′2), and (C3), with n ≥ n0 (for a suitably large choice of n0). We work
with both cases simultaneously.

First, one can easily check that the conditions (C1)–(C3) together with
n ≥ n0, for a sufficiently large n0, imply the conditions (a)–(c) below,
which are precisely the parameter conditions required in order to apply
Lemmas 2.4.5, 2.4.6, 2.4.9, 2.4.11 and 2.4.14 to an (n, p,κ,λ)-digraph:

(a) max{100 logn, 12, (12λ)1/2, (72N2)1/5, 4N/n}
≤ κ < min{np/120,N1/2},
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(b) λ ≤ np/3,

(c) 4np log(2n) ≤ κλ,

where N := c′n logn and c′ is the constant from Theorem 2.3.4. [14] Sim-
ilarly, one can easily check that the conditions (C′1), (C′2), and (C3) to-
gether with n ≥ n0, for a sufficiently large n0, imply the conditions (a′),
(b), and (c) (with (a′) given below), which are precisely the parameter
conditions required in order to apply Lemmas 2.4.5, 2.4.6, 2.4.9, 2.4.11 and
2.4.14 to an (n, p,κ,λ)-pseudorandom digraph:

(a′) max{100 logn, 12, (12λ)1/2, (7200N2p)1/5, 4N
n ,
√

12/(25p) logn} ≤
κ < min{ np120 ,N1/2}.

The pseudorandom case only makes a difference for Lemma 2.4.11. [15]

For the (n, p,κ,λ)-(pseudorandom) digraph D, let A+ ∪A− ∪A0 be the
associated partition of V (D). Write B+, B−, and B0 for the set of vertices
v ∈ V (D) such that exD(v) > 0, exD(v) < 0, and exD(v) = 0, respectively.
From Definition 2.4.1, clearly A+ ⊆ B+ and A− ⊆ B−.

Let Ȧ = (Ėab, ḟ) be an (Ȧ, 12κ)-absorbing structure contained in D,
which exists by Lemma 2.4.5, and let A0 = (Eab

0 , f0) be an (A0, 3κ)-
absorbing structure contained in D, which exists by Lemma 2.4.6. Note
that these two absorbing structures must be edge-disjoint by definition. We
next split up Ȧ into an (Ȧ, 7κ− 1)-absorbing structure Ȧ1 = (Ėab

1 , ḟ1), an
(Ȧ, 2κ+ 1)-absorbing structure Ȧ2 = (Ėab

2 , ḟ2), and an (Ȧ, 3κ)-absorbing
structure Ȧ3 = (Ėab

3 , ḟ3). To do so, for each v ∈ Ȧ, we arbitrarily split
the 12κ edges in ḟ(v) into sets of size 7κ− 1, 2κ+ 1 and 3κ and set these
to be ḟ1(v), ḟ2(v) and ḟ3(v), respectively, and set Ėab

i :=
⋃
v∈Ȧ ḟi(v) for

each i ∈ [3]. Lastly, we combine Ȧ3 and A0 into an (Ȧ∪A0, 3κ)-absorbing
structure A3 = (Ėab

3 ∪Eab
0 , f3), where f3|Ȧ = ḟ3 and f3|A0 = f0.

Consider a set of paths which consists of every individual edge in Ėab

and a partition of the edges in Eab
0 into paths of length two. Each path

is an (A+,A−)-path and, therefore, a (B+,B−)-path. Moreover, note that,
by Lemmas 2.4.5 and 2.4.6, Ėab ∪Eab

0 contains at most 150κ+ 5κ = 155κ
edges incident to each v ∈ Ȧ. This means (by (P1) and (P2)) that removing
all these paths from D will not change the sign of the excess of any vertex
v ∈ V (D), that is, if we write D′ := D \ (Ėab ∪ Eab

0 ), then a vertex of
positive (resp. negative) excess in D′ belongs to B+ (resp. B−).

Next, we greedily remove paths from D′ that start in vertices with pos-
itive excess in D′ and end in vertices with negative excess in D′ until this
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is no longer possible. We call the set of these paths P ′ (so every path in
P ′ is a (B+,B−)-path) and set D∗ := D′ \E(P ′) (so that ex(D∗) = 0 by
Proposition 2.3.2).
We apply Theorem 2.3.4 to every component of D∗ and obtain a decom-

position C of the edges of D∗ into at most N := c′n logn cycles. Let

C1 := {C ∈ C : |V (C) ∩ Ȧ| ≥ N/κ},
C2 := {C ∈ C : κ < |V (C) ∩ Ȧ| < N/κ}, and
C3 := {C ∈ C : |V (C) ∩ Ȧ| ≤ κ}.

At this point, we have

E(D) = E(D′) ∪ Ėab ∪Eab
0

= E(D′) ∪ Ėab
1 ∪ Ėab

2 ∪ Ėab
3 ∪Eab

0

= E(P ′) ∪E(D∗) ∪ Ėab
1 ∪ Ėab

2 ∪ Ėab
3 ∪Eab

0

= E(P ′) ∪
(
E(C1) ∪ Ėab

1

)
∪
(
E(C2) ∪ Ėab

2

)
∪
(
E(C3) ∪ Ėab

3 ∪Eab
0

)
.

Noting that |C3| ≤ N , we apply Lemma 2.4.14 to C3 and A3 to decompose
the edges of E(C3)∪ Ėab

3 ∪Eab
0 into a set of cycles C∗3 and a digraph Q, where

Q has a perfect decomposition P3 into (A+,A−)-paths, |C∗3 | ≤ |C3|, and for
all C ∈ C∗3 we have |V (C) ∩ Ȧ| > κ. (Indeed, the fact that |C∗3 | ≤ |C3|
follows from conclusions (S1) and (S2) of Lemma 2.4.14. To see this, note
that any cycle C ⊆ D satisfies |{uv ∈ E(C) | v ∈ Ȧ}| = |V (C) ∩ Ȧ|.
Thus, by (S2), for each C ∈ C∗3 and each C ′ ∈ C3 we must have |{uv ∈
E(C) | v ∈ Ȧ}| > |{uv ∈ E(C ′) | v ∈ Ȧ}|, so by (S1), C∗ must have
fewer cycles than C3.) Let C∗1 := {C ∈ C∗3 : |V (C) ∩ Ȧ| ≥ N/κ} and
C∗2 := {C ∈ C | κ < |V (C) ∩ Ȧ| < N/κ} and note that, as |C∗3 | ≤ |C3|, we
have |C∗1 |, |C∗2 | ≤ N .
Next, we apply Lemma 2.4.9 to C1 ∪ C∗1 and Ȧ1; this shows that the

digraph with edge set E(C1 ∪ C∗1) ∪ Ėab
1 has a perfect decomposition P1

into (A+,A−)-paths.
In the same way, applying Lemma 2.4.11 to C2 ∪ C∗2 and Ȧ2 shows that

the digraph with edge set E(C2 ∪C∗2)∪ Ėab
2 has a perfect decomposition P2

into (A+,A−)-paths.
Now it is easy to check that P ′ ∪ P1 ∪ P2 ∪ P3 is a decomposition of

E(D) into paths, and every path is a (B+,B−)-path, so this is a perfect
decomposition of D by Proposition 2.3.3.
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2.5 path decompositions of random digraphs

In this section we derive Theorem 2.1.2. This will follow immediately as a
consequence of Theorem 2.4.3 and the following result.

Theorem 2.5.1. Let 13 log2 n/
√
n ≤ p ≤ 1 − 150 log4 n/n. Let κ :=√

np(1− p)/(155 log3/4 n) and λ := 5
√
n/(1− p) log2 n. Then, a.a.s. Dn,p

is an (n, p,κ,λ)-pseudorandom digraph.

Now we prove Theorem 2.1.2.

Proof of Theorem 2.1.2. Let log4 n/n1/3≤p≤ 1− log5/2 n/n1/5, (so within
the range stated in the theorem), and let n be sufficiently large. As usual,
let N := c′n logn, where c′ is the constant from Theorem 2.3.4.

If we let D = Dn,p, then by Theorem 2.5.1 we have that a.a.s. D is an
(n, p,κ,λ)-pseudorandom digraph, where κ =

√
np(1− p)/(155 log3/4 n)

and λ = 5
√
n/(1− p) log2 n. As mentioned in Remark 2.4.2, D is also

an (n, p,κ′,λ′)-pseudorandom digraph for any κ′ ≤ κ and any λ′ ≥ λ.
Taking κ′ = 6(N2p)1/5 and λ′ = min{np/3, (κ′)2/12}, and checking that
κ′ < κ and λ′ > λ for the given range of p [16] and n sufficiently large,
we have that D is an (n, p,κ′,λ′)-pseudorandom digraph, so we can apply
Theorem 2.4.3 to conclude that D has a perfect decomposition (that is, it
is consistent).

In order to prove Theorem 2.5.1, we will show that each of the properties
of Definition 2.4.1 holds a.a.s. First, we require some properties about the
edge distribution in Dn,p.

Lemma 2.5.2. There exists a constant C > 0 such that, for all p ≥
C logn/n, a.a.s. the digraph D = Dn,p satisfies that, for all A ⊆ V (D)

with |A| ≥ logn/(50p), we have

eD(A) < 100|A|2p.

Proof. Fix some logn/(50p) ≤ i ≤ n, and fix a set A ⊆ V (D) with
|A| = i. Let X := eD(A), so E[X ] = (1− 1/i)i2p. A direct application
of Lemma 2.3.7 shows that, for sufficiently large n,[17]

P[X ≥ 100i2p] ≤ (e/100)99i2p.
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Now consider all sets A with |A| = i, and let Ei be the event that at least
one of these sets induces at least 100i2p edges. By a union bound, it follows
that[18]

P[Ei] ≤
(
n

i

)(
e

100

)99i2p
≤
(
en

i

)i ( e

100

)99i2p
≤ 1
n3 ,

where one can check the final inequality using the lower bound on i. The
conclusion follows by a union bound over all values of i.

Lemma 2.5.3. There exist constants C, c > 0 such that, for all C logn/n≤
p ≤ 1−C logn/n, with probability at least 1− o(1/n3) the digraph D =

Dn,p satisfies that, for all v ∈ V , we have

d+D(v) = np± c
√
np(1− p) logn and d−D(v) = np± c

√
np(1− p) logn.

Proof. We split the proof into two cases. Assume first that p ≤ 1/2. Fix
a vertex v ∈ V (D) and a symbol ∗ ∈ {+,−}. Then, E[d∗D(v)] = (n− 1)p
and, if C and n are sufficiently large (we need C to be sufficiently large so
that the value of δ in Lemma 2.3.6 satisfies δ ∈ (0, 1)), by Lemma 2.3.6 we
conclude that[19]

P

[
d∗D(v) 6= np± c

√
np(1− p) logn

]
≤ e−c2 logn/50.

Now, by a union bound over all choices of v and ∗, it follows that the
probability that the statement fails is at most[20] 2ne−c2 logn/50 = o(1/n3)

(where this equality holds for sufficiently large c; c ≥ 15 suffices).
For the second case, assume p > 1/2, and consider the complement

digraph D ∼ Dn,1−p. We have that 1− p < 1/2, so we can apply the same
argument as above to obtain that, for each v ∈ V (D) and ∗ ∈ {+,−},

P

[
d∗
D
(v) 6= n(1− p)± c

√
np(1− p) logn

]
≤ e−c2 logn/50.

The conclusion follows by a union bound over all v ∈ V (D) and ∗ ∈ {+,−}
and going back to D[21].

Our next aim is to show that most vertices will have ‘high’ excess, mean-
ing that its absolute value is ‘close’ to the maximum possible value (around√
np(1− p), up to a polylog factor) that follows from Lemma 2.5.3. The

following remark will come in useful.
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Remark 2.5.4. Let p ∈ [0, 1] and n ∈ Z with n ≥ 0. Let X ∼ Bin(n, p).
For each i ∈ Z, let pi := P[X = i]. Let D be a digraph and v ∈ V (D)

be such that d+(v) = d−(v) = n. Let Dp be a random subdigraph of D
obtained by deleting each edge of D with probability 1− p independently
of all other edges. Then, exDp(v) follows a probability distribution which,
for each i ∈ {−n, . . . ,n}, satisfies that

P[exDp(v) = i] =
n∑
j=0

pjpj−i.

In particular, the probability function is symmetric around i = 0.

Lemma 2.5.5. Consider the setting described in Remark 2.5.4, and assume
n ≥ 2. Then, there exists an absolute constant K such that

P[exDp(v) = 0] ≤ K
√

logn
np(1− p) .

Proof. First note that, by adjusting the value of K, we may assume that
n is larger than any fixed n0 (by making the right hand side above greater
than 1)[22]; we choose a sufficiently large n0 so that all subsequent claims
hold. By similarly adjusting the value of K, for any given constant C0 we
may assume that C0 logn/n ≤ p ≤ 1−C0 logn/n[23].
So assume C logn/n ≤ p ≤ 1 − C logn/n, for a constant C defined

below. One can readily check that p∗ := maxi∈[n]0 pi is achieved for i =
np± 2[24] (where the pi are as defined in Remark 2.5.4). By using Stirling’s
approximation, it follows that p∗ ≤ 1/

√
np(1− p)[25]. On the other hand,

by an application of Lemma 2.3.6, there exist constants c,C > 0 such that
for all C logn/n ≤ p ≤ 1−C logn/n we have that[26]

np−c
√
np(1−p) logn∑
i=0

pi +
n∑

i=np+c
√
np(1−p) logn

pi ≤ e−c
2 logn/50.

Combining the above with Remark 2.5.4, it follows that[27]

P[exDp(v)=0]≤2c
√
np(1− p) logn·(p∗)2+ e−c

2 logn/50 ≤K
√

logn
np(1− p) .

Lemma 2.5.6. There exists a constant C > 0 such that, for all C logn/n≤
p ≤ 1−C logn/n, a.a.s. the digraph D = Dn,p contains at most n/ log1/8 n

vertices v such that |exD(v)| ≤
√
np(1− p)/ log3/4 n.
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Proof. Take some vertex v ∈ V (D). For each i ∈ Z, let pi := P[d+D(v) =

i] = P[d−D(v) = i]. Now, by Remark 2.5.4 we have that q0 := P[exD(v) =
0] =

∑n−1
j=0 p

2
j and, for all i ∈ [n− 1], we have that qi := P[|exD(v)| = i] =∑n−1

j=0 pj(pj−i + pj+i). In particular, by Lemma 2.3.9, it follows that

qi ≤ 2q0 (2.5.1)

for all i ∈ [n− 1]. By combining this with Lemma 2.5.5 (with n− 1 playing
the role of n), it follows that

P[|exD(v)| ≤
√
np(1− p)/ log3/4 n] = O(1/ log1/4 n). (2.5.2)

Let Y := |{v ∈ V (D) : |exD(v)| ≤
√
np(1− p)/ log3/4 n}|. The statement

follows by applying Markov’s inequality to this random variable[28].

We consider a partition of the vertices of Dn,p into those with high excess,
low excess, and the rest. In general, given D = Dn,p, we write

A+ = A+(D) := {v ∈ V (D) | exD(v) ≥
√
np(1− p)/ log3/4 n},

A− = A−(D) := {v ∈ V (D) | exD(v) ≤−
√
np(1− p)/ log3/4 n} and

A0 = A0 (D) := V (D) \ (A+ ∪A−).

Corollary 2.5.6 shows that |A0| = o(n), and it is reasonable to expect
that A+ and A− have roughly the same size. Even more, we will need
the property that, a.a.s., all vertices have roughly the expected number of
neighbors in the sets A+ and A−, as we show next.

Lemma 2.5.7. There exists a constant C > 0 such that, for all C logn/n≤
p ≤ 1− C logn/n, a.a.s. the graph D = Dn,p satisfies that, for all v ∈
V (D),

e(v,A+), e(v,A−), e(A+, v), e(A−, v) = np/2± 2
√
n/(1− p) log2 n.

Proof. Let V := V (D), and let E := {uv | u, v ∈ V ,u 6= v}. Let N :=
(n2) = |E|/2. For each k ∈ [n− 1]0, let Zk ∼ Bin(k, p) and, for each j ∈ Z,
let p(k)j := P[Zk = j].

We begin by setting some notation. Consider any labelling e1, . . . , eN of
all (unordered) pairs of distinct vertices e = {u,u′} with u,u′ ∈ V . We will
later reveal the edges in succession following one such labelling. For each i ∈
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[N ], let ei = {ui,u′i}, define e1
i := uiu

′
i and e2

i := u′iui (the choice of e1
i and

e2
i is arbitrary), and consider the random variable Xi := (X1

i ,X2
i ), where

X1
i and X2

i are indicator random variables for the events {e1
i ∈ E(D)} and

{e2
i ∈ E(D)}, respectively. For each i ∈ [N ]0, let Di := (V ,Ei), where

Ei :=
⋃
j∈[i]{e1

j , e2
j}. We set Di

cond := (V ,Eicond) to be the subdigraph of
Di with Eicond := {e1

j | j ∈ [i],X1
j = 1} ∪ {e2

j | j ∈ [i],X2
j = 1}. (That

is, without conditioning, Di
cond is a random subdigraph of Di where each

edge is retained with probability p independently of all other edges, and
it becomes a deterministic graph after conditioning on the outcomes of
X1, . . . ,Xi.) We also defineDi

p := (V ,Ei,p), where Ei,p ⊆ E \Ei is obtained
by adding each edge of E \Ei with probability p, independently of all other
edges. In particular, for any i ∈ [N ]0 and any digraph F on V such that
Di

cond ⊆ F , we have that P[Dn,p = F | X1, . . . ,Xi] = P[Di
p = F \Di

cond].
For each i ∈ [N ]0 and each v ∈ V , we define ki(v) := n− 1− |{u ∈ V |
uv ∈ Ei}|. This is the number of (pairs of) edges incident to v which have
not been revealed after revealing X1, . . . ,Xi. Thus, by Remark 2.5.4, the
variable exDip(v) follows a probability distribution which, for each j ∈ Z,
satisfies that

P[exDip(v) = j] =
ki(v)∑
`=0

p
(ki(v))
` p

(ki(v))
`−j . (2.5.3)

Observe that, by Lemma 2.3.9 (in a similar way to (2.5.1)), for all i ∈ [N ]0,
v ∈ V and j ∈ Z we have that

P[exDip(v) = j] ≤ q(ki(v))0 := P[exDip(v) = 0] =
ki(v)∑
`=0

(
p
(ki(v))
`

)2
. (2.5.4)

Furthermore, observe the following. Choose a vertex v ∈ V and an index
i ∈ [N − 1]0 such that d+

Di+1(v)− d+Di(v) = 1, and let a ∈ Z. Then,[29]

P[exDip(v) ≥ a+ 1 | X1, . . . ,Xi] ≤ P[exDi+1
p

(v) ≥ a | X1, . . . ,Xi+1]

≤ P[exDip(v) ≥ a− 1 | X1, . . . ,Xi].

(Note that the events above are actually independent from the variables
upon which we condition. This notation, however, makes the statement
more intuitive and is what we will require later in the proof.) In particular,
this means that[30]∣∣∣P[exDip(v) ≥ a | X1, . . . ,Xi]−P[exDi+1

p
(v) ≥ a | X1, . . . ,Xi+1]

∣∣∣ ≤ q(ki(v))0 .
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(2.5.5)

(Indeed, we may bound P[exDi+1
p

(v) ≥ a | X1, . . . ,Xi+1] by one of the two
terms in the previous expression, which gives us two cases to consider. In
either of the cases, the difference becomes equal to the probability that
exDip(v) takes a specific value, which is in turn bounded by (2.5.4).)

Fix a vertex v ∈ V and reveal all of its in- and outneighbors. Label
all pairs of distinct vertices e as e1, . . . , eN in such a way that, first, we
have all pairs containing v, and then the rest, in any arbitrary order. In
particular, we have already revealed the outcome of X1, . . . ,Xn−1. Let E
be the event that d+D(v), d

−
D(v) = np± c

√
np(1− p) logn, where c is the

constant from the statement of Lemma 2.5.3. By Lemma 2.5.3, we have
that P[E ] ≥ 1− 1/n3. Condition on this event. We will denote probabili-
ties in this conditional space by P′, and expectations by E′. Observe that
the variables Xn, . . . ,XN are independent of E , so for all events that only
involve these variables we have that P′ = P. Then, for all u ∈ N+

D (v)

we have that exD(u) = exDn−1
cond

(u) + exDn−1
p

(u), where exDn−1
cond

(u) = 0 if
u ∈ N−D (v) and exDn−1

cond
(u) = −1 otherwise, and exDn−1

p
(u) follows a proba-

bility distribution which, by (2.5.3), for each j ∈ {2−n, . . . ,n− 2} satisfies
that

P′[exDn−1
p

(u) = j] =
n−2∑
`=0

p
(n−2)
` p

(n−2)
`−j .

By a similar argument as the one used to obtain (2.5.2), i.e., combining
(2.5.4) and the above with Lemma 2.5.5 (with n− 2 playing the role of n),
it follows that, for all u ∈ V \ {v}[31],

P′[|exDn−1
p

(u)| ≥
√
np(1− p)/ log3/4 n] = 1−O(1/ log1/4 n)

and, therefore, one easily deduces (by symmetry and conditioning on the
event that |exDn−1

p
(u)| ≥

√
np(1− p)/ log3/4 n) that[32]

P′[u ∈ A+] = 1/2−O(1/ log1/4 n). (2.5.6)

Consider the edge-exposure martingale given by the variables Yi :=
E′[|A+ ∩N+

D (v)| | X1, . . . ,Xi], for i ∈ [N ] \ [n− 2]. By (2.5.6), it follows
that Yn−1, . . . ,YN is a Doob martingale with Yn−1 = E′[|A+ ∩N+

D (v)|] =
(1±2c

√
(1− p) logn/(np)−O(1/ log1/4 n))np/2 and YN = |A+ ∩N+

D (v)|.
In order to prove that YN is concentrated around Yn−1, we need to bound
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the martingale differences with a view to applying Lemma 2.3.8. Observe
that, for all i ∈ [N ] \ [n− 2], we have that Yi =

∑
u∈N+

D(v) P′[u ∈ A+ |
X1, . . . ,Xi].
For all i ∈ [N − 1] \ [n− 2] such that ei+1 ∩N+

D (v) = ∅, we have that
Yi+1 = Yi, and we set

ci := |Yi+1 − Yi| = 0. (2.5.7)

Consider now any i ∈ [N − 1] \ [n− 2] such that ei+1 = {u,u′} satisfies
that ei+1 ∩N+

D (v) = {u}. Then,

Yi+1 − Yi
= P′[u ∈ A+ | X1, . . . ,Xi+1]−P′[u ∈ A+ | X1, . . . ,Xi]

= P′[exD(u) ≥
√
np(1− p)/ log3/4 n | X1, . . . ,Xi+1]

−P′[exD(u) ≥
√
np(1− p)/ log3/4 n | X1, . . . ,Xi]

= P′[exDi+1
p

(u) ≥
√
np(1− p)/ log3/4 n− exDi+1

cond
(u) | X1, . . . ,Xi+1]

−P′[exDip(u) ≥
√
np(1− p)/ log3/4 n− exDicond

(u) | X1, . . . ,Xi],

so by (2.5.4) and (2.5.5), and using the fact that |exDi+1
cond

(u)− exDicond
(u)| ≤

1, we conclude that[33]

|Yi+1 − Yi| ≤ 2q(ki(u))0 =: ci. (2.5.8)

Finally, for any i ∈ [N − 1] \ [n− 2] such that ei+1 = {u,u′} ⊆ N+
D (v), one

can similarly show that[34]

|Yi+1 − Yi| ≤ 2(q(ki(u))0 + q
(ki(u′))
0 ) =: ci. (2.5.9)

This covers all the range of i ∈ [N − 1] \ [n− 2].
By combining (2.5.7)–(2.5.9), we observe that, for each u ∈ N+(v) and

each k ∈ [n− 2], the value q(k)0 appears as part of ci for exactly one value
of i ∈ [N − 1] \ [n− 2]. Then, we have

N−1∑
i=n−1

c2
i ≤

∑
u∈N+

D(v)

n−2∑
k=1

8
(
q
(k)
0

)2
,
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where we have used the fact that (x+ y)2 ≤ 2x2 + 2y2. Now, by applying
Lemma 2.5.5 and the conditioning on E , we have that[35]

N−1∑
i=n−1

c2
i ≤

1± c
√
(1− p) logn

np

8K2np

(
1 +

n−2∑
k=2

log k
kp(1− p)

)
=O

(
n log2 n

(1− p)

)
.

Therefore, we can apply Lemma 2.3.8 to conclude that[36]

P′[|A+ ∩N+
D (v)| 6= np/2± 2

√
n/(1− p) log2 n] = e−Ω(log2 n). (2.5.10)

By similar arguments, we can show that

P′[|A− ∩N+
D (v)| 6= np/2± 2

√
n/(1− p) log2 n] = e−Ω(log2 n), (2.5.11)

P′[|A+ ∩N−D (v)| 6= np/2± 2
√
n/(1− p) log2 n] = e−Ω(log2 n), (2.5.12)

P′[|A− ∩N−D (v)| 6= np/2± 2
√
n/(1− p) log2 n] = e−Ω(log2 n). (2.5.13)

Let E ′ be the event that |A+∩N+
D (v)|, |A−∩N

+
D (v)|, |A+∩N−D (v)|, |A−∩

N−D (v)| = np/2± 2
√
n/(1− p) log2 n. By combining (2.5.10)–(2.5.13) with

a union bound, it follows that P′[E ′] = 1− e−Ω(log2 n). Therefore, P[E ′] ≥
1− 2/n3[37]. Finally, the statement follows by a union bound over all ver-
tices v ∈ V .

Proof of Theorem 2.5.1. We condition on the event that the statements
of Lemmas 2.5.2, 2.5.3, 2.5.6 and 2.5.7 hold, which occurs a.a.s. Then,
Lemma 2.5.2 directly implies (P5) holds. We may partition the vertices
by defining A+ := {v ∈ V (D) | exD(v) ≥ 155κ}, A− := {v ∈ V (D) |
exD(v) ≤ −155κ} and A0 := V (D) \ (A+ ∪A−). In particular, by Corol-
lary 2.5.6 we have that |A0| is sublinear. The condition on the excess in
(P1) and (P2) holds now by definition. The conditions on the edge dis-
tribution in (P1) and (P2) as well as (P4) follow by Lemma 2.5.7 in the
given range of p[38]. Finally, (P3) holds by combining Lemma 2.5.3 and
Lemma 2.5.7[39].

2.6 conclusion

We have shown in Theorem 2.1.2 that, for p in the range n−1/3 log4 n ≤ p ≤
1− n−1/5 log5/2 n, a.a.s. Dn,p is consistent. Of course, we should expect to
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be able to improve this range, particularly the lower bound, and perhaps
even no lower bound is necessary. Indeed, when p � 1/n, we know Dn,p
is acyclic, and it is easy to see that acyclic digraphs are consistent (sim-
ply iteratively remove maximal length paths and observe that the excess
decreases by 1 each time).

The bottleneck in our current approach is in Lemma 2.4.11 where we
process medium length cycles. An improvement in the bounds there would
lead to an improvement in the range of p in Theorem 2.1.2. However this
alone can only achieve a lower bound for p of approximately n−1/2: beyond
that one needs to improve other aspects of the argument and new ideas are
necessary.
We remark that both the process of selecting an appropriate absorbing

structure and the process of finding a path decomposition as described
in Theorem 2.4.3 can be made algorithmic. One can easily check that all
steps can be completed in time polynomial in n, including the procedure
described in the proof of Theorem 2.3.4.
Finally, we saw that our methods can be used to show that a fairly

broad class of digraphs (that are far from pseudorandom) are consistent;
see Theorem 2.1.3 and Theorem 2.4.3. It would be interesting to find other
classes of digraphs that are consistent.
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notes

[1]We have that κ = t/155 = 500N2/5/155 > 3N2/5, so (C1) holds. (C2)
holds since d ≥ t = 500N2/5 > 365N2/5. Finally,

min
{
d

3 , t
2

106

}
= min

{
np

3 , 5002N4/5

106

}
≤ min

{
np

3 , 9N4/5

12

}
,

so (C3) holds too.

[2]Assume v ∈ A+ (the other case is proved analogously). We apply
Lemma 2.3.6 twice to obtain the two bounds on the resulting degree. Note
that 30κ ≤ µ := E[d+Dq (v)] ≤ 120κ. From the lower bound, by an applica-
tion of Lemma 2.3.6 we have that

P[d+Dq (v) < 25κ] ≤ P[d+Dq (v) < 25µ/30] ≤ e−µ/72 ≤ e−5κ/12

(we apply Lemma 2.3.6 with δ = 1/6, and in the last bound we use the
lower bound on µ). Similarly, from the upper bound we have that

P[d+Dq (v) > 150κ] ≤ P[d+Dq (v) > 150µ/120] ≤ e−µ/48 ≤ e−5κ/8

(we apply Lemma 2.3.6 with δ = 1/4). The claim follows by adding these
two terms; the bound we claim is very rough.

[3]Assume v ∈ A+ (the other case is analogous). By the property we
are assuming on D′ (i.e., all vertices have degree at least 25κ), we have
µ := E[d+D+(v)] ≥ 25κ/2. Then, by Lemma 2.3.6,

P[B′v] = P[d+D+(v) < 12κ] ≤ P[d+D+(v) < 24µ/25] ≤ e−µ/2·625 ≤ e−κ/100.

[4]This is the event that none of the B′i occur, so it suffices to check that
this happens with positive probability. By the union bound, the probability
that any of the B′i occur is at most ne−κ/100 < 1, so we are done.

[5]Say v ∈ A+ (the other case is analogous). By (P3), we have E[d+Dq (v)] ≤
µ := qλ ≤ 4κ (this follows by substituting the value of q and using the
bound on λ from the statement). Observe further that the variable d+Dq (v),
which is a binomial variable Bin(d+D′(v), q), is stochastically dominated by
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a variable X ∼ Bin(λ, q) (this means that, for every t, we have P[d+Dq (v) ≥
t] ≤ P[X ≥ t]). Then, using this fact and Lemma 2.3.6,

P[Bv] = P[d+Dq (v) > 5κ] ≤ P[X > 5κ] ≤ P[X > 5µ/4] ≤ e−µ/48 = e
− 1

4
κλ
np .

[6]Consider B+v (the other case is analogous). By (P4) we have that µ :=
E[d−Dq (v)] ≥ npq/3 = 4κ. Now, by Lemma 2.3.6,

P[B+v ] = P[d−Dq (v) < 3κ] ≤ P[d−Dq (v) < 3µ/4] ≤ e−µ/32 ≤ e−κ/8.

[7]All edges of P are oriented either towards A− or from A+. By having
the extra vertex outside V (C), if e1 and e2 share a vertex, then they are
both oriented towards this vertex or away from this vertex. So they do not
form a path of length 2.

[8]There are at most κ+ 1 available edges, so at least 7κ− 1− κ− 1 =

6κ− 2 ≥ 5κ have been assigned.

[9]By the upper bound on κ, we have that ` ≥ N/κ > κ, so in particular
` > 10. The first inequality holds since 4N/(5κ) ≤ 4`/5. Now it suffices to
check that `/5 ≥ `/10 + 1, which holds.

[10]Assume T = ∅, so T ′ = V (C′2). Then, for each C ∈ S, we have
eF ({C},T ′) = |V (C)| = |V (C) ∩ Ȧ| > g(C).

[11]The term e(DS)/κ appears by ignoring the ceilings, and just looking
at the definition of DS . Because of the ceilings, then, we could be adding
much more, but at most |S| more (and the final |S| is by adding 1 each
time).

[12]Recall T and T ′ are just sets of vertices. Each edge between a vertex
in T ′ and a cycle in S corresponds simply to this vertex lying on the cycle,
which means it contributes to two edges in DS (one towards the vertex, and
one away from it). By considering all the cycles it belongs to, we recover
precisely the indegree and the outdegree of that vertex in DS . This gives
the first equality. Now,

∑
v∈T ′ d

+
DS

(v) + d−DS (v) = 2eDS (T ′) + eDS (T
′,T ) +

eDS (T ,T ′), so the inequality is trivial.

[13]By pigeonhole, we have yi /∈ V (P3−i)∩ Ȧ. Here we are implicitly using
the definition of A in the sense that yi ∈ Ȧ to derive the conclusion.
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[14] Recall that the conditions (C1)–(C3) are (C1) κ = 3N2/5, (C2) np ≥
365N2/5, (C3) λ = min{np/3,κ2/12}.
All the following hold for n ≥ n0 for n0 suitably large. For (a), note that the
maximum on the left hand side is dominated by max((12λ)1/2, (72N2)1/5),
which is at most κ by (C1) and (C3). The upper bound in (a) holds by
noting κ ≤ np/120 by (C1) and (C2), and κ < N1/2 by (C1). (b) holds
by (C3). For (c), if λ = np/3, then κλ ≥ 4np log(2n) by (C1), and if
λ = κ2/12, then κλ = κ3/12 ≥ N6/5 ≥ 4np log(2n).

[15] Recall that the conditions (C′1), (C′2), and (C3) are (C′1) κ =

6(N2p)1/5, (C′2) p ≥ n−1/3 log4 n, and (C3) λ = min{np/3,κ2/12}.
All the following hold for n ≥ n0 for n0 suitably large. For (a′), the max-
imum on the left hand side is dominated by max((12λ)1/2, (7200N2p)1/5)

(where we can exclude
√

12/(25p) logn by (C′2)). We see κ is bigger than
this by (C3) and (C′1). For the upper bound we have κ ≤ N1/2 by (C′1)
and κ ≤ np/120 by (C′1) and (C′2). (b) holds by (C3) again. For (c), if
λ = np/3, then κλ ≥ 4np log(2n) (using (C′1) and (C′2)), and if λ = κ2/12
then κλ = κ3/12 ≥ N6/5p3/5 by (C′1), which is at least 4np log(2n).

[16] Note that the first inequality is equivalent after rearrangement to
C log23/6 nn−1/3 ≤ p(1− p)5/3 for a suitable constant C. If p < 1/2 then
the RHS is at least (n−1/3 log4 n)/4 so the inequality is satisfied, and if
p ≥ 1/2 then the RHS is at least (n−1/3 log25/6 n)/2 so the inequality is
satisfied.
For the second inequality, we must show that

5n1/2 log2 n

(1− p)1/2 ≤ np/3 and 5n1/2 log2 n

(1− p)1/2 ≤ κ
′2/12 = 100(N2p)2/5/12.

After rearrangement, the first of these is equivalent to Cn−1/2 log2 n ≤
p(1− p)1/2, which holds in our range of p. After rearrangement, the second
of these is equivalent to Cn−3/10 log6/5 n ≤ p2/5(1− p)1/2, which also holds
in our range of p.

[17]Since i2p→∞ with n, we have that

P[X ≥ 100i2p] ≤ P[X ≥ 100E[X ]] ≤ (e/100)100E[X ]

= (e/100)100(1−1/i)i2p ≤ (e/100)99i2p,

where the last inequality holds since 1− 1/i = 1− o(1).
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[18]In order to see the last inequality, let us take logarithms. Clearly, the
inequality is equivalent to

i(1 + logn− log i) + 99i2p(1− log 100) ≤ −3 logn
⇐⇒ i(1 + logn− log i) + 3 logn ≤ 99i2p(log 100− 1).

Now clearly, if i is sufficiently large, i(1 + logn− log i) + 3 logn ≤ 2i logn
and 99i2p(log 100− 1) ≥ 100i2p, so it would suffice to check that

2i logn ≤ 100i2p,

and this holds by the bound on i in the statement.

[19]Let X := d∗D(v) ∼ Bin(n− 1, p). We have

P

[
X 6= np± c

√
np(1− p) logn

]
≤P

[
X 6= (n− 1)p± c

√
(n− 1)p(1− p) logn/2

]
≤P

[
X 6= (n− 1)p± c

√
(n− 1)p logn/4

]
= P

[
X 6=

(
1± c

4

√
logn

(n− 1)p

)
(n− 1)p

]

≤ 2e−
c2
16

logn
(n−1)p (n−1)p/3 ≤ e−c2 logn/50.

For the second inequality we are using the fact that 1 − p ≥ 1/2. The
last inequality holds for n sufficiently large. Observe that the condition
that p ≥ C logn/n is needed to guarantee that the δ with which we apply
Lemma 2.3.6 lies in (0, 1). Indeed, in our application of the Chernoff bound
we have

δ =
c

4

√
logn

(n− 1)p < 1 ⇐⇒ p >
c2

16
logn
n− 1,

so it suffices to have p > c2 logn/8n.

[20]2ne−c2 logn/50 = elog 2+(1−c2/50) logn = o(1/n3)

[21]We have that

d∗D(v) = n− 1− d∗
D
= n− 1− n(1− p)± c

√
np(1− p) logn

= np− 1± c
√
np(1− p) logn,
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and this is what we want (by making c slightly worse).

[22]For every n ≥ 1 we have that logn/(np(1− p)) ≥ logn/n. Simply, for
any given n0, we can set K ≥

√
n0/ logn0 (note this function is increasing

for n0 ≥ 3, and soon overtakes the value of n0 = 2), which means that, for
n ≤ n0, the statement is satisfied by the trivial upper bound:

P[exDp(v) = 0] ≤ 1 =

√
n

logn
logn
n
≤
√

n0
logn0

logn
n

≤ K

√
logn
n
≤ K

√
logn

np(1− p) .

[23]Indeed, if we assume p < C0 logn/n, by adjusting K we may guarantee
that

K

√
logn

np(1− p) > K/
√
C0 ≥ 1,

and the case when p > 1−C0 logn/n is proved analogously.

[24]Consider the ratio pi+1/pi, for i ∈ [n− 1]0. We have that

pi+1
pi

=

(
n

i+ 1

)
pi+1(1− p)n−i−1

(
n

i

)
pi(1− p)n−i

=
i!(n− i)!

(i+ 1)!(n− i− 1)!
p

1− p

=
n− i
i+ 1

p

1− p .

We want to know when this ratio changes from greater than 1 (which
means the ratio is increasing) to when it is less than 1 (decreasing). By
setting pi+1/pi = 1 and isolating, we have that

pi+1
pi

= 1 ⇐⇒ n− i
i+ 1

p

1− p = 1 ⇐⇒ (n− i) p

1− p = i+ 1

⇐⇒ np

1− p = i+ 1 + p

1− pi =
i

1− p + 1 ⇐⇒ i = np− 1 + p.
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Since this is the only solution, we know that the maximum must be
achieved for either bnp− 1 + pc or dnp− 1 + pe, and both of these lie in
np± 2.

[25]Let us write pnp, and assume n is sufficiently large (smaller values of
n are hidden by K; it is easy to check that, for p in the given range, ±2
does not affect the asymptotic statements, and we will increase the final
constant here to avoid issues). We have that

pnp =

(
n

np

)
pnp(1− p)n(1−p).

We now use the bounds
√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n, similar to
Stirling’s approximation and valid for all n, to conclude that

pnp ≤
e
√
n

(
n

e

)n
√

2π√np
(
np

e

)np√
2π
√
(1− p)n

(
(1− p)n

e

)(1−p)n p
np(1− p)(1−p)n

=
e

2π
1√

np(1− p)
.

Clearly the constant in front is less than 1, so what we claim must hold
true by considering the small changes by ±2.

[26]This sum of probabilities is the same as the probability that the out-
come of a binomial variable deviates from its mean by at least
c
√
np(1− p) logn. Check the proof of Lemma 2.5.3 for the details of the

calculation.
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[27]We have that (setting r = c
√
np(1− p) logn for clarity)

P[exD(v) = 0] =
n−1∑
i=0

p2
i

=
np−r∑
i=0

p2
i +

np+r∑
i=np−r

p2
i +

n−1∑
i=np+r

p2
i

≤
np−r∑
i=0

pi + 2r(max
i∈[n]0

pi)
2 +

n−1∑
i=np+r

pi

≤ e−c2 logn/50 +
2r

np(1− p) ≤ K
√

logn
np(1− p) .

Note that we need c and C to be large enough so that we can apply
Lemma 2.3.6, and also c to be large enough so that the second term above
dominates.

[28]We have that E[Y ] = O(n/ log1/4 n). By Markov’s inequality, it follows
that

P[Y ≥ n/ log1/8 n] ≤ E[Y ] log1/8 n/n = O(1/ log1/8 n) = o(1).

[29]Indeed, consider the joint distribution of Di
p and Di+1

p where we first
reveal Di

p and then reveal the last pair of edges needed to obtain Di+1
p . If

exDi+1
p

(v) ≥ a, then we are guaranteed that exDip(v) ≥ a− 1, since the last
pair of edges we reveal can only increase the excess by at most 1. Similarly,
we cannot have exDip(v) ≥ a+ 1 unless exDi+1

p
(v) ≥ a, as the excess cannot

decrease by more than 1 when revealing the last pair of edges.

[30]Indeed, we have that either

P[exDip(v) ≥ a+ 1 | X1, . . . ,Xi]

≤P[exDi+1
p

(v) ≥ a | X1, . . . ,Xi+1]

≤P[exDip(v) ≥ a | X1, . . . ,Xi]

or

P[exDip(v) ≥ a | X1, . . . ,Xi]

≤P[exDi+1
p

(v) ≥ a | X1, . . . ,Xi+1]

≤P[exDip(v) ≥ a− 1 | X1, . . . ,Xi].
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Now assume that the first of the two cases holds (the other follows similarly).
The claim follows since

P[exDip(v) ≥ a | X1, . . . ,Xi]−P[exDip(v) ≥ a+ 1 | X1, . . . ,Xi] ≤ q
(ki(v))
0 .

[31]By (2.5.4), each P′[exDn−1
p

(u) = i] (recall that here P = P′) is at most

q
(n−2)
0 , so

P′[|exDn−1
p

(u)| ≥
√
np(1− p)/ log3/4 n]

≥P′[|exDn−1
p

(u)| >
√
np(1− p)/ log3/4 n]

= 1−P′[|exDn−1
p

(u)| ≤
√
np(1− p)/ log3/4 n]

= 1−

√
np(1−p)/ log3/4 n∑

i=−
√
np(1−p)/ log3/4 n

P[exDn−1
p

(u) = i]

≥ 1− 2
√
np(1− p)/ log3/4 n · q(n−2)

0 = 1−O(1/ log1/4 n),

where the last inequality uses Lemma 2.5.5 (the change from n to n− 2
does not change the asymptotics).

[32]To see this, observe the following. Let E1 be the event that |exD(u)| ≥√
np(1− p)/ log3/4 n. Then, we have that P′[u ∈ A+] = P′[E1]P′[exD(u) >

0 | E1]. We have that P′[E1] = 1−O(1/ log1/4 n) Indeed, by the discussion
above we have that exD(u) = exDn−1

p
(u)± 1, and

P′[|exD(u)| ≥
√
np(1− p)/ log3/4 n]

≥P′[|exDn−1
p

(u)| ≥ 2
√
np(1− p)/ log3/4 n] = 1−O(1/ log1/4 n).

After conditioning on this, the vertex has positive or negative excess only
depending on whether exDn−1

p
(u) is positive or negative, and the probability

distribution for this random variable is symmetric around 0, so each must
have probability a half.

[33]Here we use the fact that exDi+1
cond

(u) = exDicond
(u)± 1. Thus, we have

three cases. Let us show here the case when exDi+1
cond

(u) = exDicond
(u)+1; the
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other two are done similarly. Let a :=
√
np(1− p)/ log3/4 n− exDicond

(u).
Using (2.5.5), we conclude that

|P′[exDi+1
p

(u) ≥ a− 1 | X1, . . . ,Xi+1]−P′[exDip(u) ≥ a | X1, . . . ,Xi]|

≤|P′[exDi+1
p

(u) ≥ a− 1 | X1, . . . ,Xi+1]−P′[exDip(u) ≥ a− 1 | X1, . . . ,Xi]|

+ |P′[exDip(u) ≥ a− 1 | X1, . . . ,Xi]−P′[exDip(u) ≥ a | X1, . . . ,Xi]|

≤2q(ki(u))0 .

Here, the first inequality holds by the triangle inequality. Then, the first
difference is bounded by (2.5.5), and the second, by (2.5.4).

[34]We have that

Yi+1 − Yi
= P′[u ∈ A+ | X1, . . . ,Xi+1] + P′[u′ ∈ A+ | X1, . . . ,Xi+1]

−P′[u ∈ A+ | X1, . . . ,Xi]−P′[u′ ∈ A+ | X1, . . . ,Xi]

= P′[exDi+1
p

(u) ≥
√
np(1− p)/ log3/4 n− exDi+1

cond
(u) | X1, . . . ,Xi+1]

−P′[exDip(u) ≥
√
np(1− p)/ log3/4 n− exDicond

(u) | X1, . . . ,Xi]

+ P′[exDi+1
p

(u′) ≥
√
np(1− p)/ log3/4 n− exDi+1

cond
(u′) | X1, . . . ,Xi+1]

−P′[exDip(u
′) ≥

√
np(1− p)/ log3/4 n− exDicond

(u′) | X1, . . . ,Xi].

Observe that the variables above are not independent, but the bound given
by (2.5.5) still holds. By applying that, letting a :=

√
np(1− p)/ log3/4 n−

exDicond
(u) and b :=

√
np(1− p)/ log3/4 n− exDicond

(u′), we have that (again,
here we only write one case, there are others that work in the same way)

|Yi+1 − Yi|
≤ |P′[exDi+1

p
(u) ≥ a− 1 | X1, . . . ,Xi+1]−P′[exDip(u) ≥ a | X1, . . . ,Xi]|

+ |P′[exDi+1
p

(u′) ≥ b− 1 | X1, . . . ,Xi+1]−P′[exDip(u
′) ≥ b | X1, . . . ,Xi]|

≤ |P′[exDi+1
p

(u) ≥ a− 1 | X1, . . . ,Xi+1]−P′[exDip(u) ≥ a− 1 | X1, . . . ,Xi]|

+ |P′[exDip(u) ≥ a− 1 | X1, . . . ,Xi]−P′[exDip(u) ≥ a | X1, . . . ,Xi]|

+ |P′[exDi+1
p

(u′) ≥ b− 1 | X1, . . . ,Xi+1]−P′[exDip(u
′) ≥ b− 1 | X1, . . . ,Xi]|

+ |P′[exDip(u
′) ≥ b− 1 | X1, . . . ,Xi]−P′[exDip(u

′) ≥ b | X1, . . . ,Xi]|

≤ 2(q(ki(u))0 + q
(ki(u′))
0 ).
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[35]In order to see the last equality, observe that, since log k
kp(1−p) is a function

decreasing in k for k ≥ 3 (we may treat p as a constant, for this sum), we
have that

1 +
n−2∑
k=2

log k
kp(1− p) = 1 + 1

p(1− p)

n−2∑
k=2

log k
k

≤ 1 + 1
p(1− p)

(
C +

∫ n−2

3

log x
x

dx
)
= O

(
log2 n

p(1− p)

)
,

where C < 1 is the sum of the first two terms (which is a constant), and
the last inequality follows since

∫ n−2
4

log x
x dx = C1 + log2 n/2.

[36]We have that

P′[|YN − Yn−1| ≥ t] ≤ 2e
− t2

2
∑N−1

i=n−1 c
2
i = e−Ω(t2(1−p)/n log2 n).

Thus, if t =
√
n/(1− p) log2 n, we have that

P′[|YN − Yn−1| ≥
√
n/(1− p) log2 n] ≤ e−Ω(log2 n).

The last bound follows by observing that

P[|A+ ∩N+
D (v)| 6= np/2± 2

√
n/(1− p) log2 n]

≤P[|A+ ∩N+
D (v)| 6= np/2± (c

√
np(1− p) logn+

√
n/(1− p) log2 n)]

= P[|YN − Yn−1| ≥
√
n/(1− p) log2 n].

[37]By the law of total probability, we have that

P[E ′] = P′[E ′]P[E ] + P[E ′ | E ]P[E ]

≥ P′[E ′]P[E ] ≥ (1− e−Ω(log2 n))(1− 1/n3) ≥ 1− 2/n3

(where the last inequality holds for n sufficiently large).

[38]Let us prove this for one of the cases of (P4) (the other cases are
analogous or give slightly weaker bounds). By Lemma 2.5.7, for each v ∈ A+

we have that

eD(v,A−) ≥ np/2− 2
√
n/(1− p) log2 n,
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so it suffices to check that this is at least np/3. But this is equivalent to
having

np

6 ≥ 2
√

n

1− p log2 n ⇐⇒ p2(1− p) ≥ 144 log4 n/n.

This clearly holds for all constant p ∈ (0, 1) (for sufficiently large n),
so we may assume that p = o(1) or p = 1 − o(1). In the first case,
the inequality becomes p2 ≥ (1 + o(1))144 log4 n/n, which holds for p ≥
13 log2 n/n1/2 (and n large enough). In the second case, we get (1− p) ≥
(1 + o(1))144 log4 n/n, which holds for p ≤ 1− 150 log4 n/n (and n large
enough).

[39]We have that (we only write one case, the other is analogous)

eD(v,A0) = d+D(v)− eD(v,A+)− eD(v,A−)

≤ np+ c
√
np(1− p) logn− np+ 4

√
n/(1− p) log2 n

≤ 5
√
n/(1− p) log2 n

(where the last inequality holds for sufficiently large n).





3
A POLYNOMIAL -T IME ALGORITHM TO DETERMINE
(ALMOST) HAMILTONIC ITY OF DENSE REGULAR
GRAPHS

3.1 introduction

The study of Hamilton cycles in graphs is a classical part of graph the-
ory. Hamilton cycles have been studied intensely from structural, extremal
and algorithmic perspectives and they are especially relevant due to their
connection with the traveling salesman problem. This chapter is concerned
with the algorithmic question of determining whether a dense regular graph
contains an (almost) Hamilton cycle. Dense in this chapter means that the
minimum degree is linear in the number of vertices.

Dirac’s theorem (1.2.1) guarantees the existence of a Hamilton cycle in
any n-vertex graph of minimum degree at least n/2, so this immediately
gives a (trivial) algorithm to determine existence in such graphs (and its
proof also gives a polynomial-time algorithm for finding a Hamilton cycle).
On the other hand, for each ε > 0, the problem of determining Hamiltonic-
ity in n-vertex graphs of minimum degree ( 1

2 − ε)n is NP-complete [19] (see
also Proposition 3.1.2). Our main result, given below, shows that the situa-
tion is quite different if we also insist the graphs are regular: we show that
determining almost Hamiltonicity in dense regular graphs is polynomial-
time solvable.

Theorem 3.1.1. For every α ∈ (0, 1], there exists c = c(α) and a (de-
terministic) polynomial-time algorithm that, given an n-vertex D-regular
graph G with D ≥ αn as input, determines whether G contains a cycle on
at least n− c vertices. In fact, we can take c(α) = 100α−2. Furthermore
there is a (randomized) polynomial-time algorithm to find such a cycle if it
exists.

Note that the problem of determining the existence of a very long cycle
(as in the result above) becomes NP-complete if we drop either the den-
sity or the regularity condition on G; see Proposition 3.1.2. The question of
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whether Theorem 3.1.1 holds for c = c(α) = 0 (i.e. the Hamilton cycle prob-
lem) remains open and is discussed in Section 3.5. Also, see Remark 3.4.17
for a discussion of the explicit running time of the algorithm.
Arora, Karger, and Karpinski [5, 6] initiated the systematic study of
NP-hard problems on dense graphs and this continues to be an active area
of research. The closest result to ours (to the best of our knowledge) is
an approximation algorithm for the longest cycle problem in dense (not
necessarily regular) graphs that is due to Csaba, Karpinski and Krysta [16].
For each α ∈ (0, 1/2), they give a polynomial-time algorithm which, given
an n-vertex graph G of minimum degree αn, finds a cycle of length at least
( α

1−α )`, where ` is the length of the longest cycle in G.1 They also show one
cannot replace ( α

1−α ) with (1− ε0(1− 2α)) where ε0 = 1/742 unless P =

NP. The two algorithms are not directly comparable: while theirs works on
all dense graphs, ours achieves a much better approximation ratio for dense
regular Hamiltonian graphs. In Section 3.5, we discuss how our methods
can be used for the longest cycle problem to achieve an approximation ratio
very close to 1 for general dense regular graphs.

Our algorithm is inspired by questions and results about Hamiltonicity in
extremal graph theory. Here one is interested in various types of conditions
that guarantee Hamiltonicity such as in Dirac’s theorem; see e.g. the sur-
veys [11, 34, 59]. There are two extremal examples that show n/2 is tight
in Dirac’s theorem: a slightly imbalanced complete bipartite graph and a
graph consisting of two disjoint cliques. One might hope to eliminate these
barriers to Hamiltonicity by imposing some connectivity and regularity con-
ditions. A graph is connected if for any two vertices u, v, there is a path
from u to v. A graph is t-connected if the graph remains connected after
removing any set of up to t− 1 vertices. In this direction, Bollobás [8] and
Häggkvist (see [42]) independently conjectured that a t-connected regular
graph with degree at least n/(t+ 1) is Hamiltonian. Jackson [42] proved
the conjecture for t = 2, while Jung [47] and Jackson, Li, and Zhu [43] gave
an example showing the conjecture does not hold for t ≥ 4. Finally, Kühn,
Lo, Osthus, and Staden [54, 55] resolved the conjecture by proving the case
t = 3 asymptotically. Although the conjecture does not hold in general, it
suggests that questions of Hamiltonicity (and long cycles) might be easier
in some sense for (dense) regular graphs, and our result seems to confirm
this.

1 The actual approximation ratio here is ( α
1−α )− ε for arbitrarily small ε. As mentioned,

for α ≥ 1/2, Dirac’s theorem gives a trivial algorithm for the longest cycle problem.
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Our algorithm relies heavily on the notion of robust expansion, a notion
of expansion for dense (directed) graphs introduced and applied by Kühn
and Osthus together with several co-authors to resolve and make progress
on a number of long-standing conjectures in extremal graph theory; see
for example [17, 56, 57, 58]. In particular, Kühn, Lo, Osthus and Staden
[54, 55], in their proof of the t = 3 case of the Bollobás-Häggkvist con-
jecture, showed that all dense regular graphs have a vertex partition into
a small number of parts where each part induces a (bipartite) robust ex-
pander. This decomposition is central to our algorithm, and by combining
their argument with some spectral partitioning techniques, we are able to
construct such a partition algorithmically in polynomial time; this may be
of independent interest. A further by-product of our algorithm is that we
can partially answer a question of Kühn and Osthus [58] about algorithms
to check whether a graph is a robust expander in polynomial time; this
result and its background are presented in Section 3.3.3 after robust expan-
sion has been formally defined.
Once we have the algorithm for constructing the robust expander par-

tition, we will also require a result of Letzter and Gruslys [35] for finding
certain structures between the parts in this partition. Combining all of this
with some further algorithmic ingredients will yield the desired algorithm.

Below we give a more detailed account of our algorithm as well as the
proof of the hardness results (Proposition 3.1.2) mentioned above. In Sec-
tion 3.2 we give some general notation and we formally define robust ex-
pansion, as well as stating some of the results from spectral graph theory
that we will need in later sections. In Section 3.3, we give the algorithm for
finding the robust expander partition mentioned above, and Section 3.4 is
about using the structure of a robust partition to find a long cycle. This is
where the proof of Theorem 3.1.1 is given.

3.1.1 Proof outline

We now present further details about our algorithm. The first step of the
algorithm, given in Section 3.3, is to obtain a so-called robust partition of
our graph. This is a vertex partition in which each part induces a robust
expander or a bipartite robust expander and where there are few edges
between parts. We give the precise definitions below, but informally we
can think of (bipartite) robust expanders as dense (bipartite) graphs with
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good connectivity properties that are resilient to small alterations. In [54],
Kühn, Lo, Osthus and Staden show that such a robust partition exists for
dense regular graphs, and crucially, the number of parts is independent of
the number of vertices and depends only on the density. The idea of the
proof in [54] is to iteratively refine the vertex partition as follows. Given
a vertex partition P = {U1, . . . ,Uk}, if some Ui is not a (bipartite) robust
expander, then it is shown there exists a partition Ui = A∪B of Ui where
there are few edges between A and B; subsequently Ui is replaced with
A,B in P and this is repeated with the new partition. This process must
end after a finite number of steps since the density inside parts increases at
each step (since there were not many edges between A and B). We follow
this argument closely, except that the existence of A,B is not enough for
us: we need a polynomial-time algorithm to find A and B. We make use of
spectral algorithms to achieve this.
In the second step, given in Section 3.4, we make use of the robust parti-

tion to decide whether a very long cycle exists. Using further results from
[54], we will see that a very long cycle exists if and only if a certain type of
structure exists between the parts of our robust partition. With the help
of a result from [35], we give a fast algorithm to determine whether such a
structure is present in our graph and to find it if it is. We will give a more
detailed sketch of this at the start of Section 3.4.
We end this subsection by proving the simple hardness results mentioned

earlier in the introduction.

Proposition 3.1.2. For each fixed integer C ≥ 0 and each real α ∈ (0, 1/2)
the following holds.

(i) The problem of deciding whether a regular n-vertex graph has a cycle
of length at least n−C is NP-complete.

(ii) The problem of deciding whether an n-vertex graph of minimum de-
gree at least αn has a cycle of length at least n−C is NP-complete.

Proof. For part (i), it is known that the problem of determining Hamiltonic-
ity of 3-regular graphs is NP-complete [31], which takes care of the case
C = 0. Fix C ∈ {1, 2, 3}. For a 3-regular graph G, let G′ be the 3-regular
graph on 3|V (G)| vertices obtained from G by replacing each vertex of G
with a triangle in such a way that we recover G by contracting each triangle
to a vertex. The following are equivalent:

G has a Hamilton cycle;
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G′′ has a cycle of length |V (G′′)| − 1;

G′′ has a cycle of length |V (G′′)| − 2;

G′′ has a cycle of length |V (G′′)| − 3.

We defer the proof of this to the appendix at the end of this chapter. Let
H = G′′. Then H has a cycle of length at least n−C if and only if G has
a Hamilton cycle.
Now fix C even with C ≥ 4. Given a 3-regular graph G, where without

loss of generality we assume |G| > C, let H be the disjoint union of G
with an arbitrary 3-regular graph on C vertices. Thus H and G have n and
n−C vertices, respectively. It follows that G has a Hamilton cycle if and
only if H has a cycle of length at least n−C.

Finally, fix C ≥ 5 odd. Given a 3-regular graph G (again with |G| > C),
let H be the disjoint union of G′′ with an arbitrary 3-regular graph on C− 1
(even) vertices. Again, H has a cycle of length at least n−C if and only if
G has a Hamilton cycle. In each of these cases a polynomial-time algorithm
for deciding the problem in part (i) would give a polynomial-time algorithm
for deciding Hamiltonicity in 3-regular graphs.

(ii) We reduce to the problem of deciding the existence of a Hamilton
path in general graphs, which is known to be NP-complete [30]. Given a
graph G on k vertices, construct the graph H as follows. Start by taking a
complete bipartite graph with bipartition V (H) = A∪B where |A| = 1+ r

and |B| = (C + 1)k + r and r is an integer greater than α((C+1)k+1)
1−2α − 1

so that |A|/(|A| + |B|) > α. Now we insert C + 1 disjoint copies of G
into B to form H. Note that δ(H) ≥ r + 1 and by choice of r we have
δ(H) ≥ α|V (H)|. It is easy to see that H has a cycle of length at least
|V (H)| −C if and only if G has a Hamilton path. This gives the desired
reduction since |V (H)| is linear in |V (G)|.

3.2 preliminaries

We follow general graph theory notation found e.g. in [20].
Given a graph G, we denote its vertex and edge sets by V (G) and E(G)

respectively. For a vertex v ∈ V (G), we write N(v) for the neighbors of v
in G and write dG(v) := |N(v)| for the degree of v. Given S ⊆ V (G), we
also write dS(v) := |N(v) ∩ S| for the degree of v in S. We denote with
δ(G) the smallest degree among vertices in G.
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We write H ⊆ G to mean that H is a subgraph of G, i.e. V (H) ⊆ V (G)

and E(H) ⊆ E(G). We define EG(S) := {ab ∈ E(G) | a, b ∈ S} and we
write G[S] for the graph induced by G on S, i.e. the graph with vertex set
S and edge set EG(S). For S,T ⊆ V (G), we define EG(S,T ) := {xy ∈
E(G) | x ∈ S, y ∈ T} and eG(S,T ) := |EG(S,T )|. We will sometimes omit
the subscript if it is clear. For S,T ⊆ V (G) disjoint, we write G[S,T ] :=
(S ∪ T ,EG(S,T )) for the bipartite graph induced by G between S and T .
We often denote the complement of S ⊆ V (G) by S i.e. S := V (G) \ S.

We write a � b to mean that a ≤ f(b) for some implicitly given non-
decreasing function f : (0, 1] → (0, 1]. Informally, this is understood to
mean that a is small enough in relation to b. We sometimes also write
a�f b when we wish to be specific about the function f .

3.2.1 Spectral partitioning

Given a graph G and S ⊆ V (G), the conductance of S, written Φ(S) =

ΦG(S), is given by

Φ(S) :=
eG(S,S)

min(volG(S), volG(S))
,

where volG(S) = vol(S) :=
∑
i∈S dG(i) refers to the volume of S. The edge

expansion Φ(G) of G is defined by Φ(G) := minS⊆V (G) Φ(S).
We write AG ∈ RV (G)×V (G) for the adjacency matrix of G, where AG

is the matrix whose rows and columns are indexed by vertices of G and is
defined by

(AG)uv :=

1 if uv ∈ E(G);

0 otherwise.

We write
LG := I −D−

1
2AGD

− 1
2

for the normalized Laplacian of G, where I ∈ RV (G)×V (G) is the identity
matrix and D is the diagonal matrix of degrees (where Duu = dG(u) for
each u ∈ V (G) and Duv = 0 for u 6= v).

Suppose the eigenvalues of LG are ordered λ1 ≤ λ2 ≤ . . . ≤ λn. The-
orem 3.2.1 gives an algorithm for approximating the expansion of G and
gives a corresponding partition of the vertices.
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Theorem 3.2.1 ([1], [73]). For any graph G, we have λ2
2 ≤ Φ(G) ≤

√
2λ2

and there is an algorithm that finds S ⊆ V such that Φ(S) ≤
√

2λ2 in time
polynomial in n = |V (G)|. In particular, Φ(G) ≥ Φ(S)2/4.

The inequality λ2
2 ≤ Φ(G) ≤

√
2λ2 is often referred to as Cheeger’s in-

equality. There is an analogue of Cheeger’s inequality for the largest eigen-
value λn and the bipartiteness ratio β(G). For y ∈ {−1, 0, 1}V (G) \ {0} we
define

β(y) :=
∑
uv∈E(G) |yu + yv|∑
v∈V (G) dG(v)|yv|

and β(G) := miny∈{−1,0,1}V \{0} β(y). We can think of a small value β(G)
to mean that G is close to bipartite. In particular, if we set A = {v ∈
V (G) | yv = 1} and B = {v ∈ V (G) | yv = −1} then

β(y) =
2eG(A) + 2eG(B) + eG(A∪B,V (G) \ (A∪B))

volG(A∪B)
. (3.2.1)

Theorem 3.2.2 ([73, 74]). For any graph G, we have 2−λn
2 ≤ β(G) ≤√

2(2− λn) and there is an algorithm that finds y ∈ {−1, 0, 1}V (G) such

that β(y) ≤
√

2(2− λn) in time polynomial in n = |V (G)|. In particular,
β(G) ≥ β(y)2/4

Remark 3.2.3. The algorithms from both Theorem 3.2.1 and 3.2.2 run in
time O(|E(G)|+ |V (G)| log |V (G)|).

3.2.2 Robust expanders

The following definitions follow closely those in [54]. Throughout, assume
G is an n-vertex graph.

Robust expanders and bipartite robust expanders - Given an n-
vertex graph G, and S ⊆ V (G) and parameters 0 < ν ≤ τ < 1, we define
the ν-robust neighborhood of S to be RNν,G(S) := {v ∈ G | dS(v) ≥ νn}.
We say G is a robust (ν, τ )-expander if for all S ⊆ V (G) with τn ≤ |S| ≤
(1− τ )n we have |RNν,G(S)| ≥ |S|+ νn. We say G is a bipartite robust
(ν, τ )-expander with bipartition A,B if A,B is a partition of V (G) and for
every S ⊆ A with τ |A| ≤ |S| ≤ (1− τ )|A| we have |RNν,G(S)| ≥ |S|+ νn.
Note that the order of A and B matters here.
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Robust expander components and bipartite robust expander com-
ponents - Given 0 < ρ < 1 and an n-vertex graph G, we say that
U ⊆ V (G) is a ρ-component if |U | ≥ √ρn and eG(U ,U) ≤ ρn2, where
as usual U := V (G) \U . We say that U is ρ-close to bipartite with biparti-
tion A,B if A,B is a partition of U , |A|, |B| ≥ √ρn, ||A| − |B|| ≤ ρn, and
eG(A,B) + eG(B,A) ≤ ρn2. We will sometimes call a graph a ρ-component
or ρ-close to bipartite if V (G) is itself a ρ-component resp. ρ-close to bipar-
tite. We say that G[U ] is a (ρ, ν, τ )-robust expander component of G if U is
a ρ-component and G[U ] is a robust (ν, τ )-expander. We say that G[U ] is
a bipartite (ρ, ν, τ )-robust expander component with bipartition A,B if U
is ρ-close to bipartite with bipartition A,B and G[U ] is a bipartite robust
(ν, τ )-expander with bipartition A,B.

We now introduce the concept of a robust partition, which is central to
our result.

Robust partitions - Let k, `,D ∈ N and 0 < ρ ≤ ν ≤ τ < 1. Given an
n-vertex, D-regular graph G, we say that V is a robust partition of G with
parameters ρ, ν, τ , k, ` if the following hold:

(D1) V = {V1, . . . ,Vk,W1, . . . ,W`} is a partition of V (G);
(D2) for all 1 ≤ i ≤ k, G[Vi] is a (ρ, ν, τ )-robust expander component of

G;
(D3) for all 1 ≤ j ≤ `, there exists a partition Aj ,Bj ofWj such that G[Wj ]

is a bipartite (ρ, ν, τ )-robust expander component with bipartition
Aj ,Bj ;

(D4) for all X,X ′ ∈ V and all x ∈ X, we have dX(x) ≥ dX′(x); in particu-
lar, dX(x) ≥ D/m, where m := k+ `;

(D5) for all 1 ≤ j ≤ `, we have dBj (u) ≥ dAj (u) for all u ∈ Aj and
dAj (v) ≥ dBj (v) for all v ∈ Bj ; in particular, δ(G[Aj ,Bj ]) ≥ D/2m;

(D6) k+ 2` ≤ b(1 + ρ1/3)n/Dc;
(D7) for all X ∈ V, all but at most ρn vertices x ∈ X satisfy dX(x) ≥

D− ρn.

For technical reasons, we also introduce weak robust subpartitions. We
will use this definition and Lemma 3.2.4 below only in Section 3.4. A weak
robust subpartition differs from a robust partition mainly in that the dis-
joint subsets need not be a partition of the vertices. Let k, ` ∈ N0 and
0 < ρ ≤ ν ≤ τ ≤ η < 1. Given a graph G on n vertices, we say that U is a
weak robust subpartition of G with parameters ρ, ν, τ , η, k, ` if the following
conditions hold:



3.3 robust partitions 73

(D1′) U = {U1, . . . ,Uk,Z1, . . . ,Z`} is a collection of disjoint subsets of
V (G);

(D2′) for all 1 ≤ i ≤ k, G[Ui] is a (ρ, ν, τ )-robust expander component of
G;

(D3′) for all 1 ≤ j ≤ `, there exists a partition Aj ,Bj of Zj such that G[Zj ]
is a bipartite (ρ, ν, τ )-robust expander component with bipartition
Aj ,Bj ;

(D4′) δ(G[X ]) ≥ ηn for all X ∈ U ;
(D5′) for all 1 ≤ j ≤ `, we have δ(G[Aj ,Bj ]) ≥ ηn/2.

Lemma 3.2.4 (Proposition 6.1 in [54]). Let k, `,D ∈N0 and suppose that
0 < 1/n � ρ ≤ ν ≤ τ ≤ η ≤ α2/2 < 1. Suppose that G is a D-regular
graph on n vertices where D ≥ αn. Let V be a robust partition of G with
parameters ρ, ν, τ , k, `. Then V is a weak robust subpartition of G with
parameters ρ, ν, τ , η, k, `.

3.3 robust partitions

3.3.1 Statements of algorithms

In this section we present an algorithm (Theorem 3.3.20) that we use to find
robust partitions (see previous section for the definition) of regular graphs.
As mentioned earlier, the main algorithm and its analysis are obtained by
combining the robust expander decomposition of regular graphs from [54]
together with spectral algorithms for graph partitioning from [73, 74].
We begin by presenting four algorithms in the following lemmas that

will eventually be used together to obtain the main algorithm. The proofs
appear in Subsection 3.3.2.

Lemma 3.3.1. For each fixed choice of parameters 1/n0 � ρ � ν �
ρ′ � τ � α < 1 there exists a polynomial-time algorithm that does the
following. Given a D-regular n-vertex graph G = (V ,E) and U ⊆ V as
input, where D ≥ αn, n ≥ n0 and G[U ] is a ρ-component of G that is not
ρ′-close to bipartite, the algorithm determines that either

(i) G[U ] is a robust (ν, τ )-expander, or
(ii) U has a partition U1, U2 such that U1, U2 are ρ′-components,

and in the case of (ii) identifies the partition U1,U2. We call this
Algorithm 1.



74 almost hamiltonicity of dense regular graphs

Lemma 3.3.2. For each fixed choice of parameters 1/n0 � ρ� ρ′ � α <

1 there is a polynomial time algorithm that does the following. Given a
D-regular, n-vertex graph G = (V ,E) and U ⊆ V as input, where D ≥ αn,
n ≥ n0, and G[U ] is a ρ-component of G, the algorithm determines that
either

(i) G[U ] is not ρ-close to bipartite, or
(ii) G[U ] is ρ′-close to bipartite,

and in the case of (ii) identifies the corresponding bipartition. We call this
Algorithm 2.

Lemma 3.3.3. For each fixed choice of parameters 1/n0 � ρ� ν � ρ′ �
τ � α < 1 there is a polynomial-time algorithm that does the following.
Given a D-regular, n-vertex graph G = (V ,E) and U ⊆ V and a partition
A,B of U as input, where D ≥ αn, n ≥ n0, and G[U ] is ρ-close to bipartite
with bipartition A,B, the algorithm determines that either

(i) G[U ] is a bipartite robust (ν, τ )-expander with bipartition A,B, or
(ii) U has a partition U1, U2 such that G[U1], G[U2] are ρ′-components,

and in the case of (ii) identifies the partition U1,U2 of U . We call this
Algorithm 3.

Lemma 3.3.4. For each fixed choice of parameters 1/n0 � ρ � ν �
ρ′ � τ � α < 1 there exists a polynomial-time algorithm that does the
following. Given a D-regular n-vertex graph G = (V ,E) and U ⊆ V as
input, where D ≥ αn, n ≥ n0, and G[U ] is a ρ-component, the algorithm
determines that either

(i) G[U ] is a robust (ν, τ )-expander, or
(ii) G[U ] is a bipartite robust (ν, τ )-expander, or
(iii) U has a partition U1, U2 such that G[U1], G[U2] are ρ′-components,

and in the case of (ii) and (iii) identifies the corresponding partition. We
call this Algorithm 4.

Remark 3.3.5. In each of the four lemmas above, the algorithm distinguishes
between various cases. It may be that more than one of these cases hold
for the given input graph; if so then the algorithm will output any one case
that holds for the given graph.
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The running time of each of the algorithms is O(n3), where n is the
number of vertices of the input graph. The running time does not depend
at all on the fixed parameters (not even as hidden constants in the ‘Big O’
notation). However in each lemma, the hierarchy is necessary for the fixed
parameters in order to guarantee that at least one of the outcomes occurs
in the conclusion of the lemma.

3.3.2 Proofs of correctness of algorithms

We now give the proofs of Lemmas 3.3.1–3.3.4. We begin with a simple
proposition.

Proposition 3.3.6. Let G be an n-vertex D-regular graph with D ≥ αn

and let U be a ρ-component of G. Then

(i) |U | ≥ D−√ρn ≥ (α−√ρ)n
(ii) There are at most 2ρ

α(α−√ρ) |U | vertices of degree at most 1
2αn in G[U ].

Proof. (i) Since G is D-regular and U is a ρ-component, we have 1
2 |U |

2 ≥
eG(U) ≥ 1

2D|U | − ρn
2, from which we obtain |U | ≥ D − ρn2

|U | ≥ D −√ρn,
where the second inequality uses that |U | ≥ √ρn since it is a ρ-component.

(ii) If the number of vertices of degree at most 1
2αn is γ|U |, then we have

(D/2)γ|U |+D(1− γ)|U | ≥ 2eG(U) ≥ D|U | − ρn2,

from which we get γ ≤ 2ρn2

D|U | ≤
2ρ

α(α−√ρ) using part (i) and D ≥ αn for the
final inequality.

Remark 3.3.7. A similar calculation shows that if U is σ-close to bipartite
with bipartition A,B, we have |A|, |B| ≥ D− 2

√
σn ≥ (α− 2

√
σ)n.

Proof of Lemma 3.3.1. We will use the algorithm in Theorem 3.2.1 to iter-
atively find subgraphs of G[U ] that are not well connected to the rest of U
and remove them until this is no longer possible. If this process continues
to a point where the removed parts are large enough then we can show
both the removed part and the remaining part each form a ρ′-component.
If the process stops before the removed part becomes large then we can
show G[U ] is a robust expander.

Let G = (V ,E) and, in this proof, for any subset S ⊆ U we will use S
to denote U \ S rather than our usual convention where it denotes V \ S.
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Let n′ = |U | so that n′ ≥ (α−√ρ)n ≥ 1
2αn (by Proposition 3.3.6). Let

U0 be the vertices of degree at most 1
2αn inG[U ] so that |U0| ≤ 2ρ

α(α−√ρ)n
′ ≤

ανn′/2 also by Proposition 3.3.6. Note for later that

volG(U0) ≤ n|U0| ≤ (2n′/α)(ανn′/2) ≤ νn′2. (3.3.1)

Set U ′ := U \ U0 and choose φ such that ν � φ � ρ′. We apply
Theorem 3.2.1 to G[U ′] as follows to construct U1,U2, . . .. Given Ui, set
Ui := U \Ui and Gi := G[Ui]. Apply the algorithm of Theorem 3.2.1 to Gi
to output some Si ⊆ Ui. By replacing Si with Ui \ Si if necessary, assume
|Si| ≤ |Ui \ Si|. If

φi := ΦGi(Si) > φ or |Ui| ≥ 1
3 |U |

then stop. Otherwise set Ui+1 = Ui ∪ Si and repeat. In this way we obtain
sets S0, . . . ,St−1 and U0, . . . ,Ut in polynomial time. Note that |Ut−1| <
1
3 |U |, so

|Ut| = |Ut−1|+ |St−1| ≤ |Ut−1|+
1
2 (|U | − |Ut−1|) ≤

2
3 |U |. (3.3.2)

There are two cases to consider:
(a) |Ut| > 1

4ρ
′n′ and

(b) |Ut| ≤ 1
4ρ
′n′.

Claim 3.3.8. In case (a), Ut, Ut are ρ′-components.

Claim 3.3.9. In case (b), G[U ] is a robust (ν, τ )-expander.

Since we can output Ut,Ut in polynomial time, these two claims prove
Lemma 3.3.1.

Proof of Claim 3.3.8. Since we are in case (a), note that ΦGi(Si) ≤ φ for
all i = 1, . . . , t and so

eG(Si,Ui \ Si) ≤ φvolGi(Si) ≤ volG(Si). (3.3.3)

Recall also that Ut = U0 ∪ (
⋃t−1
i=0 Si). Using that volume is additive, i.e.

volG(Ut) = volG(U0) +
∑t−1
i=0 volG(Si), we have

eG(Ut,Ut) = eG(U0,Ut) +
t−1∑
i=0

eG(Si,Ut) ≤ volG(U0) +
t−1∑
i=0

eG(Si,Ui \ Si)

(3.3.1),(3.3.3)
≤ νn′2 +

t−1∑
i=0

φ volG(Si)

≤ νn′2 + φ volG(Ut) ≤ νn′2 + φ|Ut|n.
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Therefore

eG(Ut,Ut) ≤ νn′2 + φ|Ut|n
(3.3.2)
≤ νn′2 +

2
3φ|U |n

Prop 3.3.6
≤ νn′2 +

φ

α−√ρ
n′2

ν,φ�ρ′
≤ 1

2ρ
′n′2.

Hence eG(Ut,V \ Ut) ≤ 1
2ρ
′n′2 + ρn2 ≤ ρ′n2 since Ut ⊆ U and U is a

ρ-component. Similarly eG(Ut,V \ Ut) ≤ ρ′n2. Also, |Ut|, |Ut| ≥ 1
4ρ
′n by

(a) and (3.3.2). However, by Proposition 3.3.6, we in fact have |Ut|, |Ut| ≥
(α− ρ′2)n ≥

√
ρ′n, so Ut and Ut are ρ′-components. J

Proof of Claim 3.3.9. First some observations. Since case (b) holds, |Ut| ≤
1
4ρ
′n′ ≤ 1

2τn
′ ≤ 1

3 |U | and φt = ΦGt(St) > φ.
Also, δ(Gt) = δ(G[Ut]) ≥ minx∈Ut dU (x) − |Ut| ≥

1
2αn−

1
2τn

′ ≥ 1
3αn,

where the penultimate inequality follows from our choice of U0. By Theo-
rem 3.2.1, for all R ⊆ V (Gt) = U \Ut we have ΦGt(R) ≥ Φ(Gt) ≥ φ2

t/4 ≥
φ2/4, i.e.

eGt(R,R′) ≥ φ2

4 min(vol(R), vol(R′)) ≥ 1
12φ

2αnmin(|R|, |R′|)

where R′ = Ut \R = U \ (Ut ∪R). Furthermore, for R ⊆ U and recalling
R := U \R, we have

eG[U ](R,R) ≥ eG[U ](R \Ut,R \Ut) ≥
1
12φ

2αnmin(|R \Ut|, |R \Ut|)

≥ 1
12φ

2αn

(
min(|R|, |R|)− 1

4ρ
′n′
)

.

(3.3.4)

We will now show that G[U ] is a (ν, τ )-expander by assuming that G[U ]
does not expand and deducing that G[U ] is ρ′-close to bipartite, contradict-
ing the premise of the lemma.
Suppose there exists S ⊆ U with τn′ ≤ |S| ≤ (1− τ )n′ such that N =

RNν,G[U ](S) satisfies |N | < |S|+ νn. Since τn′ ≤ |S| ≤ (1− τ )n′, we have
1
4ρ
′n′ ≤ 1

2τn
′ ≤ 1

2 min(|S|, |S|) so by (3.3.4), we have

eG[U ](S,S) ≥ 1
24φ

2αnmin(|S|, |S|). (3.3.5)

Claim 3.3.10. We may assume 1
4αn ≤ |S| ≤ |U | −

1
4αn.
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U

S N

Y X Z W

Figure 8: Overview of subsets mentioned in the coming section.

Proof of Claim 3.3.10. If |S| < 1
4αn then eG(S,S) ≥ |S|(αn− |S|)− ρn2

and eG(S,S) ≤ |N ||S| + |U \N |νn ≤ |N ||S| + νn2, so combining these
inequalities and rearranging, we obtain

|N | ≥ αn−|S| − (ρ+ ν)
n2

|S|
≥ αn− |S| − (ρ+ ν)

n2

τn′

Prop 3.3.6
≥ αn− 1

4αn− (ρ+ ν)
n′

τ (α−√ρ)2 ≥
1
2αn

′ ≥ |S|+ νn,

contradicting our choice of S.
Similarly if |S| > |U | − 1

4αn recall that by Proposition 3.3.6 that all but
the γn′ vertices in U0 have degree at least 1

2αn in U and so for all x ∈ U \U0,
we have

dS(x) ≥
1
2αn− |U \ S| ≥

1
4αn ≥ νn.

Hence N ⊇ U \ U0 and so |N | ≥ |U | − |U0| ≥ (1− ν)n′ ≥ |S| + νn′, a
contradiction. This proves Claim 3.3.10. J

We continue with the proof of Claim 3.3.9. We define Y = S \N , X =

S ∩N , Z = N \ S, W = U \ (S ∪N); see Figure 8. Since each vertex in
Y has at most νn neighbors in S and since G is D-regular and U is a
ρ-component we have eG(Y ,S) ≥ D|Y | − ρn2 − νn2. Using this, we obtain

eG(Y ,Z) = eG(Y ,S)− eG(Y ,W ) ≥ D|Y | − ρn2 − νn2 − |W |νn
≥ D|Y | − 3νn2. (3.3.6)

On the other hand eG(Z,Y ) ≤ D|Z|, which together with (3.3.6) implies
after rearranging that |Z| ≥ |Y | − 3ν

α n. Also |Z| ≤ |Y |+ νn; otherwise S
does not violate (ν, τ )-expansion. Hence we have shown

|Y | − 3ν
α
n ≤ |Z| ≤ |Y |+ νn. (3.3.7)
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Considering W (and taking W := U \W ), we see

eG(W ,W ) = eG(W ,S) + eG(Z,W ) ≤ eG(W ,S) + (D|Z| − eG(Z,Y ))

(3.3.7),(3.3.6)
≤ νn2 +D(|Y |+ νn)− (D|Y | − 3νn2) ≤ 5νn2, (3.3.8)

as well as

1
12φ

2αnmin(|W |, |W |)− 1
48φ

2αρ′nn′
(3.3.4)
≤ eG(W ,W )

(3.3.8)
≤ 5νn2.

Since |W | ≥ |S| ≥ τn′ > 2ρ′n′, we must have

|W | ≤ 60νn
φ2α

+
1
4ρ
′n′ ≤ 1

2ρ
′n′. (3.3.9)

Now consider Y ∪Z (and recall Y ∪Z := U \ (Y ∪Z)). We have

eG(Y ∪Z,Y ∪Z) ≤ D|Y ∪Z| − 2eG(Y ,Z)
(3.3.7),(3.3.6)
≤ D(2|Y |+ νn)− 2(D|Y | − 3νn2) ≤ 7νn2.

(3.3.10)

Combining this with an application of (3.3.4)

1
12φ

2αn(min(|Y ∪Z|, |Y ∪Z|)− 1
4ρ
′n′)

(3.3.4)
≤ eG(Y ∪Z,Y ∪Z)

(3.3.10)
≤ 7νn2,

and hence

min(|Y ∪Z|, |Y ∪Z|) ≤ 84 νn
φ2α

+
1
4ρ
′n′ ≤ 1

2ρ
′n′.

If |Y ∪Z| ≤ 1
2ρ
′n′, then

|S| = |U | − |W | − |Z| ≥ |U | − |W | − |Y ∪Z|

(3.3.9)
≥ n′ − 1

2ρ
′n′ − 1

2ρ
′n′ ≥ (1− τ )n′,

a contradiction. So we have

|Y ∪Z| ≤ 1
2ρ
′n′. (3.3.11)
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Finally we show that Y ,Y gives a partition that shows G[U ] is ρ′-close to
bipartite, giving a contradiction. Note that |Y | = |Z|+ |Y ∪Z|, so

|Y | − 3ν
α
n

(3.3.7)
≤ |Z| ≤ |Y | = |Z|+ |Y ∪Z|

(3.3.7),(3.3.11)
≤ |Y |+ νn+

1
2ρ
′n′

≤ |Y |+ 3
4ρ
′n′.

Therefore,

||Y | − |Y || ≤ 3
4ρ
′n′. (3.3.12)

If ρ′ is small enough, e.g. ρ′ ≤ 1
10 , this also gives us |Y |, |Y | ≥

√
ρ′n′. Also

eG(Y ,V \ Y ) + eG(Y ,V \ Y ) ≤ D|Y ∪ Y | − 2eG(Y ,Y )

≤ D|U | − 2eG(Y ,Z)
(3.3.6)
≤ Dn′ − 2(D|Y | − 3νn2)

(3.3.12)
≤ Dn′ −D|Y | −D

(
|Y | − 3

4ρ
′n′
)
+ 6νn2 ≤ 4

5Dρ
′n′ ≤ ρ′n′2.

So Y ,Y is a partition of U showing G[U ] is ρ′-close to bipartite, a contra-
diction, completing the proof of the claim and the lemma. J

Proof of Lemma 3.3.2. The idea is to repeatedly apply the algorithm in
Theorem 3.2.2 and iteratively remove vertices that are assigned to bipartite
parts until the remaining induced graph is either small or far from bipartite.

We choose β such that ρ � β � ρ′. Set U0 = ∅, and given Ui, let Gi =
G[U \Ui]. Let y be obtained from running the algorithm in Theorem 3.2.2
on Gi. We set Ui+1 = Ui ∪Ai ∪Bi, where Ai := {v | yv = 1} and Bi := {v |
yv = −1} and we set βi = β(y). Note that Gi+1 ⊂ Gi. We continue until
either

(a) |Gi| ≤ ρ′n or
(b) βi ≥ β.

Let t be the first index where (a) or (b) occurs.

Claim 3.3.11. If |Gt| ≤ ρ′n, then G[U ] is ρ′-close to bipartite.

Claim 3.3.12. If βt > β and |Gt| ≥ ρ′n, then G[U ] is not ρ-close to
bipartite.
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Note that these two claims together prove the lemma since we can com-
pute the βi and the Gi in polynomial time (and for the first claim, the proof
will show how to compute the corresponding partition).

Proof of Claim 3.3.11. Let R = U \Ut, i.e. the set of vertices that are not
part of some Aj or Bj for j ≤ t. Note that |R| ≤ ρ′n. For each j ≤ t, using
the definition of Aj ,Bj and (3.2.1), we have

Ej := 2eGj (Aj) + 2eGj (Bj) + eGj (Aj ∪Bj ,U \Uj+1) ≤ β volGj (Aj ∪Bj).

First we note that for each j ≤ t, we have

eG(Uj ,U \Uj) ≤
j−1∑
i=0

eG(Ai ∪Bi,U \Ui+1) ≤ β
j−1∑
i=0

volGi(Ai ∪Bi)

≤ βvolG(Uj) ≤
1
10ρ

′Dn,
(3.3.13)

where the final inequality follows by our choice of β � ρ′ and volG(Uj) ≤
Dn. In particular, for each j < t, we have

eG(Aj ,Uj) ≤ eG(Uj ,U \Uj) ≤
1
10ρ

′Dn.

Next, we claim that for each j, it holds that ||Aj | − |Bj || ≤ ρ′n. Assume for
a contradiction that |Aj | − |Bj | ≥ ρ′n for some j. First we note that

eGj (Aj ,Bj) ≥ (|Aj | − |Bj |)D− eG(U ,U)− eG(Aj ,Uj)

≥ ρ′Dn− ρn2 − 1
10ρ

′Dn ≥ 1
2ρ
′Dn,

where we use ρ � ρ′ for the last inequality. On the other hand we have
eGj (Aj ,Bj) ≤ eG(Aj ,Uj) ≤ 1

10ρ
′Dn, a contradiction.

By the preceding claim, we can form a partition A,B of U such that (i)
for each j < t, either Aj ⊆ A and Bj ⊆ B, or Aj ⊆ B and Bj ⊆ A and (ii)
||A| − |B|| ≤ ρ′n. Indeed we can start with an arbitrary partition satisfying
(i) and then iteratively swap suitable Aj and Bj if this reduces the value of
||A| − |B||. (Note that A and B also contain vertices of R (i.e. vertices not
belonging to any Aj or Bj) that can be freely moved to reduce ||A| − |B||).
It is easy to see A,B can be computed in polynomial time and we shall see
below that this partition demonstrates that G[U ] is ρ′-close to bipartite.
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To see this, we count edges not in EG(A,B). We have

eG(A) + eG(B) + eG(A∪B,U) ≤
i−1∑
j=0

Ej + volG[R](R) + eG(U ,U)

≤ β︸︷︷︸
�ρ′

volG[U ](U \R)︸ ︷︷ ︸
≤n2

+(ρ′n)2 + ρn2 ≤ ρ′n2.

J

Proof of Claim 3.3.12. Define

β′(G) := min
y∈{−1,1}V (G)

∑
uv∈E(G) |yu + yv|∑
v∈V (G) dG(v)|yv|

≥ β(G),

β(G) := min
A,B bipartition of G

eG(A) + eG(B).

Then we have β(G[U ]) ≥ β(Gt) and recalling that V (Gt) = U \Ut, we
have

2 β(Gt)

volGt(U \Ut)
= β′(Gt) ≥ β(Gt) ≥

β2
t

4 ≥
β2

4 , (3.3.14)

where we use the definition of βi and Theorem 3.2.2. Then we have

volGt(U \Ut) ≥ D|U \Ut| − ρn2 − eG(Ut,U \Ut)

≥ ρ′Dn− ρn2 − 1
10ρ

′Dn ≥ 1
2ρ
′Dn,

where we have used that U is a ρ-component, (3.3.13), and ρ � ρ′. Com-
bining with (3.3.14) we see

β(G) ≥ β2

8 volGt(U \Ut) ≥
β2

16ρ
′Dn > ρn2.

J

This completes the proof of the lemma.

Proof of Lemma 3.3.3. Fix φ such that ν � φ � ρ′. As in Lemma 3.3.1,
we use the algorithm in Theorem 3.2.1 to iteratively find poorly connected
subgraphs of G[U ] and remove them.
In polynomial time, we can find S0, . . . ,St−1, U0, . . . ,Ut, and φ1, . . . ,φt,

which are defined and found in exactly the same way as in the proof of
Lemma 3.3.1, so again, we have φt > φ or |Ut| ≥ 1

3 |U |. There are two cases:
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(a) |Ut| > 1
4ρ
′n′ and

(b) |Ut| ≤ 1
4ρ
′n′.

Claim 3.3.13. In case (a), Ut, Ut := U \Ut are ρ′-components.

Noting that G[U ] is a ρ-component, the proof of Claim 3.3.8 holds here as
well.

Claim 3.3.14. In case (b), G[U ] is a robust bipartite (ν, τ )-expander with
bipartition A,B.

Once again, the two claims together prove the lemma since we can com-
pute Ut,U t (which give the partition U1,U2 in the statement of the lemma)
in polynomial time.

Proof of Claim 3.3.14. As in (3.3.4) in the proof of Claim 3.3.9, for S ⊆ U
and S = U \ S we have

eG[U ](S,S) ≥ 1
12φ

2αn

(
min(|S|, |S|)− 1

4ρ
′n′
)

(3.3.15)

We will show that G[U ] is a bipartite robust expander by assuming the
existence of a non-expanding set and finding a contradiction.
Suppose A∗ ⊆ A with τ |A| ≤ |A∗| ≤ (1− τ )|A|, let B∗ := RNG[U ](A

∗) ∩
B and assume |B∗| < |A∗|+ νn. Define Â := A \A∗ and B̂ := B \B∗. We
will give an upper bound on eG(A∗ ∪B∗, Â ∪ B̂) that contradicts (3.3.15).
Indeed, we have (suppressing the subscript G)

e(A∗ ∪B∗, Â∪ B̂) ≤ e(A∗, Â) + e(B∗, B̂) + e(A∗, B̂) + e(B∗, Â)
≤ ρn2 + νn2 + e(B∗, Â),

where we used that e(A∗, Â) + e(B∗, B̂) ≤ ρn2 (since G is ρ-close to bipar-
tite) and e(A∗, B̂) < νn2 (since every vertex in B̂ has at most νn neighbors
in A∗). In order to bound e(B∗, Â), we have

e(B∗Â) ≤ |B∗|D− e(B∗,A∗)
≤ (|A∗|+ νn)D− [|A∗|D− e(A∗, Â)− e(A∗B̂)− e(A∗,U)]
≤ νn|D|+ ρn2 + νn2 ≤ ρn2 + 2νn2,

where we used that e(A∗, B̂) ≤ νn2 (as above) and e(A∗, Â) + e(A∗,U) ≤
ρn2 (since U is ρ-close to bipartite). Combining, we obtain

eG(A
∗ ∪B∗, Â∪ B̂) ≤ 2ρn2 + 3νn2 ≤ 5νn2. (3.3.16)
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However, as min(|A∗ ∪B∗|, |Â∪ B̂|) ≥ τ |A| ≥ τ 1
3 |U | (using Remark 3.3.7),

with (3.3.15) we have

eG(A
∗ ∪B∗, Â∪ B̂) ≥ 1

12φ
2αn

(1
3τ |U | −

1
4ρ
′|U |

)
> 5νn2,

using |U | ≥ 1
2αn by Proposition 3.3.6 and our choice of parameters, which

contradicts (3.3.16). J

This completes the proof of the lemma.

Proof of Lemma 3.3.4. Fix ρ1, ρ2, ν2 such that ρ � ν � ρ1 � ρ2 � ν2 �
ρ′. We run Algorithm 2 on U with (ρ1, ρ2) playing the roles of (ρ, ρ′). The
algorithm determines either that

• G[U ] is not ρ1-close to bipartite, or
• G[U ] is ρ2-close to bipartite (and outputs a bipartition A,B of U that

demonstrates this).

In the first case, we apply Algorithm 1 with (ρ, ν, ρ1) playing the roles
of (ρ, ν, ρ′) and the algorithm either concludes that G[U ] is a robust (ν, τ )-
expander, or it outputs a partition U1,U2 of U such that U1 and U2 are
ρ1-components and hence are also ρ′-components.

In the second case, we apply Algorithm 3 with (ρ2, ν2, ρ′) playing the
roles of (ρ, ν, ρ′) and the algorithm either concludes that G[U ] is a bipartite
robust (ν2, τ )-expander and hence also a bipartite robust (ν, τ )-expander
(and it outputs a bipartition A,B of U to demonstrate this) or it outputs
a partition U1,U2 of U such that U1 and U2 are ρ′-components.

3.3.3 Recognizing robust expanders

In this subsection, we make a small digression to partially address a ques-
tion of Kühn and Osthus from [58]; the result of this subsection will not
be needed in the remainder of the chapter. Using the Szemerédi Regular-
ity Lemma, Kühn and Osthus [58] give a polynomial time algorithm for
deciding whether a graph2 is a robust (ν, τ )-expander or whether it is not
a (ν ′, τ )-expander (provided ν � ν ′, which is the case in all applications).
They asked whether the use of the Szemerédi Regularity Lemma can be
avoided, and we answer this affirmatively for regular graphs.

2 In fact, their algorithm works more generally for digraphs.
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Corollary 3.3.15. For each fixed choice of parameters 0 ≤ ν � ν ′ �
τ � α < 1 there exists a polynomial-time algorithm that does the follow-
ing. Given a D-regular n-vertex graph G = (V ,E), where D ≥ αn, the
algorithm determines that either

(i) G is a robust (ν, τ )-expander, or
(ii) G is not robust (ν ′, τ )-expander,

and in case (ii) the algorithm finds a set S ⊆ V such that τn ≤ |S| ≤
(1− τ )n and |RNν′,G(S)| ≤ |S|+ ν ′n.

Proof. The proof is a variation of Lemma 3.3.4. First choose parameters
1/n0 � ρ � ν � ρ1 � ρ2 � ν ′ � τ � α � 1. If n ≤ n0 then we check
whether (i) or (ii) holds by exhaustive search in constant time.

If n ≥ n0, we apply Algorithm 2 to G with (ρ1, ρ2,V ) playing the roles
of (ρ, ρ′,U) (and thinking of G = G[V ] as a ρ1-component of G). The
algorithm determines that either

(a) G is ρ2-close to bipartite (and gives a partition A,B of V showing
this), or

(b) G is not ρ1-close to bipartite.

In case (b) we apply Algorithm 1 with (ρ, ν, ρ1,V ) playing the roles of
(ρ, ν, ρ′,U) (and thinking of G = G[V ] as a ρ-component of G), and the
algorithm determines that either

(bi) G = G[V ] is a robust (ν, τ )-expander;
(bii) U = V has a partition U1,U2 such that U1, U2 are ρ1-components.

In case (bi), we are done. In case (a) and (bii), we show G is not a ro-
bust (ν ′, τ )-expander. Indeed, in case (a), assume that |A| ≤ |B|. We have
|A|, |B| ≥ 1

2αn ≥ 2τn by Remark 3.3.7, so τn ≤ |B| ≤ (1− τ )n. We cannot
have that |RNν′,G(B)| ≥ |B|+ ν ′n, for otherwise |RNν′,G(B) ∩B| ≥ ν ′n

and therefore eG(B,A) = eG(B) ≥ 1
2ν
′2n2 > ρ2n

2, contradicting that G is
ρ2-close to bipartite. So G is not a robust (ν ′, τ )-expander in this case and
the algorithm outputs S = B.

Similarly in case (bii) we know that |U1|, |U2| ≥ 1
2αn ≥ 2τn by Propo-

sition 3.3.6 and so τn ≤ |U1| ≤ (1 − τ )n. Also, we cannot have that
|RNν′,G(U1)| ≥ |U1|+ ν ′n, for otherwise |RNν′,G(U1)∩U2| ≥ ν ′n and there-
fore eG(U1,U2) ≥ ν ′2n2 > ρ1n

2, contradicting that U1 is a ρ1-component.
So G is not a robust (ν ′, τ )-expander in this case and the algorithm outputs
S = U1.
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3.3.4 Assembling the robust partition

We begin with several basic facts from [54]. The first two, Lemmas 3.3.16
and 3.3.17, are basic facts about (bipartite) robust expanders, which are
taken from [54] unchanged and their proofs are included for completeness.

Lemma 3.3.16. Let 0 < ν � τ < 1. Suppose that G is a graph and U ,
U ′ ⊆ V (G) are such that G[U ] is a robust (ν, τ )-expander and |U4U ′| ≤
ν|U |/2. Then G[U ′] is a robust (ν/2, 2τ )-expander.

Proof. The statement immediately follows by considering a set S ⊆ U ′ with
2τ |U ′| ≤ |S| ≤ (1− 2τ )|U ′| and considering its robust neighborhood. As
τ |U | ≤ |S ∩ U | ≤ (1− τ )|U |, we have |RNν,U (S ∩ U)| ≥ |S ∩ U |+ ν|U | ≥
|S|− |U \U ′|+ ν|U |. With |RNν,U (S ∩U)∩U ′| ≥ |RNν,U (S ∩U)|− |U ′ \U |
it follows that |RNν/2,U ′(S)| ≥ |S|+ ν/2|U ′|.

Lemma 3.3.17. Let 0 < 1/n � ρ ≤ γ � ν � τ � α < 1 and suppose
that G is a D-regular graph on n vertices where D ≥ αn.

(i) Suppose that G[A∪B] is a bipartite (ρ, ν, τ )-robust expander compo-
nent of G with bipartition A,B. Let A′,B′ ⊆ V (G) be such that |A4A′|+
|B4B′| ≤ γn. Then G[A′ ∪B′] is a bipartite (3γ, ν/2, 2τ )-robust expander
component of G with bipartition A′,B′.

(ii) Suppose that G[U ] is a bipartite (ρ, ν, τ )-robust expander component
of G. Let U ′ ⊆ V (G) be such that |U4U ′| ≤ γn. Then G[U ′] is a bipartite
(3γ, ν/2, 2τ )-robust expander component of G.

Proof. We start with (i). To see that G[A′ ∪ B′] is 3γ-close to bipartite,
we see that |A′|, |B′| ≥ D − 2√ρ ≥

√
3γn by Remark 3.3.7. We have

that ||A′| − |B′|| ≤ ||A| − |B|| + γn ≤ 3γn and e(A′,B′) + e(B′,A′) ≤
e(A,B) + e(B,A) + 2(|A′4A|+ |B′4B|)n ≤ 3γn. G[A′ ∪B′] is a bipartite
(ν/2, 2τ )-robust expander by a straightforward calculation as in the proof
of Lemma 3.3.16. It is easy to see that part (ii) follows from (i).

The non-algorithmic versions of the next two lemmas can be found in
[54]; we use a simple greedy procedure to make them algorithmic. These
lemmas will be used later to ensure conditions (D4), (D5), and (D7) when
constructing our robust partition.

Lemma 3.3.18. Letm,n,D ∈N and 0 < 1/n0 � ρ� α, 1/m ≤ 1. Let G
be a D-regular graph on n vertices where n ≥ n0 and D ≥ αn. Suppose that
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U := {U1, . . . ,Um} is a partition of V (G) such that Ui is a ρ-component
for each 1 ≤ i ≤ m. Then G has a vertex partition V := {V1, . . . ,Vm} such
that

(i) |Ui4Vi| ≤ ρ1/3n;
(ii) Vi is a ρ1/3-component for each 1 ≤ i ≤ m;
(iii) if x ∈ Vi, then dVi(x) ≥ dVj (x) for all 1 ≤ i, j ≤ m. In particular,

dV (x) ≥ D/m for all x ∈ V and all V ∈ V;
(iv) for all but at most ρ1/3n vertices x ∈ Vi we have dVi(x) ≥ D− 2√ρn.

Furthermore, (for fixed n0, ρ,α,m satisfying the hierarchy above) there is
an algorithm that finds such a vertex partition V in time polynomial in n.

Proof. For each 1 ≤ i ≤ m, let Xi be the collection of vertices y ∈ Ui with
dUi(x) ≥

√
ρn. Since Ui is a ρ-component, we have |Xi| ≤

√
ρn (otherwise

e(Ui,Ui) ≥ ρn2). Let Wi := Ui \Xi. Then each x ∈Wi satisfies

dWi(x) = D− dUi∪Xi(x) ≥ D−
√
ρn− |Xi| ≥ D− 2√ρn. (3.3.17)

We now redistribute the vertices of X := ∪1≤i≤mXi as follows: Iteratively
move any x ∈ X ∩ Ui to Uj where j = arg maxi dUi(x) until this is no
longer possible (where arg maxi dUi(x) denotes the value of i that max-
imises dUi(x)). This process terminates, as the number of edges crossing
the partition is reduced with each step. It is easy to see that this redistri-
bution can be done in time polynomial in n. Call the resulting partition
V := {V1, . . . ,Vm}, (so Vi = Wi ∪X ′i for some X ′i ⊆ X and X = tX ′i).

We show that V fulfils (i)-(iv). It is easy to see that (iii) holds by our
choice of V for all x ∈ X. For x ∈ Wi, (3.3.17) implies dVi(x) ≥ dWi(x) ≥
D − 2√ρn ≥ D/2, so (iii) holds. Next, since each step of our procedure
reduces the number of edges crossing the partition, we have∑

1≤i≤m
e(Vi,Vi) ≤

∑
1≤i≤m

e(Ui,Ui) ≤ ρmn2 ≤ ρ1/3n2

and therefore each Vi is a ρ1/3-component, so (ii) holds. We have |Ui4Vi| ≤
|X| ≤ m√ρn ≤ ρ1/3n for all i, so (i) holds as well. To see (iv), note that for
all x ∈Wi we have dVi(x) ≥ D− 2√ρn by (3.3.17) and |V (G) \ ∪mi=1Wi| =
|X| ≤ ρ1/3n.

Lemma 3.3.19. Let 0 < 1/n0 � ρ � ν � τ � α < 1 and let G be a
D-regular graph on n vertices where n ≥ n0 and D ≥ αn. Suppose that U
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is a bipartite (ρ, ν, τ )-robust expander component of G with bipartition A,
B. Then there exists a bipartition A′, B′ of U such that
(i) U is a bipartite (3√ρ, ν/2, 2τ )-robust expander component with par-

tition A′ ,B′;
(ii) dB′(u) ≥ dA′(u) for all u ∈ A′, and dA′(v) ≥ dB′(v) for all v ∈ B′.

Furthermore, (for fixed n0, ρ, ν, τ ,α satisfying the hierarchy above) there is
an algorithm that finds such a partition in time polynomial in n.
Proof. This proof is similar to that of Lemma 3.3.18. Let A0 := {x ∈ A |
dB(x) ≥ 2√ρn} and define B0 similarly. The fact that U is a ρ-component
implies that

ρn2 ≥e(A,B) + e(B,A) ≥ 1
2

(∑
x∈A

dB(x) +
∑
x∈B

dA(x)

)

≥1
2

∑
x∈A0

dB(x) +
∑
x∈B0

dA(x)

 ≥ (|A0|+ |B0|)
√
ρn

and therefore |A0|+ |B0| ≤
√
ρn. Define Â := A \A0 and B̂ := B \B0. For

all x ∈ Â we have dB̂(x) ≥ D−dB(x)−|B0| ≥ D− 3√ρn and an analogous
statement holds for x ∈ B̂. We iteratively move vertices between A0 and
B0 as follows: for x ∈ A0 if dA(x) > dB(x) then move x from A0 to B0
and for y ∈ B0 if dB(y) > dA(y) then move y from B0 to A0 (and update
A,B,A0,B0 accordingly). Continue this until it is no longer possible. This
process terminates, as the number of edges not crossing the partition is
reduced at each step. It is easy to see that this redistribution can be done
in time polynomial in n. Call the resulting parts A′, B′. We show that A′,
B′ fulfil (i) and (ii).

The choice of A′, B′ implies that all x ∈ A0 ∪B0 fulfil (ii). For x ∈ Â
we have dB′(x) ≥ dB̂(x) ≥ D − 3√ρn ≥ dU (x)/2. A similar statement
holds for all x ∈ B̂, by our choice of vertex redistribution, completing
the proof of (ii). For (i), note that |A4A′| + |B4B′| ≤ |A0| + |B0| ≤√
ρn. Now Lemma 3.3.17(i) with ρ,√ρ, ν, τ ,A,B,A′,B′ playing the roles

of ρ, γ, ν, τ ,A,B,A′,B′ shows that U is a bipartite (3√ρ, ν/2, 2τ )-robust
expander component with bipartition A′, B′, which completes the proof of
(i).

Finally, we can prove the existence of a polynomial-time algorithm to find
a robust partition in regular graphs. Again, we follow the proof from [54]
closely, but must suitably apply the algorithms developed in this section.
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Theorem 3.3.20. For every 0 < τ < α < 1 and every non-decreasing
function f : (0, 1) → (0, 1) there is a n0 and a polynomial-time algorithm
that does the following. Given an n-vertex D-regular graph G as input
with n ≥ n0 and D ≥ αn, the algorithm finds a robust partition V with
parameters ρ, ν, τ , k, ` with 1/n0 < ρ < ν < τ ; ρ < f(ν), and 1/n0 < f(ρ).

Proof. Set t = d2/αe. Define constants satisfying

0 < 1/n0 � ρ1 � ν1 � ρ2 � ν2 � · · · � ρt � νt � τ ′ � τ ≤ α.

We start with the following claim:

Claim 3.3.21. There is some 1 ≤ h < t and a partition U of V (G) such
that, for each U ∈ U , U is a (ρh, νh, τ ′)-robust expander component or a
bipartite (ρh, νh, τ ′)-robust expander component. Furthermore, we can find
U in polynomial time (and we can determine those U ∈ U that are bipartite
robust expander components together with a corresponding bipartition).

Proof of Claim 3.3.21. We will iteratively construct (in polynomial time)
a partition Ui of V (G) such that U is a ρi-component for all U ∈ Ui.

We know V (G) is a ρ1-component for any choice of ρ1 > 0 and we set
U1 = {V (G)}.
Assume that for some 1 ≤ i ≤ t we have constructed such a partition Ui

of V (G). We apply Algorithm 4 to each U ∈ Ui with ρi, νi, ρi+1, τ ′ playing
the roles of ρ, ν, ρ′, τ . If the algorithm finds some U ∈ Ui for which it returns
U1,U2, a partition of U in which U1 and U2 are ρi+1-components, then we
set Ui+1 := (Ui \ {U})∪{U1,U2} and we continue. Otherwise the algorithm
determines that G[U ] is a robust (νi, τ ′)-expander or a bipartite robust
(νi, τ ′)-expander for all U ∈ Ui and so each U ∈ Ui is a (ρi, νi, τ ′)-robust
expander component or a bipartite (ρi, νi, τ ′)-robust expander component
(and Algorithm 4 is able to determine which U ∈ Ui are bipartite robust
expander components and to determine a corresponding bipartition A,B of
any such U). In this case we are done with the claim provided i < t, which
we now show.

By induction |Ui+1| = i + 1 and all U ∈ Ui+1 are ρi+1-components
whenever Ui+1 is defined. To see that the process terminates before Ut,
assume for the sake of contradiction that Ut is defined. Since every U ∈ Ut
is a ρt-component, |U | ≥ (α−√ρt)n for all U ∈ Ut by Proposition 3.3.6,
and so

n = |V (G)| ≥ t(α−√ρt)n ≥
2
α
(α−√ρt)n > n,
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a contradiction, proving the claim. J

So in polynomial time, we can find U = {U1, . . . ,Uk,Z1, . . . ,Z`} for some
k, ` ∈ N, where Ui is a (ρ′, ν ′, τ ′)-robust expander component for all 1 ≤
i ≤ k and Zj is a bipartite (ρ′, ν ′, τ ′)-robust expander component for all 1 ≤
j ≤ `, where ρ′ = ρh, ν ′ = νh for some h < t. Furthermore our algorithm
determines which U ∈ U are bipartite robust expander components and
gives corresponding bipartitions for them.

From Proposition 3.3.6 and Remark 3.3.7 we know that |Ui| ≥ (D −√
ρ′n) for 1 ≤ i ≤ k and |Zj | ≥ 2(D− 2

√
ρ′n) for 1 ≤ j ≤ `. Therefore

n =
∑

1≤i≤k
|Ui|+

∑
1≤j≤l

|Wj | ≥ (D− 2
√
ρ′n)(k+ 2`)

and so

k+ 2` ≤
⌊

n

D− 2
√
ρ′n

⌋
≤
⌊
(1 + ρ′1/3)

n

D

⌋
. (3.3.18)

In particular m := k + ` ≤ (k + 2`) ≤ 2n/D ≤ 2α−1. Now we apply the
algorithm of Lemma 3.3.18 (with ρ′ playing the role of ρ) to U to obtain
(in polynomial time) the partition V = {V1, . . . ,Vk,W1, . . . ,W`} of V (G)

satisfying (i)-(iv) so that in particular

|Ui4Vi|, |Zi4Wi| ≤ ρ′1/3n ≤ ν ′n

for all applicable i and j. We now show that V is a (ρ, ν, τ )-robust partition
of G, where ρ = 33/2ρ′1/6, ν = ν ′/4. Note that ρ ≤ f(ν) by making a
suitable choice of ρi � νi for each i at the start. Similarly, a suitable choice
of ρ1 guarantees that 1/n0 ≤ f(ρ).
Obviously (D1) holds. For (D2), note that Vi is a ρ′1/3-component by

Lemma 3.3.18(ii). As ρ′1/3 ≤ ρ and |Vi| ≥ D/2 ≥ √ρn (by Proposi-
tion 3.3.6), Vi is a ρ-component. By Lemma 3.3.18(i) and Lemma 3.3.16
with ν ′, τ ′,Ui,Vi playing the roles of ν, τ ,U ,U ′, we have that G[Vi] is a
robust (ν ′/2, 2τ ′)-expander and thus also a robust (ν, τ )-expander. This
shows (D2). To show (D3), recall that G[Zj ] is a bipartite (ρ′, ν ′, τ ′)-robust
expander component and our algorithm gives us a partition A′j ,B′j of Zj
demonstrating this. We obtain a partition A′′j ,B′′j of Wj by taking A′′j =

A′j ∩Wj and B′′j = Wj \ A′′j so that |A′′j4A′j |+ |B′′j4B′j | ≤ |Zj4Wj | ≤
ρ′1/3n. Then Lemma 3.3.18(ii) together with Lemma 3.3.17(i) where ρ′, ρ′1/3,
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ν ′, τ ′,Zj ,Wj play the roles of ρ, γ, ν, τ ,U ,U ′ imply that G[Wj ] is a bipar-
tite (3ρ′1/3, ν ′/2, 2τ ′)-robust expander component. Next we apply (the al-
gorithm of) Lemma 3.3.19 with (3ρ′1/3, ν ′/2, 2τ ′,Wj ,A′′j ,B′′j ) playing the
roles of (ρ, ν, τ ,U ,A,B) to obtain a bipartition Aj ,Bj ofWj (in polynomial
time). Now (D3) follows from Lemma 3.3.19(i). We find that (D4) follows
from Lemma 3.3.18(iii) and (D5) follows from Lemma 3.3.19(ii). Lastly,
(D6) follows from (3.3.18) and (D7) follows from Lemma 3.3.18(iv).

Remark 3.3.22. The running time of the algorithm of Theorem 3.3.20 is
bounded by O(n3α−2) where n = |V (G)|. Indeed, examining the proof
of Theorem 3.3.20, the algorithm in Claim 3.3.21 makes O(t2) = O(α−2)

calls to Algorithm 4. Algorithm 4 makes a single call to each of Algorithms
1,2,3, and each of these algorithms requires at most n applications of either
Theorem 3.2.1 or Theorem 3.2.2, i.e. a total running time of O(α−2) · n ·
O(n2) = O(α−2n3). This dominates the running time as the application of
the (greedy) algorithms in Lemma 3.3.18 and Lemma 3.3.19 runs in time
O(n3).

3.4 finding almost-hamilton cycles

In this section we show how to determine algorithmically whether a dense,
regular graph G has a very long cycle (missing at most a constant number
of vertices) and how to construct such a cycle if it exists. The idea is that
we first use the algorithm of Theorem 3.3.20 to find a robust partition
U = {U1, . . . ,Um} of our input dense regular graph. Then we try to find
a path system P (defined below) that supplies all the edges of our desired
cycle between the Ui.3 What properties should the edges in such a path
system have? For any (almost) Hamilton cycle H of G, the edges of H
between the Ui should connect the Ui’s in some sense; thus the path system
P should be connecting, which we define precisely below. The path system
should also be balancing in some sense: if Ui is a bipartite component with
parts Ai and Bi then the edges of H ∩G[Ai,Bi] hit an equal number of
vertices from Ai and Bi, so the remaining edges of H (namely those of P)
should counter any imbalance in the sizes of Ai and Bi. It was established
in [54] that G has a Hamilton cycle if and only if there is a connecting,
balancing path system (with respect to U); see Lemma 3.4.1 below, which

3 If Ui is a bipartite robust component with bipartition Ai,Bi then P may contain edges
from G[Ai] or G[Bi] but will not contain edges from G[Ai,Bi].
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uses robust expansion to connect a connecting, balancing path system into
a Hamilton cycle. Furthermore, it was shown in [35] that a balancing path
system always exists for dense, regular graphs.

We show how to determine the existence of a connecting path system
in polynomial time. We then show it is possible to combine a connecting
path system (if it exists) with the (guaranteed) balancing path system to
obtain a path system that is connecting and almost balancing. An almost
Hamilton cycle exists if and only if such a connecting, almost balancing
path system exists.
Note that a dense regular graph may have a connecting path system and

a balancing path system, but no connecting and balancing path system, see
the example given in Section 3.5. We have been unable to find an efficient
algorithm that determines whether a connecting and balancing path system
exists.

3.4.1 Preliminaries

In this subsection, we recall some definitions and results that will be used
later. We begin by defining the structure required between the parts of our
robust partition that ensures a Hamilton cycle.
A path system P = {P1, . . . ,Pk} in a graph G is a collection of vertex-

disjoint paths P1, . . . ,Pk in G. We also think of P as a subgraph P = ∪Pi ⊆
G, so that V (P) and E(P) make sense.

Reduced graphs - Let G be a graph and U a partition of V (G). For a
path system P ⊆ E(G) we define the reduced multigraph RU (P) of P with
respect to U to be the multigraph with vertex set U and where there is an
edge between U ,U ′ ∈ U for each path in P whose endpoints are in U and
U ′. We also define the reduced edge multigraph R′U (P) of P with respect to
U as the multigraph with vertex set U and where there is an edge between
U ,U ′ ∈ U for each edge in P with endpoints in U ,U ′. Note that both RU (P)
and R′U (P) may contain loops and multiedges. We will often identify edges
in RU (P) (resp. R′U (P)) with their corresponding paths (resp. edges) in P.
We sometimes write R(P) or R′(P) if U is clear from the context.

Connecting and balancing path systems - Let G be a graph and U a
partition of V (G). A path system P ⊆ G is called U-connecting if RU (P)
is Eulerian, that is if RU (P) is connected and all vertices have even degree.
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Let A,B ⊆ V (G) be two disjoint sets. We say P is r-almost (A,B)-
balancing if∣∣∣(|A| − eP(A,A∪B)− 2eP(A))− (|B| − eP(B,A∪B)− 2eP(B))

∣∣∣ ≤ r
and we say P is (A,B)-balancing if it is 0-almost (A,B)-balancing. The
significance of this is that, given any cycle C of G that covers all vertices of
A∪B, if we delete from C all edges of EG(A,B), the resulting path system
will be (A,B)-balancing.

For a robust partition V = {V1, . . . ,Vk,W1, . . . ,W`} of G where Aj ,Bj is
the corresponding bipartition ofWj for 1 ≤ j ≤ `, we say P is V-balancing if
it is (Ai,Bi)-balancing for 1 ≤ i ≤ `, and we say P is r-almost V-balancing
if it is ri-almost (Ai,Bi)-balancing for 1 ≤ i ≤ ` and

∑`
i=1 ri ≤ r. The

V-imbalance of P is the smallest r for which P is r-almost V-balancing. We
will omit V if it is clear from context.

The definitions introduced so far have been for U a partition of V (G),
but they extend in the obvious way when U is a subpartition of V (G), i.e.
where U consists of disjoint subsets of vertices that do not necessarily cover
all of V (G) (and where it is implicitly assumed that V (P) ⊆ ∪U∈UU).

Lemma 3.4.1 (Lemmas 7.8 and 6.2 in [54]). Let n, k, ` ∈ N0 and 0 <

1/n � ρ � ν � τ � η < 1. Let G be a graph on n vertices and suppose
that V := {V1, . . . ,Vk,W1, . . . ,W`} is a weak robust subpartition of G with
parameters ρ, ν, τ , η, k, `. For each 1 ≤ j ≤ `, let Aj ,Bj be the bipartition
of Wj . If P is a V-connecting, V-balancing path system such that |V (P) ∩
X| ≤ ρn for all X ∈ V then there is a cycle C in G that contains every
vertex in ∪U∈VU . Furthermore there is a polynomial-time algorithm for
constructing such a cycle.

Remark 3.4.2. Lemma 3.4.1 follows directly from Lemmas 7.8 and 6.2 in [54].
We do not state these results because their statements involve extraneous
definitions not required for our purposes. Instead we briefly discuss the
relevant results informally and how to make them algorithmic.
In this chapter, our definition of V-balancing is different from that used

in [54]. Lemma 7.8 from [54] is used to show that a path system P satisfying
the conditions of Lemma 3.4.1 can be used to construct a so-called V-tour,
which satisfies their stronger definition of balance. The proof is constructive
and easily gives a polynomial-time algorithm for constructing such a V-tour.
Lemma 6.2 in [54] then shows how, given a V-tour, one can construct a cycle
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C as in Lemma 3.4.1. The proof shows explicitly how to reduce this problem
to that of finding a Hamilton cycle in a robust (ν, τ )-expander. While in
[54], finding the Hamilton cycle is done by appealing to Theorem 6.7 there,
we can do this in polynomial time by appealing to Theorem 5 in [12].

Next we will state the results from [35] that allow one to find balancing
path systems in dense regular graphs. Their setup is different from [54], so
we now introduce the necessary definitions.

α-sparse and α-far from bipartite - Let G be a graph on n vertices. A
cut of a set A ⊆ V (G) is a partition X,Y of A, where X and Y are both
non-empty. We say that a cut X,Y is α-sparse if eG(X,Y ) ≤ α|X||Y |. We
say that a set A ⊆ V (G) is α-almost-bipartite if there exists a partition
X,Y of A such that G[A] has at most αn2 edges that are not in EG(X,Y ).
Otherwise, we say that A is α-far-from-bipartite.

Clustering - Let cmin ∈ (0, 1) and let G be a D-regular graph on n ver-
tices with D ≥ cminn. A clustering of G with parameters ζ, δ, γ,β, η is a
partition {A1, . . . ,Ar} of V (G) into non-empty sets satisfying the following
properties:

(a) G has at most ηn2 edges with ends in different Ai’s;
(b) for each i ∈ [r], the minimum degree of G[Ai] is at least δn;
(c) for each i ∈ [r], Ai has no ζ-sparse cuts;
(d) for each i ∈ [r], Ai is either β-almost bipartite or γ-far from bipar-

tite. If Ai is β-almost-bipartite, we also give an appropriate partition
Xi,Yi.

We will always choose the parameters such that 1/n� η � β � γ � ζ �
δ. Theorem 3.4.3 below states that a clustering always has a balancing path
system. Here we think of a path system as a subgraph of G.

Theorem 3.4.3 (Lemma 5 in [35]). Let 1/n � η � β � ξ, γ � ζ �
δ < 1. Suppose G is an n-vertex, D-regular graph with D ≥ cminn and
A = {A1, . . . ,Ar} is a clustering of G with parameters ζ, δ, γ,β, η, and
assume that whenever Ai is β-almost-bipartite the corresponding partition
of Ai is Xi,Yi. Then there exists a path system H ⊆ G with the following
properties:

(a) For each i ∈ [r] such that Ai is β-almost-bipartite, we have

2eH(Xi)− 2eH(Yi) + eH(Xi,Ai)− eH(Yi,Ai) = 2(||Aj | − |Bj ||);
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(b) The number of leaves (i.e. vertices of degree 1) of H in Ai is even for
all 1 ≤ i ≤ r;

(c) |V (H)| ≤ ξn.

Furthermore, there is a randomized algorithm that finds H with probability
p > 3

4 and runs in time polynomial in n.

Remark 3.4.4. Note firstly that (a) says that H is an A-balancing path
system. We shall see in Lemma 3.4.5 that a robust partition is a cluster-
ing, so this gives us a way of obtaining balancing path systems for robust
partitions.
Theorem 3.4.3 is not stated to be algorithmic in [35], but in fact their

probabilistic proof essentially gives a (randomized) polynomial-time algo-
rithm. Also, their proof requires that the probability p of success be positive,
but the analysis can easily be modified to show a lower bound of e.g. p > 3

4 .
As Theorem 3.4.3 uses the concept of a clustering, we use Lemma 3.4.5

to show that a robust partition is also a clustering. This allows us to apply
Theorem 3.4.3 to a robust partition.

Lemma 3.4.5. For every non-decreasing function f : (0, 1)→ (0, 1) there
is a non-decreasing function f ′ : (0, 1) → (0, 1) satisfying f ′(x) < f(x) for
all x ∈ (0, 1) such that the following holds. For any choice of parameters
ρ, ν, τ ,α,n, k, ` satisfying 1/n ≤ ρ �f ′ ν ≤ τ �f ′ α and n, k, ` ∈ N there
exist parameters ζ, δ, γ,β, η satisfying ρ�f η �f β �f γ �f ζ �f ν and
τ < δ < α such that if G is an n-vertex D-regular graph with D ≥ αn and
V is a robust partition of G with parameters ρ, ν, τ , k, ` then V is also a
clustering with parameters ζ, δ, γ,β, η.

Remark 3.4.6. A proof of the above lemma is provided in the appendix for
completeness.

3.4.2 Path systems and long cycles

The first lemmas in this subsection, 3.4.7 to 3.4.11 show how to find con-
necting path systems. The rest of the chapter shows how to combine all
the elements. Lemma 3.4.13 allows us to combine balancing and connect-
ing path systems into a single path system that is connecting and almost
balancing, and Lemma 3.4.15 allows us to extend this path system into a
very long cycle (by applying Lemma 3.4.1). At the end of the section comes
the proof of Theorem 3.4.16, which describes the whole algorithm.



96 almost hamiltonicity of dense regular graphs

v1 v2

v3

v6

U1 U2 U5

U3 U4

v7
v5

v4

Figure 9: Example: The path v1 . . . v7 from U1 to U5 has the edges between v2
and v6 pruned, resulting in two paths (thick lines), one from U1 to U2
and one from U2 to U5. Note that this ensures that C′ contains no edges
inside components.

Lemma 3.4.7. Let G be a graph, let U = {U1, . . . ,Um} be a partition of
V (G), and let C be a U-connecting path system in G. Then there exists a
U-connecting path system C′ such that

(a) E(C′) ∩E(G[Vi]) = ∅ for all i = 1, . . . ,m and
(b) |E(C′) ∩EG(Vi,Vj)| ≤ 2 for all 1 ≤ i < j ≤ m.

Proof. For any path P = v1v2 · · · vj in C, if two vertices of P belong to
the same component U ∈ U , let va and vb be the first and last vertices of
P that belong to U and replace P with the paths v1Pva and vbPvj ; it is
easy to see that the resulting path system is U-connecting (see Figure 9).
We make replacements as described above until no paths contain multiple
vertices from the same component and we call the resulting U-connecting
path system C∗. Next we show how to reduce the number of edges between
components.

Claim 3.4.8. Let D be a U-connecting path system (i.e. RU (D) is Eule-
rian). For X,Y ∈ U such that ED(X,Y ) > 2, it is possible to find two
edges e, f ∈ ED(X,Y ) such that D′ = D \ {e, f} is a U-connecting path
system. (Here deleting e, f from D may create isolated vertices which we
remove to form D \ {e, f}.)

Proof of Claim 3.4.8. We first note that if e ∈ ED(X,Y ), then the effect
of deleting e from D is to keep all degrees of R(D) unchanged except that
the degrees of X and Y will increase or decrease by 1. (Note that we only
get a decrease by 1 if e is the first or last edge of a path in D.) Therefore
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removing two edges of ED(X,Y ) from D preserves the parity of all vertices
of R(D).

Next suppose that R(D) is Eulerian (and hence connected). Hence R(D)
is in fact 2-edge connected (since an Eulerian graph can be decomposed
into cycles but a cut edge cannot belong to a cycle). Therefore by Menger’s
theorem there are two edge-disjoint paths Q1 and Q2 between X and Y in
R(D). Given any three edges of ED(X,Y ), we can find two, say e, f , that
miss either Q1 or Q2, say Q1 (where we think of Qi as a disjoint union of
paths in G).
Let Pe be the path of D containing e. The effect on R(D) of removing e

from D is to replace some edge AB with two edges AX,BY .4 Therefore A
and B are still connected in R(D \ {e}) via the path AXQ1Y B. Similarly,
deleting f keeps the reduced graph connected. Therefore R(D \ {e, f}) is
connected with all degree parities preserved, so is Eulerian, i.e. D′ = D \
{e, f} is a connecting path system. J

We construct C′ from C∗ by iteratively applying Claim 3.4.8 whenever
possible. By construction C′ is a U-connecting path system satisfying (a)
and (b).

Lemma 3.4.9 will be useful in our algorithm for detecting graphs that
do not have very long cycles. It essentially says that the absence of a U-
connecting path system implies the absence of a very long cycle.

Lemma 3.4.9. Let G be a graph and U = {U1, . . . ,Um} be a partition of
V (G). If there exists a cycle K in G that contains at least r > 2m vertices
from each U ∈ U , then there also exists a U-connecting path system C with
at most m2−m edges. Further, C contains at most two edges between any
two Ui,Uj ⊆ U .

Proof. We start by deleting edges from K to form a path system C∗ such
that RU (C∗) is a Hamilton cycle on U .

Claim 3.4.10. There exist vertex-disjoint paths P1, . . . ,Pm ⊆ K such that
the endpoints of Pi are in Ui.

Proof of Claim 3.4.10. Suppose, by induction, we have found vertex-disjoint
paths P1, . . . ,Pk−1 (with k ≤ m) such that

4 It does not affect what follows, but strictly speaking, if e is the first (resp. last) edge of
Pe then AX (resp. BY ) is a loop and is not present in R(D \ {e}).
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(a) each Pi (with i ≤ k − 1) has its endpoints in Ui (after relabelling of
indices);

(b) K \ (∪k−1
i=1 V (Pi)) is a union of paths that visits Ui at least r − (k −

1) > m times for each i ≥ k.

Any vertex of ∪mi=kUi is called untreated. We know that since K is a cycle,
K \ (∪k−1

i=1 V (Pi)) is a disjoint union of k − 1 paths, which we denote by
Q1, . . . ,Qk−1. At least one of these paths, say Q1 must contain at least
(r − k + 1)(m− k + 1)/(k − 1) > m− k + 1 untreated vertices. Pick two
untreated vertices a, b ∈ V (Q1) that are as close together as possible and
belong to the same Uj for some j ≥ k. In particular, no two internal un-
treated vertices of aQ1b belong to the same Ui and so aQ1b contains at
most m− k+ 1 untreated vertices. Then we swap the indices of Uj and Uk
and set Pk = aQ1b. It is clear that (a) holds with k− 1 replaced by k. Since,
for each i ≥ k + 1, the path Pk visits each Ui at most once, part (b) also
holds. (It is easy to see that a slight variant of the above argument allows
us to pick the first path.) J

Let C∗ be the set of non-trivial paths of K \ ∪mi=1E(Pi); it is easy to see
that C∗ is a Hamilton cycle on U and so is a U-connecting path system. Then,
by Lemma 3.4.7 applied to C∗, there exists a U-connecting path system C
that has no edges inside any U ∈ U and that has at most 2 edges between
any distinct Ui,Uj ∈ U (and therefore has at most m(m− 1) edges).

Lemma 3.4.11 gives an algorithm for deciding whether a graph with ver-
tex partition V has a V-connecting path system.

Lemma 3.4.11. Let G be a graph on n vertices and V a partition of
V (G) with |V| = m. There exists an algorithm that determines whether
there exists a V-connecting path system in G, and if one does, then the
algorithm finds one with at most m2 −m edges. This algorithm runs in
time mO(m2) +O(m2n5/2).

Proof. The algorithm proceeds by first preselecting a small number of plau-
sible edges and then using brute force to find a connecting path system
as a subset of these edges. The preselected edges are chosen such that if a
V-connecting path system exists, then one exists amongst the preselected
edges.

Assume V = {V1, . . . ,Vm}. For each 1 ≤ i < j ≤ m, let Ei,j ⊆ EG(Vi,Vj)
be defined as follows. If the bipartite graph G[Vi,Vj ] contains a matching
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of size 4m, let Ei,j be the edges in any such matching. If not then G[Vi,Vj ]
has a dominating set Fi,j of size at most 8m (taking the vertices incident
to a maximum matching). For each vertex v in Fi,j , select any set Evi,j
of min(dG[Vi,Vj ](v), 2m) edges incident to v in G[Vi,Vj ] and take Ei,j =

∪v∈Fi,jEvi,j . Finally our preselected edge set is defined to be E′ := ∪i<jEi,j .
Next we show that if a V-connecting path system C exists, then also a
V-connecting path system D ⊆ E′ exists. By Lemma 3.4.7 we may assume
that C has no edges inside any Vi and has at most two edges between
each pair Vi,Vj (so in particular there are at most 2(m− 1) edges of E(C)
incident with Vi (and Vj)).

Claim 3.4.12. Let C be any V-connecting path system as described above,
i.e. C has no edges inside any Vi and has at most two edges between each
pair Vi,Vj . Then for any e ∈ E(C), we can find r(e) ∈ E′ such that

(R1) if e has its endpoints in Vi and Vj , then so does r(e);

(R2) for all f ∈ E(C) \ {e}, if e∩ f = ∅, then r(e) ∩ f = ∅.

We will repeatedly apply this claim to replace edges e ∈ C with edges
r(e) ∈ E′ to obtain D.

Proof of Claim 3.4.12. In order to find r(e) satisfying (R1) and (R2), as-
sume e has endpoints in Vi and Vj . If e ∈ E′ then set R(e) = e and note
that (R1) and (R2) clearly hold. If not, then we have two cases to consider.
If Ei,j is a matching of size 4m then at least one edge of Ei,j is not

incident with any edge in E(C) (since there are at most 2(m− 1) edges of
C incident with any Vi) and this is the edge we choose as r(e); clearly (R1)
and (R2) hold in this case.
If Ei,j is not a matching of size 4m, then e is incident to some vertex

v ∈ Fi,j , so assume e = vv′ and that v ∈ Vi and v′ ∈ Vj . Since e 6∈ Ei,j , then
Ei,j has 2m edges incident to v, and so there is at least one edge vv∗ ∈ Ei,j
such that v∗ is not incident to any edge in E(C) (again since there are at
most 2(m− 1) edges of C incident to Vj), and we choose r(e) = vv∗. Again
(R1) and (R2) follow by construction. J

We now apply the above claim to C, replacing each edge e ∈ E(C) with
r(e) one at a time (each time updating C before the next application of the
claim). Denote the resulting set of edges by D. Note that E(D) ⊆ E′ and

(a) if e ∈ E(C) has its endpoints in Vi and Vj , then so does r(e) ∈ D;
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(b) if e, f ∈ C are independent (i.e. e∩ f = ∅) then so are r(e) and r(f).

Here (b) holds because (R2) guarantees we never introduce any new inci-
dences during the process of replacing edges.
It is easy to see from (b) that D is a path system, and we now check

that D is V-connecting. By (a) and (b), for any path P ∈ C, the set of
edges {r(e) | e ∈ E(P )} is a union of vertex-disjoint paths P1, . . . ,Pt with
Pi = aiPibi and ai+1 and bi belong to the same V ∈ V. Therefore each edge
e = V V ′ ∈ R(C) corresponds to a path from V to V ′ in R(D) (with edges
e1, . . . , et corresponding to the paths P1, . . . ,Pt). This shows that R(D) can
be obtained from R(C) by replacing each edge with a path having the same
endpoints as the edge: it is now clear that if R(C) is Eulerian then so is
R(D) and so D is V-connecting.
We have now shown that if a V-connecting path system exists, then

one exists inside E′ (and we have seen that it uses at most 2 edges be-
tween each Vi,Vj , so at most m2 −m edges in total). For the algorithm
to find such a path system, we first construct each Ei,j ; the running time
here is dominated in searching for a maximum matching in each G[Vi,Vj ],
which takes total time (m2 )n

2.5 (using e.g. the Hopcroft-Karp algorithm
[40]). We then check every possible way of selecting at most two edges
from each Ei,j ; since Ei,j has size at most (8m)(2m) = 16m2, there are(
(16m2

2 ) + 16m2 + 1
)(m2 ) = mO(m2) possibilities. If a V-connecting path sys-

tem exists, then one of these possibilities will give us such a path system
and it takes time mO(m2) +O(m2n2.5)-time to determine this.

The next lemma allows us to combine a connecting path system with a
balancing path system into a path system that is connecting and almost-
balancing.

Lemma 3.4.13. Given a graph G on n vertices with a robust partition V =

{V1, . . . ,Vk,W1, . . . ,W`}, a V-balancing path system B and a V-connecting
path system C, there exists a connecting, (5|E(C)|+m− 1)-almost balanc-
ing path system P, where m := k + ` is the number of components in V,
and P ⊆ B ∪ C (when thought of as sets of edges). Furthermore, P can be
constructed in time polynomial in n. (Note that we suppress the parameters
of the robust partition as they are irrelevant for this lemma.)

Proof. We begin by constructing B′ ⊆ B as follows: First delete any edge
from B that shares a vertex with an edge from C to obtain B∗. As each edge



3.4 finding almost-hamilton cycles 101

in C is incident to at most four edges in B, we delete at most 4|E(C)| edges
here.

Claim 3.4.14. There exists B′ ⊆ B∗ such that |E(B∗) \E(B′)| ≤ m− 1
and every vertex of RV(B′) has even degree.

Proof of Claim 3.4.14. Consider a connected component X of the multi-
graph R′V(B∗). As in any graph, there are an even number of vertices with
odd degree in X. For each component of R′V(B∗), pair up these vertices ar-
bitrarily and find paths (not necessarily disjoint) between each pair within
R′V(B∗) (which is possible since each pair belongs to the same connected
component of R′V(B∗)); call these paths P1, . . . ,Pt. Set Q = 4t

i=1Pi as the
symmetric difference of the edge sets of P1, . . . ,Pt. Note that removing all
edges in Q from R′V(B∗) will result in a graph with even degree in each
vertex. Next, construct Q′ from Q by iteratively removing edges that form
cycles, where we count a double edge as a cycle. Do this until no cycles
remain, i.e. Q′ is a forest so has at most m− 1 edges. Again, removing the
edges in Q′ from R′V(B∗) results in a graph with even degree in each vertex.
The edges in Q′ correspond to edges in B∗ that we delete to construct B′,
and so R′V(B′) has even degree in every vertex. As the parity of each de-
gree in RV(B′) and R′V(B′) are the same, RV(B′) has even degree in each
vertex. J

We construct P as the union of B′ and C. Both RV(B′) and RV(C) have
even degree for every vertex and so this also holds for RV(P). Since RV(C)
is connected so is RV(P) and so RV(P) is Eulerian, i.e. P is V-connecting.
By construction P arises from B by at most 5|E(C)|+m− 1 additions or
deletions of edges, each of which contributes at most 1 to the V-imbalance of
P. It is straightforward to see that P can be constructed in time polynomial
in n given G,B, C.

If we have a connecting, almost balancing path system (as provided
by Lemma 3.4.13) with respect to a robust partition, then we can use
Lemma 3.4.1 to construct a very long cycle, as described below.

Lemma 3.4.15. Let 0 < 1/n0 � ρ ≤ γ � ν � τ ≤ α < 1 and t ≤ ρn.
There is an algorithm that, given an n-vertex, D-regular graph G with
n ≥ n0 and D ≥ αn and a robust partition V = {V1, . . . ,Vk,W1, . . . ,W`}
of G with parameters ρ, ν, τ , k, ` and a V-connecting t-almost balancing
path system P with |V (P) ∩ V | ≤ γn for all V ∈ V, constructs a cycle
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through all but at most t vertices of G. It does this in time polynomial in
n.

Proof. We use Lemma 3.2.4 to see that V is also a weak robust subpartition
with parameters ρ, ν, τ , η, k, ` where we set η = α2/2.

For 1 ≤ j ≤ `, let tj be such that
∑
tj = t and such that P is tj-almost

(Aj ,Bj)-balancing, where Aj ,Bj is the bipartition corresponding toWj . By
selecting tj vertices Tj from either Aj \ V (P) or Bj \ V (P), we can ensure
that P is (Aj \ Tj ,Bj \ Tj)-balancing. Set T = ∪Tj so that |T | = t ≤ ρn

and define V ′ = {V ′1 , . . . ,V ′k,W ′1, . . . ,W ′`} with V ′i = Vi \ T = Vi and W ′j =
Wj \ T with Aj \ T ,Bj \ T as the bipartition of W ′j .
Next we show that V ′ is a weak robust subpartition of G with parameters

3γ, ν/2, 2τ ,α2/4, k, `.
First we apply Lemma 3.3.17(ii) to each Wj with Wj \ T playing the

role of U ′. As |Wj4W ′j | ≤ ρn ≤ γn, we see that each Wj is a bipartite
(3γ, ν/2, 2τ )-robust expander component ofG (with bipartition Aj \T ,Bj \
T by Lemma 3.3.17(i)). Clearly each V ′i = Vi remains a (ρ, ν, τ )-robust
expander component and so is a (3γ, ν/2, 2τ )-robust expander component
as well. This shows that (D2′) and (D3′) hold. (D1′) obviously holds, and
as |T | ≤ ρn, it is easy to see that (D4′) and (D5′) also hold.

To construct the desired cycle (i.e. one that contains every vertex of
V (G) \ T ), we apply Lemma 3.4.1 with G, 3γ, ν/2, 2τ ,α2/4,n, k, `,V ′,P
playing the roles of G, ρ, ν, τ , η,n, k, `,V,P. We obtain a cycle C that con-
tains all vertices in ∪X∈V ′X = V (G) \T . Moreover, this cycle can be found
in time polynomial in n since we can find T in polynomial time and apply
Lemma 3.4.1 in polynomial time.

Finally, we prove the main result, which we repeat here for convenience.

Theorem 3.4.16. For every α ∈ (0, 1], there exists c = c(α) and a (de-
terministic) polynomial-time algorithm that, given an n-vertex D-regular
graph G with D ≥ αn as input, determines whether G contains a cycle on
at least n− c vertices. In fact, we can take c(α) = 100α−2. Furthermore
there is a (randomized) polynomial-time algorithm to find such a cycle if it
exists.

Proof. We are given α in the statement of the theorem. We will choose
non-decreasing functions f1, f2, f3, f4 : (0, 1)→ (0, 1) with fi(x) ≤ x for all
x ∈ (0, 1), i ∈ [4] as follows. Let f1 be the function governing the hierarchy
in the statement of Lemma 3.4.15 and let f2 be the function governing
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the hierarchy of Theorem 3.4.3. Define f3 : (0, 1) → (0, 1) as f3(x) =

min{f1(x), f2(x),α2x2/100}. Applying Lemma 3.4.5 with f3 playing the
role of f , let f4 be the function we obtain (i.e. f4 := f ′) and note that
f4(x) ≤ f3(x) for all x ∈ (0, 1).

We define τ = f4(α) and apply Theorem 3.3.20 with τ ,α, f4 playing the
roles of τ ,α, f to obtain a number n0 ∈ N. Define c := 100α−2. So far we
have defined f1, . . . , f4, τ ,α,n0, c.

Given an n-vertex D-regular graph G with D ≥ αn, then if n ≤ max(n0,
1000α−3) we can use brute force to determine in polynomial time if there
exists a cycle in G on at least n − c vertices. So we assume that n ≥
max(n0, 1000α−3).
By applying Theorem 3.3.20 to G (with τ ,α,n0 as above and f = f4),

we obtain a robust partition V of G with parameters ρ, ν, τ , k, ` satisfying

1/n0 �f4 ρ�f4 ν ≤ τ �f4 α. (3.4.1)

Set m := k+ ` = |V| and note that m ≤ (1 + ρ1/3)/α ≤ 2α−1.
We claim that G contains a cycle with at least n− c vertices if and only

if G has a V-connecting path system. The claim proves the first part of
the Theorem because, by applying the algorithm of Lemma 3.4.11, we can
determine in time polynomial in n whether G has a V-connecting path
system (and if it does, we can find one in time polynomial in n with at
most m2 edges).
So let us prove the claim. First assume G has no V-connecting path

system. Then by Lemma 3.4.9, for every cycle K of G, there is some U ∈ V
such that K contains at most 2m vertices of U ; in particular K misses at
least

|U | − 2m ≥ (α−√ρ)n− 2m ≥ (α/2)n− 2m ≥ c
vertices, where the first inequality is by Proposition 3.3.6, the second since
ρ�f4 α with f4(x) ≤ f3(x) ≤ x2/4, and the third by our choice of n large
and c.
Now suppose G contains a V-connecting path system. Then we know

there exists a V-connecting path system P with at most m2 edges. By
Lemma 3.4.5 with f3, f4 playing the roles of f , f ′ and using (3.4.1), we see
that V is a clustering with parameters ζ, δ, γ,β, η where

1/n�f3 ρ�f3 η �f3 β �f3 γ �f3 ζ �f3 ν ≤ τ ≤ δ ≤ α. (3.4.2)

Set ξ := γ. In particular n, η,β, γ, ξ, ζ, δ satisfy the hierarchy needed to ap-
ply Theorem 3.4.3 to G (with V,α playing the roles of A, cmin). Thus there
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exists H ⊆ G that is V-balancing (by part (a)) and such that |V (H)| ≤
ξn = γn (by part (c)). Now applying Lemma 3.4.13 with G,V,H,P play-
ing the roles of G,V,B, C, there exists a V-connecting, r-almost balancing
path system P ′ ⊆ P ∪H where r ≤ 5|E(P)| +m − 1 ≤ 5m2 +m ≤ c

(hence P ′ is also c-almost balancing). Note that for each U ∈ V, we have
|V (P ′) ∩U | ≤ |V (H) ∩U |+ |V (P)| ≤ ξn+ 2m2 ≤ 2ξn. By Lemma 3.4.15
with G,V,P ′, ρ, 2ξ, ν, τ ,α, c playing the role of G,V,P, ρ, γ, ν, τ ,α, t, we see
there exists a cycle C in G with at least n− c vertices. We note that the
required hierarchy for applying Lemma 3.4.15 follows from (3.4.2) and our
choice of f3 and it is also easy to see that c ≤ ρn (since 1/n�f3 ρ and our
choice of f3). This proves the claim.

Finally, if our algorithm determines that there exists a cycle in G with
at least n − c vertices then there is also a randomized polynomial-time
algorithm to construct such a cycle. Indeed repeating the argument above
with the corresponding algorithms, in polynomial time we can construct P
(Lemma 3.4.11) and H (Theorem 3.4.3 and Remark 3.4.4) and therefore
also P ′ (Lemma 3.4.13) and hence also C (Lemma 3.4.15).

Remark 3.4.17. The algorithm in Theorem 3.4.16 (for determining the ex-
istence of the cycle) has a crude running time upper bound of O(α−2n3) +

O(α−4n5/2) + g(α), for some function g. Indeed O(α−2n3) comes from the
application of Theorem 3.3.20 and Lemma 3.4.11. The contribution of g(α)
comes from using brute force when n ≤ max(n0, 100α−3) and the applica-
tion of Lemma 3.4.11.

We do not give an explicit running time for finding the desired cycle
(when it exists) because this algorithm is based on other polynomial-time
algorithms in the literature where no explicit running time bound was given.

3.5 conclusion

The most obvious question that arises from this work is whether we can
take c = 0 in Theorem 3.4.16, i.e. whether the Hamilton cycle problem is
polynomial-time solvable for dense, regular graphs. Our work shows that to
answer this affirmatively, it is enough to give a polynomial-time algorithm
to decide whether there exists a path system that is both V-connecting
and V-balancing when given a dense regular graph together with a robust
partition V.
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A B
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Ck−2

D D − 1

D + 1

D + 1

C2

D + 1

. . .
...

Figure 10: The graph G above has n = kD + k − 3 vertices (and we assume k
divides D for simplicity). A and B are independent sets with all edges
between them present. There are D/k independent edges from A to
each Ci so that these edges together form a matching. Then we delete
a matching from each Ci so that the resulting graph is D-regular. The
graph has no cycle on n− (k− 4) vertices because deleting D vertices
from G would then yield at most D + (k − 4) components in G (at
most D from the cycle and at most k− 4 from the missed vertices), but
deleting A from G yields D+ k− 3 components.

One important aspect of Theorem 3.4.16 is that it shows that the cir-
cumference (the length of a longest cycle) of an n-vertex, D-regular graph
G with D ≥ αn cannot take values between roughly (1− α)n and n− c,
where c = c(α) = 100α−2. For our algorithm, this gives some slack to play
with. On the other hand, for the Hamiltonicity problem, there is no such
slack: by an easy generalization of the example of Jung [47] and Jackson-
Li-Zhu [43] (see Figure 10) there are regular graphs of degree roughly n/k
whose circumference is n− (k− 3).

If Hamiltonicity turns out to be NP-complete for dense, regular graphs
then the question remains as to the smallest value of c for which Theo-
rem 3.4.16 holds. This may turn out to be closely related to the small-
est c for which the the circumference cannot take values between roughly
(1−α)n and n− c. It is also worth noting that the example in Figure 10 has
a large independent set (roughly of size αn) and one can in fact show that
any non-Hamiltonian dense regular graph with long cycles (say of length
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at least (1− (α/2))n) must have a large independent set (of size at least
(α− ε)n).

Finally, we expect that the algorithm given in Theorem 3.4.16 can be
modified to give an approximation algorithm for the longest path/cycle
problems in dense regular graphs. The idea would be to search for (similarly
to Lemma 3.4.11) a connecting path system that maximises the number of
vertices in the parts it connects together; write S for this union of parts.
We would then combine it with a balancing path system (guaranteed by
Theorem 3.4.3) and use the resulting path system together with (a vari-
ant of) Lemma 3.4.15 to produce a cycle passing through all but a fixed
number c of vertices in S. We should not expect any paths/cycles of length
bigger than |S| so this would give a (1− c

n )-approximation for the longest
path/cycle.

appendix

Proof (of equivalence claim in Proposition 3.1.2). For v ∈ V (G), let f(v)
be the 9 vertices in G′′ that arise from applying the replacement operation
twice, first on v, then on the three vertices that we replace v with; see
Figure 11.
First assume G contains a Hamilton cycle C. Note that C can be easily

extended to a Hamilton cycle of G′′ by tracing a path as in Figure 11,
bottom left, through each f(v) for all v ∈ V (G). The claimed cycles in G′′
can be constructed by replacing one, two or three such subpaths with e.g.
the path in Figure 11, bottom right.
Now let C ′ be a cycle of length |V (G′′)| − i in G′′ with i ∈ {1, 2, 3}. Then

C ′ induces a cycle C on G by contracting f(v) back to a single vertex for all
v ∈ V (G). Clearly C ′ contains at least one vertex in f(v) for all v ∈ V (G),
so C is a Hamilton cycle of G.

Proof (of Lemma 3.4.5). We define f∗, f ′ : (0, 1) → (0, 1) as f∗(x) =

min{x2/4, f(x)}, and f ′(x) = f∗5 (x), where f∗5 (x) denotes composing f∗
with itself five times. Note that f∗(x) < x and f∗(x) ≤ f(x) for all
x ∈ (0, 1), so (by induction) f∗5 (x) < f(x) for all x ∈ (0, 1).
We choose ζ, δ, γ,β, η such that δ = f∗(α), ζ = f∗(ν), γ = f∗(ζ),β =

f∗(γ), η = f∗(β). Note that this also implies τ ≤ f∗(δ) and ρ ≤ f∗(η).
Writing x�f∗ y to mean that x ≤ f∗(y), one easily checks that

ρ�f∗ η �f∗ β �f∗ γ �f∗ ζ �f∗ ν ≤ τ �f∗ δ �f∗ α.
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Figure 11: Top: replacing a vertex v in G with f(v) in G′′. Bottom left: a (red)
path through all vertices of f(v). Bottom right: a (blue) path through
8 vertices of f(v).

Furthermore (D6) implies m := k + ` ≤ 2n/D ≤ 2α−1 and so D/m ≥
αn/m ≥ α2n/2 ≥ δn.

Property (a) follows from (D2), (D3) and ρ � η. Property (b) follows
from (D4) and α/m ≥ 2α2 ≥ δ.

For property (c), let X,Y be a non-trivial partition of Ai. We will show
eG(X,Y ) > ζ|X||Y |.

First we consider the case that Ai is a robust expander component. As-
sume without loss of generality that |X| ≤ |Y |. If |X| < τ |Ai|, each vertex
in |X| sends at least D/m− |X| edges to |Y | by (D4). Then D

m − |X| ≥
δn− τ |Ai| ≥ ζn ≥ ζ|Y |, so eG(X,Y ) ≥ ζ|X||Y |. If |X| ≥ τ |Ai|, then since
|X| ≤ |Y |, we have |X| ≤ |Ai|/2 ≤ (1− τ )|Ai|. Therefore |RNν,Ai(X)| ≥
|X| + ν|Ai|, so |RNν,Ai(X) ∩ Y | ≥ ν|Ai|, and so eG(X,Y ) ≥ ν2|Ai|2 ≥
ζ|X||Y |.
Now consider the case that Ai is a bipartite robust expander component

with parts U1, U2. Let X be such that |X ∩U1| ≤ |Y ∩U1|, so we also have
|X ∩U1| ≤ |U1|/2.
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If |X ∩U1| < τ |U1| and |X ∩U2| < τ |U1|, we have

eG(X ∩U1,Y ∩U2) ≥|X ∩U1|(D/2m− |X ∩U2|)
≥|X ∩U1|(δn/2− τ |U1|) ≥ ζn|X ∩U1|.

By the same argument eG(Y ∩ U1,X ∩ U2) ≥ ζn|X ∩ U2|, and taking the
sum of these inequalities gives eG(X,Y ) ≥ ζ|X||Y |.

If |X ∩U1| < τ |U1| and |X ∩U2| ≥ τ |U1|, we have eG(Y ∩U1,X ∩U2) ≥
(D/2m− |X ∩U1|)|X ∩U2| ≥ 2ζn|X ∩U2| ≥ ζn|X| ≥ ζ|X||Y |.

If |X ∩U1| ≥ τ |U1|, then since |X ∩U1| ≤ |Y ∩U1|, we have that

τ |U1| ≤ |X ∩U1|, |Y ∩U1| ≤ (1− τ )|U1|.

Therefore (dropping subscripts in RN),

|RN(X ∩U1) ∩U2|+ |RN(Y ∩U1) ∩U2| ≥ |U1|+ 2ν|Ai|
≥ |U2|+ 2ν|Ai| − ρn
≥ |U2|+ ν|Ai|, (3.5.1)

using Proposition 3.3.6(i) and ρ � ν for the last inequality. This implies
that |RN(X ∩ U1) ∩ (Y ∩ U2)| > ν|Ai|/2 or |RN(Y ∩ U1) ∩ (X ∩ U2)| >
ν|Ai|/2 since if both fail then we have

|RN(X ∩U1) ∩U2| < (ν/2)|Ai|+ |X ∩U2| and
|RN(Y ∩U1) ∩U2| < (ν/2)|Ai|+ |Y ∩U2|,

which when summed contradict (3.5.1). Without loss of generality, we
assume |RN(X ∩U1)∩ (Y ∩U2)| > (ν/2)|Ai|, so that eG(X,Y ) ≥ eG(X ∩
U1,Y ∩U2) ≥ ν2|Ai|2/4 ≥ ζ|X||Y |.
For property (d), if Ai is a bipartite robust expander component with bi-

partition U1, U2 then the number of non-U1-U2 edges is at most eG(U1,U2)+

eG(U2,U1) ≤ ρn2 ≤ βn2, showing that Ai is β-almost-bipartite with parti-
tion U1, U2. If instead Ai is a robust expander component, we claim that Ai
is γ-far from bipartite. Let X,Y be a non-trivial partition with |X| ≤ |Y |,
so |X| ≤ |Ai|/2 ≤ (1− τ )|Ai|. If |X| < τ |Ai|, then eG(X,Y ) ≤ |X|D, so

e(X) + e(Y ) ≥ (D/2m)|Ai| −D|X| ≥ αn|Ai|((2m)−1 − τ ) ≥ (α3/16)n2

≥ γ|X||Y |,
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where the penultimate inequality follows since |Ai| ≥ αn/2 by (D3) and
Remark 3.3.7, and m ≤ k + 2` ≤ 2α−1 by (D6). If |X| ≥ τ |Ai|, then
recalling |X| ≤ (1 − τ )|Ai|, we also have τ |Ai| ≤ |Y | ≤ (1 − τ )|Ai| so
RNν,Ai(Y ) ≥ |Y |+ ν|Ai|. Therefore, since |Y | ≥ |Ai|/2, we have |RN(Y )∩
Y | ≥ |Y |+ ν|Ai|, so e(Y ) ≥ ν2|Ai|2/2 ≥ γ|X||Y |.





4
RECONF IGURATION OF HAMILTON CYCLES AND
APPL ICAT IONS

This chapter is divided into two sections. The first section is devoted to
the reconfiguration of Hamilton cycles under k-switches, and in the sec-
ond section we discuss an application of the results of the first section to
computational counting and sampling.

4.1 reconfiguration of hamilton cycles under
k-switches

In this section we present results on reconfiguration of Hamilton cycles.
We begin by introducing the problem and stating our results and some
general context (Subsection 4.1.1). Then some additional definitions (Sub-
section 4.1.2) and the proofs of the main results (Subsections 4.1.3 and
4.1.4) are presented.

4.1.1 Introduction

Throughout this section, let G be an n-vertex graph and denote its mini-
mum degree by δ(G). Recall that a Hamilton cycle of G is a simple cycle
of G that includes every vertex. Given a graph G, let HG denote the set of
Hamilton cycles of G. We say that H ′ ∈ HG can be obtained from H ∈ HG
by a k-switch if |E(H)4E(H ′)| ≤ 2k, that is, a k-switch is an operation
for transforming one Hamilton cycle into another by altering at most 2k of
its edges.1 Note that the k-switch operation is symmetric, meaning that if
H can be obtained from H ′ by a k-switch, then H ′ can be obtained from
H by a k-switch. See Figure 12 for an example. In this section, we consider
reconfigurations of the set of Hamilton cycles of a graph under k-switches.

Given a graph G, we say HG is k-switch irreducible if for every H,H ′ ∈
HG, we can obtain H ′ from H by a sequence of k-switches, i.e. there exists

1 Such operations are also widely used, for example, in heuristics for the traveling salesman
problem; see e.g., [61].
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v1v2

v3v4

v1v2

v3v4

H H ′

Figure 12: Example of a k-switch for k = 2. Left side: The Hamilton cycle H
is the circle. We have E(H)4E(H ′) = {v1v2, v2v3, v3v4, v4v1} these
edges are shown thick. Right side: The modified graph H ′, which is
also a Hamilton cycle.

a sequence H = H1, . . . ,Hq = H ′ ∈ HG where Hi can be obtained from
Hi−1 by a k-switch for i = 2, . . . , q. Here we employ the language of Markov
chains for later convenience; in the language of reconfiguration problems,
the notion of k-switch irreducibility might be referred to as the connectiv-
ity of the reconfiguration graph of HG under k-switches as introduced in
Chapter 1.

Our contributions The main goal of Section 4.1 is to provide the first
k-switch irreducibility results for HG. Our results are as follows.

(i) We prove that HG is 10-switch irreducible if δ(G) ≥ 1
2n + 7. (See

Theorem 4.1.1.)

(ii) For each k ≥ 4, we give examples of graphs G satisfying δ(G) ≥
n−3k−4

2 for which HG is not k-switch irreducible. (See Example 4.1.5.)

(iii) We give examples of graphs G with δ(G) ≥ 2
3n− 1 for which HG is

not 2-switch irreducible. (See Example 4.1.6.)

Theorem 1.2.1 guarantees the existence of Hamilton cycles in graphs G
whenever δ(G) ≥ n/2. Item (i) shows that very slightly above this thresh-
old, we obtain 10-switch irreducibility, allowing us to move throughout HG
with small local operations. Item (ii) shows that very slightly below the
threshold for Hamiltonicity, there are examples of graphs with Hamilton
cycles, but where k-switch irreducibility is lost for k ≥ 4. So (i) and (ii)
essentially establish a threshold in terms of minimum degree for k-switch
irreducibility for k ≥ 10. The degree threshold in 1.2.1 and (i) and (ii)
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of n/2 appears because it allows us to find a set of neighbors with use-
ful properties for any two vertices. It is perhaps surprising that one can
lose 2-switch irreducibility quite far above the threshold for Hamiltonicity,
as shown in item (iii). We will see later that because of item (iii) certain
Markov chains cannot be used to sample Hamilton cycles.

Related work For general background on reconfiguration problems, we
refer the reader to the surveys of van den Heuvel [38] and Nishimura [65].
For Hamilton cycles, Takaoka [71] has considered the complexity of deciding
whether HG is 2-switch irreducible when G belongs to particular structural
graph classes. This includes a hardness result for chordal bipartite graphs,
but also a result establishing the 2-switch irreducibility of Hamilton cycles
in unit interval graphs and monotone graphs.2 A slightly different Hamilton
reconfiguration problem is considered by Lignos [60].

4.1.2 Preliminaries

We begin by recalling some common definitions. Let G be a simple undi-
rected graph with vertex set V . We use the shorthand notation uv to denote
an edge {u, v} ∈ E. Given two graphs G = (V ,E) and G′ = (V ,E′) on
the same vertex set V , their symmetric difference is denoted by G4G′ =
(V ,E4E′) = (V , (E \ E′) ∪ (E′ \ E)). We often write |G4G′| in place
of |E(G)4E(G′)|. We use NG(v) = {w | vw ∈ E} to denote the set of
neighbors of v ∈ V in G and we write dG(v) = |N(v)| for the degree of v,
dropping subscripts when the graph is clear. A 2-factor of G is a subgraph
F in which every vertex v ∈ V has degree precisely dF (v) = 2. We use FG
to denote the set of all 2-factors of G. We use HG to denote the set of all
Hamilton cycles of G.
We have defined k-switches for Hamilton cycles, but let us define them

more generally. For a given k ≥ 2 and (finite) set A of graphs on some
vertex set V , we say F ′ = (V ,E′) ∈ A is obtained from F = (V ,E) ∈ A
by a switch of size k if |E(F )4E(F ′)| = 2k. We say that such a switch of
size k (with respect to A) transforms F into F ′. We then define a k-switch

2 Chordal bipartite graphs are bipartite graphs in which every cycle on at least 6 vertices
contains a chord. Unit interval graphs have as vertices some unit intervals of the real line,
with any overlapping vertices connected by an edge. They do not appear in the rest of
this thesis. Monotone graphs will be defined below.
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(with respect to A) to be a switch of size at most k. In this work we are
mostly interested in A = HG or A = FG for a given undirected graph G.

Fix a graph G and consider a k-switch transforming F into F ′ with
respect to FG or HG. It is easy to see that every vertex of the graph
S = F4F ′ must have even degree (since all graphs in FG or HG are regular
of degree 2). Moreover, every connected component of S can be thought of
as an alternating circuit, i.e. a circuit whose edges alternate between edges
in E \E′ and E′ \E. Recall that a circuit in G = (V ,E) is a sequence of
v1e1v2e2 · · · vk−1ek−1vk of vertices and edges where ei = vivi+1 ∈ E, the
edges ei are distinct, and v1 = vk.3

k-switch irreducibility. For a given graph G and integer k, we say that HG
is (weakly) k-switch irreducible if for every H,H ′ ∈ HG, there exists a
sequence H = H1, . . . ,Hq = H ′ of Hamilton cycles in HG such that for
every consecutive pair of Hamilton cycles (Hi,Hi+1), the Hamilton cycle
Hi+1 can be obtained from Hi by a k-switch. Moreover, for a given class of
graphs G and integer k, we say that G is strongly k-switch irreducible for
Hamilton cycles if there exists a function φ : N → N with the following
property: For all G ∈ G, whenever H,H ′ ∈ HG with |E(H)4E(H ′)| ≤ x,
there exists a sequence of Hamilton cycles H = H1, . . . ,Hq = H ′ in HG
such that for every consecutive pair of Hamilton cycles (Hi,Hi+1), the
Hamilton cycle Hi+1 can be obtained from Hi by a k-switch and q ≤ φ(x).
Roughly speaking, strong irreducibility states that if two Hamilton cycles

are somewhat ‘close’ to each other in terms of symmetric difference, then we
should be able to transform one into the other with a ‘small’ number of k-
switches. We note that the notion of strong irreducibility will be important
in Section 4.2.
Similarly we define (strong) irreducibility for 2-factors. For a given graph

G, we say that FG (the set of 2-factors of G) is (weakly) k-switch irreducible
if for every F ,F ′ ∈ FG, there exists a sequence F = F1, . . . ,Fq = F ′ of
2-factors in FG such that for every consecutive pair of 2-factors (Fi,Fi+1),
the 2-factor Fi+1 can be obtained from Fi by a k-switch. For a given class
of graphs G and integer k, we say that G is strongly k-switch irreducible for
2-factors if there exists a function φ : N→N with the following property:
For all G ∈ G, whenever F ,F ′ ∈ FG with |E(F )4E(F ′)| ≤ x, there exists
a sequence F = F1, . . . ,Fq = F ′ of 2-factors in FG such that for every

3 The key difference between circuits and cycles is that circuits may repeat vertices and
cycles may not.
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consecutive pair of 2-factors (Fi,Fi+1), the 2-factor Fi+1 can be obtained
from Fi by a k-switch and q ≤ φ(x).

4.1.3 Strong 10-switch irreducibility

In this section we prove various results regarding the (non)-irreducibility of
the k-switch irreducibility ofHG. The main result of this section is Theorem
4.1.1 below. Afterwards, we provide various examples of non-irreducibility
for certain combinations of δ(G) and k.

Theorem 4.1.1. If a graph G satisfies δ(G) ≥ 1
2n+ 7, then the set HG

of all Hamilton cycles of G is 10-switch irreducible. Moreover, the class of
graphs G for which δ(G) ≥ 1

2n + 7 is strongly 10-switch irreducible for
Hamilton cycles.

Remark 4.1.2 (Bipartite case). Theorem 4.1.1 remains true if we restrict
ourselves to balanced bipartite graphsG = (A∪B,E) on 2n vertices, where
|A| = |B| = n, and δ(G) ≥ 1

2n+ 7. The proofs are almost identical, so we
make remarks in footnotes where the proofs differ.
In order to prove Theorem 4.1.1, we rely on Lemma 4.1.3 below. It allows

us to quickly reconfigure a 2-factor T into a Hamilton cycle H ′ without
increasing the symmetric difference with respect to some fixed Hamilton
cycle H.

Lemma 4.1.3 (Reconnecting lemma). Let G = (V ,E) be an undirected
graph with minimum degree δ(G) ≥ 1

2n+ 1, and let H be a fixed Hamilton
cycle in G. Let T be an arbitrary 2-factor of G with t components.

Then there exists a Hamilton cycle H ′, so that T can be transformed
into H ′ with at most t− 1 switches of size at most 3, and for which

|H ′4H| ≤ |T4H|. (4.1.1)

Proof. Let t be the number of components of T . We will prove the statement
in the lemma using induction. If t = 1 then T is a Hamilton cycle and we
are done as we may take H ′ = T . Suppose t > 1. Let C1, . . . ,Ct denote
the cyclic components of T . Since H is a Hamilton cycle, there must be
some edge vw ∈ E(H) connecting two components of T (see Figure 13).
We assume without loss of generality that vw connects C1 and C2, i.e that
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v ∈ V (C1) and w ∈ V (C2) (by renumbering if necessary). Moreover, since
v has degree two in H and vw ∈ E(H), it must be that there exists an
a ∈ V (C1) (one of the two neighbors of v in T ) so that va ∈ E(T ), but
va /∈ E(H). Similarly, there is a b ∈ V (C2) so that wb ∈ E(T ), but
wb /∈ E(H).

We assign orientations to C1, . . . ,Ct. For any vertex u the vertex following
u in the appropriate orientation will be called u+ and the preceding vertex
will be called u−. We choose the orientations on C1 and C2 such that
v = a+ and b = w+, see Figure 13, and we assign arbitrary orientations on

C2C1
v w

a b

Ci

C2C1
v w

a b

x y

x

y

Figure 13: Two situations in the general case. The thick black line shows the cycle
after the switch, the arrows show our chosen orientations. Left: xy is
on a third cycle. Right: xy is on C1.

C3, . . . ,Ct. Consider X := {u+ | u ∈ N(a)}. As δ(G) ≥ 1
2n+ 1, we have

that |X| ≥ 1
2n+ 1. Also consider N(b), and note that we have |N(b)| ≥

1
2n+ 1. Therefore |X ∩N(b)| 6= ∅. Select y ∈ X ∩N(b) and set x = y−

noting that ax ∈ E(G).4 If y /∈ {a, b+,w, v+}, the general case, we now
switch along the cycle vaxybwv; see Figure 13. Note that the edge xy may
lie on C1, C2 or a different cycle Ci. In all these cases, we do not increase
|T4H|, as vw ∈ E(H) and va, bw /∈ E(H). If xy /∈ E(C1∪C2), we decrease
the number of cycles by two, otherwise by one. For the special cases y ∈
{a, b+,w, v+}, we switch along different cycles as follows; see Figure 14. If
y = v+, we switch along the cycle vybwv. If y = w, we switch along the
cycle vaxwv. If y ∈ {a, b+}, then ab ∈ E(G), and we switch along the cycle

4 In the case of bipartite graphs (see Remark 4.1.2), we note that avwb is a path of G so
a and b are in different parts, say a ∈ A and b ∈ B. Then X ⊆ A with |X| ≥ 1

2n+ 1 and
N(b) ⊆ A with |N(b)| ≥ 1

2n+ 1, so X ∩N(b) 6= ∅ and we continue.
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C2C1
v w

a b
C2C1

v w

a b

y

Figure 14: Two situations from the special cases. Left: Case y = v+, Right: Cases
y = a and y = b+

vabwv. It is easy to see that in these cases we decrease |T4H| by at least
two and we decrease the number of cycles by one.
In any case, the resulting 2-factor has fewer components and the symmet-

ric difference is not larger. Repeated application of this procedure proves
the statement of the lemma.

We now continue with the proof of Theorem 4.1.1.

Proof of Theorem 4.1.1. We claim that for two given Hamilton cycles H1
and H2 there is a switch of size at most 4 that transforms H1 into a 2-factor
T with at most 3 components such that |T4H2| < |H14H2|. The theorem
then follows from Lemma 4.1.3 since with two switches of size at most 3,
we can transform T into some Hamilton cycle H ′ satisfying

|H ′4H2| ≤ |T4H2| < |H14H2|.

In particular we can transform H1 to H ′ with a switch of size at most
4 + 2× 3 = 10, and repeating this we can transform H1 into H2 with at
most x = |H14H2| switches of size 10, proving the theorem (where we take
φ(x) = x in the definition of strong irreducibility).
We now prove the claim. Note that the symmetric difference of H1 and

H2 is the vertex-disjoint union of circuits in which edges alternate between
H1 and H2 and the circuits visit each vertex zero, one, or two times. If
the symmetric difference of H1 and H2 contains such alternating circuits
with four or six edges (corresponding to switches of size 2 or 3), the claim
obviously holds, so assume otherwise. In this case it is not hard to see that
we can find an H1,H2-alternating walk P = a1a2a3a4a5a6 (here the ai are
vertices and a1 and a6 are distinct) such that the a1a2, a3a4, a5a6 are edges
of H1, and a2a3, a4a5 are edges of H2.



118 reconfiguration of hamilton cycles and applications

We try to find vertices b and c that are neighbors on H1 such that b ∈
N(a1) and c ∈ N(a6). Then the circuit C := a1a2a3a4a5a6cba1 is a 4-switch
forH1. Deleting the edges a1a2, a3a4, a5a6 and cb dividesH1 into four paths
and adding a2a3, a4a5, a6c and ba1 can connect some of these paths again.

Therefore, switching H1 along C can produce at most 4 connected com-
ponents, and this only happens if the four edges a2a3, a4a5, a6c and ba1
connect each path into a cycle (see Figure 15, left side). If one of the paths
is just an isolated vertex, it cannot be connected to itself in this way. It is
easy to check that 4 components are produced if and only if the vertices
a1, a2, . . . , a6, c, b are distinct and appear in that order along H1 (as in Fig-
ure 15, left side). To prevent this, we choose b and c as follows: orient H1 so

a1a2

a6a5

a3
a4

b
c

a1a2

a6a5

a3
a4

c
b

Figure 15: Left side: The circle is H1. The only way that a 4-switch (thick lines)
leads to four components is the shown configuration. Right side: Choos-
ing c to follow b leads to at most three components. Note that in general
the edges a3a4 and a5a6 could appear in different places and orienta-
tions.

that a2 follows a1. We call the vertex following a vertex v in this orientation
v+ and the previous vertex v−. Set M = {v− | v ∈ N(a6)} and consider
N(a1)∩M . As both |N(a1)|, |M | ≥ n/2+ 7 we have |N(a1)∩M | ≥ 2 · 7 =

14.5 Select b ∈ (N(a1)∩M) \ {a+i , a−i , i = 1, . . . , 6} and set c = b+. This en-
sures that the resulting 4-switch (along the circuit C := a1a2a3a4a5a6cba1)
produces at most three components.
Finally, if T is the 2-factor produced by switching H1 along C, then

compared to H1, the 2-factor T contains at least two new edges of H2
(namely a2a3, a4a5) but T may have lost one edge of H2 (namely bc if it

5 In the case of bipartite graphs (see Remark 4.1.2), we note that a1a2a3a4a5a6 is a walk
in G and so a1 and a6 are in different parts; say a1 ∈ A and a6 ∈ B. Then N(a1),M ⊆ B,
so since |N(a1)|, |M | ≥ 1

2n+ 7, so |N(a1) ∩M | ≥ 14, and we continue as before.
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was in fact an edge of H2), giving a net gain of one. Since T and H1 have the
same number of edges, we see that |T4H2| ≤ |H14H2|−1, as required.

We also give a version of Theorem 4.1.1 for 2-factors, instead of Hamilton
cycles, that we will need later. The proof is a simplification of Theorem 4.1.1
and we give it for completeness.

Proposition 4.1.4. The class of graphs G for which δ(G) ≥ 1
2n+ 7 is

strongly 4-switch irreducible for 2-factors.
For bipartite graphs the following holds. The class of bipartite graphs

G = (A∪B,E) with bipartition A∪B, where |A| = |B| = n, and δ(G) ≥
1
2n+ 7 is strongly k-switch irreducible for 2-factors.

Proof. We claim that given F1,F2,∈ FG, there is a T ∈ FG that can be
obtained from F1 by a 4-switch such that |T4F2| < |F14F2|. Applying
this repeatedly proves the proposition, taking φ(k) = k.

Let F1,F2 ∈ FG. Note that the symmetric difference of F1 and F2 is the
vertex-disjoint union of circuits in which edges alternate between F1 and F2
and the circuits visit each vertex zero, one, or two times. If the symmetric
difference of F1 and F2 contains such alternating circuits with four or six
edges (corresponding to switches of size 2 or 3), then switching along such
a circuit reduces the symmetric difference, so assume otherwise.

In this case it is not hard to see that we can find an H1,H2-alternating
walk P = a1a2a3a4a5a6 (here the ai are vertices and a1 and a6 are distinct)
such that a1a2, a3a4, a5a6 are edges of F1, and a2a3, a4a5 are edges of F2.
We try to find vertices b and c that are neighbors on F1 such that

b ∈ N(a1) and c ∈ N(a6). Then the circuit C := a1a2a3a4a5a6cba1 is a
4-switch for F1. We choose b and c as follows. Orient the cycles of F1 arbi-
trarily. We call the vertex following a vertex v in this orientation v+ and the
previous vertex v−. Set M = {v+ | v ∈ N(a6)} and consider N(a1) ∩M .
As both |N(a1)|, |M | ≥ n/2 + 7 we have |N(a1) ∩M | ≥ 2 · 7 = 14.6 Select
c ∈ (N(a1)∩M) \ {a+i , a−i , i = 1, . . . , 6} and set b = c−. For T , the 2-factor
produced by switching F1 along C := a1a2a3a4a5a6cba1, we see that com-
pared to F1, T contains at least two new edges of F2 (namely a2a3, a4a5)
but T may have lost one edge of F2 (namely bc if it was in fact an edge
of F2), giving a net gain of one. Since T and F1 have the same number of
edges, we see that |T4F2| ≤ |F14F2| − 1, as required.

6 In the case of bipartite graphs, we note that a1a2a3a4a5a6 is a walk in G and so a1
and a6 are in different parts; say a1 ∈ A and a6 ∈ B. Then N(a1),M ⊆ B, so since
|N(a1)|, |M | ≥ 1

2n+ 7, so |N(a1) ∩M | ≥ 14, and we continue as before.
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4.1.4 Counterexamples

We continue with examples showing non-irreducibility under certain as-
sumptions on δ(G) and k, as stated in contributions (ii) and (iii) in Section
4.1.1.

Example 4.1.5 (The case δ(G) = 2n
3 − 1 and k = 2). Construct G =

(V ,E) as follows: Set V = A1 ∪ A2 ∪ A3, where |Ai| = n/3 =: m. For
convenience, we select n such that m is odd and m ≥ 3. We denote the
vertices of Ai by vi,j for j = 1, . . . ,m. Take as edge set E all edges between
vertices in A1, all edges between vertices in A3, and all edges from vertices
in Ai to vertices in Ai+1 for i = 1, 2 (see Figure 16).
We color edges as follows: All edges incident to a vertex in A1 are colored

blue, and all other edges red. Note that all cycles of length 4 contain an
even number of red and blue edges. This means that any switch along a
4-cycle preserves the parity of red and blue edges.

We will finish the construction by describing two Hamilton cycles H1 and
H2 that have different parities of blue edges. As any 2-switches preserve the
parity of blue edges, H1 cannot be converted to H2 via 2-switches.
The blue edges in H1 are v2,1v1,1, v1,kv1,k+1 for k = 1, . . . ,m− 1 and

v1,mv2,m. The red edges in H1 are v2,kv3,k, v3,kv2,k+1 for k = 1,m − 2
and v2,m−1v3,m−1, v3,m−1v3,m, v3,mv2,m, see Figure 16. There are an even
number of blue edges and an odd number of red edges in H1. The Hamilton
cycle H2 is constructed by swapping the roles of the blue and red edges.

A1 A2 A3
A1 A2 A3

Figure 16: Left: The graph G. Right: The Hamilton cycle H1 in G with n = 9.
There are an even number of (thick) blue edges and an odd number of
(thin) red edges.

Example 4.1.6 (The case δ(G) ≈ n
2 for each fixed k.). For k fixed and

n ≥ 3k + 5, there is a graph G with δ(G) ≥ (n− 3k− 4)/2 for which HG
is not k-switch irreducible. Our construction relies on the following lemma.
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Lemma 4.1.7. For any `, there is a graph X with 3`+ 1 vertices that has
exactly two Hamilton paths H1 and H2. Moreover, these two paths satisfy
|H14H2| = 2`.

Proof. Without loss of generality let ` be odd, and set n = 3`+ 1. Let X =

(V ,E) with V := {v1, . . . , vn} and E := E1 ∪E2, where E1 = {vivi+1 | 1 ≤
i ≤ n− 1}, and E2 = {vjvj+4 | j ≡ 2(mod 3) and j ≤ n− 5} ∪ {v3vn−2};
see left side of Figure 17. As vertices v1 and vn have degree 1, they must
be the ends of any Hamilton path in X. Vertices vi with i ≡ 1(mod 3) and
4 ≤ i ≤ n− 3 have degree 2 in X, so both of their incident edges must be
part of any Hamilton path; call the set of these 2` edges F and call the
remaining edges F ′. Note that the edges of F ′ form a cycle C ⊆ X. In F ,
every vertex of V has degree 1 or 2 and those vertices of degree 1 (except
for v1 and vn) are precisely the vertices in the cycle C. Therefore we can
only extend F to a Hamilton path by adding a perfect matching from C,
and it is easy to see that adding either perfect matching from C results in
a Hamilton path. These Hamilton paths have symmetric difference of size
|E(C)| = |F ′| = 2`.

v1

v16

A

B

X

Figure 17: Left: Example of X for ` = 5 (edges in E1 are black, edges in E2 are
red, edges in F are heavy, edges in C are thin). Right: The example
graph G

For the example we begin by applying Lemma 4.1.7 with ` = k + 1 to
obtain the graph X of order r := 3`+ 1. For any n such that n+ r is odd,
we construct our example G by taking an (unbalanced) complete bipartite
graph with parts A and B of size n+(r−1)

2 and n−(r−1)
2 respectively and

adding a copy of X inside A. See Figure 17, right side.



122 reconfiguration of hamilton cycles and applications

As there are no edges inside B, any Hamilton cycle of G must use r− 1
edges inside A, and so these must be within X. Since X has r vertices, any
Hamilton cycle of G must induce a Hamilton path on X. By construction,
X has exactly two Hamilton paths H1 and H2, and they have a symmetric
difference of 2k + 2. It is easy to see that G has Hamilton cycles that use
each of the two Hamilton paths in X, but it is impossible to perform a
sequence of k-switches to transform a Hamilton cycle that uses H1 into one
that uses H2; indeed if such a sequence existed, examining its restriction
to X would yield a sequence of switches of size at most k that transforms
H1 into H2 but maintaining a Hamilton path in X at each stage; this
is impossible since X has only two Hamilton paths and their symmetric
difference has size 2` = 2(k+ 1) > k.

4.1.5 Concluding remarks

Overall, several interesting new questions arise in light of our work and we
hope our results will stimulate more work in the area. In particular, what
is the smallest k for which HG is (strongly) k-switch irreducible for graphs
with δ(G) ≥ n

2 + c, where c is a (small) constant? Furthermore, given the
interest in the 2-switch irreducibility for other combinatorial objects (see
Subsection 4.2.1), what is the smallest7 constant 2

3 ≤ γ ≤ 1 such that HG
is 2-switch irreducible for all graphs with δ(G) ≥ γn+ c for some (small)
constant c?

4.2 rapid mixing for dense monotone graphs

In this section we apply our results from Section 4.1 to analyze certain
Markov chains. Again the section starts with the problem and our results,
followed by general context (Subsection 4.2.1). We include an informal in-
troduction to computational counting and sampling (Subsection 4.2.2) and
continue with preliminaries (Subsection 4.2.3) and then the proofs of the
main results (Subsections 4.2.4 and 4.2.5) and some concluding remarks
(Subsection 4.2.6).

7 It is not hard to argue that the result is true for complete graphs G where γ = c = 1.
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4.2.1 Introduction

For each t ∈N0 let Xt be a random variable with state space Ω. The family
of random variables (Xt)∞t=0 is a Markov chain if

P[Xn+1 = xn+1 | X0 = x0,X1 = x1, . . . ,Xn = xn]

= P[Xn+1 = xn+1 | Xn = xn]

for all choices n ∈N0 and x0, . . . ,xn+1 ∈ Ω. This property means that the
state of the next random variable only depends on the state of the current
random variable. We will only consider Markov chains where the transition
probability is independent of t. This allows us to write

P (x, y) := P[Xn+1 = y | Xn = x],

where P is the transition matrix of the Markov chain. More generally for
t ∈N we may also define

P t(x, y) := P[Xn+t = y | Xn = x].

A stationary distribution of a Markov chain is a probability distribution
π : Ω→ [0, 1] such that

π(y) =
∑
x∈Ω

π(x)P (x, y).

A Markov chain is irreducible if for all x, y ∈ Ω, we have P t(x, y) > 0 for
some t ∈ N. A Markov chain is aperiodic if gcd(t | P t(x,x) > 0) = 1
for all x ∈ Ω. If π is the stationary distribution of a Markov chain, that
Markov chain is time-reversible if, for all x, y ∈ Ω, we have π(x)P (x, y) =
π(y)P (y,x). A Markov chain is lazy if P (x,x) > 0 for all x ∈ Ω.
We follow Jerrum [45] for an introduction to the concepts discussed below.

LetM be an aperiodic, irreducible and time-reversible Markov chain on a
finite state space Ω with transition matrix P . Note that M has a unique
stationary distribution π, and if P is symmetric, then π is the uniform
distribution on Ω. For two probability distributions π and π′ on Ω, define
the total variation distance between π and π′ as

||π− π′||TV :=
1
2
∑
ω∈Ω

|π(ω)− π′(ω)|.
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The total variation distance of the distribution P t(x, ·) from the (unique)
stationary distribution π at time t with initial state x is defined as

∆x(t) := ||P t(x, ·)− π||TV =
1
2
∑
y∈Ω

∣∣∣P t(x, y)− π(y)
∣∣∣ ,

and the mixing time ofM is defined as

τ (ε) := max
x∈Ω

min{t | ∆x(t′) ≤ ε for all t′ ≥ t}.

Informally, τ (ε) is the number of steps until the Markov chain is guaranteed
to be ‘ε-close’ to its stationary distribution given any starting state. We only
consider Markov chains that have uniform stationary distributions. In that
context, a set of Markov chains is said to be rapidly mixing if there exists
a polynomial p such that for each Markov chain M in the set, its mixing
time τ (ε) can be upper bounded by p(ln(|Ω|/ε)), where Ω is the state
space of M. The set of Markov chains will always be clear from context;
for example we often discuss the k-switch Markov chain on HG (defined
below) for all graphs G in some graph class, which gives a set of Markov
chains (with different state spaces).
We will be concerned with switch Markov chains. They are arguably the

simplest and most natural Markov chains on the set of Hamilton cycles of a
graph. Given a graph G recall the definitions of HG, k-switches and strong
k-switch irreducibility from Section 4.1. For a given constant k ∈ N, the
k-switch Markov chain on HG is defined as follows. Given that the Markov
chain is currently in state H ∈ HG, we first pick ` ∈ {1, . . . , k} uniformly
at random, and then select a set L ⊆ E(G) with |L| = 2` uniformly at
random. If the graph H ′ with edge set

E(H ′) = E(H)4L

is again in HG, i.e., a Hamilton cycle of G, then we transition to H ′. Other-
wise, we do nothing and stay in the state H. Note that the k-switch Markov
chain on HG is aperiodic (since it is lazy) and time-reversible. Further, the
transition matrix of the k-switch Markov chain is symmetric and so its
unique stationary distribution is the uniform distribution. As we have seen
in Section 4.1, these Markov chains are not always irreducible.
We will consider the k-switch Markov chain on HG for monotone graphs

G (also known as bipartite permutation graphs). A bipartite graph G =
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(A ∪ B,E), with |A| = |B| = n, is monotone if there exists a permuta-
tion (a1, . . . , an) of the vertices in A and a permutation (b1, . . . , bn) of the
vertices in B, such that the adjacency matrix C of G, with rows indexed
by a1, . . . , an and columns indexed by b1, . . . , bn, has monotone rows and
columns. This means that for each i, there exists 1 ≤ ri ≤ ti ≤ n such that
C(ai, bj) = 1 if and only if ri ≤ j ≤ ti and the sequences (ri)ni=1 and (ti)ni=1
are non-decreasing. Intuitively, this means that the 1-entries in every row
and column are contiguous. Note that although the definition does not im-
mediately appear to be symmetric in A and B, one can easily check that it
is. An example of such an adjacency matrix of a monotone graph is

C =



1 1 1 0 0 0
1 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 0
0 0 1 1 1 1
0 0 1 1 1 1


.

We will call a monotone graph G dense if δ(G) ≥ n/2 = |G|/4.

Our contributions Our main contribution in this section is as follows:

Theorem 4.2.1. Let D be a set of monotone graphs G with δ(G) ≥ n/2
where 2n is the number of vertices in G. If D is strongly k-switch irre-
ducible for Hamilton cycles for some k ∈N (this is the case for k = 10 by
Remark 4.1.2 if δ(G) ≥ n/2 + 7), then the set of k-switch Markov chains
on HG for each G ∈ D is rapidly mixing.8

Strong k-switch irreducibility for monotone graphs for k = 10 (see Sub-
section 4.1.3) plays a key role in our proof, which we give later in Subsec-
tion 4.2.5.

Related work Dyer, Frieze, and Jerrum [22] consider the question of
counting and sampling Hamilton cycles in graphs G with δ(G) ≥ αn for
1/2 < α ≤ 1. For the sampling problem, they take a two-step approach.
First, based on a result of Jerrum and Sinclair [46], they show that there

8 To be precise: there exists a polynomial p such that the mixing time τ (ε) of the k-
switch Markov chain on HG for G ∈ D is bounded by p(|G| + ln(ε−1)) and we note
|G| = O(ln |HG|), as can be seen by adapting methods from [18, 68].
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is a rapidly mixing Markov chain on the set FG of all 2-factors of G (recall
these are all subgraphs of G in which every vertex has degree 2). Then
it is shown that the number of 2-factors in G is at most a polynomial
factor larger than the number of Hamilton cycles in G. This then implies
(roughly speaking) that if one takes a polynomial number of samples from
the Markov chain that samples 2-factors approximately uniformly, most
likely one of those samples will be a Hamilton cycle. This sample is then
also an approximately uniform sample from the set of all Hamilton cycles
in G.
At the end of their paper, Dyer, Frieze and Jerrum [22] ask if there is a

rapidly mixing Markov chain on the set of Hamilton cycles, and possibly
‘near-Hamilton cyles’ on graphs with δ(G) ≥ αn for 1/2 < α ≤ 1, that
mixes rapidly.9 The main result of this section answers this in the affirma-
tive for the 10-switch Markov chain on dense monotone graphs. Moreover,
item (iii) in 4.1.1 shows that the 2-switch Markov chain (arguably the
simplest Markov chain on Hamilton cycles) cannot be used to address the
question of Dyer, Frieze and Jerrum for all graphs with δ(G) ≥ n/2. This
is because item (iii) in 4.1.1 shows the 2-switch Markov chain (for graphs of
minimum degree bigger than n/2) is not always irreducible and therefore
cannot converge to the uniform distribution on HG.

The mixing time of switch-based Markov chains have been studied exten-
sively for sampling subgraphs of Kn with a given degree sequence, see, e.g.,
[4, 15, 48, 63]. It is well known, see e.g. [72], that every two graphs (thought
of as subgraphs on Kn) with the same degree sequence can be transformed
into each other with switches of size 2 (in Kn). This remains true if one
restricts oneself to the class of all connected subgraphs of Kn with a fixed
degree sequence [72]. In particular, relevant to our setting, Feder et al. [27]
(implicitly) show that the 2-switch chain is rapidly mixing on the set of all
Hamilton cycles in case G is the complete graph. There are more direct
ways to obtain this result, but we mention it here as we rely on some of
their ideas.

Monotone graphs, also known as bipartite permutation graphs, have been
widely studied from the structural graph theory perspective, perhaps most
notably in their characterization [70]. Monotone graphs are also considered
in the context of switch-based Markov chains for the sampling of perfect
matchings: in particular, Dyer, Jerrum and Müller [23] show that the 2-

9 To be precise, in [22] they ask: “Second, is there a random walk on Hamilton cycles and
(in some sense) “near-Hamilton cycles” which is rapidly mixing?”
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switch Markov chain for sampling perfect matchings is rapidly mixing on
monotone graphs. We refer the reader to [23] for further results in this
direction.

We mentioned in the previous section that Takaoka [71] shows that the
set of all Hamilton cycles in a given monotone graph is 2-switch irreducible.
We remark that in [71] this is established in the weak sense by showing
that every Hamilton cycle can be transformed, by switches of size 2, into
a fixed canonical Hamilton cycle. However, we need the stronger notion of
irreducibility for our rapid mixing proof for dense monotone graphs to go
through.

4.2.2 A brief digression on sampling and counting

A reader who is unfamiliar with rapid mixing might wonder how the mixing
time of certain Markov chains is related to approximate counting. In this
subsection we informally describe the ideas behind sampling and counting
via Markov chains. We stress that none of the material in this subsection
is required for the rest of the chapter and the reader may safely skip ahead
to the next subsection.

Sampling: Sampling in this context refers to the problem of finding fast
algorithms for selecting some object x out of a set Ω according to a desired
distribution, often the uniform distribution. This is relatively simple if one
can easily count and enumerate all of the objects in Ω, but if Ω is large
(like HG), one needs a different strategy. Typically we want to select x ∈ Ω
in time poly(ln |Ω|).

One such strategy is simulating a Markov chain with state space Ω. If a
Markov chain with stationary distribution π runs through ‘enough’ steps,
the probability of ending up in state x ∈ Ω is close enough to π(x), indepen-
dent of the starting state. This naturally gives an algorithm for sampling
from Ω with distribution π: simply simulate the Markov chain for ‘enough’
steps, then output the current state. In order for this algorithm to be fast,
it is necessary that ‘enough’ steps do not take too long to simulate. This is
where rapid mixing comes in useful. If a chain is rapidly mixing, roughly,
this means we only need to simulate the chain for a small number of steps
relative to |Ω| (typically logarithmic in |Ω|). For example, in our case of
sampling subgraphs of a graph of order n, we want to bound the mixing
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time by a polynomial in n. Note that in general we cannot sample from π

precisely this way, merely from a distribution that is close enough to π.

Counting: Sampling and counting are closely related, and for many prob-
lems we can transform an (approximate) sampling algorithm into an (ap-
proximate) counting algorithm [45]. We give a rough sketch on how we may
apply this principle to our example of approximately counting the Hamilton
cycles |HG| of a graph G on n vertices. Assume we can uniformly sample
from HG. Fix an arbitrary edge e ∈ E(G). We take a large (but polynomial
in n) number of samples from HG and compute the proportion that con-
tain e. This proportion gives (with good probability) a good approximation
for |HG−e|/|HG| (provided this ratio is not too small or too large). In the
same way, we may add any edge e1 to G and approximate |HG|/|HG+e1 |.
Let e1, e2, . . . , ek be the edges not in G. Then we may sample Hamilton
cycles in G+ e1, G+ e1 + e2,. . . , Kn− ek and use these to approximate the
telescoping product

|HG| =
|HG|
|HG+e1 |

|HG+e1 |
|HG+e1+e2 |

. . .
|HKn−ek |
|HKn |

|HKn |.

For a more detailed introduction, we refer the reader to [7].

4.2.3 Preliminaries

Markov chains and mixing times.
It is known that for time-reversible Markov chains, such as the ones we

study, the transition matrix P only has real eigenvalues, which we denote
by 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λ|Ω|−1 > −1. We can always replace the
transition matrix P of the Markov chain by (P + I)/2, to make the chain
lazy10, and, hence, guarantee that all its eigenvalues are non-negative. It
then follows that the second-largest eigenvalue in absolute value of (the
new transition matrix) P is λ1. In this work we always consider the lazy
versions of the Markov chains involved, but we do not always mention this
explicitly. It follows directly from Proposition 1 in [69] that

τ (ε) ≤ 1
1− λ1

(
ln(1/π∗) + ln(1/ε)

)
,

10 I.e. all diagonal entries of P are non-zero.
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where π∗ = minx∈Ω π(x). When π is the uniform distribution, the above
bound reduces to

τ (ε) ≤ 1
1− λ1

(ln(|Ω|) + ln(1/ε)).

The quantity (1− λ1)−1 can be upper bounded using the multicommodity
flow method of Sinclair [69].

We define the state space graph of the chainM as the directed graph G

with vertex set Ω that contains exactly the arcs (x, y) ∈ Ω×Ω for which
P (x, y) > 0 and x 6= y. Let P = ∪x6=yPxy, where Pxy is the set of simple
paths between x and y in G. A flow f in Ω is a function P → [0,∞) with
the property

∑
p∈Pxy f(p) = π(x)π(y) for all x, y ∈ Ω, where x 6= y. The

flow f can be extended to a function on oriented edges of G by setting
f(e) =

∑
p∈P :e∈p f(p), so that f(e) is the total flow routed through the

edge e ∈ E(G). We call f(e) the congestion of e and maxe∈E(G) f(e) the
congestion of f . Let `(f) = maxp∈P :f (p)>0 |p| be the length of a longest
flow carrying path, and let ρ(e) = f(e)/Q(e) be the load of the edge e,
where Q(e) = π(x)P (x, y) for e = (x, y). The maximum load of the flow
is then given by ρ(f) = maxe∈E(G) ρ(e). Sinclair, in Corollary 6 ′ of [69],
shows that

(1− λ1)
−1 ≤ ρ(f)`(f).

We use the following (by now standard) technique for bounding the max-
imum load of a flow in the case that the chain M has uniform stationary
distribution π. Suppose θ is the smallest positive transition probability
of the Markov chain between two distinct states in Ω. If b is such that
f(e) ≤ b/|Ω| for all e ∈ E(G), then it follows that ρ(f) ≤ b/θ. This
implies that

τ (ε) ≤ `(f) · b
θ

ln(|Ω|/ε) . (4.2.1)

Now, if `(f), b and 1/θ can be bounded by a function polynomial in ln(|Ω|)
for some (set of) Markov chains, it follows that the Markov chains are
rapidly mixing. In this case, we say that f is an efficient flow. Note that in
this approach the transition probabilities do not play a role as long as 1/θ
is polynomially bounded.

For a more detailed introduction to this concept, we refer the reader to
[45]. We remark that most importantly, we seek to bound the congestion
by a polynomial in n; this will be enough to ensure rapid mixing.
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4.2.4 Rapid mixing on 2-factors

We first present a result for the sampling of 2-factors using switch-based
Markov chains, which will be used later on, and that might be of indepen-
dent interest. Given a graph G, recall the k-switch Markov chain on HG
defined in the introduction. Replacing HG with FG (the set of all 2-factors
of G) everywhere in that definition defines the k-switch Markov chain on
FG. Here is the explicit definition for the reader’s convenience.

For a given constant k ∈N, the k-switch Markov chain on FG is defined
as follows. Given that the Markov chain is currently in state F ∈ FG,
we first pick ` ∈ {1, . . . , k} uniformly at random, and then select a set
L ⊆ E(G) with |L| = 2` uniformly at random. If the graph F ′ with edge
set

E(F ′) = E(F )4L

is again in FG, i.e., a 2-factor of G, then we transition to F ′. Otherwise, we
do nothing and stay in the state F .

Theorem 4.2.2. Let G be the class of all graphs G with δ(G) ≥ |V (G)|/2.
If G is strongly k-switch irreducible for 2-factors for some k ∈ N (this is
the case for k = 4 by Proposition 4.1.4) then there is an efficient multi-
commodity flow for the k-switch Markov chain on FG for each G ∈ G. In
particular, the set of k-switch Markov chains on FG for all G ∈ G is rapidly
mixing.

Moreover, Theorem 4.2.2 remains true for the bipartite case of the prob-
lem, where we are given a bipartite graph G = (A ∪ B,E) with both
|A| = |B| = n, and where every vertex in A∪B has degree at least n/2.

The JS chain, which we detail below, is known to have an efficient multi-
commodity flow. Its state space contains FG, but also subgraphs of G which
are only nearly 2-factors. The main idea behind the proof of Theorem 4.2.2
is to use the flow f on the JS chain in order to obtain such a flow g for FG.
We obtain g from f by first restricting f to paths that only go between
states in FG and then making further adjustments, being careful not to
increase the load on any edge by more than a factor polynomial in n. This
is an example of the Markov chain comparison technique.
The proof of Theorem 4.2.2 is based on the embedding argument intro-

duced in [4] for the switch Markov chain that samples graphs with a given
degree sequence. It is perhaps interesting to note that it seems much harder
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to prove Theorem 4.2.2 by using other approaches for that problem, such
as [15, 63]. These approaches do have the advantage that they get better
mixing time bounds than those in [4].

The proof of Theorem 4.2.2 is a modification of certain parts in [4]. We will
tailor all definitions to the notion of 2-factors for sake of readability. Let
2 = (2, 2, . . . , 2) be the all-twos sequence of length n. Let G ∈ G be a given
undirected n-vertex graph G with δ(G) ≥ n/2 and let FG be the set of all
2-factors of G.

We write G(d′) for the set of all subgraphs of G with degree sequence d′.
Let F ′G = ∪d′G(d′) with d′ ranging over the set{

d′ | d′j ≤ 2 for all j, and
n∑
i=1
|2− d′i| ≤ 2

}
.

In other words, F ′G is the set of almost 2-factors, that is, subgraphs of G
with degree sequence d′ where (i) d′ = 2, or (ii) there exist distinct κ,λ
such that d′i = 1 if i ∈ {κ,λ} and d′i = 2 otherwise, or (iii) there exists a κ
so that d′i = 0 if i = κ and d′i = 2 otherwise. In the case (ii) we say that d′
has two vertices with degree deficit one, and in the case (iii) we say that d′
has one vertex with degree deficit two.
Jerrum and Sinclair [46] define a Markov chain that, tailored to 2-factors,

works as follows.

Let F ∈ F ′G be the current 2-factor of the JS chain. Choose an ordered
pair of vertices (i, j) uniformly at random:

1. if F ∈ FG and ij is an edge of F , delete ij from G (Type 0 transi-
tion),

2. if F /∈ FG and the degree of i in G is less than 2, and ij is not an
edge of F , add ij to F if this edge is in G; if this causes the degree
of j to exceed 2, select an edge jk uniformly at random from F

and delete it (Type 1 transition).

In case the degree of j does not exceed 2 in the second case, we call this
a Type 2 transition.

The graphs F ,F ′ ∈ F ′G are JS adjacent if F can be obtained from F ′

with positive probability in one transition of the JS chain and note this
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relation is symmetric. The properties of the JS chain, stated in Theorem
4.2.3 below, are easy to check [46].

Theorem 4.2.3. The JS chain on F ′G is irreducible, aperiodic and sym-
metric, and, hence, has uniform stationary distribution over F ′G. Moreover,
P (F ,F ′)−1 ≤ 2n3 for all JS adjacent F ,F ′ ∈ F ′G, and also the maximum
in- and out-degrees of the state space graph of the JS chain are bounded
by n3.

We say that two graphs F ,F ′ ∈ F ′G are within distance r in the JS chain
if there exists a path of length at most r from F to F ′ in the state space
graph of the JS chain. By dist(F ′, 2) we denote the minimum distance of
F ′ ∈ F ′G to an element in F . The following parameter will play a central
role in this work. Let

kJS(G) = max
F ′∈F ′G

dist(F ′, 2) . (4.2.2)

Based on the parameter kJS , we define the notion of strong stability [4].

Definition 4.2.4 (Strong stability). A family of graphs D is called strongly
stable if there exists a constant ` such that kJS(G) ≤ ` for all G ∈ D.

It is shown by Jerrum and Sinclair [46], that if D is the set of all graphs
G with δ(G) ≥ n/2, then D is strongly stable for ` = 3.11 (This gives rise
to the condition on the minimum degree in the statement of Theorem 4.2.2.)

We now have all the ingredients for the proof of Theorem 4.2.2. It uses
essentially the same argument as that in [4], where it is shown that the
switch Markov chain for sampling graphs with given degrees is rapidly mix-
ing for certain strongly stable classes of degree sequence, i.e., for the notion
of strong stability in that setting which corresponds to Definition 4.2.4 in
our setting.

Proof of Theorem 4.2.2. The high-level idea is to use an embedding argu-
ment which states that an efficient multi-commodity flow for the JS chain
can be transformed into an efficient flow for the k-switch Markov chain on
FG.

11 See Theorem 4.1 there. This is implicitly shown in the proof.



4.2 rapid mixing for dense monotone graphs 133

The fact that there exists an efficient multi-commodity flow for the JS chain
can be shown using exactly the same arguments as in Theorem 3.2 in [4].12

Without going into all the details, we will give a sketch of this argument.
Recall that Sinclair’s multi-commodity flow method asks us to define a flow
f in the state space graph of the JS chain that routes a fraction π(X)π(Y )

of flow from X to Y for every X,Y ∈ F ′G. Here,

π(Z) =
1
|F ′G|

for every Z ∈ F ′G.
The notion of strong stability allows us to take a shortcut here: Instead

of defining a flow between every two states in F ′G, one can first define a flow
between any two 2-factors F ,F ′ ∈ FG. Then, roughly speaking, in order
to define a flow between any two states in F ′G, we use the fact that every
‘almost 2-factor’ X ∈ F ′G \ FG is close to some actual 2-factor in the state
space graph, because of strong stability. These short paths between states
in F ′G \FG and FG can be exploited to define the desired flow between any
two states in F ′G.

In order to define the flow between two 2-factors F and F ′, we decompose
the symmetric difference F4F ′ into a collection of alternating circuits.13

We then use the operations defining the JS chain in order to transform F

into F ′ by ‘flipping’ edges on an alternating circuit in order to move from
F to F ′; see Figure 18 for a short example and [4] for a more detailed
explanation.
In particular, all these flow-carrying paths will have polynomial length.

Moreover, all these operations only use edges in F4F ′ and so the approach
taken in the proof of Theorem 3.2 in [4] can be used here as well (when G
is not a complete graph) to give Lemma 4.2.5 below.

12 That theorem essentially shows the result in the case where the graph G is complete and
strong irreducibility for k = 2, but the analysis remains true when G is not a complete
graph, and when k > 2 (still assuming the notion of strong stability of the given class of
degree sequences).

13 To be more precise, the flow is spread out over all possible ways in which the symmetric
difference can be decomposed.
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Figure 18: An example of how to process one circuit in the symmetric difference
of two 2-factors F and F ′. (a): The alternating circuit v1v2v3v4v1 is
in F4F ′. Black thick edges are in both F and F ′, red dashed edges
are only in F , blue (thin, normal) edges are only in F ′. We present
operations in the JS chain that remove edges in F \ F ′ and add edges
in F ′ \F . Position (b) occurs after a type 0 transition on v1v2. Position
(c) occurs after a type 1 transition, adding v2v3 and removing v3v4.
Finally, (d) is achieved with a type 2 transition on v3v4. The order of
these operations is obtained by considering a fixed total order on the
edges.

Lemma 4.2.5. Let D be the collection of graphs with δ(G) ≥ n/2. Then
there exist polynomials p(n) and q(n) such that for any G ∈ D there exists
an efficient multi-commodity flow f for the JS chain on F ′G satisfying

max
e
f(e) ≤ p(n) and `(f) ≤ q(n),

where f(e) is the total amount of flow routed over edge e in the state space
graph, and `(f) the maximum length of a flow-carrying path.

The next step entails transforming the flow f in Lemma 4.2.5 into an effi-
cient multi-commodity flow for the k-switch Markov chain on FG (assuming
strong irreducibility). First note that the flow f above is a flow between
any two states in F ′G, whereas we are interested in defining a flow, let us
call it g, between any two states in FG. Therefore, the first step will be to
restrict ourselves to the flow routed in f between states in FG, which we
call f̃ .
A subtlety here is that we route a flow of 1/|F ′G|2 between any two states

in FG in f̃ (and also f), whereas we need to route 1/|FG|2 between two
such states in the desired (final) flow g. This is not a problem as replacing
|F ′G| by |FG| in the definition of f̃ only blows up the congestion f(e) on a
given edge e, by at most a polynomial factor, using the fact that

|F ′G|
|FG|

≤ s(n)
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for some polynomial s, since δ(G) ≥ 1
2n.

14 Let us call the resulting (in-
termediate) flow f̄ , which now routes a fraction 1/|FG|2 of flow between
any two states in FG in the JS chain, and that has polynomially bounded
congestion.15

We next continue with transforming the flow f̄ into the desired flow g. We
do this by a sequence of reductions.
We first identify for every X ∈ F ′G \FG some 2-factor ψ(X) ∈ FG that is

within kJS = 3 moves (in the JS chain) away from X. All X that map onto
the same 2-factor F = ψ(X) are merged with F into a supervertex that
we identify with F . If this procedure gives rise to parallel (directed) edges,
we replace them by one edge and route all flow over that edge; self-loops
are removed. It is not hard to see |ψ−1(F )| has size polynomial in n, as we
only merge vertices that are close to each other (in the original JS chain)
and the maximum degrees are bounded by n3. Moreover, it is not hard to
see that this procedure will only give rise to at most a polynomial number
of parallel edges between two given vertices in FG (for the same reason).
Let us call the resulting (simple) graph J = (FG,A). As X ∈ F ′G \ FG are
merged into ψ(X), any edge (X,Y ) in F ′G corresponds to an edge in J,
and so every path in F ′G corresponds to a path in J. Here the original edge
(X,Y ) corresponds to the edge (ψ(X),ψ(Y )) in J, and loops that occur
after merging are ignored. The flow f̄ induces a flow f∗ on J. Since f̄ sends
a flow through a path, we define f∗ as sending the same flow through the
corresponding path in J. We now see that for e = (F ,F ′) ∈ A we have

f∗(e) =
∑

X∈ψ−1(F ),Y ∈ψ−1(F ′)

f̄(X,Y ).

By what is said above, we have maxe f∗(e) ≤ p′(n) for some polynomial p′,
i.e., the congestion of f∗ is at most a polynomial factor larger than that of
f̄ .

The final problem, before we obtain the desired flow g, is that the graph J

contains edges (possibly with flow) between 2-factors F ,F ′ ∈ FG that might
be more than a k-switch away from each other. Said differently, these edges

14 Given F ∈ F ′G \ FG, let x, y be vertices of degree 1 or x = y the vertex of degree
0. Find z ∈ N(x) ∩N(y)+ and replace zz− with xz, yz− to obtain σ(F ) ∈ FG with
|F4σ(F )| ≤ 3. Thus |σ−1(F )| ≤ n3 =: s(n).

15 The flows f̃ and f̄ are not efficient multi-commodity flows for Markov chains, but ‘auxil-
iary flows’.
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do not represent transitions in the k-switch Markov chain. Let us partition
the edge set A = Aswitch ∪Ainfeasible where Aswitch contains all edges of A
that represent a transition in the k-switch Markov chain, and Ainfeasible all
those edges that do not.

We argue that for every edge a = (F ,F ′) ∈ Ainfeasible, we can always find
a short ‘detour’ in the graph J using only edges in Aswitch. To see this, fix
some a ∈ Ainfeasible. Suppose that X and Y are adjacent in the JS chain
and that F = ψ(X) and F ′ = ψ(Y ) (these X and Y exist by existence of
the infeasible edge a). Since kJS = 3, it can be shown that

|F4F ′| ≤ 12.

This follows from the fact that in the JS chain, F = ψ(X) is close to X,
which is close to Y , which is in turn close to ψ(Y ) = F ′.16 Recall that
since the graph class G in Theorem 4.2.2 is strongly k-switch irreducible
and G ∈ G, there exists a function φ such that for any F ,F ′ ∈ FG with
|F4F ′| ≤ t, there exists a sequence of at most φ(t) k-switches transforming
F into F ′. It follows that we can find a detour from F to F ′ of length at
most φ(12), and this detour only uses edges in Aswitch.

Since all these detours take place on a ‘local’ level, the congestion of
the resulting multi-commodity flow for the k-switch Markov chain on FG,
that we get from rerouting the flow of infeasible edges over their respective
detour, increases at most by a polynomial factor on every fixed feasible
edge in J. That is, for a fixed edge b = (F0,F ′0) ∈ Aswitch, the total number
of edges a = (F ,F ′) ∈ Ainfeasible that use b in their detour is at most
poly(n), as (roughly speaking) F0 is at most φ(12) transitions away from
F by construction (and φ(12) is constant).
This yields the desired flow g. For a precise and detailed outline of this

idea, we refer the reader to [4].

4.2.5 Hamilton cycles in dense monotone graphs

In this section we will describe a rapid mixing result for sampling Hamilton
cycles from dense monotone graphs that is based on Theorem 4.2.2. We
repeat the main theorem of this section.

16 We have |ψ(X)4X| ≤ 5 and |X4Y | ≤ 2 as they are 3 resp. 1 step in the JS chain, and
at least one of the transitions from ψ(X) to X is of type 0 or 2.
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Theorem 4.2.1. Let D be a set of monotone graphs with δ(G) ≥ n/2
where 2n is the number of vertices in G. If D is strongly k-switch irreducible
for Hamilton cycles for some k ∈N, then the set of k-switch Markov chains
on HG for G ∈ D is rapidly mixing.

As mentioned earlier, the set of all Hamilton cycles for (not necessar-
ily dense) monotone graphs is connected under switches of size two [71]
in the weak sense as defined in the preliminaries. Takaoka shows that ev-
ery Hamilton cycle can be transformed into a ‘canonical’ Hamilton cycle
using switches of size two. This is, however, not enough for the argument
we will give below. For our argument we need the strong sense of irre-
ducibility. The proof of Theorem 4.2.2 uses a Markov chain comparison,
this time between the k-switch Markov chains on HG and FG. We know
that the 4-switch Markov chain on FG is rapidly mixing by Theorem 4.2.2
and Proposition 4.1.4.

Proof of Theorem 4.2.1. The proof relies on an embedding argument simi-
lar to that in [27], but technically somewhat different. While the argument
in [27] corresponds to the case where G is a complete bipartite graph (which
is indeed monotone), here we relax the argument so that it extends to mono-
tone graphs.
Let G ∈ D be given. In particular, our goal is to show, for every G ∈ D,

the existence of a function φ : FG → HG with the properties

i) |φ−1(H)| ≤ poly(n) for every H ∈ HG, and,

ii) there exists a function f : N → N such that whenever F ,F ′ ∈ FG
with |F4F ′| ≤ k, we have |φ(F )4φ(F ′)| ≤ f(k).

If such a function exists, one can argue exactly as in [27] that every efficient
multi-commodity flow for the k-switch Markov chain on the set of all 2-
factors FG can be transformed into an efficient multi-commodity flow for
the k-switch Markov chain on the set of all Hamilton cycles HG.17 The
embedding argument from [27] that we refer to here is essentially the same
as that used to prove Theorem 4.2.2.
The differences are as follows. We use Theorem 4.2.2 and Propositi-

on 4.1.4 to establish an efficient multicommodity flow on the k-switch

17 In [27], it is shown that any efficient flow for the 2-switch Markov chain for sampling
subgraphs of Kn with a given degree sequence can be turned into an efficient flow for the
2-switch Markov chain for sampling connected graphs with a given degree sequence.
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Markov chain on FG. We restrict the flow to paths that go between states
in HG. Then we adjust the flow to accommodate the difference in size of
the state space, using i) in order to show that adjusting the flows does
not blow up the congestion by more than a polynomial factor. We then
contract the graph by merging each state F with φ(F ), which induces a
flow f on the k-switch chain on HG (corresponding to g in the proof of
Theorem 4.2.2). When arguing that the congestion of f is not too large,
ii) shows that two 2-factors that produce an infeasible edge map to two
Hamilton cycles that have symmetric difference at most f(2k), and the
strong k-switch irreducibility with associated function ψ then shows that
the detour due to infeasible edges has length at most ψ(f(2k)), a constant.

The remainder of the proof is dedicated to showing the existence of such
a function φ for each G ∈ D, which we will do in three claims. Let G =

(A∪B,E) ∈ D be a monotone graph with |A| = |B| = n where we assume
that n is even for simplicity.18 Let a1, . . . , an (resp. b1, . . . , bn) be the vertices
of A (resp. B) in order as given in Subsection 4.2.1. Set A1 = {a1, . . . , an/2}
with A2 = A \A1 and B1 = {b1, . . . , bn/2} with B2 = B \B1.

Claim 4.2.6. With the setup above, the graphs G[A1∪B1] and G[A2∪B2]

are complete bipartite.

Claim 4.2.7. Given G ∈ D, let PG be the set of all subgraphs K ⊆ G such
that K is the union of three vertex-disjoint paths that together cover all
vertices of G. Then there exists an injective function φ1 : FG → PG and a
function g : N→ N such that whenever F ,F ′ ∈ FG with |F4F ′| ≤ k, we
have |φ1(F )4φ1(F ′)| ≤ g(k).

Claim 4.2.8. Given G ∈ D, there is a function φ2 : PG → HG such that
for every K ∈ PG, we have that |K4φ2(K)| ≤ 9; in particular, for each
H ∈ HG, we have |φ−1

2 (H)| ≤ |E(G)|9 = poly(n).

The function φ is the composition of φ1 and φ2 and can easily be seen
to satisfy the desired properties (taking f(k) = g(k) + 18). Therefore it
remains only to prove the claims.

Proof of Claim 4.2.6. Note that a1b1 must be an edge of G. If this is not the
case, then b1 can never have positive degree, because of monotonicity of the
rows of the adjacency matrix. As both a1 and b1 have degree at least n/2, we

18 When n is odd, one can work with dn/2e instead of n/2 throughout the proof.
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can conclude that all edges of the form aibj with 1 ≤ i, j ≤ n/2 are present
(again because of monotonicity) so G[A1 ∪ B1] is complete bipartite. A
similar argument holds for the edge anbn that yields G[A2 ∪B2] is complete
bipartite. J

Proof of Claim 4.2.7. We use a similar idea as in [27]. We fix the total
orderings

an
2 +1 < an

2 +2 < · · · < an < a1 < a2 < · · · < an
2

on the vertices in A and

bn
2 +1 < bn

2 +2 < · · · < bn < b1 < b2 < · · · < bn
2

on the vertices of B.
Fix F ∈ FG and let C1, . . . ,Cq be the cycles (or connected components)

of F . For a given cycle Cr, we use ar to denote the highest ordered vertex
of A in Cr, and we use br to denote the highest ordered vertex of B in Cr.
We first group the cycles in three sets depending on the vertices ar and br.
We define

QA1 = {Cr | ar ∈ A1}, QB1 = {Cr | ar ∈ A2 and br ∈ B1}

and QA2∪B2 as the set of all remaining cycles not in QA1 or QB1 . Note that
the cycles in QA2∪B2 are fully contained in A2 ∪B2. For each cycle Cr in
QA1 and QA2∪B2 , let cr be an arbitrary neighbor of ar in Cr and for each
cycle Cr in QB1 let dr be an arbitrary neighbor of br on Cr (in each case
there are two choices). We delete the edges arcr and brdr from F to create
paths; we will connect the paths in each group together to build the three
paths which will define φ1(F ) ∈ PG.

We first explain the idea (of Feder et al. [27]) on how to glue together the
paths from QA2∪B2 in such a way that we can uniquely recover the original
paths from the single glued path: this case is easiest because we know from
Claim 4.2.6 that the graph G[A2 ∪B2] is complete bipartite.

After renaming the cycles, let us assume the cycles in QA2∪B2 are C1, . . . ,
Cq where a1 < a2 · · · < aq. Let Pr be the path obtained by deleting the
edge arcr from the cycle Cr. As all the cycles lie entirely within A2 ∪B2
and G[A2 ∪B2] is complete bipartite, we know that all the edges crar+1 are
present in G for r = 1, . . . , q− 1. Adding these edges to the graph consisting
of P1, . . . ,Pq, results in a path that we call PA2∪B2 .
Note that, given PA2∪B2 , (without knowing the paths P1, . . . ,Pq), we can

uniquely recover these P1, . . . ,Pq as follows. We know that the endpoint of
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a1 c1 a2 c2 a3 c3 a4 c4

P1 P2 P3 P4

Figure 19: Sketch of path P from the paths P1, . . . ,Pq for the case q = 4.

PA2∪B2 that is contained in A is the first vertex of P1, i.e., the vertex a1

(the other endpoint is necessarily in B). In order to recover P1 we start
following the path PA2∪B2 , starting from a1, until we reach the first vertex
in A that is ordered higher than a1; this is the first vertex of P2, i.e., the
vertex a2. Continuing in this fashion we can uniquely recover all the paths
Pi.

We apply a similar procedure to the paths obtained from QA1 and QB1

to form paths PA1 and PB1 , respectively. The problem here is that the
underlying graph is not complete bipartite so we do not apriori know if the
edges to ‘glue’ the paths together are all present: we argue that they are in
fact present. The proof for QA1 that we will give below also holds for QB1

by symmetry of monotonicity (the case of QB1 is essentially a slightly more
restrictive setting in which some of the cases below cannot occur).
Assume that the cycles in QA1 are C1, . . . ,Cp labeled so that a1 < a2 <

· · · < ap. By means of a case distinction, depending on whether cr ∈ B1
or cr ∈ B2 for r = 1, . . . , p− 1, we will show that the edges crar+1 always
exist.
Case 1: cr ∈ B1. As we know that ar+1 ∈ A1, by definition of QA1

it follows that crar+1 is in G, since G[A1 ∪ B1] is complete bipartite by
Claim 4.2.6.
Case 2: cr ∈ B2. Since ar < ar+1 =: aj by assumption, monotonicity

tells us that the neighborhood N(ar+1) ⊆ B ends at either cr or to the
right of cr. Furthermore, we know ajbj ∈ E(G), again since G[A1 ∪B1] is
bipartite by Claim 4.2.6. Since bj ∈ B1, it lies to the left of cr ∈ B2 so, in
particular, the neighborhood N(ar+1) starts before cr. Monotonicity then
tells us that the edge crar+1 is also present in G.
We have shown how to construct the paths PA1 , PB1 , and PA2∪B2 , which

together clearly cover all vertices of G. We define φ1(F ) = PA1 ∪ PB1 ∪
PA2∪B2 ∈ PG.
In order to see that φ1 is injective, note first that if K ∈ PG is the image

of some (unknown) F ∈ FG under φ1, then one of the paths in K has all its
vertices in A2 ∪B2 (we call this path PA2∪B2), one has all its vertices from
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A in A2 and some vertices from B1 (we call this path PB1), and we call the
remaining path PA1 . As described earlier, we can then easily identify the
constituent paths that were glued together to form PA1 , PB1 , and PA2∪B2 .
Finally we can complete each constituent path to a cycle to uniquely recover
F . Therefore φ1 is injective.

Finally, suppose F ,F ′ ∈ FG with |F4F ′| ≤ k. In particular, there are at
most k cycles that belong to one of F or F ′ but not both. In constructing
φ1(F ) (resp. φ1(F ′)), we first delete one edge from each cycle of F (resp.
F ′) to obtain a union of paths, which we call J (resp. J ′). Then |J4J ′| ≤ k
and there are at most k paths that belong to one of J or J ′ but not both.
When gluing paths of J (resp. J ′) together to form φ1(F ) (resp. φ1(F ′))
there are at most 2k gluing edges that are used for one of J or J ′ but
not both (at most two such edges for each differing path). This shows
that |φ1(F )4φ1(F ′)| ≤ k + 2k = 3k, showing φ1 has the desired property
(taking g(k) = 3k). J

Proof of Claim 4.2.8. This claim follows immediately from Lemma 4.2.9
below. J

Lemma 4.2.9. Suppose G = (V ,E) is an n-vertex graph with δ(G) > n/2.
If P1, . . . ,Pk are k vertex-disjoint paths in G that together cover all vertices
V , then there exists a Hamilton cycle H of G such that
E(H)4E(P1 ∪ · · · ∪ Pk) ≤ 3k.

For bipartite graphs, we have the following. Suppose G = (V ,E) is a
bipartite graph with bipartition V = A ∪ B with |A| = |B| = n and
δ(G) ≥ n/2. If P1, . . . ,Pk are k vertex-disjoint paths in G that together
cover all vertices V , then there exists a Hamilton cycle H of G such that
E(H)4E(P1 ∪ · · · ∪ Pk) ≤ 3k.

We prove the lemma for graphs; an almost identical proof works for
bipartite graphs and we indicate where the proofs differ.

Proof. We will inductively modify the system of paths, at each step modi-
fying at most 3 edges and reducing the number of paths by 1.

Let xi and yi be the endpoints of Pi and orient the path Pi from xi to yi.
For any vertex x, let x+ (resp. x−) be the successor (resp. predecessor) of
x on its path (note that these exist except possibly at the 2k endpoints of
the paths). For any set S ⊆ V (G), we define S+ := {x+ | s ∈ S}.
Assuming k ≥ 2, take any two paths, say P1 and P2. [If G is bipartite, we

choose P2 s.t. x1 and y2 are in different parts, say x1 ∈ A and x2 ∈ B. Note



142 reconfiguration of hamilton cycles and applications

that this is always possible, renaming paths if necessary.] If x1 is adjacent
to any of x2, . . . ,xk, say to xi, then we can reduce the number of paths by
replacing P1 and Pi by y1P1x1xiPiyi as required (only modifying one edge)
and we continue. Therefore we may assume that x1 is not adjacent to any
of x2, . . . ,xk, and in particular, |N(x1)−| = |N(x1)| > n/2. Then since
|N(y2)| > n/2, we must have that N(x1)− ∩N(y2) is non-empty. [Note
that for G bipartite N(x1)−,N(y2) ⊆ A and therefore N(x1)− ∩N(y2)

also holds.] Let z ∈ N(x1)− ∩ N(y2) and assume z ∈ V (Pi) for some
i = 1, . . . , k. If i 6= 1, 2 then we can replace P1,P2,Pi with the two paths
y1P1x1z

+Piyi and xiPizy2P2x2, which together cover all the vertices of
V (P1)∪ V (P2)∪ V (Pi) (see Figure 20 (a)). If i = 1, we replace P1,P2 with
the path y1P1z

+x1P1zy2P2x2 (see Figure 20 (b)) and if i = 2, we replace
P1,P2 with y1P1x1z

+P2y2zP2x2. In all three of these cases, we delete one
edge and add two (i.e. we modify three edges) and reduce the number of
paths by 1.

P1

P2

Pi

x1

x2

y1

y2P2 y2x2

P1
x1 y1

(b)(a)

z+

z+
z

z

yixi

(c)

x yz+z

Figure 20: (a) and (b): Reducing the number of paths, cases i 6= 1, 2 and i = 1.
Case i = 2 is similar. (c): completing the Hamilton cycle. In all cases,
the thick, red edge is removed, and the curvy edges are introduced.

By iterating this, we obtain a Hamilton path P by modifying at most
3(k− 1) edges. We can then complete this to a Hamilton cycle in the stan-
dard way. Let x and y be the endpoints of P and pick z ∈ N(x)− ∩N(y)

(which exists as before since |N(x)−|, |N(y)| > n/2). Then we obtain a
Hamilton cycle H = xPzyPz+x (see Figure 20 (c)), where again we have
added two edges and removed one. [In the case of G being bipartite, P has
its endpoints in different parts, so that again N(x)−, N(y) are subsets of
the same part, so again N(x)− ∩N(y) 6= ∅.]

This completes the proof of the three claims and hence of the theorem.
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4.2.6 Concluding remarks

It is perhaps interesting to note that, in general, it is necessary to make
some kind of assumption on the minimum degree of the monotone graph for
the argument in the proof of Theorem 4.2.1 to work. Without it, it is not
necessarily true that the number of 2-factors is at most a polynomial factor
larger than the number of Hamilton cycles of a given graph G. See the
matrix and explanation below for an indication of the family of instances
that illustrate this. 

1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1


Let the rows be indexed by A = (a1, . . . , an) and the columns by B =

(b1, . . . , bn). As a1 only has two neighbors, any Hamilton cycle must contain
the edges a1b1 and a1b2. This is indicated in the matrix below.

1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1


Now, the vertex a2 cannot also have neighbors b1 and b2, as this creates a
cycle of length four. So we have N(a2) = {b1, b3} or N(a2) = {b2, b3}; see
the matrices below.

1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1


or



1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1


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Note that in both the matrices above, there is now one vertex in B that
has two neighbors already (and therefore cannot be chosen as neighbor in
any later step). By repeating this argument, one can show that for every
row i = 2, . . . ,n− 1 there are two possible choices of extending the current
Hamilton path, and so the number of Hamilton cycles equals 2n−2.
However, the number of 2-factors is at least (n/4)!. To see this, first note

that this is a lower bound on the number of Hamilton cycles in the (com-
plete) subgraph induced by the vertices {a3n/4+1, . . . , an} and {b1, . . . , bn/4}
(assuming that n is divisible by four). It is not hard to see that any Hamil-
ton cycle on this induced subgraph can be extended to a 2-factor of the
original bipartite graph.19

Nevertheless, we believe that our result can be generalized to monotone
graphs with minimum degree γn for any γ ∈ (0, 1). However, this comes at
the expense of many more technicalities that (in our opinion) do not offer
any additional insights. Remember that in Claim 4.2.6, we show that the
nodes of G can be partitioned into two complete bipartite graphs whenever
γ ≥ 1/2. More generally, for a given γ ∈ (0, 1), it should be possible to
partition the nodes of G into a constant c = c(γ) number of complete
bipartite graphs. The analogue of Claim 4.2.7 would then be to show that
all cycles in a given 2-factor can be broken up, and glued together again,
into a constant d(γ) number of (vertex-disjoint) paths, after which one
would need to argue that the resulting collection of paths is close, in terms
of symmetric difference, to a Hamilton cycle in the monotone graph.

19 One can give a sharper bound here than (n/4)!, but this is not needed for our purposes.
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SUMMARY

Hamilton cycles and algorithms
This thesis presents three results in graph theory, united by the themes of
Hamilton cycles and algorithms. A Hamilton cycle in a graph is a cycle that
contains every vertex of the graph. The first chapter introduces the most
important concepts and gives an overview of the main results. Chapters 2,
3 and 4 each concern a separate topic and can be read in any order.

Chapter 2 considers path decompositions of digraphs, specifically an ex-
tension of a conjecture due to Alspach, Mason, and Pullman. There is a
natural lower bound for the number paths needed in an edge decomposition
of a directed graph in terms of its degree sequence; the conjecture in ques-
tion states that this bound is correct for tournaments of even order. (This
conjecture is actually a vast generalization of a conjecture due to Kelly
that states that every regular tournament can be decomposed into Hamil-
ton cycles.) The conjecture of Alspach, Mason, and Pullman was recently
resolved for large tournaments, and here we investigate to what extent the
conjecture holds for directed graphs in general. In particular, we prove that
the conjecture asymptotically almost surely holds for the random directed
graph Dn,p for a large range of p. The proof consists of two parts: in the
first we show that the conjecture holds for directed graphs satisfying certain
(deterministic) properties, and in the second part we show that the random
directed graph satisfies these properties asymptotically almost surely for
our range of p.

In Chapter 3 we give a polynomial-time algorithm for detecting almost-
Hamilton cycles in dense regular graphs. Specifically, we show that, given
α ∈ (0, 1), there exists a c = c(α) such that the following holds: there is a
polynomial-time algorithm that, given a D-regular graph G on n vertices
with D ≥ αn, determines whether G contains a cycle on at least n − c
vertices. If such a cycle exists, we give a (randomized) polynomial-time al-
gorithm to find it. The problem becomes NP-complete if we drop either the
density or the regularity condition. The algorithm uses spectral partition-
ing to construct a robust expander decomposition, a structure introduced
by Kühn and Osthus, as well as some further algorithmic ingredients.
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In Chapter 4, we consider switch-based Markov chains for the approxi-
mate uniform sampling of Hamiltonian cycles in graphs of high minimum
degree. These are Markov chains on the space of all Hamilton cycles of a
given graph, where transitions are between Hamilton cycles that differ on
a bounded number k of edges (such a transition is called a k switch). As
our main result, we show that every pair of Hamiltonian cycles in a graph
with minimum degree at least n/2 + 7 can be transformed into each other
by 10-switches, implying that the 10-switch Markov chain is irreducible
on such graphs. We show that n/2 + 7 cannot be significantly reduced in
this result. Using a strengthening of our irreducibility result, we prove that
the 10-switch Markov chain is rapidly mixing (i.e. converges quickly to its
stationary distribution) on the class of dense monotone graphs.
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SAMENVATTING

Hamiltoncircuits en algoritmes
Dit proefschrift presenteert drie resultaten in de grafentheorie, verbon-
den door twee gemeenschappelijke thema’s: Hamiltoncircuits en algoritmen.
Een Hamiltoncircuit in een graaf is een circuit dat elk punt van de graaf be-
vat. Het eerste hoofdstuk introduceert de belangrijkste concepten en geeft
een overzicht van de belangrijkste resultaten. Hoofdstukken 2, 3 en 4 heb-
ben elk een apart onderwerp en kunnen in willekeurige volgorde worden
gelezen.

Hoofdstuk 2 behandelt paddecomposities van gerichte grafen, in het bij-
zonder een uitbreiding van een vermoeden van Alspach, Mason en Pullman.
Er is een natuurlijke ondergrens voor het aantal paden dat nodig is in een
kantdecompositie van een gerichte graaf in termen van de graadrij; het ver-
moeden in kwestie stelt dat deze grens correct is voor toernooien van even
orde. (Dit vermoeden is eigenlijk een uitgebreide generalisatie van een ver-
moeden van Kelly dat stelt dat elk regulier toernooi kan worden opgedeeld
in Hamiltoncircuits.) Het vermoeden van Alspach, Mason en Pullman is
onlangs opgelost voor grote toernooien, en hier onderzoeken we in welke
mate het vermoeden geldt voor algemene gerichte grafen. In het bijzonder
bewijzen we dat het vermoeden asymptotisch vrijwel zeker geldt voor de
willekeurig gerichte graaf Dn,p voor een groot bereik van p. Het bewijs be-
staat uit twee delen: in het eerste laten we zien dat het vermoeden geldt
voor gerichte grafen die aan bepaalde (deterministische) eigenschappen vol-
doen, en in het tweede deel laten we zien dat de willekeurige gerichte graaf
vrijwel zeker asymptotisch aan deze eigenschappen voldoet voor ons bereik
van p.

In Hoofdstuk 3 geven we een polynomiale tijd algoritme voor het detec-
teren van bijna-Hamiltoncircuits in dichte reguliere grafen. Concreet laten
we zien dat, gegeven α ∈ (0, 1), er een c = c(α) bestaat zodat het volgende
geldt: er is een polynomiale tijd algoritme dat, gegeven eenD-reguliere graaf
G op n punten met D ≥ αn, bepaalt of G een circuit bevat op minimaal
n− c punten. Als zo’n circuit bestaat, geven we een (gerandomiseerd) poly-
nomiale tijd algoritme om het te vinden. Het probleem wordt NP-compleet
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als we ofwel de dichtheids- ofwel de regulariteitsvoorwaarde laten vallen.
Het algoritme maakt gebruik van spectrale partitionering om een robuuste
expander-decompositie te construeren, een structuur geïntroduceerd door
Kühn en Osthus, evenals enkele andere algoritmische ingrediënten.
In Hoofdstuk 4 beschouwen we Markovketens gebaseerd op ‘switches’

voor het bij benadering uniform trekking van Hamiltoncircuits in grafen
met een hoge minimumgraad. Dit zijn Markovketens, gedefinieerd op de
ruimte van alle Hamiltoncircuits van een gegeven graaf, waarbij een over-
gang (met positieve kans) tussen twee Hamiltoncircuits mogelijk is indien
zij verschillen op een begrensd aantal k kanten. (een dergelijke overgang
wordt een k-switch genoemd). Als ons belangrijkste resultaat laten we zien
dat elk paar Hamiltoncircuits in een graaf met een minimale graad van ten
minste n/2 + 7 in elkaar kan worden omgezet door 10-switches, wat impli-
ceert dat de 10-switch Markov-keten irreducibel is voor dergelijke grafen.
We laten zien dat n/2 + 7 niet significant gereduceerd kan worden in dit
resultaat. Gebruikmakend van een versterking van ons irreducibiliteitsre-
sultaat, bewijzen we dat de 10-switch Markovketen snel convergeert naar
zijn stationaire verdeling in de klasse van dichte monotone grafen.
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