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Abstract
This paper presents a simple decidable logic of functional dependence LFD, based
on an extension of classical propositional logic with dependence atoms plus depen-
dence quantifiers treated as modalities, within the setting of generalized assignment
semantics for first order logic. The expressive strength, complete proof calculus and
meta-properties of LFD are explored. Various language extensions are presented as
well, up to undecidable modal-style logics for independence and dynamic logics of
changing dependence models. Finally, more concrete settings for dependence are dis-
cussed: continuous dependence in topological models, linear dependence in vector
spaces, and temporal dependence in dynamical systems and games.

Keywords Functional dependence · Generalized assignment semantics ·
Modal logic · Epistemic logic · Logics of dependence

1 Introduction: Toward a Logic of Local Dependence

Dependence is a ubiquitous notion, pervading areas from probability to reasoning
with quantifiers, and from informational correlation in databases to causal connec-
tions or interactive social behavior. How the Moon moves depends on how the Earth
moves, and vice versa. What you will do in our current Chess game depends on
how I play. And dependence, or independence, matters. Whether variables are depen-
dent or not is crucial to probabilistic calculation. And as for qualitative reasoning,
dependence is at the heart of quantifier combinations in logic.
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Now ubiquity does not mean unity: there need not be one coherent notion behind all talk
of dependence in science or daily life.1 Still, over the last century, various proposals
have been made for a basic logic of reasoning about dependence and independence,
witness publications such as [3, 5, 47, 55, 62, 71]. While some of these logics are
weak calculi of pure dependence statements, others are very strong and second-order.
And most of them are non-classical: the propositional connectives break classical
laws such as Tertium Non Datur, while the semantics differs radically from that
of First Order Logic (FOL); being either a game semantics, or some higher-order
version of first-order semantics, evaluating formulas on sets of assignments.

In this paper we explore one more perspective, minimalistic in its simplicity: a
Logic of Functional Dependence between variables (LFD), based on classical logic.
LFD is obtained by adding local dependence atoms to a known generalization of
the usual semantics of First Order Logic, namely, the logic CRS of generalized
assignment models, [3]. CRS treats quantifiers as modalities over accessibility rela-
tions between assignments, and LFD adopts this view also for further modalities for
reasoning about dependence.

This new calculus, which offers a simple base level for analyzing reasoning about
functional dependence, is decidable and yet reasonably expressive. Unlike the other
approaches mentioned, it focuses on a ‘local’ sense of dependence, which may be
more fundamental than the usual global version. This locality brings LFD close to
modal logic, but still allows it to cover many senses of dependence, both ‘ontic’ in
terms of linked behavior in the world, and ‘epistemic’ in terms of information: learn-
ing something about one thing implies learning about another. Taking this minimal
modal perspective, one can then take a fresh look at the surplus of many richer notions
of dependence and correlation, and design further logics for reasoning about these.

1.1 Global and Local Dependence in a Complete Database

As an example, consider relational databases with tuples of values assigned to
attributes, cf. [1].

Example 1.1 Here is a simple information structure. The table below is meant as a
complete database, i.e., a full description of the restaurant situation in a small town,
sorted by four variables (so-called ‘attributes’): Restaurant name, Food type, Price
range, and Location.

Restaurant Food Price Location
Roma Italian Moderate Center
Hasta La Pasta Italian Cheap Center
Mama Makan Indonesian Moderate South
Bunga Mawar Indonesian Cheap West
Wilde Zwider Dutch Expensive East
Greetje Dutch Expensive West

1There may not even be one uniform conception of dependence in logic running from, say, dependent
choices in quantifier combinations as mentioned above to independence of sets of axioms. In particular,
the latter widespread sense, studied for instance in [50, 52], is not what is at issue in this paper.
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A variable v depends on a variable u (or on a set U of variables) if, whenever
the value of u is the same in two rows (or the values of all variables in U are the
same in the two rows), so is the value of v. This is in line with the intuitive sense of
functional dependence: the value of u determines the value of v. From the table, we
see that each of the attributes Food, Price and Location depends on Restaurant (each
restaurant offers a unique type of food, has a unique price range and a unique loca-
tion). But neither Restaurant nor Price nor Location depend on Food (e.g., there are
two Indonesian restaurants, with different price ranges and locations), and Food does
not depend on Price either (there are cheap Italian and Indonesian places). These
facts imply others. E.g., Restaurant does not depend on Price: if it did, then by tran-
sitivity and the fact that Food depends on Restaurant, Food would depend on Price,
quod non. In fact, Restaurant does not even depend on Price and Food taken together
(i.e. on the set {Price, Food}): both Wilde Zwider and Greetje are expensive Dutch
restaurants. But Restaurant does depend on Price and Location taken together: for
every possible price range and location, there is at most one restaurant offering that
food type in that location.

What was listed so far are global dependencies. However, underlying these are
many local dependencies in the table: given a current row, a variable v locally
depends on u if, every row matching the current value of u, also matches the current
value of v. For example, in the fifth row of the table, Price depends on Food (since
all Dutch restaurants are expensive), Food locally depends on Price (all expensive
restaurants are Dutch), and Restaurant locally depends on Location (the only restau-
rant located in the East is Wilde Zwider). Again, some of these things follow from
others. E.g., still at the fifth row, the fact that Food locally depends on Location fol-
lows by transitivity from the local dependence of Restaurant on Location plus the
global (and hence also local) dependence of Food on Restaurant.2

A set of variable assignments as above, with a designated current assignment, connects
in an obvious way with the semantics of first-order logic. At the same time, the distinction
local vs. global is crucial to the essentially modal approach taken in this paper.

1.2 Dependence in First-Order Semantics: CRS Logic

What does dependence have to do with first-order logic? In classical FOL, distinct
variables have no intrinsic meaning and are fully inter-changeable. No correlations
between their values are allowed, beyond the fact that they all range over the given
domain. Accordingly, first-order models are ‘full’: all possible variable assignments
are available, and the FOL quantifiers can arbitrary reset the values of any variables,
while keeping the values of all the other variables fixed. This effectively amounts
to a strong independence assumption, reflected for instance in the commutation law
∃x ∃y ϕ ↔ ∃y ∃x ϕ. Often seen as a triviality, this validity is in fact a very strong
symmetry principle, which is entailed by the above strong independence assumption.

2Databases may also satisfy non-functional dependencies. E.g., the above table satisfies the rule ‘if not
Dutch, then not Expensive’. Such constraints, too, can be expressed in the dependence logic of this paper.

941A Simple Logic of Functional Dependence



To allow for dependencies between variables, a simple solution is to just drop
the ‘fullness’ assumption, while keeping the good features of FOL such as its
perspicuous syntax and compositional truth definition. This approach, known as
generalized assignment semantics, was developed in the 1990s. A ‘generalized
assignment model’ (M, A) consists of a first order model M and a family A of
‘admissible’ variable assignments s : V → O (with V the variables and O the
objects in M), circumscribing the global states that can occur when evaluating the
first-order quantifiers. These models widen the scope of applicability of FOL to
settings with significant correlations, or even functional dependencies, between vari-
ables. As stated in [3], p. 46, generalized assignment semantics “models the natural
phenomenon of dependencies between variables: which occurs when changes in
value for one variable x may induce, or be correlated with, changes in value for
another variable y. (...) Dependence cannot be modeled in standard Tarskian seman-
tics, which modifies values for variables completely arbitrarily.” In this perspective,
classical FOL describes the special case of ‘full models’ in which all possible
assignments are available, i.e. A = OV .

What is the meaning of quantifiers in these generalized models? The original
generalized assignment semantics, known as the logic CRS,3 simply restricts the
usual Tarskian definition to the family A of admissible assignments. Unlike in FOL,
polyadic quantifiers such as ∀xy ϕ can no longer be reduced to iterated monadic ones
∀x∀y ϕ. Hence, CRS takes polyadic quantifiers ∀X ϕ as a primitive notion, for every
finite set of variables X ⊆ V (while defining monadic quantifiers ∀x ϕ as just an
abbreviation for ∀{x}ϕ): for any assignment s ∈ A, we put

s |= ∀Xϕ iff t |= ϕ for every t ∈ A satisfying s(y) = t (y) for all y ∈ V −X.

As we have seen, dependencies between variables are present in non-full models.
In fact, the language can spot these dependencies in an implicit way: via the failure of
some classical FOL validities in the weaker logic CRS. For instance, if a dependence
model invalidates the above law ∃x∃yφ → ∃y∃xφ, then there exist some non-trivial
correlations between variables.

A key goal of generalized assignment semantics was analyzing the causes of the
undecidability of validity for FOL. The intent was to decouple the desideratum of
a compositional semantics for the first-order language from additional mathemati-
cal assumptions (about existence of all possible functional assignments) that increase
complexity. Indeed, while CRS semantics is clearly compositional, the set of validi-
ties is decidable, forming roughly a core calculus of monotonicity and persistence
reasoning inside full predicate logic.4 Thus, CRS makes a distinction between gen-
eral simple inferences inside FOL and more complex reasoning relying on special
mathematical existence assumptions.5

3The technical name CRS stands for ‘cylindric relativized set algebra’, referring to algebraic origins in
[63].
4Further axioms such as the above commutation law ∃x ∃y ϕ ↔ ∃y ∃x ϕ then impose a confluent
Church-Rosser structure on the set of assignments, leading to undecidability arguments via encoding tiling
problems, [59].
5For much more information on CRS and related modal logics, cf. [13, 61, 74].
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This lower complexity may be understood as a result of ‘modalization’, [13].
The above analysis also works on abstract state models for the first-order language
without underlying objects, where first-order logic becomes a modal logic. This
modal perspective will be significant in what follows, as it explains how a logic of
dependence can be decidable.

Still, from a dependence perspective, the CRS quantifiers have some peculiar fea-
tures. Notably, the Locality property of FOL fails: the truth value of a CRS-formula ϕ

need not depend only on the values of its free variables, it may well depend on values
of variables that do not even occur in ϕ. This ‘dependence on irrelevant variables’ is
an artifact of the specific way in which CRS generalizes FOL semantics by letting
only the values of X vary, keeping the values of all other variables fixed, including
the ones not occurring at all in the given formula.

This problem was noticed early on in the CRS literature, leading to an alterna-
tive proposal for generalizing FOL quantifiers.6 Since these alternative operators do
satisfy Locality, we will call them local quantifiers, denoted here by ∀Xϕ:

s |= ∀Xϕ iff t |= ϕ for every t ∈ A with s(y) = t (y) for all y ∈ Free(∀Xϕ) = Free(ϕ)−X,

where Free(ϕ) is the set of free variables in ϕ. This fixes only the values of the
actually occurring free variables that do not belong to X, allowing all the others to
vary.

Note that in full models (with A = DV ), both ∀Xϕ and ∀Xϕ collapse to classical
FOL quantifiers; so they are both entitled to play the role of generalized FOL quanti-
fiers. Even so, both versions of CRS still have a major drawback: there is no explicit
way to say that a variable x functionally depends on other variables. Moreover, no
new validities are added that capture interesting laws of dependence. For this, further
steps are needed, to be previewed now.

Remark 1.2 The language of CRS also supports modalities for substitutions. A for-
mula [y/x]ϕ (ϕ with all free occurrences of x replaced by y, where no substituted
y becomes bound) is true at an assignment s if there is an available assignment t

in the model equal to s except that t (x) = s(y) with ϕ true at t . There is also a
natural extension for simultaneous substitutions [y/x]ϕ, which do not reduce to iter-
ated single ones. The usual recursive definition of syntactic substitution in FOL now
expresses various substantial properties of the (in general, partial) semantic substitu-
tion function on assignments and its interactions with CRS quantifiers, cf. [13]. For
the proof theory of this modal view of substitution, cf. [61].

1.3 Explicit Logic of Local Dependence

As we saw, CRS is an ‘implicit’ logic of dependence. In this paper, we add the explicit
syntactic atomic dependence formulas DXy of [71], now read locally as: X locally
determines (the value of) y, or y locally depends on X. These atomic formulas are
interpreted at assignments s ∈ A using the local dependence relation Ds

Xy, saying

6See e.g. Marx [59], who attributes the proposal to Venema.
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that all admissible assignments that keep the values of X fixed to the current ones
also fix the value of y:

s |= DXy iff s(y) = t (y) holds for every t ∈ A satisfying s(x) = t (x) for all x ∈ X.

Next, we reconsider the quantifiers. From a dependence perspective, it is natural to
introduce dependence modalities or dual quantifiers DXϕ, which ’fix’ the values of
X to the current ones. More precisely, like the dependence atoms, these talk about all
the assignments that keep X equal to its current value(s), saying that they also fix the
truth value of ϕ to ‘true’:7

s |=DXϕ iff t |= ϕ holds for every t ∈ A satisfying s(x)= t (x) for all x∈X.

We read DXϕ as X locally determines the truth of ϕ. Recall that in standard FOL,
‘free’ variables are the ones whose current values are kept fixed (while the values
of ‘bound’ variables are ignored as irrelevant). This fixing the values of X explains
why we sometimes call dependence modalities DXϕ ‘dual quantifiers’: they ‘free’
the variables in X (rather than binding them), while binding all the other variables
(in V −X, regardless of whether they occur in the formula).

Like the local universal quantifiers ∀Xϕ, dependence modalities do satisfy Local-
ity. But they appear to be more fundamental: indeed, ∀Xϕ is simply definable via
the equivalence ∀Xϕ ↔ DFree(ϕ)−Xϕ, whereas the converse is not as straightfor-
ward.8 Note also here that, like both FOL and CRS quantifiers ∀X (but in contrast
to local quantifiers ∀X), dependence modalities validate the standard Distribution
axiom DX(ϕ → ψ)→ (DXϕ → DXψ).9 Dependence modalities can also quantify
over all assignments in A: taking X to be the empty set yields the universal modal-
ity

∀

ϕ := D∅ϕ, saying that all admissible assignments satisfy ϕ. As a consequence,
global dependence of y on X can be expressed as

∀

DXy.
The resulting logic of functional dependence LFD is more expressive than may

meet the eye, as will become clear in what follows. Also, while capturing the
main properties of functional dependence, it retains all classical Boolean operators
with their standard laws; thus demonstrating that dependence is not an intrinsically
non-classical phenomenon. Neither is basic reasoning about dependence necessar-
ily complex, LFD is simple and well-behaved, with transparent axiomatizations and
good meta-properties: decidability, forms of the finite model property, compactness,

7The analogy between DXy and DXϕ is made more precise in [6]: introducing natural Boolean variables
?ϕ, with value 1 at any assignment s ∈ A satisfying ϕ (and 0 at all others), validates the equivalence
DXϕ ↔ (ϕ∧DX?ϕ). This can be turned into a definition, thus unifying the two types of LFD dependence
statement.
8One can indeed go the other way around, but via a more complicated formula. Let
X be an abbreviation
for any tautology whose free variables are exactly the ones in X. Then DXϕ is equivalent to ∀Free(ϕ)−X(ϕ∧

X). As for non-local CRS quantifiers, they are equally expressive to the dependence modalities when
V is finite, via the equivalences ∀Xϕ ↔ DV−Xϕ and DXϕ ↔ ∀(V − X)ϕ. When V is infinite, the two
notions seem to be independent of each other (at least with our syntax, allowing for quantifiers only over
finite sets of variables).
9See the footnote to Example 3.8 for a counterexample to Distribution for ∀X . The deeper reason for this
difference is that, as we will see, the FOL and CRS quantifiers, as well as the dependence modalities, are in
fact normal relational modalities, quantifying over assignments that are accessible via some accessibility
relation (=V−X or =X), while the local quantifiers are not modalities of this kind.
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strong interpolation, and a form of cut elimination. Of course, this does not come for
free. As always in logic, system design involves a balance between expressive power
and other nice system properties. The more expressive the language, the more com-
plex the validities – or stated conversely, the more well-behaved the logic, the less
expressive the language. On the minimal basic language of LFD, however, one can
analyze just which additional features in modeling dependence (and independence)
force greater complexity for a logical system. Moreover, the modal flavor of LFD
brings interesting connections with epistemic logics [6, 32, 33], interrogative and
inquisitive logics [20, 25, 26], and situation-theoretic logics of informational corre-
lations, [19]. Finally, as we shall show, LFD offers a platform for studying concrete
notions of dependence in many fields in a way that imports only a minimum of logical
complexity.

1.4 Structure of this Article

Section 2 defines our models, giving a structural characterization of dependence.
Section 3 introduces the logic LFD, together with a translation into FOL, a discussion
of the differences between LFD quantifiers and the classical ones, and an equivalent
modal relational semantics. The tandem of first-order and modal views will recur
throughout the paper. Section 4 proves the decidability of LFD using object-free
‘type models’, while Appendix A has proofs of decidability and completeness using
standard modal techniques. Section 5 presents a Hilbert-style axiomatization and a
sequent calculus admitting a form of cut elimination, as well as interpolation and
Beth definability results (with proofs in Appendix B). Section 6 explores extensions
of LFD, including function terms, identity, independence, informational correlation,
and dynamic modalities over changing dependence models. Section 7 looks at richer
settings for dependence: including vector spaces, topological models, and dynamical
systems. Section 8 draws comparisons with other approaches, including some discus-
sion of their expressive surplus over LFD and questions raised by this. Conclusions
and further prospects are found in Section 9.

2 State Spaces, Dependence Graphs, Functions

The starting point of this paper are the basic properties of semantic dependence
relations, which will be determined here. Also a natural duality will emerge with
explicit functional definitions for dependence, as well as appealing connections with
consequence relations.

2.1 DependenceModels

Throughout this paper, we assume given a set of variables V and a relational vocab-
ulary (P red, ar), where Pred is a set of predicate symbols and ar : Pred → N is
an arity map, associating to each predicate P ∈ Pred a natural number ar(P ).
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Definition 2.1 (Dependence models, agreement, local dependences) A dependence
model M is a pair M = (M, A) of a (relational) FOL model M = (O, I) with
a domain O of objects and interpretation map I (sending each predicate symbol
P ∈ Pred of arity n into a set I (P ) ⊆ On of n-tuples of objects), together with a
set A ⊆ OV of admissible assignments of objects to variables.

A dependence model is full if all possible assignments are admissible, i.e., if A =
OV . For assignments s ∈ A and sets X ⊆ V , we put s � X for the restriction of s to
domain X.

Definition 2.2 (Agreement, local dependence, atoms) In dependence models, we
define three basic relations: (a) for each set X ⊆ V of variables, an agreement rela-
tion s =X t on assignments s, t ∈ A, (b) for each s ∈ A, a local dependence relation
Ds

Xy between sets X ⊆ V and variables y ∈ V , and (c) for each n-ary predicate P

and each assignment s ∈ A, an n-ary relation P s ⊆ V n on variables (where we use
the notation =y for ={y}):

s =X t iff s � X = t � X,

Ds
Xy iff s =X t implies s =y t for all t ∈ A,

P sx1 . . . xn iff I (P )(s(x1), . . . , s(xn)) holds,

If s =X t , s and t are said to agree on X, and if Ds
Xy we say that y locally depends

on X at s. For any Y ⊆ V , we write Ds
XY if Ds

Xy holds for all y ∈ Y . Finally, we
skip the set brackets for singletons, writing Ds

xY for Ds{x}Y , and Ds
xy for Ds{x}{y}.

Definition 2.3 (Global dependence) The global dependence relation DM ⊆ P(V )×
V quantifies over all assignments in A: y depends on X in M, written DM

X y, if Ds
Xy

holds locally at all assignments s ∈ A. As for local dependence, this notation is
extended to sets Y ⊆ V , by writing DM

X Y if DM
X y holds for all y ∈ Y ; and again,

set brackets are skipped for singletons. When the context is clear, superscripts M for
current models will be dropped.

Note that our global dependence statement DM
X y matches the semantic clause

for the so-called dependence atom = (X; y) introduced in Väänänen’s Dependence
Logic [71], when interpreted on the ‘team’ A of all admissible assignments.10

2.2 Dependence Graphs

The basic structural properties of dependence relations are as follows.

Definition 1 Let R ⊆ P(V )×V be a relation between sets of variables and variables.
Using the same conventions as for the dependence relation D above (writing RXy

10More generally, structures resembling our dependence models occur in areas such as epistemic logic,
[6], temporal logic, [65], and situation theory, [11, 15].
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instead of (X, y) ∈ R, RXY as an abbreviation for
∧

y∈Y RXy, and skipping set
brackets for singletons), we say that:

– R satisfies Reflexivity if Rxx holds for all x ∈ V

– R satisfies Transitivity if RXY and RY Z imply RXZ

– R satisfies Monotonicity if RXy and X ⊆ Z imply RZy

– R satisfies the Projection property if RXx holds for all x ∈ X

– R satisfies the Inclusion property if RXY holds for all Y ⊆ X

– A variable y ∈ V is an R-constant iff R∅y holds.

The following is easy to see:

Fact 2.4 If R ⊆ P(V )× V satisfies Transitivity, then the following are equivalent:

1. R satisfies Reflexivity and Monotonicity;
2. R satisfies the Projection property;
3. R satisfies the Inclusion property.

It is well-known that the combination of Reflexivity, Transitivity and Mono-
tonicity provides a characterization of classical logical consequence, cf. [69]. The
following two results show that the same three properties characterize the relation of
(local and global) dependence:11

Fact 2.5 For every dependence model M = (M, A) and assignment s ∈ A, both
global dependence DM

X y and local dependence Ds
Xy satisfy Reflexivity, Transitivity

and Monotonicity. For both relations R ∈ {DM, Ds}, the R-constants are exactly the
variables y ∈ V whose value is the same for every assignment in A.

Fact 2.5 follows immediately from Definitions 2.3 and 2.2. The converse takes
more work:

Proposition 2.6 1. For every relation R ⊆ P(V ) × V satisfying Reflexivity,
Transitivity and Monotonicity, there is a dependence model M whose global
dependence relation DM coincides with R. Moreover, if V is finite, then M can
be taken to be finite as well, of size bounded by 2|V |.

2. For every relation R ⊆ P(V )× V satisfying Reflexivity, Transitivity and Mono-
tonicity, there is a dependence model MR where R coincides with all the local
dependence relations Ds (at all assignments s ∈ A), and hence it also coincides
with the global dependence DM. Moreover, if V is finite, then MR can be taken
to be finite as well, of size bounded by 22|V | .

3. Let R ⊆ P(V ) × V be a family of relations satisfying Reflexivity, Transitivity
and Monotonicity, s.t. all relations “agree on constants” (i.e., R∅y iff R′∅y, for
all y ∈ V and R, R′ ∈ R). Then R coincides with the family {Ds : s ∈ A} of
all local dependence relations of some dependence model MR. Moreover, if V

is finite then MR can be taken to be finite.

11However, in our formal axiomatizations in Section 5, we will use the equivalent combination of
Projection and Transitivity, cf. Fact 2.4.
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Proof For a start, we need some preliminary notations and results. Let R ⊆ P(V )×V

be a relation satisfying Reflexivity, Transitivity and Monotonicity. A subset X ⊆ V

is R-closed if we have y ∈ X for all y ∈ V satisfying RXy. Let Γ be the family
of all R-closed subsets of V . Note that Γ is closed under arbitrary intersections12.
[Note: for greater readability in what follows, we have put the simple proof of this
and some later auxiliary statements in footnotes.] Also, it is immediate that the family
Γ contains the set V of all variables. We put X̃ := {y ∈ V : RXy} for the R-closure
of X, which is the least R-closed set s.t. X ⊆ X̃.13

Proof of Part 1 Let R ⊆ P(V )× V satisfy Reflexivity, Transitivity and Monotonic-
ity. Consider the model M = (O, I, A) with (a) O = V ∪P(V ), (b) the interpretation
map I makes all predicates false, and (c) the family A = {sX : X ∈ Γ } consists of
assignments sX, one for each R-closed set X, with

sX(x) = x if x ∈ X, and sX(x) = X if x ∈ X.

Note that |A| = |Γ | ≤ |P(V )| = 2|V |. The model M validates the following two
claims, for all Y, Z ∈ Γ and U ⊆ V :

(a) sY =U sZ iff either Y = Z or U ⊆ Y ∩ Z.
(b) DM

X y holds iff RXy holds.

Claim (a): This follows from the definition of the assignments sX via the following
sequence of equivalences: sY =U sZ iff sY (x) = sZ(x) for all x ∈ U iff either
Y = Z or sY (x) = sZ(x) = x for all x ∈ U iff either Y = Z or x ∈ Y ∩ Z for
all x ∈ U .

Claim (b): From left to right, let DM
X y, and consider the assignments s

X̃
and sV ,

with V the set of all variables. Note that sV (y) = y for all variables y. By (a), we
have sV =X s

X̃
(since X ⊆ X̃ = V ∩ X̃). Therefore, since DM

X y, sV =y s
X̃

, and
this means by the definition of the two assignments that sV (y) = s

X̃
(y) = y. In

particular, then, y ∈ X̃, i.e., RXy.

From right to left, assume that RXy. To show that DM
X y holds, let sZ, sU ∈ A

(with Z, U ∈ Γ ) be any two assignments with sZ =X sU . By (a), sZ =X sU implies
that either Z = U or X ⊆ Z ∩ U . In the first case, Z = U immediately gives

12Let {Xi : i ∈ I } ⊆ Γ be a family of R-closed sets, with X :=⋂
i∈I Xi . To show that X is R-closed, let

RXy for some y ∈ V . By Monotonicity, RXi y for all i ∈ I , and so by R-closure, y ∈ Xi for all i ∈ I , i.e.
y ∈ X.
13X ⊆ X̃ follows from the fact that RXx holds for all x ∈ X, by Reflexivity and Monotonicity. To see that
X̃ is R-closed, let z ∈ V be s.t. R

X̃
z. This, together with the fact that RXX̃ (by the definition of X̃) yields

RXz (by Transitivity), i.e., z ∈ X̃. Finally, if Y is any R-closed set with X ⊆ Y , we show that X̃ ⊆ Y . Let
y ∈ X̃, i.e., RXy. Then RY y (by Monotonicity and X ⊆ Y ), and therefore y ∈ Y (by the R-closure of Y ).
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sZ =y sU , as desired. In the second case, RXy and X ⊆ Z ∩ U imply RZy, RUy

by Monotonicity, which means by the R-closure of Z, U that y ∈ Z, y ∈ U , By
definition then sZ(y) = sU (y) = y.14

Proof of Part 2 Let R ⊆ P(V )× V satisfy Reflexivity, Transitivity and Monotonic-
ity. For each x ∈ V , we define a binary relation ∼x on families of R-closed sets
A,B ∈ P(Γ ), by putting:

A ∼x B iff x ∈
⋂

(A� B),

where A�B := (A−B)∪ (B−A) is the symmetric difference of the two families.
It is easy to check that each∼x is an equivalence relation.15 For any family A ⊆ Γ

and variable x ∈ V , we denote by [A]x the equivalence class of A modulo ∼x .
We construct now a model MR = (OR, IR, AR) with: OR = {[A]x : A ⊆ Γ, x ∈

V }, i.e., all the equivalence classes modulo all the relations ∼x , the interpretation IR

makes all predicates false; and AR = {sA : A ⊆ Γ } consists of assignments sA with
sA(x) := [A]x for all x ∈ V . Note that, if V is finite, then MR is finite as well, and
in fact |AR| ≤ |P(Γ )| ≤ |P(P(V ))| = 22|V | .

This model validates the following claims, for all sA, sB ∈ AR and U ⊆ V :

(a) sA =U sB iff U ⊆⋂
(A� B).

(b) DsA
X y holds in MR iff RXy.

Claim (a): This follows directly from the definition of the assignments sA, via the
following sequence of equivalences: sA =U sB iff [A]x = [B]x for all x ∈ U

iff A ∼x B for all x ∈ U iff x ∈⋂
(A� B) for all x ∈ U .

Claim (b): From left to right, suppose that DsA
X y holds in MR . Take the family

B := A∪{X̃}. Case (i): X̃ ∈ A. Then we have A�B = {X̃}, hence
⋂

(A�B) = X̃.
Thus, by (a) we have sA =X sB (since X ⊆ X̃). It follows by the truth of Ds

Xy

at sA that sA =y sB. But this means by the already proved equivalence (a) that
y ∈ X̃, i.e., RXy. Case (ii): X̃ ∈ A. Repeat the preceding argument, but now w.r.t.
the families A and A− {X̃}.
From right to left, assume that RXy, and consider any assignment sA ∈ AR . Let

sB ∈ AR be any admissible assignment s.t. sA =X sB. By claim (a), X ⊆ ⋂
(A �

B). Putting this together with RXy, we obtain by Monotonicity that R⋂
(A�B)y. But⋂

(A � B) is R-closed (being the intersection of a family of R-closed sets), and

14Closer inspection of this argument shows that the local dependence relation at the special assignment
sV , with V the set of all variables, actually equals the given relation R.
15Reflexivity follows since

⋂
(A � A) = ⋂ ∅ = V . Symmetry follows from the commutativity of

symmetric difference. Transitivity follows from the fact that A� C ⊆ (A�B) ∪ (B� C), which implies
that

⋂
(A � C) ⊇ ⋂

(A � B) ∩⋂
(B � C). If A ∼x B ∼x C, then x ∈ ⋂

(A � B) ∩⋂
(B � C), hence

x ∈⋂
(A� C), i.e. A ∼x C.
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therefore, y ∈ ⋂
(A � B). Applying claim (a) again, we conclude that sA =y sB.

Thus sA satisfies Ds
Xy, as desired.

The desired conclusion follows immediately from the second claim.16

Proof of Part 3 Let R be a family of binary relations on V satisfying Reflexivity,
Transitivity and Monotonicity, and agreeing on constants. For each R ∈ R, put C =
{y ∈ R : R∅y} ⊆ V for the common set of R-constants. Construct all the models
MR as in Part 2, for every R ∈ R. Then each R is both the local and the global
dependence in the corresponding MR .

The only remaining step for our main proof involves the following general
disjoint union construction on dependence models. Define a new model MR =
(OR, IR, AR), where (a) OR := C+∑

R∈R OR = C ∪⋃
R∈R{R}×OR is the dis-

joint union of the common set of constants and all sets of objects of the models MR ,
(b) the interpretation IR makes all predicates false, and (c) AR := {sR : R ∈ R, s ∈
AR} consists of new assignments sR , each associated to an old assignment s ∈ AR

with R ∈ R, with

sR(x) := (R, s(x)) ∈ {R} ×OR for x ∈ V − C, and sR(x) := x for x ∈ C.

Note that in this model, sR =X s′
R′ for all X ⊆ C and all sR, s′

R′ ∈ AR. Also,
for X ⊆ C, sR =X s′

R′ holds in MR iff R = R′ and s =X s′ holds in MR . Using
these facts, it is easy to see that the local dependence statement Dw

Xy holds in MR at
a state w = sR ∈ AR iff it holds at s in the corresponding component MR , and so
the global dependence statement DM

X y holds in MR iff it holds in all components.
It follows that R coincides with the family of all local dependence relations within
MR, and that

⋂
R is the global dependence relation on MR.17

The preceding representation method uses a large number of objects in gen-
eral. What happens when one restricts the available objects that can be assigned to
variables?

Example 2.7 Consider a dependence model given by the table below:

x y z

0 1 0
1 1 0
2 0 0

This table uses three values to represent a strict linear dependence order of three
variables x, y, z: we have global dependencies Dxy and Dyz, but not the other way

16There may be a way of proving Part 2 using some general product construction on the simpler models
produced by in the proof for Part 1, but we have not yet been able to find one.
17This representation argument can be turned into a proof of completeness and finite model property for
a simple logic of dependence atoms plus the universal modality over available assignments, a precursor to
the completeness proof for the richer language of LFD in Section 5.
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around. But as is easy to see, this cannot be done with only two objects.18 To state
the underlying observation positively, the following is valid on two-valued models:

if Dxy and Dyz, then Dyx or Dzy.

More generally, the following can be shown:

Arbitrarily high finite numbers of values are needed to represent arbitrary finite
linear orders.

What are minimal sets of objects for representing given dependence graphs? How
can one axiomatize the structural dependence properties for each fixed finite set of
objects?

Remark 2.8 (Dependence and consequence) As already mentioned, the three stated
structural properties (Reflexivity, Transitivity and Monotonicity) are known to be
characteristic for the relation of classical logical consequence, [69]. But the preced-
ing observations show one essential difference. To represent a three-element linear
sequence of variables ordered by dependence, three objects were needed in Exam-
ple 2.7. But to represent an analogous sequence of strict consequences, only two truth
values are needed, e.g.:

p q r

0 1 1
0 0 1

In fact, any finite acyclic graph can be represented in terms of classical logical
consequence.

All this suggests a move to non-classical consequence relations without a sim-
ple truth value semantics. In fact, the format DXy, with multiple ‘premises’ in X

and a single ‘conclusion’ y, resembles Gentzen-style sequents for intuitionistic logic,
and dependence has been related to intuitionistic implication, [2]. Also, given the
analogies between dependence and implication between questions to be discussed in
Section 3.5, dependence has been related to notions of implication in interrogative
and inquisitive logics, [6, 25].

The analogy between dependence and consequence can also be extended in other
ways. For instance, adopting a classical sequent format, one can study dependencies
DXY read disjunctively in the set Y . Or, softening the strict universal quantification
over assignments in our semantic notion, one obtains new non-monotonic varieties
of dependence where the dependence only holds ‘under normal circumstances’, by
analogy with non-monotonic logics, [23].

2.3 Explicit Function Definitions

Our semantic definition makes dependence DXy a form of implicit definability, as
fixing the values of the dependent variable y by fixing the values of the variables in

18One can fill in the table for y and z to get the right failures of dependence, but then, by functionality, a
third value must be assigned somewhere to x.
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X. But there is also a broad alternative intuition of dependence, viz. as y being defin-
able in terms of X using some repertoire of available operations.19 The two views
are connected. In mathematics, implicit semantic definability justifies the explicit
introduction of a corresponding function.

This discussion suggests the following general line.

Definition 2.9 Given a dependence model M, a set X ⊆ V of variables and a vari-
able y ∈ V , let F

y
X be the partial function from X-indexed tuples in OX to objects in

O, satisfying for all tuples u ∈ OX: F
y
X(u) = o iff o is the unique object in O s.t.

s(y) = o holds for some s ∈ A with s � X = u; if no such object exists, F
y
X(u)

is undefined. In other words: F
y
X(u) = o holds iff we have both (1) u = s � X for

some assignment s ∈ A, and (2) for all assignments t, t ′ ∈ A, t � X = t ′ � X implies
t (y) = t ′(y) = o. We denote by dom(F

y
X) the domain of this function. The expansion

of M with all these partial functions F
y
X is called the induced function model F(M).

The partial functions introduced in this Skolemization-like manner make explicit
the functions that underlie local and global dependencies:

Fact 2.10 Induced function models satisfy the following two equivalences:

Ds
Xy iff s � X ∈ dom(F

y
X) iff s(y) = F

y
X(s � X)

DM
X y iff dom(F

y
X) = {s � X : s ∈ A} iff s(y) = F

y
X(s � X) for all s ∈ A.

Explicit definability is a natural companion to our semantic view as implicit
determination.20 Developing an abstract purely operational approach matching our
semantic view of dependence may be worthwhile, and some concrete instances of
how such an approach might work can be found in Section 7.2 on the notion of linear
dependence in vector spaces.

3 The Logic of Functional Dependence

We now introduce the language of our logic LFD of functional dependence.

3.1 Syntax and Semantics of LFD

Definition 3.1 Given a vocabulary (V , P red, ar), the language LFD is recursively
given by:

ϕ ::= Px | ¬ϕ | ϕ ∧ ϕ | DXϕ | DXy

19Explicit functional dependence relies crucially on the available operations. For instance, in the set {1, 2},
2 depends on 1 if addition is present, but not if the only operation is multiplication. Another typical
example are dependent vectors that are special linear combinations of other vectors.
20An operational view may also underlie dependence notions in logic. Dependence in quantifier combina-
tions ∀x∃y means that a value for y can be produced given one for x, something that can be made concrete
by a Skolem function. And dependence in a set of formulas like {p, p ∨ q} may mean that some proof
‘produces’ p ∨ q from p.
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where y ∈ V is any variable, P is any predicate symbol, x = (x1 . . . xn) is a finite
string of variables of length n = ar(P ) and X ⊆ V is a finite set of variables.

Definition 3.2 (Semantics) Truth of a formula ϕ in a dependence model M = (M, A)

at an assignment s ∈ A (written M, s |= ϕ, with the index M dropped when the
model is understood) is defined by the following clauses:

s |= Px iff IM(P ) holds for the tuple s(x)
s |= ¬ϕ iff s |= ϕ

s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

s |= DXϕ iff t |= ϕ holds for all t ∈ A with s =X t

s |= DXy iff Ds
Xy holds in M.

As announced in the Introduction, the dependence modality DXϕ is read as “X
locally determines ϕ”: the current values of X determine the truth of ϕ. Similarly,
DXy is read as “X locally determines y”: it says that the current values of X

determine the value of y.21

One important notion in LFD is that of free variables. Here we have to be careful.
As in FOL, we want the free variables to be those whose current values determine the
truth value of a formula; indeed, binding a variable is a way of “forgetting” its value
as irrelevant, while the specific value currently assigned to a free variable is relevant
for the meaning of the formula. But the definition is subtly different from FOL, since
the dual quantifiers DXϕ explicitly list the variables that are left free (rather than
listing the bound ones, as do the usual quantifiers).

Definition 3.3 Free(ϕ) is defined by the following recursion:
(a) Free(Px1 . . . xn) = {x1, . . . , xn},
(b) Free(¬ϕ) = Free(ϕ), (c) Free(ϕ ∧ ψ) = Free(ϕ) ∪ Free(ψ),
(d) Free(DXϕ) = X, (e) Free(DXy) = X.

Now we can check that indeed the values of the free variables occurring in a for-
mula uniquely determine its truth value. In other words, like FOL (and unlike CRS),
LFD is ‘local’:

Fact 3.4 (Locality.) If Free(ϕ) ⊆ X, and s =X t , then s |= ϕ iff t |= ϕ.

Proof The proof is by induction on ϕ. The atomic and Boolean cases are entirely
straightforward. Dependence modalities: Assume that s =X t and s |= DXϕ. To show
that t |= DXϕ, consider any w ∈ A with t =X w. Here s =X t and t =X w imply
s =X w. This together with DXϕ then yields w |= ϕ as desired, by the semantics
of DX. Dependence atoms: Assume that s =X t and s |= DXy. Then s =y t by the
semantics of DX. To show that t |= DXy, consider any w ∈ A with t =X w. Here

21As already mentioned in the Introduction, the obvious analogy between DXϕ and DXy can be made
precise by introducing Boolean variables ?ϕ as in [6], that record the truth-values of formulas ϕ, and then
defining the dependence quantifiers as DXϕ := ϕ ∧ DX?ϕ. Here, we choose to take these quantifiers as
primitive, as they have an independent logical motivation and in our view they play an equally important
role as the dependence atoms in the study of (partial) dependencies and correlations between variables.
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s =X t and t =X w imply s =X w, which together with s |= DXy gives that s =y w.
From this and s =y t , it follows that t =y w as desired.

Here is a useful immediate consequence in the presence of additional local
dependencies.

Corollary 3.5 If two assignments s, t agree on all formulas with free variables in X,
then they also agree on all formulas with free variables in the extended set {y | s |=
DXy}.22

Abbreviations Boolean connectives 
,⊥, ϕ ∨ ψ, ϕ → ψ, ϕ ↔ ψ are defined as
usual. We use Dxy for DXy when X = {x} is a singleton, and same for Dxϕ. Other
abbreviations are:

(a)

∀

ϕ := D∅ϕ (universal modality) (b) EXϕ := ¬DX¬ϕ (c)

∃

ϕ := ¬ ∀¬ϕ

(d) Cy := D∅y (constant value) (e) = (X; y) := ∀

DXy (global dependence)

(f ) DXY :=
∧

y∈Y DXy (multi-variable dependence)

(h) ∀Xϕ := DFree(ϕ)−Xϕ (universal quantifier)

(i) ∃Xϕ := ¬∀X¬ϕ (existential quantifier)

These defined connectives behave as expected. E.g., syntactically, we have that:
Free(∀Xϕ) = Free(∃Xϕ) = Free(ϕ) − X. Semantically, e.g.,

∀

ϕ means that all
assignments satisfy ϕ, etc.:

s |= ∀
ϕ iff t |= ϕ for all t ∈ A

s |= EXϕ iff t |= ϕ for some t ∈ A with s =X t

s |= Cy iff t =y s for all t ∈ A

s |== (X; y) iff DM
X y holds

s |= ∀Xϕ iff t |= ϕ for all t ∈ A with s =Free(ϕ)−X t .

Note that our defined formula ∀Xϕ matches the semantics of the ‘local’ version of the
universal quantifier (in the sense of satisfying the Locality principle from Fact 3.4),
as given in the Introduction. Recall that these amount to the standard FOL quantifiers
on full models, and are their closest analogue on arbitrary dependence models. Thus,
LFD contains the first-order quantifiers, generalized from their standard models to
the larger realm of dependence models. For further discussion of the meaning of LFD
quantifiers, cf. Section 3.2.

Remark 3.6 (Informational interpretation) The set A of admissible assignments in
a dependence model is a ‘complete database’, as in Example 1.1, and can be inter-
preted as an information structure, encoding the ‘knowledge base’ of an (anonymous)
agent: a full list of all the tuples that are consistent with the agent’s background
information. The underlying assumption is that only one tuple (the ‘current assign-
ment’) represents the actual state of the world, but that tuple is typically unknown:

22The set {y | s |= DXy} includes X, as a consequence of Reflexivity and Monotonicity.
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the agent can only narrow down the possibilities to the set A. The universal modality∀

ϕ := D∅ϕ then captures the agent’s information:

∀

ϕ means that ϕ is ‘known’. The
constant-value formula Cx := D∅x says that the value of x is ‘known’. Dependence
quantifiers capture a form of conditional knowledge: DXϕ means that the agent can
know that ϕ if she is given the current values of X. Analogously, dependence atoms
DXy express a form of conditional knowledge of a value: the agent can know the
value of y if given the values of X. Finally, global dependence

∀

DXy captures known
correlations: the agent knows how to determine the value of y from the values of X.

Remark 3.7 (Further notions of dependence) We can also formalize a common alter-
native intuition of dependence, [13], as ‘changing x involves changing y’: this is just
Dyx. Moreover, weaker notions of dependence can be defined, such as ‘restricting
the value of x to property P restricts the value of y to have property Q’ (cf. Remark
1.2). This is expressed by

∀

(Px → Qy). Yet another definable notion of dependence
is that the current values of X restrict the value of y to have property Q, captured by
the formula DXQy.

Example 3.8 Here are some illustrations of valid and invalid consequences:

1. (a) ϕ→ DXϕ is valid if Free(ϕ) ⊆ X. (b) Px → DyPx is not valid.
2. (a) DX∩Y ϕ→ DXDY ϕ is valid. (b) DXDY ϕ→ DX∩Y ϕ is not valid.
3. Let X ∩ Y = ∅. (a) (EXϕ ∧ EY ψ)→ EX∪Y (ϕ ∧ ψ) is not valid. However,

(b) if Free(ϕ) ⊆ X and Free(ψ) ⊆ Y , the preceding implication is valid, and
in fact we have the stronger validity (EXϕ ∧ EY ψ)→ (ϕ ∧ ψ).23

4. The Distribution axiom is sound for dual quantifiers: DX(ϕ → ψ) →
(DXϕ → DXψ) is valid. However, (b) Distribution is not sound for local
quantifiers: ∀X(ϕ→ ψ)→ (∀Xϕ→ ∀Xψ) is not valid.24

5. (a) DXϕ→ ϕ and ∀Xϕ→ ϕ are valid. However, (b) the classical elimination
rule for the universal quantifier is not sound: ∀xϕ→ [y/x]ϕ is not valid.25

The last non-validity is explained by the fact that in LFD variables are no longer
arbitrary placeholders, but have an individual meaning, denoting specific quantities
(as commonly done in the empirical sciences, where e.g. t stands for time, etc). This
means that, unlike in FOL, bound alphabetic variants may have different truth values:
∀xPx can be true in a model while ∀yPy is false. On the other hand, LFD still allows
for a formulation of the intuition behind bound variants that the choice of variables
is arbitrary: though no longer holding inside one given model, the invariance under
renaming still holds across models.

23To check this: assume that s |= EXϕ ∧ EY ψ . Then there are s′ =X s and s′′ =Y s with s′ |= ϕ and
s′′ |= ψ . Using these facts and the assumptions that Free(ϕ) ⊆ X and Free(ψ) ⊆ Y , we obtain s |= ϕ

and s |= ψ by Locality, Fact 3.4. It follows that s |= ϕ ∧ ψ .
24A counterexample, for V = {x, y, z}, is given by taking O = {0, 1}, I (P ) = {(1, 1)} and A =
{(1, 1, 1), (1, 1, 0), (0, 0, 1)}, where a triplet of values denotes the corresponding assignment on (x, y, z).
The assignment (1, 1, 1) satisfies ∀x(Pxy → Pxz) and ∀xPxy, but fails to satisfy ∀xPxz.
25Here, [y/x]ϕ is the result of substituting y for x in the formula ϕ.
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Fact 3.9 (Renaming Lemma) Consider any dependence model M = (M, A) and
LFD-formula ϕ. Let σ be a permutation of all variables, and let σ(ϕ) be the result
of replacing in ϕ every occurrence of any variable x ∈ V by σ(x). Moreover, for
every s ∈ A, let sσ be the assignment given by putting sσ (x) := s(σ−1(x)) for all
variables x, and let Mσ = (M, Aσ ) be the dependence model obtained by taking
Aσ = {sσ : s ∈ A}). Then the following equivalence holds:

M, s |= ϕ iff Mσ , sσ |= σ(ϕ).

As a consequence, validity is invariant under variable renaming: ϕ is valid iff σ(ϕ)

is valid.

Proof The proof of the first claim is by induction on ϕ.

Atomic formulas Note that, for all s ∈ A, x ∈ V we have s(x) = s(σ−1(σ (x)) =
sσ (σ (x)), and also σ(P x) = Pσ(x). Using these and the truth definition, we obtain
the equivalences: M, s |= Px iff s(x) ∈ I (P ) iff sσ (σ (x)) ∈ I (P ) iff M, sσ |=
Pσ(x) iff M, sσ |= σ(P x).

Boolean combinations This inductive step follows immediately by the truth clauses
for Boolean operations, the induction hypothesis and the fact that permutations
satisfy σ(¬ϕ) = ¬σ(ϕ) and σ(ϕ ∧ ψ) = σ(ϕ) ∧ σ(ψ).

Dependence modalities First note the following equivalence: s =X t iff sσ =σ(X)

tσ . Using this, the truth clause for the universal dependence modality and the induc-
tion hypothesis, we obtain the following sequence of equivalences: M, s |= DXϕ iff
∀t ∈ A (s =X t ⇒ M, t |= ϕ) iff ∀t ∈ A (sσ =σ(X) tσ ⇒ Mσ , tσ |= σ(ϕ))

iff ∀w ∈ Aσ (sσ =σ(X) w ⇒ Mσ , w |= σ(ϕ)) iff Mσ , sσ |= Dσ(X)σ (ϕ) iff
Mσ , sσ |= σ(DXϕ).

Dependence atoms Using the same observation as in the previous case, together with
the fact that σ(DXy) = Dσ(X)σ (y), as well as truth clause for dependence atoms and
the induction hypothesis, we obtain the sequence of equivalences: M, s |= DXy iff
∀t ∈ A (s =X t ⇒ s =y t) iff ∀tσ ∈ Aσ (sσ =σ(X) tσ ⇒ sσ =σ(y) tσ ) iff ∀w ∈
Aσ (sσ =σ(X) w ⇒ sσ =σ(y) w) iff Mσ , sσ |= Dσ(X)σ (y) iff Mσ , sσ |= σ(DXy).

Finally, the second claim follows immediately from the first, by quantifying over
both admissible assignments and dependence models.

3.2 Discussion: Quantification Over Objects in LFD

Having entered the world of LFD with its special behavior of variables, one might
ask whether the above quantifier companions ∀Xϕ of the dependence modalities are
‘true’ quantifiers. This question calls for some distinctions. First, as we saw earlier,
both the CRS-style quantifiers ∀Xϕ and their local versions ∀Xϕ are simply gener-
alizations of the FOL quantifiers to a broader class of models, and the dependence
modalitities of LFD are their close duals. However, one might require a true quanti-
fier to be a semantic operator, acting on objects, so that the precise variable used in
its syntax does not matter.
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Now in one sense, this is true in LFD: variable names do not matter when we
look across models. What can be said in one model using x can be said in another
model using another variable y, by the Renaming Principle 3.9, which underpins, for
instance, the use of alphabetic variants for proofs in our axiomatic systems of Sec-
tions 5.1, 6.2. But locally within one model, the existence of non-trivial dependencies
gives rise to asymmetries of behavior between variables: as already observed, vari-
ables in a fixed dependence model acquire ‘individuality’. As a result, in a given
model, quantifiers in LFD quantify over admissible assignments, not over tuples
of objects like the first-order quantifiers. Thus, existential quantifiers in LFD do
not seem at first sight to be obviously related to the usual Skolem functions in the
semantics of FOL.

But more can be said. In fact, a string of LFD quantifiers does induce a semantic
operator over tuples of objects, albeit one that, in contrast to its classical counter-
part: (a) quantifies over a restricted range of tuples (the ones that are in the range of
admissible joint values for the given variables), and (b) imposes further constraints
on the corresponding Skolem function, requiring it to behave well with respect to the
admissible assignments. These additional features are both natural and informative
in generalized assignment semantics. Indeed, quantifier combinations in LFD play a
twofold role, giving information both about objects and about variable ranges and
dependencies.

More precisely, let us compare the meaning of some quantifiers and quantifier
combinations in LFD with their classical meanings in FOL. To do this, we need some
notation. Given a tuple of variables x = (x1, . . . , xn) ∈ V ∗, let X := {x1, . . . , xn}
be the set of its variables. Also, for any given dependence model M = (O, I, A), we
denote by

Ox := {s(x) : s ∈ A} = {(s(x1), . . . , s(xn)) : s ∈ A}
the range of admissible x-values, as a subset of On. As a special case, we have

O(x) = {s(x) : s ∈ A} ⊆ O.

For a start, with the given notational convention, consider the LFD formula

∀X Px

This holds in a full model (with A = OV ) iff we have

On ⊆ I (P )

So on full models, ∀X captures universal quantification, exactly as ∀X does in FOL.
But over an arbitrary dependence model M = (O, I, A), the same formula holds iff
we have

Ox ⊆ I (P )

This is clearly universal quantification, but only over the restricted range Ox of
admissible simultaneous x-values. Though weaker than the FOL formula ∀xPx, this
is precisely the natural meaning in a dependence model, where each variable x or
tuple of variables x has its own range of (tuples of) values. The universal LFD
quantifier simply quantifies over that range.
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Our second, perhaps more telling, example is a quantifier combination expressing
a functional dependence.26 It is easy to see that the LFD formula

∀x∃y Pxy

holds in a full model iff there is a function witnessing this fact:

∃F : O → O ∀o ∈ O : (o, F (o)) ∈ I (P )

This matches the usual Skolem-type meaning of the FOL formula ∀x∃yPxy. But
spelling out the LFD semantics for the defined dependence quantifiers, over an arbi-
trary dependence model M = (O, I, A), the same formula ∀x∃y Pxy holds iff we
have 27

∃F : O(x) → O ∀o ∈ O(x) (o, F (o)) ∈ I (P ) ∩O(x,y)

This statement is neither weaker, nor stronger than the one expressed by the FOL
formula. On the one hand, the domain of F is restricted to the admissible x-values,
which is a weakening. But on this restricted range, we have a stronger statement: not
only do all resulting pairs (o, F (o)) satisfy P , but they are all realized by admissible
simultaneous assignments of values to (x, y). Once again, this is a natural statement:
in the earlier terms, the combination ∀x∃y gives information about objects and on
how these objects can be accessed by variables.

This twofold nature is shared by all quantifier combinations in LFD, making them
meaningful in a broader realm than the classical quantifier combinations to which
they reduce on full models. Alternatively, they can also be viewed as just being
restricted versions of the classical quantifier combinations, but with the added value
that they are now forced to also give information beyond their traditional comfort
zone (about constraints and correlations on variable ranges).

Summing up the presentation so far, LFD has both dependence modalities and
quantifiers in one setting. But one can also view the system at a higher level. Modali-
ties can be seen as quantifiers, as is well-known in modal logic, [22], and conversely,
a system like CRS shows how first-order quantifiers can be seen as modalities. Thus,
two perspectives are possible on LFD: it is both a first-order logic and a modal logic.
This interplay will continue throughout this paper, as it allows for borrowing notions
and techniques from both sides. In the remainder of this section, the two intertwined
perspectives are taken a bit further, starting with a connection of LFD to standard
FOL in terms of translation between languages and semantics.

3.3 First-Order Translation

As is the case for modal logic, the preceding language can be translated faithfully
into a first-order language. But before doing so, it is important to be clear in which

26The analysis here is also reminiscent of the discussion in Section 2.3, but we forego details.
27In more detail, starting from any assignment, the first quantifier ∀x ranges over all admissible assign-
ments s and any value for x there, the second ∃y then ranges over all admissible assignments t with
s =x t .
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sense this is meant. LFD can be seen as a weak, decidable first-order logic over
generalized models. But sometimes, a language interpreted over generalized models
can be translated into a fragment of that same language interpreted over the original
standard models.28

By the Locality of LFD, it is enough to consider a finite set V = {v1, . . . , vn}
of n variables, with a given enumeration. First take fresh copies of these vari-
ables V ′ = {v′1, . . . , v′n}. Also introduce a new n-ary predicate A where intuitively,
A(v1, ..., vn) encodes the fact that the tuple of values assigned to v1, . . . , vn belongs
to the admissible assignments A of the current dependence model. Now consider
FOL with variables in V ∪ V ′ and predicates in Pred ∪ {A}.

For each dependence model M, there is an associated FOL model T (M) for
this extended language, having the same domain and the same interpretation of the
old predicate symbols, and with the new predicate A interpreted as above. Con-
versely, every FOL model for the extended language is the translation T (M) of some
dependence model.

Definition 3.10 The first-order translation tr(ϕ) from LFD-formulas ϕ to first-order
formulas in the above finite vocabulary is defined as follows.

(a) tr(P x) = Px, (b) tr(¬ϕ) = ¬tr(ϕ), (c) tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ),
(d) tr(DXϕ) = ∀z(Av → tr(ϕ)), where v is the enumeration of all the variables

in V and z is the enumeration of all the variables in V −X,
(e) tr(DXy) = ∀z∀z′((Av ∧ Av[z′/z]) → y = y′), where v and z are as in part

(d), z′ and y′ are the corresponding fresh V ′-copies of z and respectively y, and
Av[z′/z] is the result of replacing the variables z by z′ in the formula Av.

Free and bound occurrences of a variable in a FOL formula are defined as usual.
Variables are allowed to occur both free and bound in different parts of the same
formula, so that freely occurring variables can be reused in quantification. The free
variables of a FOL formula are also defined as usual: as those variables that occur
free at least once in the formula.

It is easy to see from the above translation that, for every formula ϕ of LFD over
V , the set of free variables of its FOL translation tr(ϕ) is exactly Free(ϕ).

Fact 3.11 For all LFD modelsM and LFD formulas ϕ, we have:

M, s |= ϕ iff T (M), s |= tr(ϕ),

where tr(ϕ) is the above FOL translation of ϕ, and T (M) is the FOL model
associated to M.

The proof is a simple induction following the idea of the stated translation.

28Cf. the analysis of two-way connections between CRS and the Guarded Fragment of FOL in [13, 14].
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Corollary 3.12 The validities of LFD are recursively enumerable.29

Further benefits of the above translation include immediate transfer of the
fundamental Compactness and Löwenheim-Skolem properties of FOL to LFD.

3.4 Modalization of LFD: Standard Relational Semantics

Next, we elaborate the modal perspective on LFD. An equivalent semantics is
obtained by abstracting away the assignments from their concrete set-theoretical
interpretation as functions and treating them as abstract possible worlds. This elim-
inates all references to values assigned to variables, and replaces identity of values
s =x t by abstract equivalence relations ∼x .

Definition 3.13 A standard relational model is a triple M = (W,∼, ‖ • ‖), consist-
ing of: (a) a set W of worlds or ‘states’; (b) a map ∼: V → P(W ×W) associating
to each variable x ∈ V an equivalence relation ∼x on W ; and (c) a valuation ‖ • ‖
associating to each formula of the form Px a set of worlds ‖Px‖ ⊆ W . It is useful
to introduce auxiliary relations ∼X on W , for sets of variables X ⊆ V , defined by
taking intersections ∼X:=⋂

x∈X ∼x . With this notation, the valuation is required to
satisfy the following additional condition:

ifw ∼X v andw∈‖Px1 . . . xn‖ for some x1, . . . , xn∈X, then v∈‖Px1 . . . xn‖.

We interpret dual quantifiers DXϕ as universal modalities for the relation ∼X,
while dependence atoms DXy capture a local inclusion (every ∼X-successor is also
a y-successor):

Definition 3.14 In a standard relational model M = (W,∼, ‖ • ‖), the notion of
truth M, s |= ϕ (with the index M dropped when the model is fixed) is given by
the valuation for atomic formulas Px, by the usual recursive clauses for the Boolean
operators, and by:

w |= DXϕ iff ∀v ∈ W (w ∼X v implies v |= ϕ )

w |= DXy iff ∀v ∈ W
(
w ∼X v implies w ∼y v

)

The two kinds of models introduced so far are closely related: we can show that
the standard relational semantics is equivalent to the dependence-model semantics.

One direction is given by the following observation:

Fact 3.15 Every dependence model M = (O, I, A) induces a standard relational
model rel(M) = (W,∼, ‖•‖), whose possible worlds are the admissible assignments

29By Fact 3.11 (and the above observation that every FOL model for the extended language is the trans-
lation of a dependence model), a LFD formula is satisfiable iff its first-order translation is. The statement
then follows from the completeness theorem for FOL and the effectiveness of the above translation.
Since the above translation is easily extended to all other dependence logics considered in this article, the
corollary holds for all of these.

960 A. Baltag, J.v. Benthem



A (so W := A), the accessibility relations s ∼x t are given by pointwise equality
of x-values s =x t (as already defined in dependence models, for both individual
variables x and sets of variables X), and the valuation is given by ‖Px‖ = {s ∈ W :
s(x) ∈ I (P )}. Moreover, the dependence-model semantics agrees with the relational
semantics on the induced model: for all s ∈ A = W and formulas ϕ of LFD,

M, s |= ϕ iff rel(M), s |= ϕ.

This construction defined here is so tight, that its adequacy should be clear without
further proof.

A slightly less routine construction yields the opposite direction:

Definition 3.16 Every standard relational model M = (W,∼, ‖ • ‖) induces a
dependence model dep(M) = (O∼, I∼, A∼), obtained by taking:

(a) O∼ = {(x, [w]x) : w ∈ W, x ∈ V }, where objects are pairs (x, [w]x) of a
variable and an equivalence class [w]x = {v ∈ W : w ∼x v}

(b) A∼ = {w∼ : w ∈ W }, with the admissible assignments w∼(x) = (x, [w]x) for
all x ∈ V

(c) the interpretation I∼ maps each n-ary predicate P to the set

I∼(P ) := {(x1, [w]x1 ), . . . , (xn, [w]xn )) : w ∈ W, x1, . . . , xn ∈ V with M, w |= Px1 . . . xn}.

Note that w∼(x) = v∼(y) implies that x = y and w ∼x v. Using this, one
easily checks that I∼(P ) is well-defined on objects, i.e., independent of the choice
of representatives for the equivalence classes. Moreover, the construction preserves
truth of LFD formulas:

Fact 3.17 Given a standard relational model M = (W,∼, ‖ • ‖), the relational
semantics on M agrees with the dependence-model semantics on dep(M): that is,
for all worlds w ∈ W and all formulas ϕ of LFD, we have

M, w |= ϕ iff dep(M), w∼ |= ϕ.

Proof The proof is by induction on ϕ. The atomic case holds by the definition of I∼
in dep(M). Boolean cases are routine. The inductive cases for DXϕ and DXy follow
easily from the semantic definitions, together with the following simple fact: w ∼x v

in M iff w∼ =x v∼ in dep(M).

The two constructions can also be intertwined, with outcomes such as the
following.

Fact 3.18 For every standard relational model M = (W,∼, ‖ • ‖), the function
w �→ w∼ is a surjective homomorphism fromM to rel(dep(M)).

Remark 3.19 An obvious next desideratum is a natural notion of modal bisim-
ulation for LFD, capturing its precise range within the first-order language over
standard models. One lead here might be the connection with generalized assignment
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semantics for FOL. A natural analogue to modal bisimulation for FOL is potential
isomorphism, using partial assignments from finite sets of variables to objects. The
crucial back-and-forth clauses of a potential isomorphism F are easily adapted to
generalized assignment semantics.

Open problem Find a bisimulation invariance theorem characterizing LFD.30

3.5 Other Interpretations: Information, Knowledge, Questions

The relational semantics, and its equivalence with the dependence-models seman-
tics, shows that the actual values of variables do not play an essential role in LFD:
what is important are the relations of ‘agreement on values’ of X, and ‘depen-
dence of y on X’. This suggests other, non-variable-based interpretations of our
logic. Three such interpretations will be outlined here (epistemic, interrogative, and
mixed), all information-based, like the informational interpretation in Remark 3.6.
The informational perspective is ubiquitous: one often talks informally about even
ontic dependence in the real world as knowing the value for one variable implying
knowing that of the other, or as answers to some questions implying answers to other
questions.

A straightforward epistemic reading of LFD re-interprets the variables x ∈ V as
agents, while the equivalence relations∼x represent the agents’ uncertainty relations.
Then the modal statement Dxϕ captures agent x’s individual knowledge, while DXϕ

expresses distributed knowledge among the group of agents X, [33]. Dependence
atoms Dxy express knowledge subsumption: ‘agent x knows at least as much as agent
y’, [29], while atoms DXY stand for the analogue notion of group subsumption.31

Next, since an equivalence relation is also a partition as used in the traditional
semantics of questions, [42], dependence models also have an interrogative inter-
pretation. Variables x represent basic questions, and sets of variables X are joint
questions asking for the answers to all the given questions). The dependence modality
Dxϕ is the ‘interrogative modality’ Qϕ of [20], while DXϕ extends this to joint ques-
tions. Dependence atoms DXy are local versions of ‘inquisitive implication’ between
questions, see [25, 26] for modern versions.

Finally, in mixed readings, some variables stand for agents, others denote objects,
while yet others represent questions. Such mixtures greatly enhance the range of
LFD. For instance, the logic for mixed readings in [6] captures a group’s distributed
knowledge of the value of a variable, as well as individual or group knowledge of a
dependence between variables.

30In response to a preprint version of this paper, Koudijs [54] defined notions of dependence bisimula-
tion for our dependence models as well as their modal relational versions, and proved a Characterization
Theorem for LFD as a fragment of FOL that is invariant under dependence bisimulations. A similar
characterization of LFD was found independently in Pútzstück [68].
31Even so, some natural epistemic notions lack an obvious match in LFD. What is a dependence
counterpart to common knowledge CGϕ, or other epistemic fixed-point notions?
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4 Decidability via TypeModels

In this section, we show that LFD is decidable, using type models. These ‘models’
are just syntactic constructs, with no explicit objects, resembling the ‘quasi-models’
used in [3, 13] to investigate the Guarded Fragment. Sparse models like this have
an independent interest, and they yield a bare-bones proof of decidability. However,
the price of this directness is a certain amount of ad-hoc syntactic construction. In
Appendix A, we use general semantic methods from modal logic to give a more
elegant (though less direct) proof of decidability for LFD.

4.1 Syntactic TypeModels

Consider any finite set F of LFD formulas, and let VF be the finite set of all variables
occurring in F . Add to F all formulas DXY for all sets of variables X, Y ⊆ VF . Close
the resulting set under subformulas, as well as one round of negations, where explicit
negations themselves are left as they are. Call the resulting finite set Φ = ΦF . This
set will be fixed henceforth, and models and arguments about them will only involve
these formulas.

Definition 4.1 A subset Σ ⊆ Φ is a Hintikka set for Φ (also occasionally called a
syntactic ‘type’) if it satisfies the following conditions, where all formulas mentioned
run over Φ only:

(a) ¬ψ ∈ Σ iff ψ ∈ Σ , (b) (ϕ ∧ ψ) ∈ Σ iff ϕ ∈ Σ and ψ ∈ Σ

(c) if DXψ ∈ Σ , then ψ ∈ Σ , (d) DXx ∈ Σ for all x ∈ X

(e) if DXY, DY Z ∈ Σ , then DXZ ∈ Σ .

Note that there are only finitely many Hintikka sets for a given finite set Φ. More-
over, the property of being a Hintikka set for a set F of bounded size ≤ N is clearly
decidable.

Definition 4.2 For every Hintikka set Σ ⊆ Φ and every set of variables X ⊆ VF , the
dependence closure of X wrt Σ is the set of variables DΣ

X := {y ∈ VF : DXy ∈ Σ}.

The terminology ‘closure’ is justified by the following observations. First, clause
(d) on Hintikka sets implies that the dependence closure DΣ

X contains X; second,
clauses (b), (e) together imply that DΣ

X is closed under adding variables z with DY z ∈
Σ for any Y ⊆ DΣ

X ; third, DΣ
X is the smallest set (in the sense of set inclusion) of

variables satisfying the first two properties. If Z is any other set satisfying the two
properties, then DΣ

X ⊆ Z. For, let z ∈ DΣ
X , so DXz ∈ Σ . We have X ⊆ Z by the

first property, and so z ∈ Z by the second property.

Definition 4.3 For Hintikka sets Σ, Δ ⊆ Φ and X ⊆ VF ,

Σ ∼X Δ iff Σ and Δ have the same formulas ψ ∈ Φ with Free(ψ) ⊆ DΣ
X .
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Fact 4.4 The following statements hold for all Hintikka sets Σ, Δ, and sets of
variables X, Y ⊆V :

1. Σ ∼X Δ implies DΣ
X = DΔ

X ,
2. ∼X is an equivalence relation,
3. Σ ∼X Δ and DXY ∈ Σ imply Σ ∼Y Δ.

Proof For the first item: if Σ ∼X Δ, then the sets Σ, Δ contain the same dependence
atoms DXy – since the latter have only free variables X, and X ⊆ DΣ

X . It follows
that DΣ

X = DΔ
X .

For the second item: ∼X is evidently reflexive, by its definition. Symmetry and
transitivity also follow immediately from the definition of ∼X together with the first
item (the invariance of DXY under ∼X).

The third item follows from the fact that DXY ∈ Σ implies that DΣ
Y ⊆ DΣ

X .
Indeed, if z ∈ DΣ

Y and DXY ∈ Σ , then we have DY z, DXY ∈ Σ , thus DXz ∈ Σ by
property (e) of Hintikka sets, and hence z ∈ DΣ

X .

Next we define a syntactic notion capturing key aspects of the families of Hintikka
sets that can occur together in one dependence model. Here Clause (f) reflects the
witnessing for existential dependence modalities in the model, and Clause (g) the fact
that constants (i.e., variables x for which D∅x holds) behave uniformly in the model.

Definition 4.5 A type model for Φ is a family M of Hintikka sets for Φ obeying the
following two conditions. The first is an additional ‘witness condition’ for existential
modalities:

(f) if EXψ ∈ Σ ∈ M, then there exists a set Δ ∈ M, such that (i) ψ ∈ Δ, (ii)
Σ ∼X Δ.

The second condition expresses uniformity for constants:

(g) Σ ∼∅ Δ (as given in Definition 4.3) holds for all Σ, Δ ∈M.32

Once again, for a given finite set F , there are only finitely many type models for
ΦF , and moreover, the property of being a type model for a set F of bounded size N

is decidable.

4.2 Representation of TypeModels as DependenceModels

First, it is easy to see that every dependence model induces a type model.

Definition 4.6 Given a dependence model M = (M, A) and a set Φ as in the
previous section, the Φ-type of an assignment s ∈ A is defined as

type(s) = {ψ ∈ Φ |M, s |= ψ}.

32I.e., ∼∅ is the universal relation on M. This means that all Hintikka sets in M contain the same atomic
statements D∅x (if any) and the same formulas whose free variables are all in the set of these constant x.
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Fact 4.7 For every assignment s ∈ A in a dependence model M = (M, A), its Φ-
type type(s) is a Hintikka set. Moreover, the set type(A) := {type(s) : s ∈ A} of all
Φ-types occurring in M is a type model.

Proof Checking conditions (a)–(e) on Hintikka sets is straightforward. For the wit-
ness condition (f) in the type model, let Σ = type(s) for s ∈ A, and let EXψ ∈ Σ ,
i.e. s |= EXψ . By the semantics of LFD, there exists t ∈ A with s =X t and t |= ψ ,
i.e. ψ ∈ type(t). By the Locality Lemma 3.4, s, t make the same formulas true whose
free variables are among the X, which includes all dependence atoms DXy. Therefore,
s, t agree on all variables in the set DΣ

X , and so, once more by Locality, we have that
type(s) ∼X type(t) in the sense of Definition 4.3. Finally, condition (g) reflecting the
uniform behavior of constants again follows from Locality in dependence models.

The more challenging direction is now the converse: that every type model can be
represented as the set of types of some dependence model.

Theorem 4.8 Given a type modelM, there exists a dependence modelM = (M, A)

with
M = {type(s) : s ∈ A}.

Proof First fix any Hintikka set Σ0 ∈M. Define a good path to be a finite sequence
π = 〈Σ0, X

1, Σ1, . . . , X
n, Σn〉 of any length n + 1 ≥ 1 such that (i) Σk ∈ M

for each k (hence each Σk is a Hintikka set in M), and (ii) each Xk ⊆ VF satisfies
Σk−1 ∼Xk Σk . Write last (π) = Σn for the last element of path π .33

In what follows, it is convenient to view good paths as consisting of successive
good transitions of the form (Σ, X, Δ). Here we think of the variables in X, and
those depending on them according to Σ , as keeping their value in the transition.
More precisely, we say that

the variables kept fixed in a transition(Σ, X, Δ)

are all those in the extended set of variables DΣ
X introduced in Definition 4.2.34 Sets

of variables kept fixed in good transitions underlie many of the definitions and proofs
that follow.

The good paths are finite sequences that form a rooted branching tree in a standard
manner, with the 1-length path 〈Σ0〉 as its root. It may help the reader to keep a tree
picture in mind in what follows, cf. Figure 1 below for a visual aid.

Next, objects will be special pairs of good paths and variables. Instead of defining
these objects separately, we introduce them simultaneously with the following induc-
tive definition of path assignments vπ for good paths π , that send variables to objects:

vπ(x) = (π, x) if π has length 1, i.e. π = 〈Σ0〉 is the root of our tree.

vπ(x) = vπ ′(x) if π = (π ′, X, Σ) with x ∈ D
last (π ′)
X .

vπ(x) = (π, x) if π = (π ′, X, Σ) with x ∈ D
last (π ′)
X

33This definition creates infinitely many good paths, and as we shall see in a moment, infinitely many
objects. Whether this can be restricted to a finite set of paths and values is at present an open problem.
34DΣ

X equals DΔ
X by Fact 4.4, so the reverse transition is also good.

965A Simple Logic of Functional Dependence



The second clause leaves the same values for variables if the last transition keeps
them ‘fixed’. The third clause creates fresh objects as soon as this fixing is not pre-
scribed. In particular, note that constants x, i.e. special variables with D∅x present in
all Hintikka sets in M, will get the same value (〈Σ0〉, x) under all path assignments.
By condition (g) on type models, that value never changes for longer paths.

Now, we define a first-order model M = (O, I) by letting

O = {vπ(x) : π good path and x ∈ VF }
be the set of all objects (π, x) assigned by the assignments vπ in the above manner.
Next, an interpretation I (P ) is given to each predicate by means of the following
‘coherence condition’:

I (P ) holds for a finite sequence of objects (π, x) in O if all paths π occurring
in the sequence are linearly ordered by the relation of initial segment, and the
formula Px occurs in last (π∗) on the longest path π∗ among these.

Finally, a dependence model M = (M, A) is obtained over the first-order model
M by setting

A = {vπ : π is a good path}
The crucial semantic notion of equality of values among assignments vπ , vπ ′ in

the dependence model M wrt a given set X of variables may be described concretely
as follows. In general, the paths π , π ′ fork beyond a shared initial segment π ′′,
that includes at least 〈Σ0〉. The semantic equality vπ =X vπ ′ means that the values
assigned by vπ and vπ ′ to all variables in X have been set already by the final stage
of π ′′ (cf. Fig. 1):

Fact 4.9 For any two vπ , vπ ′ in M and any set of variables X, the following are
equivalent:

(a) vπ =X vπ ′
(b) π and π ′ have the form π = π ′′, X1, . . . , Xn, last (π), π ′ = π ′′, X′1, . . . , X′m,

last (π ′), with a shared path π ′′, where all variables in X are kept fixed in the
transitions involving the displayed sets X1, . . . , Xn and X′1, . . . , X′m.

Fig. 1 Forking paths π and π ′
with vπ =X vπ ′ : according to
Fact 4.9, all variables in X are
kept fixed in all transitions (on
these paths) beyond the shared
path π ′′
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Proof This follows by inspection of the above definitions for values of assignments,
noting that the identical objects assigned by vπ and vπ ′ to any variables x ∈ X must
be of the form (π•, x) for some initial segment π• of the shared path π ′′, while no
further changes have taken place.35

To complete the proof of the main theorem, we must show that our initially given
type model coincides with the set of Φ-types of all assignments in M, i.e. that we
have: M = {type(vπ ) : vπ ∈ A}. And in order to establish this identity, it suffices to
prove that

type(vπ ) = last (π) for all good paths π .

Once we proved this claim, the desired identity M = {type(vπ ) : vπ ∈ A} is
immediate.36 Unfolding now the claim type(vπ ) = last (π), we can see that our
remaining task is to prove the following result.

Fact 4.10 (Truth Lemma) For all formulas ϕ ∈ Φ and good paths π , the following
holds:

M, vπ |= ϕ iff ϕ ∈ last (π).

Proof The proof is by induction on the formula ϕ.

Case 1: Atomic formulas. By the truth definition for LFD, M, vπ |= Px iff
I (P )(vπ (x)). By the above definition of the atomic predicates in the first-order
model M , the objects vπ(x) are pairs (π ′, x) whose paths π ′ are all initial sub-
paths of the longest path π∗ among them. Moreover, the formula Px belongs to
last (π∗). Now, given the above inductive definition of assignments, all objects
assigned by vπ to variables have a path component which is an initial segment of
π . In particular, π∗ is an initial segment of π , and also, again by the inductive
definition of the assignments, no values of variables x ∈ x have changed along
the remaining path from π∗ to π . This means, by Definition 4.3 for the relations
∼X that the formula Px itself occurs in every Hintikka set in π after π∗, and in
particular, that Px occurs in the set last (π).

Case 2: Boolean combinations. The proof is a straightforward appeal to the truth
definition, the inductive hypothesis, and the definition of Hintikka sets.

Case 3: Dependence modalities. For ease of presentation, we consider the existen-
tial LFD dependence modality instead of the universal one.
From right to left. Let EXϕ ∈ last (π). By the witness condition (f) on type

models, there exists a set Δ ∈ M with ϕ ∈ Δ and last (π) ∼X Δ. Let π+ =
(π, X, Δ) be the good path consisting of π with a ∼X-transition to Δ added. By
the inductive hypothesis, M, vπ+ |= ϕ, and hence also M, vπ+ |= EXϕ. Now

35Note that this description also covers the case when X is empty: the ‘fork’ can then be right after 〈Σ0〉.
36To see this, in one direction, each set last (π) for a path π is by definition a Hintikka set in M, In the
opposite direction, each set Γ ∈M immediately gives a good path π = (Σ0,∅, Γ ) of length 2, since ∼∅
was the universal relation on M, and hence there is a matching assignment vπ with type(vπ ) = last (π) =
Γ .
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consider the objects that vπ+ assigns to the variables in X. By the above definition
for vπ+ , none of the variables x ∈ X changed their value in the last step ∼X –
and so, these objects are the same as those assigned by vπ . Thus, the assignments
vπ+ , vπ agree on the values of the free variables for EXϕ, and so, by the Locality
Lemma 3.4, the latter formula is also true at M, vπ .
From left to right. Let M, vπ |= EXϕ. By the truth definition, there is an assign-

ment vπ ′ =X vπ with M, vπ ′ |= ϕ, so, by the inductive hypothesis ϕ ∈ last (π ′).
By condition (c) on Hintikka sets (dualized to the existential dependence modal-
ity), we then have EXϕ ∈ last (π ′). Now compare the two good paths π, π ′,
keeping Fact 4.9 in mind concerning their shape wrt some shared initial path π ′′,
and the fact that X is contained in the set of variables kept fixed in each transi-
tion made on the paths extending beyond π ′′ toward last (π) and toward last (π ′).
Given that EXϕ ∈ last (π ′), with free variables X, it follows by Definition 4.3
that this formula is present in each Hintikka set on the path toward last (π ′′) and
then in each Hintikka set on the path from there toward last (π).37 So, finally,
EXϕ ∈ last (π).

Case 4: Dependence atoms. The case of dependence atoms is proved in a sim-
ilar manner, but interestingly, it makes no appeal to a witness clause for
non-dependence in type models.
From right to left. Let DXy ∈ last (π). Local semantic dependence of y on

X at the assignment vπ is shown as follows. Consider any assignment vπ ′ ∈ A

assigning the same objects to the variables in X, i.e., vπ(X) = vπ ′(X). Just as in
the preceding Case 3, X-values have not changed after the largest common initial
segment π ′′ of π and π ′. But then, since Free(DXy) = X, the formula DXy

is shared by the Hintikka sets in each of these later transitions. Now the above
recursive definition of values vπ(u) for variables u under assignments vπ worked

with extended sets of variables D
last (π ′)
X for immediately preceding subpaths π ′,

and these sets all include y in the present case. It follows that vπ(y) = vπ ′(y), as
desired.
From left to right. Let M, vπ |= DXy. Consider the good path π+ =

(π, X, last (π)) extending π with one good ∼X transition to the Hintikka set
last (π). By the earlier definitions for the values given by our assignments,
vπ , vπ+ assign the same objects to all the variables x ∈ X, kept fixed in the final
transition. Therefore, by the given local semantic dependence at vπ , we also have
that vπ+(y) = vπ(y). But this can only happen if the variable y, too, was kept fixed
in the last transition of π+, which means by definition that y ∈ Y = D

last (π)
X : i.e.,

DXy ∈ last (π).

This concludes the proof of Theorem 4.8.

4.3 Decidability

The decidability of LFD can now be established.

37What we use here is the earlier observation that good transitions are good in both directions.
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Theorem 4.11 Validity for formulas of LFD on dependence models is decidable.

Proof By Theorem 4.8 and Fact 4.7, satisfiability for a formula ϕ in dependence
models is equivalent to ϕ’s occurring in some Hintikka set of some type model for
the set Φ generated by F = {ϕ} and all its subformulas and dependence formulas in
the manner described earlier. As there are only finitely many type models of this sort,
the latter test is decidable.

Open problems Does LFD have the Finite Model Property? What is the computa-
tional complexity of satisfiability for LFD?

Remark 4.12 As noted earlier, the proof of decidability for LFD presented here is
an extension of that for the Guarded Fragment of first-order logic, [3]. An open
problem is whether we can reduce the decidability problem for LFD to that for the
Guarded Fragment with identity, [39], though this seems unlikely given the syntax
of dependence atoms. Another issue in this connection is whether known decidable
extensions of the Guarded Fragment such as the ‘loosely guarded fragment’, [13, 14],
have counterparts in natural extensions of LFD.

Finally, it may be worth noting that the preceding style of decidability argument
can also be applied to first-order logic itself. Hintikka sets and type models can
be defined just like above, and the representation result for type models as depen-
dence models also goes through. Moreover, it is decidable whether a given first-order
formula has a type model. Given the undecidability of FOL, it must then be an
undecidable problem whether a given type model can be represented as a standard
first-order model, i.e., a full assignment model.

5 Axiomatizations

It was shown in Section 3.2 that the set of LFD validities is recursive. In this section
the structure of this set will be explored in more depth, in the form of two complete
deductive systems.

5.1 A Hilbert-Style Axiomatization

A Hilbert-style proof system LFD is given in Table 1, consisting of: (I) the classi-
cal axioms and rules of propositional logic; (II) axioms and rules for dependence
modalities, that can be seen as restricted duals of the classical Hilbert axioms
for quantifiers; (III) axioms governing the behavior of dependence atoms (namely,
Projection and Transitivity, already known to be equivalent to the conjunction of
Reflexivity, Monotonicity and Transitivity); (IV) the key Transfer axiom, describing
the interaction between dependence modalities and dependence atoms. The notions
of formal derivation and provability are defined as usual.
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Table 1 The proof system LFD

(I) Axioms and rules of classical propositional logic

(II) Axioms and rules for dependence modalities D

(D-Necessitation) From ϕ, infer DXϕ

(D-Distribution) DX(ϕ→ ψ)→ (DXϕ→ DXψ)

(D-Introduction) ϕ→ DXϕ, provided that Free(ϕ) ⊆ X

(D-Elimination) DXϕ→ ϕ

(III) Axioms for dependence atoms D

(Projection) DXx, provided that x ∈ X

(Transitivity) (DXY ∧DY Z)→ DXZ

(IV) Axiom for D-D interaction

(Transfer) (DXY ∧ DY ϕ)→ DXϕ

Fact 5.1 In the context of the other axioms and rules presented in Table 1, the axiom
schema (D-Introduction) can be replaced by its instances listed in Table 2.

Note that, unlike with CRS, the provable principles for LFD are closed under
substitution for predicate letters. Note also the analogy between D-Necessitation, D-
Distribution, D-Elimination, D-Intro2 and D-Intro3 with the usual axioms and rules
of the modal system S5. This is unsurprising and it is more than an analogy: as
seen in Section 3.4, our dependence modalities DX are in fact relational modalities
for equivalence relations ∼X, and so they automatically validate all the S5 laws (by
known results in classical modal correspondence theory, [22]).

Example 5.2 The following formulas are derivable as theorems in LFD:

(a) DXY , for Y ⊆ X (Inclusion)
(b) (DXY ∧DZU)→ DX∪Z(Y ∪ U) (Additivity of Dependence)
(c) DXY → DZY , for X⊆Z (Monotonicity of Dependence)
(d) DXϕ → DY ϕ, for X ⊆ Y (Monotonicity of Dependence

Quantifiers)
(e) ∀Xϕ→ϕ; ϕ→∀Xϕ if Free(ϕ) ∩X = ∅ (Universal Quantifier Laws).

Note that the more general quantifier elimination rule via substitution ∀xϕ →
[y/x]ϕ (as in classical FOL) is not a theorem or axiom of LFD: indeed, as we saw in
Example 3.8, this rule is not sound in our semantics.

Table 2 The relevant instances of dependence modality introduction

(D-Intro1) Px1 . . . xn → D{x1,...,xn}Px1 . . . xn

(D-Intro2) DXϕ→ DXDXϕ

(D-Intro3) ¬DXϕ→ DX¬DXϕ

(D-Intro4) DXy→ DXDXy
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Theorem 5.3 (Completeness) The system LFD is sound and complete for depen-
dence models.

Proof Given a consistent formula ϕ, consider the set Φ = ΦF generated by F = {ϕ}
as in Section 4.1. Fix some maximally consistent subset Σ∗ of Φ that contains ϕ,
and let M be the family of all maximally consistent subsets of Φ that are connected
to Σ∗ via a finite sequence of relations ∼X as introduced in Definition 4.3.38

Fact 5.4 The familyM is a type model.

Proof Maximally consistent subsets are Hintikka sets: they obviously satisfy the
Boolean clauses, and the other closure conditions follow from their closure under
deduction. To prove that M satisfies the witness condition (f) on type models, let
EXψ ∈ Σ ∈ M. Take Y := DΣ

X (the dependence closure of X with respect to Σ),
and consider the set

Δ0 := {ψ} ∪ {θ ∈ Σ : Free(θ) ⊆ Y }.
This set of formulas is consistent by a standard modal argument using the S5
axioms39 for D, the presence of the formulas DXy in Σ , and the Transfer Axiom
of LFD. The required Hintikka set Δ can be taken to be any maximally consistent
set in M that includes Δ0. Finally, condition (g) on type models is satisfied because
all sets in M are connected by ∼X transitions, which are also ∼∅ transitions by the
Monotonicity property provable in LFD.

This concludes the proof of Fact 5.4, and of the completeness theorem.

Theorem 5.3 states ‘weak completeness’ only. ‘Strong completeness’ says that
provability from premises also matches semantic consequence from possibly infinite
sets of formulas.

Theorem 5.5 The proof calculus LFD is strongly complete.

Proof First, the Compactness Theorem holds for LFD. This follows from the first-
order translation in Fact 3.8, plus compactness for first-order logic. Given this, given
any valid semantic consequence Ψ |= ϕ, we also have a valid consequence Ψ0 |= ϕ

from some finite subset Ψ0 ⊆ Ψ of the premises – and this amounts to the validity of
a single formula

∧
Ψ0 → ϕ. By the weak completeness theorem, there is a formal

proof of this formula, hence ϕ is provable from Ψ .

In Appendix A, we give another proof of strong completeness, that proceeds along
more standard lines using modal logic techniques.

38This corresponds to taking a ‘generated submodel’, a standard technique in modal logic.
39These are D-Necessitation, D-Distribution, D-Elimination, D-Intro2 and D-Intro3, all available in LFD.
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5.2 Sequent Calculus, Cut Elimination and Strong Interpolation

An alternative formulation of the proof system is as a sequent calculus. To avoid the
use of the rules of Contraction and Permutation, we take a Gentzen calculus using sets
of formulas rather than sequences. In the following, Γ , Δ denote sets of formulas,
Γ, ϕ denotes Γ ∪ {ϕ}, etc. V ar(Γ ) is the set of all variables occurring in Γ , and
Free(Γ ) is the set of free variables in Γ .

Definition 5.6 The sequent calculus for LFD has the standard Gentzen axioms
and rules for classical propositional logic (including structural rules of Identity,
Weakening and Cut), together with the following additional axioms and rules:

(Projection) where x ∈ X� DXx

Γ � Δ, DXY Γ � Δ, DY Z
(Transitivity)

Γ � Δ, DXZ

ϕ, Γ � Δ
(DL)

DXϕ, Γ � Δ

Γ � Δ, ϕ
(DR) where Free(Γ ∪Δ) ⊆ Y

DXY, Γ � Δ,DXϕ

Note that, compared with the classical sequent calculus for FOL, there are now
extra structural rules for D-Projection and D-Transitivity. Next, the left-introduction
rule (DL) is weaker than (the dual version of) the classical left-introduction rule for
the universal first-order quantifier ∀, as it does not allow for variable or term substi-
tutions. Also, the right-introduction rule (DR) is different from, and in fact stronger
then, the (dual version of the) classical rule for ∀: note it involves a dependence-atom
premise (incorporating the Hilbert-style Transfer axiom). But also note that (DR)
implies the weaker rule

Γ � Δ, ϕ
where Free(Γ ∪Δ) ⊆ X,

Γ � Δ,DXϕ

which can indeed be seen as a dualization of the classical right-introduction rule for
the universal quantifier of FOL.

It is easy to show that the two proof calculi are equivalent in terms of their output:

Fact 5.7 The provable sequents Γ � Δ in the above calculus match exactly the
provable implications

∧
Γ →∨

Δ in the axiomatic system LFD.

Although our sequent calculus lacks standard cut elimination in its full general-
ity, it does have it in a restricted form. Namely, Cut is eliminable in favor of ‘DA
Cut’: this version of the Cut Rule allows cutting only dependence atoms that involve
variables actually occurring in the conclusion. To ensure the subformula/subterm
property, it is also convenient to absorb Weakening into the logical rules (cf. [70],
or the explanation in Appendix B), while simultaneously restricting Projection and
Transitivity to the variables that actually occur in the sequent to be proven. A
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restricted-cut proof uses only these modified rules and the DA Cut rule. We obtain a
limited, but very useful, form of the Cut Elimination Theorem:

Theorem 5.8 (Restricted Cut Elimination) Every provable sequent Γ � Δ has a
restricted-cut proof. Such a proof involves only subformulas of the sequent formulas,
or dependence atoms for variables occurring in the final sequent proved.

The details, as well as a sketch of the proof, are in Appendix B.

Remark 5.9 (Decidability revisited) These results yield a purely proof-theoretic
proof of decidability for LFD. For a given sequent Γ � Δ, proof search in the above
system with no other structural rule than DA Cut is finite. The search produces a tree
whose nodes are sequents Γ ′ � Δ′ consisting only of subformulas of the original
sequent or formulas Dxy with all xi, yj ∈ V ar(Γ ∪Δ). There are only finitely many
such formulas, and thus only finitely many such sequents Γ ′ � Δ′ (since Γ ′, Δ′ are
sets, there are no repetitions). The pruned tree will be finite, and it contains a proof
of the original sequent iff such a proof exists.

Another spin-off is a strong version of Craig Interpolation for LFD. A formula θ

is a strong interpolant for a sequent Γ � Δ if we have: (1) Γ � θ and θ � Δ are
valid, (2) all predicate symbols in θ occur both in Γ and in Δ, and (3) all variables
in θ occur in both Γ and in Δ, i.e., we have V ar(θ) ⊆ V ar(Γ ) ∩ V ar(Δ).

Theorem 5.10 (Strong Interpolation) If Γ � Δ is valid, then there exists a strong
interpolant for this sequent.

Proof By Completeness and Restricted Cut Elimination, Γ � Δ has a restricted-cut
proof. So, it is enough to find strong interpolants for all sequents that are restricted-
cut-provable. For this, it suffices to provide strong interpolants for the axioms, and
then show how to turn strong interpolants for the premises of each of the above
modified rules (including DA Cut) into a strong interpolant for the conclusion. This
can be done in the usual way. The strong version of the above interpolation result
arises thanks to the tighter variable management provided by DA Cut and restricted
Projection and Transitivity.

As usual, interpolation implies a version of the Beth Definability Theorem. Given
a sequent Γ , an n-ary relation symbol P and a tuple of n fresh variables x =
(x1, . . . , xn) with xi ∈ V ar(Γ ), say that Γ implicitly defines P in variables x if the
sequent

Γ, Γ ′ � Px↔ P ′x
is valid, where P ′ is any fresh relation symbol of the same arity as P , and Γ ′ is the
sequent obtained from Γ by replacing every occurrence of P with P ′.

Theorem 5.11 (Strong Beth Definability) If Γ implicitly defines P , then there is a
formula θ with V ar(θ) ⊆ V ar(Γ )∪{x1, . . . , xn}, such that the sequent Γ � Px↔
θ is provable.
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5.3 Adding Special Axioms

Further axioms beyond the logic LFD may hold on special classes of dependence
models. We give just a few illustrations here, relying heavily on known notions and
results from modal logic. For convenience, we will mostly use the existential version
of the dependence modality.

Example 5.12 Consider the following operator interchange principle:

EXEY ϕ→ EYEXϕ (Commutation)

The following dependence model M is a counterexample. Take two variables x, y

and three assignments s, t, u with s(x) = s(y) = 0, t (x) = 0, t (y) = 1, u(x) =
u(y) = 1. Let R be a binary predicate holding only of the tuple of objects (1, 1).
Then M, s |= ExEyRxy, as one can reach u by first keeping the value of x fixed, and
then that of y. But M, s |= EyExRxy is false: there is no way of getting from s to u

by first keeping the value of y fixed, and then that of x.

On the other hand, it is easy to see that EXEY ϕ → EYEXϕ holds on full depen-
dence models (with all functions from V to O as assignments). The crucial property
here is the following:

Fact 5.13 The Commutation axiom EXEY ϕ → EYEXϕ is valid on the class of
all dependence models M = (M, A) satisfying the following closure property for
available assignments:

for every three assignments s, t, u ∈ A, if s =X t =Y u, then there also exists an
assignment v ∈ A in M with s =Y v =X u.

This technical condition is a Church-Rosser principle requiring the set of available
assignments to be rich in alternative pathways. It is in fact the exact semantic content
of Commutation, but formulating this precisely requires the modal notion of frame
correspondence, [22], that we will demonstrate with a different example below. The
result of the above Church-Rosser restriction on dependence models is striking:

Fact 5.14 The logic LFD plus the Commutation axiom is undecidable.

Proof It is known that the modal CRS-type logic of generalized assignment models
plus the commutation axiom ∃x∃yϕ → ∃y∃xϕ is undecidable, [63]. Given that this
logic can be translated effectively into LFD plus the Commutation axiom, the latter
logic is undecidable too.40

40The undecidability can be understood as follows. Commutation is a modal ‘Sahlqvist’-type axiom sup-
porting a completeness theorem for its frame-corresponding property, cf. [22] for details. In particular, the
cited CRS-type logic is complete for dependence models satisfying the Church-Rosser constraint. Given
the grid-like structure of such models, one can then express standard undecidable tiling problems on geo-
metrical grids as satisfiability problems for the logic. Cf. [60] for details of this widely used reduction
technique for proving undecidability.
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To show a bit more detail of how frame correspondence analysis works, we give
an illustration for a related special dependence axiom. Recall the invalid principle
DXDY ϕ → DX∩Y ϕ mentioned in Example 3.8, perhaps better understood in its
existential form

EX∩Y ϕ→ EXEY ϕ (‘Stepwise’)

Like Commutation, Stepwise expresses an existence constraint on available
assignments that holds in full dependence models, but not in all of them. We now
give a semantic correspondence analysis, for convenience, in terms of only three
variables x, y, z. Call an LFD formula ϕ true in a dependence frame (a dependence
model without an added interpretation for atomic predicates) if, for every interpreta-
tion of the predicate letters on the frame (where dependence atoms always keep their
fixed interpretation), ϕ is true at every assignment.

Fact 5.15 The Stepwise axiom is true in a dependence frame iff that frame is a full
Cartesian product with all possible combinations of values for the values.

Proof We show that, with three variables, frame truth of Stepwise expesses that the
admissible assignments A include all functions from x, y, z to the Cartesian product
V al(x) × V al(y) × V al(z), where V al(x) := {s(x) : s ∈ A} and similarly for
V al(y), V al(z).

In one direction, this is straightforward. If the frame has the stated Cartesian
structure, then it is easily verified that Stepwise will hold everywhere under every
interpretation of the atomic predicates. In the opposite direction, starting from the
frame truth of Stepwise, the quantification over all interpretations of atomic pred-
icates allows us to assume that for each assignment s, there exists some predicate
Pxyz that holds uniquely for the values s(x), s(y), s(z).41

Now, suppose some value d occurs for x at some available assignment s. Sup-
pose also that value e occurs for y at some assignment t , uniquely defined by an
atomic formula Pxyz. One can reach t from s via the universal relation =∅, so s

satisfies E∅Pxyz. Now write ∅ = {x} ∩ {y, z}. Then by Stepwise, we also have
E{x}E{y,z}Pxyz true at s. But that means one can go from s to some assignment u

keeping the value of x fixed, and then from u to t keeping the values of y, z fixed.
It follows that u(x) = d, u(y) = e. Next assume that z takes on value f at some
assignment v. Repeating the preceding argument for u and v, now making the split
∅ = {x, y}∩{z}, we find an assignment w with w(x) = d, w(y) = e, w(z) = f .

Again, there is a consequence in terms of logics extending LFD.

Fact 5.16 The logic LFD plus the Stepwise axiom is undecidable.

Proof The Stepwise axiom has the modal Sahlqvist form mentioned in Footnote 40,
and hence, by general results, [22], this logic is complete for dependence frames
satisfying the corresponding condition identified above. Now, the Cartesian product

41See again [22] for details of this standard move in a modal frame correspondence argument.
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structure obtained here is not a full dependence model in our sense, since each vari-
able can have its own range of objects. But this is no obstacle to the following analysis
combining two known facts.

Dependence models with the preceding structure are standard models for the
three-variable fragment of many-sorted first-order logic, whose satisfiability prob-
lem is known to be undecidable, [45]. Moreover, CRS quantifiers are definable by
LFD dependence modalities (cf. Section 3.1), while CRS quantifiers just are the
first-order quantifiers on standard models.

It follows that satisfiability of first-order formulas in the many-sorted three-
variable fragment reduces to satisfiability of LFD formulas in the preceding Cartesian
models. In particular, one just replaces first-order quantifiers ∃u by their obvious
LFD-counterparts E{x,y,z}−{u}.

While the above examples concern semantic restrictions in the spirit of modal
logic, the dependence setting also suggests new questions of axiomatization. Recall
the three representation results for abstract dependence relations listed in Proposi-
tion 2.6. The pivotal second result there concerned uniform dependence models where
all local dependence relations between variables are the same, and hence also equal
the global dependence relation. Uniform dependence models validate the following
principles, where D∅ is the universal modality:

DXy → D∅DXy, ¬DXy → D∅¬DXy, for arbitrary variables X, y

It is easy to find counter-examples to these implications in arbitrary LFD models.

Open problem Axiomatize LFD over uniform dependence models.42

This concludes the analysis of properties of the system LFD. The remaining part
of this article explores what lies beyond the base system LFD: extensions of the language,
enrichments of the framework, and concrete dependence notions in a number of areas.

6 Richer Dependence Languages

The modal language of LFD can be extended to describe other natural features of
dependence. This section contains a few examples, all with first-order truth condi-
tions, thus making it possible to extend the translation of Section 3.3 making all
logics effectively axiomatizable. Some of these extensions are straightforward, and
do not affect the decidability of the logic, others do.

6.1 Function Symbols and Constants

Recall the functional perspective of Section 2.3. It makes sense to add to LFD func-
tion terms, built from variables x using a given family of operation symbols f with

42The disjoint unions of uniform dependence models in the proof for Proposition 2.6, Clause 3, do not
validate the above implications. Still, since the components used disjoint sets of values, except for the com-
mon constants, these models validate modified uniformity principles. Again a question of axiomatization
arises.
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arities marked. 0-ary function symbols are individual constants c denoting objects.
Terms are constructed by the rule

t ::= x | f t, with t a tuple of terms of the arity of f .

In the syntax of formulas, the earlier sets of variables X now become sets T

of terms, and one can correspondingly extend the LFD syntax with operators DT t

and DT ϕ for such sets of terms T and single terms t . This allows for new sorts of
dependence statements, such as

Df xygyz the value of gyz depends on that of f xy

Df xϕ the current value of f x fixes the truth of ϕ.

Models M for this extended language come with an interpretation map I for
operation symbols, where the semantic clauses for term values read

(a) vals(x) = s(x)

(b) vals(f t) = I (f )(vals(t)).

In this setting, it is straightforward to define agreement s =T s′ on the values of
all terms in a set T , and use it to give the corresponding semantic clauses for DT y

and DT ϕ.
This logic is still decidable, but to show this the following notion is needed.

Definition 6.1 A dependence model is distinguished if distinct variables can only
take distinct values. For every two distinct variables x = y and every assignment
s ∈ A: s(x) = s(y).

Fact 6.2 Every dependence model M = (O, I, A) induces a distinguished model
Md of the form (Od, I d, Ad) with: Od = V × O; Id(P )((x1, o1), . . . (xn, on)) iff
I (P )(o1, . . . , on) holds; and Ad = {sd : s ∈ A}, where each assignment s ∈ A has
an associated assignment sd : V → Od , given by sd(x) = (x, s(x)). Moreover, the
two models are LFD-equivalent: for all assignments s ∈ A and formulas ϕ of LFD:

M, s |= ϕ iff Md , sd |= ϕ.

Fact 6.3 The logic LFD extended with function terms is decidable.

Proof One can translate formulas ϕ in the extended language to formulas τ(ϕ) in the
original LFD language so that ϕ is satisfiable iff τ(ϕ) is satisfiable. First, associate to
each complex term t occurring in ϕ some distinct new variable vt , while keeping the
old variables the same. Let V ′ be the total extended set of variables, and let τ0(ϕ) be
the LFD formula obtained by replacing all terms t in ϕ by the matching variables vt .
The required functional dependencies between the variables are expressed as global
dependence formulas, e.g.,

∀

D{vt ,vt ′ ,vt ′′ }vf tt ′t ′′ . Let ϕ0 be the conjunction of all these
global dependence formulas, for all terms in ϕ. Then the translation τ(ϕ) is simply
given by the conjunction ϕ0 ∧ τ0(ϕ).43

43For example, the translation of the formula Pxf (x, g(y)) is

∀

Dyw ∧ ∀

Dx,wv ∧ Pxv, where w and v

are the fresh variables associated to terms g(y), f (x, g(y)), respectively.
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To check that our translation preserves satisfiability, first assume that a formula ϕ

in the extended language holds for some assignment s0 in a dependence model M =
(O, I, A). Now construct a model M′ for the extended set of variables V ′, with the
same objects O ′ = O and interpretation I ′ = I . For this, we take A′ = {s′ : s ∈ A}
as our new set of assignments, where we associated to each old assignment s ∈ A a
new extended assignment s′ : V ′ → O, defined by recursively putting: s′(x) = s(x)

for x ∈ V , and s′(vf t) = I (f )(s′(t)). It is easy to see that s′(vt) = vals(t) holds for
all tuples t of terms in ϕ, and moreover that τ(ϕ) is satisfied by the assignment s0 in
the model M′.

For the converse, let the LFD formula τ(ϕ) hold for some assignment s0 in a
dependence model M = (O, I, A). By Fact 6.2, M may be taken to be distinguished.
Now construct a model M′ for the language extended with function terms, by enrich-
ing M with an interpretation I (f ) for each function symbol, putting I (f )(s(vt)) =
s(vf t). Here, if any of the objects o1, . . . , on ∈ O is not the value of any term for an
assignment in A, just put I (f )(o1, . . . , on) = o0 for some arbitrarily chosen object
o0 ∈ O. These functions are well-defined because M is distinguished, so there is no
clash. It is easy to check that ϕ is satisfied in M′ by the same assignment s0.

Fact 6.4 LFD with function terms is axiomatized by the system LFD plus

– The Functionality Axiom Dxf x for all function symbols f .
– The Substitution Rule “from ϕ, infer [t/x]ϕ”.

Proof The proof is similar to the previous one, except that we now need a theorem-
preserving translation τ ′(ϕ) between the two systems. For any given formula ϕ in
the extended language, we associate new variables vt as in the proof of Fact 6.3 to
each of its terms t , and we construct the formulas τ0(ϕ) and ϕ0 as in that proof.
Then our translation τ ′(ϕ) is simply given by the implication ϕ0 → τ0(ϕ). It is now
easy to check that ϕ is a theorem in the above extended proof system iff τ ′(ϕ) is
a theorem in the basic system LFD. The Substitution Rule, as well as the theorem∀

Dxf x (provable in the extended system by applying the Necessitation Rule to the
Functionality Axiom) plays a key role in this verification.

Note that the additional axiom and rule can be used to establish facts about com-
plex terms. For instance, by the Functionality axiom we have Dxg(x), and then by
applying the Substitution rule we get Df (x)g(f (x)). Combining this with Dxf (x)

(itself another instance of the Functionality axiom) and applying the Transitivity of
dependence, we obtain that Dxg(f (x)). Applying the Necessitation Rule, we see that
in fact this holds globally:

∀

Dxg(f (x)), i.e. we have = (x; g(f (x))).
This extended logic can Skolemize implicit dependencies, in the spirit of

Section 2.3 on operational views of dependence, using function symbols as witnesses:

Proposition 6.5 Let ϕ(x, y, z) be an LFD formula with free variables x, y, z. Let
X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and f1, . . . , fm fresh n-ary relation symbols
not in ϕ. Then

� ϕ(x, f1x, . . . , fmx, z) iff � ∀DXY → ϕ(x, y, z).
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Proof Apply the same construction as in the proof of Fact 6.4 to the formula on the
left, associating fresh variables y′1, . . . , y′m to each of the terms f1x, . . . , fmx. The
same argument as in the preceding proof shows that: � ϕ(x, f1x, . . . , fmx, z) (a) iff
� ∀

DXY ′ → ϕ(x, y′, z) (b) (where Y ′ = {y′1, . . . , y′m}). To show that (b) implies
� ∀

DXY → ϕ(x, y, z), take a proof of � ∀

DXY ′ → ϕ(x, y′, z) and replace any
occurrence of variables y′i by the corresponding variables yi , obtaining a proof of
� ∀DXY → ϕ(x, y, z). The converse is proven by the inverse substitution (replacing
every occurrence yi in the proof by the corresponding y′i).44

However, this functional language still cannot talk about identity of term val-
ues, making it impossible to witness implicit dependencies by means of explicit
statements

∀

(y = f (x)).

6.2 Explicit Equality

We can easily extend our set of predicate symbols with an identity relation = on
objects, with the obvious semantics. It is convenient to work with a countably infi-
nite set C of constants, and allow complex terms (built from variables and constants
using function symbols) as in the previous section. We denote by c, d, etc. arbitrary
constants, and by t, t ′ arbitrary terms. A ground term is one that does not contain
any variables (i.e., it is constructed only from constants using function symbols). As
before, it is useful to extend our dependence quantifiers and dependence atoms to
terms, writing e.g. DT ϕ and DT t , where t is any arbitrary term and T is any finite set
of terms. As before, we use x and t for finite tuples of variables and terms.

Let us call this new logic LFD=. Our translation to FOL can be easily extended
to LFD=, so the logic is compact and its set of validities is recursively enumerable.
But the new syntax has several advantages, such as supporting a more perspicuous
axiomatization of the logic.

A Hilbert-style proof system LFD= is given in Table 3, where the letters P shown
range over all predicate symbols, including equality.

Substitution of Equals is a special case of Leibniz’ Law of ‘indiscernability of
identicals’, allowing substitution of equal variables in atomic formulas.45 Essen-
tially, the Value-Existence Rule asserts that each term always has a current value.
The Dependence-Atom Axiom ‘reduces’ local dependence to a universal implication
when the current values of the variables are explicitly given, and the Dependence-
Modality Axiom does the same for dependence modalities. As a consequence of these
context-dependent ‘reductions’, all the LFD principles characterizing the depen-
dence modalities and dependence atoms (i.e. the axioms and rules II, III, IV in Table

44This syntactic variable replacement property for proofs in LFD matches the semantic Renaming
Lemma 3.9.
45The general Leibniz Law, that allows substitution of equal variables in arbitrary formulas, is
not valid, due to the modal character of our semantics: the equality may hold locally at a given
world/assignment, while the truth of the relevant formula may depend on the values of the variable at other
worlds/assignments.
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Table 3 The proof system LFD=

(I) Axioms and rules of classical propositional logic

(II) Special rules

(Variable Substitution) From ϕ, infer [t/x]ϕ.

(Value Existence Rule) From t = c→ ϕ, infer ϕ, provided that c does not occur in ϕ.

(III) Axioms and rules for the universal modality

(

∀

-Necessitation) From ϕ, infer

∀

ϕ.

(

∀

-Distribution)

∀

(ϕ→ ψ)→ (

∀

ϕ→ ∀

ψ)

(

∀

-Introduction1) P t→ ∀

P t, provided that t consists only of ground terms.

(

∀

-Introduction2)

∀

ϕ→ ∀∀

ϕ

(

∀

-Introduction3) ¬ ∀ϕ→ ∀¬ ∀ϕ
(

∀

-Elimination)

∀

ϕ→ ϕ

(IV) Equality axioms

(Reflexivity) x = x

(Symmetry) x = y → y = x

(Transitivity) (x = y ∧ y = z)→ x = z

(Functional Substitution) x = y→ f x = f y

(Substitution of Equals) x = y→ (Px↔ Py)

(V) Axioms for dependence atoms and modalities

(Dependence Atom) (x = c ∧ y = d) → (DXy ↔ ∀

(x = c→ y = d))

(Dependence Modality) x = c → (DXϕ ↔ ∀

(x = c→ ϕ)),

where in both cases, X is the set of variables occurring in x.

1 for D and D) are missing from from the definition of the new system: indeed, they
now become provable theorems in LFD=.

Theorem 6.6 (Completeness.) The calculus LFD= is sound and complete for
validity in the dependence language with equality w.r.t. dependence models.

The completeness proof follows exactly the lines of that for the logic LED in [6].
The proof uses a Henkin-style canonical model, with the additional twist that the
maximally consistent theories are also required to be ‘witnessed’: for every term t

there exists some constant c such that t = c is in the theory.
Beyond completeness, however, there is a complication. The type model proof

used in Section 4 to show the decidability of LFD does not seem to work in the
presence of the Value-Existence Rule.

Open problem Is LFD with equality decidable?46

46In response to a preprint version of this paper, [68] has given a negative answer, proved by reducing
satisfiability for the undecidable Kahr-Class of first-order formulas to satisfiability for LFD=-formulas.
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6.3 Independence

A major natural extension for LFD concerns the notion of independence. Intuitively,
saying that y is independent from x is by no means the same as the statement ¬Dxy

which just expresses that x does not fix the value of u at the current assignment, and
even the universal quantification

∀¬Dxy is too weak. What independence of y from
x should mean in the present setting is that the current value of x does not constrain
the values that y can take.47

In epistemic terms, this amounts to saying that knowing the current values of x

tells us nothing about the current value of y. To make this precise, we need the
following notion.

Definition 6.7 In any dependence model M = (M, A), the information carried by X

about Y at an assignment s ∈ A is given by the range of Y -values that are compatible
with the current values of X (at s):

Infs(X, Y ) := {t � Y : t ∈ A, t =X s},
where t � Y is the restriction to Y of the assignment t : V → O.

We now introduce independence atoms IXY , saying that Y is independent from X

at s.

Definition 6.8 For any model M, sets of variables X, Y , and assignment s ∈ A, we
put:

M, s |= IXY iff Infs(X, Y ) = Infs(∅, Y ).

One can also define more general conditional independence atoms IXY |Z, saying
that given Z, X gives no further information about Y :

M, s |= IXY |Z iff Infs(X ∪ Z, Y ) = Infs(Z, Y ).

Global independence (both conditional and unconditional)48 can then be defined
from the local versions in the obvious manner, using the universal modality available
in LFD:

X |= Y := ∀

IXY .
(X |= Y )|Z := ∀

(IXY |Z).

As usual, when either X or Y are singletons, notation simplifies to IXy, Ixy, etc.

Reasoning with independence atoms has some interesting features. For instance, it
is easy to see that IXY does not imply IY X locally (the current value of X might carry
no information about Y , but that of Y might carry information about X). In contrast

47Varieties of independence have been studied extensively in IF-logic, [47], and in Dependence Logic,
[41]. Our central concern here is how dependence and independence behave on our simple modal basis.
48Global conditional independence as defined here may be viewed as a qualitative counterpart to the notion
of conditional independence found in Probability Theory.
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with this, however, global independence X |= Y is commutative, and the conditional
version (X |= Y )|Z is commutative in X, Y . If in a model, every value of y can be
taken at every value of x, then the set of joint values (x, y) must be a full Cartesian
product of the ranges of x and y.

There are also interesting valid principles connecting the modalities I and D. As
an illustration, (Dxz ∧ Ixy) → Izy is valid. If the current value of x gives full
information about z but no information about y, then the current value of z does not
yield any information about y either.

Fact 6.9 The dependence atoms can be defined in terms of conditional independence,
via the equivalence DXY ↔ IY Y |X, and the same goes for the global versions.

These principles are part of a new logic LFDI extending the purely structural rules
for independence in [36]. It consists of LFD extended with the basic independence
modalities IXy.

Open problem Axiomatize the logic LFDI.

Interestingly, the core logic of independence differs essentially from that of depen-
dence: LFDI is more complex than LFD. The reason is explained in the proof to
follow.

Theorem 6.10 The modal logic LFDI is undecidable.

Proof The proof is reminiscent of that for Fact 5.16, and uses the undecidability of
the three-variable fragment of many-sorted first-order logic. Formulas ϕ of the latter
language with variables x, y, z can be translated into formulas τ(ϕ) of LFD as indi-
cated at several places earlier on, replacing first-order quantifiers ∃uψ by existential
LFD modalities E{x,y,z}−{u}τ(ψ). Now, crucially, the independence modalities can
be used as follows to force the values of x, y, z to be a full Cartesian product, via the
formula:

∀

(Ixy ∧ I{x,y}z), where

∀

is the universal modality, available in LFD.

Let us show that every model of this formula is a full Cartesian product. Suppose
that x takes value d at some assignment in M, y can take e, and z can take f . Consider
an assignment s with s(x) = d. Since Ixy holds everywhere, the value e for y occurs
with this value for x, at some assignment t with t (x) = d, t (y) = e. But since also
I{x,y}z holds everywhere, there must also be an assignment u with u(x) = d, u(y) =
e, u(z) = f .

Now it is immediate that any three-variable first-order formula ϕ is satisfiable iff
the matching LFDI formula τ(ϕ) ∧ ∀(Ixy ∧ I{x,y}z) is satisfiable.

Remark 6.11 Moving beyond the contrast between independence and functional
dependence, the more general perspective for this section is the notion of correlated
behavior. Local independence Ixy in our sense says that the current value of x does
not place any constraint on the values that y can take at the present location. This is
at the opposite extreme from functional dependence Dxy which restricts the range
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of y to just one value. Clearly, there are other natural notions here. For instance, the
mere negation of independence, ¬Ixy, says that the current value of x excludes at
least one value for y, which can be seen as a weak form of correlation. This gives a
very minimalistic notion of ‘dependence’, much weaker than our functional depen-
dence, but one that is of interest on its own. The examples of failure of classical
laws for CRS quantifiers presented in the Introduction do not necessitate functional
dependence, but only weak correlations: any breach of full independence between
any two variables can lead to such a failure of a classical validity. The complete
logic of weak correlation and independence would be the pure modal logic of IXy.
Stronger notions of correlation or partial dependence between x and y arise when we
put further constraints on how far the local value of x constrains that of y, with full
functional dependence in the limit.

Open problem Axiomatize the pure modal logic of independence. Is it decidable?.

Remark 6.12 The preceding analysis also suggests more general comparative infor-
mational assertions X ≥Y Z (‘X carries at least as much information about Y as Z

does’):
s |= X ≥Y Z iff Infs(X, Y ) ⊇ Infs(Z, Y ).

All the above notions of dependence and independence are definable in terms of
these comparative assertions. E.g., the conditional independence statement IXY |Z
says that Z is at least (in fact, just) as informative about Y as X ∪Z is, which can be
expressed formally as the equivalence IXY |Z ↔ Z ≥Y (X ∪ Z).

Open problem Axiomatize the logic of comparative informational assertions.

6.4 Dynamics andModel Change

Typically, epistemic events carrying new information can change a current model.
One may learn the current value of some variable, or more general facts. There can
also be non-informational reasons for changing a current model, say, with a shift of
a current dynamical system. A few instances of the dynamics of dependence models
will be discussed here, using methods from dynamic-epistemic logic, [7, 15, 28].

Learning Current Values One can update a knowledge base after learning the true
values of a set of variables X at (the current assignment) s ∈ A. This changes the
model M = (M, A) to the submodel M|X = M | {t ∈ A : s =X t} that retains
only the assignments that agree with s on all X-values. Now interpret the dynamic
modality [X]ϕ as follows:

M, s |= [X]ϕ iff M|X, s |= ϕ

This modality occurs in epistemic logic under the name of “public inspection of a
value”, [32].

Fact 6.13 The logic LFD with the modalities [X]ϕ is completely axiomatizable and
decidable.
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Proof It suffices to observe that the following recursion axioms are valid:

(a) [X]Py↔ Py, (b) [X]¬ψ ↔ ¬[X]ψ , (c) [X](α ∧ β)↔ ([X]α ∧ [X]β),
(d) [X]DY ψ ↔ DX∪Y [X]ψ , (e) [X]DY z↔ DX∪Y z

Used iteratively in a standard dynamic-epistemic style, these reduce each formula
in the extended dynamic language to an equivalent base formula of LFD.

Learning New Facts Another form of information update happens when learning a
new true fact ϕ about the current assignment s. Semantically, an update with a for-
mula ϕ transforms the model M = (M, A) into the relativized submodel M | ϕ =
M | {s ∈ A : s |= ϕ} retaining only the assignments satisfying ϕ. In the syntax, this
is reflected by dynamic modalities [ϕ]ψ , with a semantic truth condition given by:

M, s |= [ϕ]ψ iff M, s |= ϕ implies M | ϕ, s |= ψ

Remark 6.14 The logic of this type of update modality (‘public announcement logic’)
is a well-known pilot system of information update. But updating a dependence
model can mean different things. Going to a submodel with fewer assignments typi-
cally adds to the existing dependencies. In epistemic scenarios, this increase is fine,
and in fact useful.49 However, if the dependence model is a state space for some
known current process, changes in the dependence structure create a new process,
and this needs to be motivated by other considerations.50

A dynamic-epistemic analysis still works for the new extended setting, but there
is no longer any reduction to the base language of LFD. Admittedly, the dependence
modalities after an update can be reduced to the original ones in a similar way to the
well-known recursion law for epistemic modalities:

[ϕ]DXψ ↔ (ϕ→ DX(ϕ→ [ϕ]ψ))

But the new dependencies in the updated model M | ϕ can only be ‘pre-encoded’ in
the original model M by means of a conditional dependence operator D

ϕ
Xy, with a

semantics given by:

s |= D
ϕ
Xy iff ∀t ∈ A

(
t |= ϕ and s =X t imply s =y t

)
.

This is illustrated in the following recursion equivalence, whose validity is easy to check:

[ϕ]DXy ↔ (ϕ→ D
ϕ
Xy)

Of course, conditional dependence needs a recursion law in its turn, and the following
is valid:

[ϕ]Dα
Xy ↔ (ϕ→ D

ϕ∧[ϕ]α
X y)

The logic with this update modality can be reduced to its static base logic (with
conditional dependence operators) via such recursion laws.

49Suppose the truth values of p and q are unknown, whence observing one of them says nothing about
the other. But after learning a new fact p↔ q imposing a dependency, observing the truth value of one of
p, q automatically gives the other. Thus, new dependencies speed up information flow.
50A typical model change different from information update is changing the space of relevant variables. This
happens, e.g., when analyzing two correlated variables by introducing a new variable on which both depend.
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But in this case, the static base logic itself is no longer a routine extension of LFD.
The difficulty lies in the following result.

Fact 6.15 The conditional dependence atom is not definable in LFD.

Proof For simplicity, consider a language with two variables x, y and one atom Pxy.
Take a dependence model M with just two admissible assignments s, t where s(x) =
s(y) = 0, t (x) = 0, t (y) = 1, while the binary predicate P holds only of (0, 0) in the
underlying first-order model. As for non-trivial dependence atoms in this language,
at both assignments, the formulas Dyx,¬Dxy are true. Now extend M to a model
M′ with a third assignment u such that u(x) = 0, u(y) = 2, while P now also holds
of (0, 2). In M′, Dyx,¬Dxy are true at all of s, t, u.

Now, it is easy to prove by induction that the map F sending the two assignments s

and u in M′ to s in M, and the assignment t in M′ to t in M has the following property.
For any LFD formula ϕ and any assignment v, M′, v |= ϕ iff M, F (v) |= ϕ.51

But, conditional dependence sees a difference here: the formula D
Pxy
x y is true at

s in the model M (the restriction leaves only the assignment s), but not in M′, since
both s, u remain after the restriction. So D

Pxy
x y cannot be definable in terms of LFD

formulas.

Openproblem Axiomatize themodal logic of conditional dependence. Is it decidable?

Remark 6.16 (Enlarging models) Natural updates can just as well extend current
dependence models with new assignments, thereby possibly giving up dependencies
that used to hold.

Broader Dynamic Perspectives An update perspective suggests extending the
semantics of LFD from considering just single dependence models to families of
these.

Definition 6.17 A dependence universe U is a family of dependence models.

Epistemically, each model in U can be seen as a candidate for the true structure
of the world, and the dependence universe then represents a ‘space of inquiry’. But
a dependence universe might also be a family of available processes one can switch
between. Either way, just as a dependence model, a dependence universe need not
be a full power set of some sort: many possible structures may be missing from the
space of inquiry or process repertoire.52

A natural extension of LFD describes triples (U,M, S) of a dependence universe
U, a dependence model M ∈ U, and one or more binary relations on dependence

51The general fact here is that F is a modal ‘p-morphism’, cf. [22], in a sense appropriate to dependence
models.
52In an epistemic perspective, gaps encode information about how the process of inquiry may go. Related
structures occur in dynamic-epistemic logic under the heading of ‘protocol models’, [15]. One can think
of protocols with gaps as higher-order dependencies or correlations on how information can be acquired.
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models S ⊆ U × U, expressing relevant changes of the dependence models. It con-
tains the dependence modalities interpreted as before, but also modalities accessing
alternative models via the relations S.

Example 6.18 Truth conditions for a bimodal epistemic dependence language:

U,M, S, s |= DXϕ iff U,M, S, s′ |= ϕ holds for all s′ ∈ A with s =X s′
U,M, S, s |= 〈S〉ϕ iff U,M′, S, s |= ϕ holds for some M′ ∈ U with S MM′ and s ∈ A′

A natural relation S for exploring dependence universes is that of submodel. Call
its downward-looking modality [↓]ϕ. Now part of the semantics of LFD can be
internalized in this richer logic.

Example 6.19 The following two principles are valid in dependence universes:

(a) DXy → [↓]DXy, (b) DX[↓]ϕ→ [↓]DXϕ.

Open problem What is the complete logic of LFD plus the downward and upward
submodel modalities on dependence universes?

This concludes our exploration of logical operators that extend the basic language
of LFD.

7 Dependence in Concrete Settings

The dependence semantics and logic of this paper are simple, and many notions of
dependence in actual use add further features. This section presents a few cases,
mainly to show that they fit with the basic LFD perspective, while also highlighting
their interesting more specialized structures that call for further logical investigation.

7.1 Databases

This paper started with a simple database example, which nevertheless does not do
justice to the more sophisticated structures studied in database theory, [1]. Much of
this theory is in terms of first-order logic and its low-complexity fragments, and in
this light, LFD can be seen as an attempt at capturing some high-level features of
databases in a modal style. Indeed, various kinds of dependence and independence in
databases can be represented in LFD-style languages, especially with the extensions
introduced in Section 6.

As a further point, databases consist of ‘facts’ and ‘rules’. Rules are hard-wired
regularities, telling us how to close the database under inferences. For semantic
dependencies in a model, this suggests a natural distinction: some are ‘accidental’,
others are ‘essential’. This distinction cannot be seen inside dependence models, it
requires an additional external decision which regularities are important and which
ones are not. A semantic setting for getting at the distinction are the dependence
universes of Section 6. Accidental dependencies DXy just hold in the current model,
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while essential ones continue to hold even under relevant updates of that model,
which can be expressed using modalities such as [↓]ϕ and [↑]ϕ.

7.2 Vector Spaces

The next example comes from linear algebra where dependence is the fundamen-
tal notion behind a wide range of applications to computation, defining geometrical
dimension, and much more. A vector y depends on a set of vectors x if y can be writ-
ten as a linear combination of the z ∈ x. This notion is not primarily semantic, but
it rather ties in with the equivalent functional definability perspective on dependence
of Section 2.3. However, given the special operations used in linear algebra, there are
interesting valid properties beyond those provided by LFD.

Example 7.1 The Steinitz Exchange Principle, [55], reads as follows in the LFD
language:

D(X∪{y})z→ (DXz ∨D(X∪{z})y)

The reason for its validity in linear algebra is that, if z is a linear combination of X, y,
then either the coefficient for y is 0, and the first disjunct holds, or that coefficient
is not 0, and then one can divide by it, obtaining a formula expressing y as a linear
combination of X, z.

The Steinitz principle is not valid in LFD: a counter-example on dependence mod-
els occurs in Example 2.7, where we have D{z,x}y,¬Dzy and ¬D{z,y}x. However,
in the spirit of Section 5.3, one can ask for a modal correspondence result: which
constraint on assignments in dependence models ensures the validity of the Steinitz
principle? What comes to mind is a principle about existence of inverses for implicit
functions that truly depend on their arguments, but a precise solution remains to be
found. In addition, there is a natural question of axiomatization.

Openproblem Axiomatize the complete theory of LFD-style assertions about depen-
dence between vectors. Is it just the basic proof system LFD plus Steinitz Exchange?

Remark 7.2 Matroid Theory studies abstract linear dependence and independence.
Matroids are finite families of sets of vectors satisfying conditions implying the
uniqueness of finite dimension. Matroids can be represented as dependence frames
for LFD, [37], but there is an issue of the best logical framework. In the matroid set-
ting, sets of variables are the central notion, and LFD does not describe such sets
in an abstract algebraic way, except by brute enumeration. It would be of interest to
develop a modal perspective on Matroid Theory.

7.3 Topologizing LFD: the Logic of Continuous Dependence

In empirical contexts, the exact values of most variables are never accessible. Then,
the existence of a functional dependence in the sense of LFD is a moot point, of only
theoretical importance. What matters is whether there is a knowable dependence:
given what can be known in principle, by measurements of any precision, about the
value of x, can the value of y be found with any desired degree of precision?
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Making sense of this intuition calls for a topological setting, with its intuitions
of approximation and continuity. This section outlines such a logic of continuous
dependence LCD, though a full presentation and development is postponed to our
forthcoming paper [8].

A variable y depends continuously on x at an assignment s if the value of y at s is
determined to any desired degree of approximation by some (possibly better) degree
of approximation of the value of x at s. Epistemically, this means that one can know
the value of y with any desired accuracy, if given a sufficiently accurate estimate of
the value of x.53

This suggests having a topology τ on the set of objects O, to capture approxima-
tions of values s(x) as open neighborhoods U ∈ τ with s(x) ∈ U . Global dependence
DM

x y in such a topo-dependence model M = (M, A, τ) requires existence of a
continuous map from x-values to y-values, while local dependence Ds

xy is given by:

s |= Dxy iff ∀V ∈ τ(s(y)) ∃U ∈ τ(s(x))∀t ∈ A (t(x) ∈ U → t (y) ∈ V ) ,

where τ(o) = {U ∈ τ : o ∈ U} is the family of open neighborhoods of an object
o ∈ O. This can be generalized to dependence DXy on a set X of variables, by
using the product topology on O |X|. Intuitively, DXy holds at an assignment s if all
assignments that assign to X values that are close enough to their current ones also
assign to y a close enough value to its current one.

The natural analogue semantic clause for simple dependence modalities is:

s |= Dxϕ iff ∃U ∈ τ(s(x))∀t ∈ A (t(x) ∈ U → t |= ϕ) .

The definition can be generalized to set-based dependence modalities DXϕ using a
product topology, but we skip details here. Intuitively, Dxϕ holds at an assignment s if
ϕ holds at all admissible assignments that assign to x values that are ‘close enough’ to
their current value s(x). This connects to the well-known topological-interior seman-
tics for the modal logic S4: an assignment s satisfies Dxϕ iff the current x-value s(x)

is in the interior of the set {t (x) : t |= ϕ} of all x-values of ϕ-assignments. Philo-
sophically, the interior semantics points to an evidential conception of knowledge:
ϕ is knowable from X if there exist some potential pieces of evidence about X that
entails ϕ.

As for defined notions,

∀

ϕ := D∅ϕ is still the universal modality over all assign-
ments in A. Global dependence, defined as before by

∀

Dxy, now expresses the
existence of a continuous map f : O → O with s(y) = f (s(x)) for all s ∈ A. Other
defined operators acquire a different meaning. The formula D∅y used to mean in
LFD that y is constant, taking only one value. But in a topological setting it expresses
a more complex condition on the ‘specialization pre-order’, which only reduces to
constancy in the presence of the separation axiom T1.

More details, including decidability and a complete axiomatization, as well as fur-
ther extensions to include uniform continuity and links with Domain Theory, will be
presented in [8]. For now, we note that the proof calculus for LCD involves modal

53A stronger notion, perhaps closer to the stated epistemic intuition about approximation, would be con-
tinuous dependence at some open neighborhood of the current point. This can be defined in the language
to follow.
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logic S4 rather than S5 for its dependence modalities. Moreover, even LFD principles
that remain valid as they stand now express something subtly different in a topolog-
ical setting. In particular, the Transfer Axiom (DXY ∧ DY ϕ) → DXϕ turns out to
capture the continuity of dependence.54

Remark 7.3 (Point-free alternatives) Dependence in the logic LCD strengthens the
notion of dependence in LFD: the functions made explicit in Section 2.3 are now to
be continuous. But the intuitions behind the topological view seem independent from
the existence of point-to-point functions. They rather talk about correlating evidence,
i.e., open sets, whether or not there is some underlying set of sharp limit points and
functions between these. The better framework, then, might be a point-free topol-
ogy, with the notion of dependence suitably adapted to direct correlations between
open sets that induce continuous functions under some appropriate mathematical
construction of points.

7.4 Dynamical Systems

Many real-life dependencies have a temporal aspect. Even the simple propositional
example of Remark 6.8 suggests a network dynamics where propositions can become
true or false, and dependencies involve a time delay. 55 This suggests a temporal
universe of assignments occurring over time, with dependencies such as

st+1(y) = st (x).

Now one might reduce this to a static setting by adding temporal variables, using
function terms as in Section 6.1. But it seems more natural to turn dependence models
into dynamical systems where assignments are global states that can occur and repeat
over the permissible evolutions of the system. A logic for this should combine LFD
with a temporal language.

Consider a dependence model M = (M, A) with an assignment-changing next-
state map g : A → A. The dynamical system defined by (M, g) is the family of
functions {gn}n∈N , with gn the n-fold composition of g with itself. A simple language
of dynamic dependence adds three items to the syntax of LFD: a next operator©ϕ,
an n-th step dependence operator D

(n)
X y for each n ∈ N , and a henceforth operator

∗ϕ. Their semantics has these clauses:

s |= ©ϕ iff g(s) |= ϕ

s |= D
(n)
X y iff s =X t implies gn(s) =y gn(t) for all t ∈ A

s |= ∗ϕ iff s |= ©nϕ for all n ∈ N (with©n ϕ the n-th iteration of ©)

54In the topological reading, the Transfer Axiom literally tells us that, if there is a continuous function F

mapping X-values into the corresponding Y -values, then s(Y ) ∈ Int{t (Y ) : t |= ϕ} implies F−1(s(Y )) =
s(X) ∈ Int{t (X) : t |= ϕ} = Int (F−1{t (Y ) : t |= ϕ}) for all ϕ. This is the syntactic counterpart of the
topological definition of continuity: inverse images of open sets by continuous maps are open.
55The same is true for situation-theoretic scenarios of information flow, [11, 19], and for ubiquitous strate-
gies in iterated strategic games, such as Tit-for-Tat or Copy-Cat: what you do now is what I will do next,
[64].
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In particular, D
(1)
X y says that the current values of the variables in X uniquely

determine the next-step value of y. This is just what is needed to formalize Tit-for-Tat
or Copy-Cat.56

As for valid reasoning, dynamic analogues of Reflexivity, Monotonicity and Tran-
sitivity are easy to formulate. There is also a valid dynamic analogue of the Transfer
Axiom: (

D
(n)
X Y ∧©n

DY ϕ
)
→ DX©n ϕ

Open problem Axiomatize dynamic dependence logic completely. Is this logic decid-
able?57

Remark 7.4 (Topology once more) Dynamical systems usually have a state space
endowed with a topology. This richer setting gives rise to ‘dynamical topo-
dependence models’ (M, A, τ) with a next-step map g : A→ A that is continuous.
Then, for instance, extending the system LCD with temporal operators, for a finite
total set of variables V , the commutation axiom©DV ϕ → DV © ϕ expresses the
continuity of the next-step function g.

7.5 Games

Dependence also occurs in game theory, [64], though with an additional flavor. While
LFD speaks about dependence of values, game theory talks about dependence of
actions. The notions are related, but games pose some interesting new features for
logical dependence analysis, [16, 18].

Example 7.5 [Choice and dependence] Consider an extensive game of perfect infor-
mation with two players A, E that have two moves ‘left’ and ‘right’ at each turn. A

moves first, then it is E’s turn. The four histories in the game tree can be viewed as
assignments to two variables x, y, with x the action chosen by A, and y by E. The
available actions for each player are independent from those of the other: both Ixy

and Iyx hold in the sense of Section 6.3.
Now let E choose a strategy, i.e., in this simple game: a move at each of her two

possible decision nodes. This restricted play introduces a functional dependence: the
LFD statement Dxy, which was false before, will now come to hold. Thus, commit-
ting to a choice, or a strategy in general, changes the current dependence model for
the game to one where appropriate dependence statements come to hold.58

56The syntax chosen here for purposes of illustration is a bit cumbersome. Direct functional notations,
such as Ox for the value of x at the next state, will be more perspicuous in practice.
57In response to an earlier version of this paper, completeness and decidability results for the temporal
dependence logic of dynamical systems have been claimed in [56].
58It is often said that committing to a strategy makes one’s actions independent from those by the other
player, since the strategy was chosen beforehand. However, this seems a confusion between pre-game
deliberation and in-game play: as the game is played, a strategy does follow the particular moves chosen
by the other players.
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Extensive game trees can be associated with dependence models whose vari-
ables stand for successive actions by the players.59 Moreover, the action perspective
introduces the dependence dynamics of Section 6.4. Making a choice makes a depen-
dence statement DXy true by removing some assignments from a given model M,
to obtain a submodel N satisfying (a) the statement DXy, but also (b) the following
‘X-richness’ constraint, for the given set X ⊆ V of variables:

M � X = N � X

(where M � X is the restriction of all assignments in M to the domain X). The ‘X-rich
submodels’ N satisfying this constraint can be viewed in both first-order and modal
terms. An interesting question is which syntactic types of statement are preserved
when moving from M to N.

Open problem Develop the dynamic dependence logic of strategic choice.

Next consider extensive games with imperfect information. Here is a simple
illustration.

Example 7.6 (Imperfect information games) In Example 7.5, now assume that E can-
not observe A’s move. Then E’s epistemic uncertainty relation holds between the two
mid-points of the game tree. This game has been discussed widely for its combina-
tion of action and knowledge, a typical feature of games with imperfect information
and their links with modal logics, [16].

In game theory, a strategy must be uniform, assigning the same move at points that
E cannot distinguish epistemically. In the above example, this leaves only strategies
‘always left’ and ‘always right’.60 The intuition behind uniform strategies is that they
can only appeal to things that players know. This knowledge is encoded by the current
equivalence class of their epistemic equivalence relation. This is LFD dependence
combined with the epistemic representation in Section 3.4. The choice of move by
a strategy depends on the variable for the agent’s knowledge state. In general, this
perspective will work with distinct variables for agents and moves, corresponding to
the knowledge and the action modalities whose interplay is crucial to reasoning about
games with imperfect information.

But, if games are very regular, say, just choosing values for stage variables x, y, ...
from some fixed set, epistemic uncertainty relations match up directly with depen-
dence relations for sets of variables. Assume, as is common in epistemic-temporal
logic, [65], that players can observe some events that have taken place, but not oth-
ers. Then their equivalence relation on histories will be equality for the values of
their observable variables only. In games, strategies for a player now have to choose
actions that depend in the LFD sense on the values of the observed variables for that

59To make this work, some issues have to be solved, since strategies produce forests rather than sub-trees,
[16]. Also, in extensive games, variables should depend on ‘earlier’ variables, not on those for later stages.
60In contrast, in IF Logic these strategies are said to act independently from what player A does, [47].
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player. In general, in this sort of two-player game with imperfect observation, players
A and E partition all the variables.61

This discussion by no means exhausts the topic of games with either perfect
or imperfect information from a dependence-logical perspective, and in general, as
stated before, we will need combinations of epistemic logic for players’s knowledge
and LFD for their actions.

7.6 Causality

A final important arena for dependence is causality. Causal graphs, [43, 66], impose
correlations between variables, restricting the simultaneous assignments of values
that represent possible states of world. This is reminiscent of the dependence graphs
in Section 2, and indeed, one common notion of ‘causal influence’ of a variable x

on an endogenous variable y found in [66] can be simply represented in LFD as
DV−{y}y ∧ ¬DV−{y, x}y, with V the set of all variables. But the match is not one-
to-one. Not all relational facts in dependence graphs represent causal connections:
singling out the truly causal ones requires a separate decision. Vice versa, causal
graphs do not have a unique associated dependence model: they are schemata for
many models. Even so, the representation in Section 2 may extend to causality, now
also analyzing various types of dependencies that can occur in dependence models.

Conversely, several themes in the theory of causal graphs resonate in the present
framework. For instance, LFD with function terms may be considered a modal com-
panion to the logic for causality in [43], that manipulates explicit equations between
variables in causal graphs. Also, the crucial notion of ‘interventions’ in causal graphs
has an obvious counterpart in updates of dependence models that fix values, as in
Section 6.4. Even so, there may be an essential surplus to the notion of causal depen-
dence that transcends the resources of the LFD framework. In this sense, see [9, 10]
for a formalism that combines features of Dependence Logic with an interventionist
approach to causality, and see [76] for a similar combination of epistemic logic and
causal models.

Many further concrete notions of (in-)dependence occur in the literature. There is
essential dependence and independence in natural language, [47], metaphysics, [34,
50], proof theory, [70], ceteris paribus reasoning, [17], social choice theory, logics of
agency, and many other fields. A complete list is beyond the scope of this paper, but
a confrontation with LFD seems worthwhile in many of these cases.

8 RelatedWork

In this section, some of many other approaches to dependence are listed in historical
order, with comments on connections to the LFD framework.

61There are also several richer logical languages at the interface of imperfect information games and
combined epistemic-dependence models: see [16], Ch. 21, and [18].
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Armstrong Axioms The basic structural properties of functional dependence used
in this paper were identified by Armstrong [5], in the form of the postulates of
Inclusion (cf. Definition 1, Example 5.2a), Transitivity (cf. Definition 1) and Addi-
tivity (cf. Example 5.2b). By Fact 2.4, the first two together are equivalent with the
conjunction of our Projection and Transitivity properties (as well as with the conjunc-
tion of Reflexivity, Monotonicity and Transitivity), while Armstrong’s Additivity is
absorbed into our definition of DXY as an abbreviation for

∧
y∈Y DXy. Armstrong

gave a representation theorem showing that these axioms are complete for (global)
database dependence. Section 2 of this paper presents a different proof, yielding a
stronger representation theorem (Proposition 2.6), for both global and local depen-
dence. Similar abstract structural axioms for independence, given in [36], underlie
the modal independence logic in Section 6.3.

CRS Logic As explained in our Introduction, LFD is a direct continuation of general-
ized assignment semantics CRS for first-order logic, for which we have given several
references. The origins of CRS lie in relational and cylindric algebra, [63]. The decid-
ability of CRS can be shown by first-order translation into the ‘Guarded Fragment’
GF, [3], while the first-order translation for LFD in Section 3.2 does not map into
GF. As we have noted, it is an open problem whether one can prove decidability for
LFD via a known decidable fragment of FOL.

Independence-Friendly Logic Dependence pervades game-theoretic semantics for
logical systems. Strategies in evaluation games for FOL correspond with Skolem
functions that express dependence in the sense of Section 2.3. A further innovation
was ‘Independence-Friendly Logic’ (IF-logic, for short), [47], where the player for
the existential quantifier may have imperfect information about the objects chosen
by the player for the universal quantifier, cf. Section 7.5. A compositional seman-
tics for IF-logic uses evaluation on sets of assignments, [48], allowing for choices
of values independently from the values for specified other variables. 62 These sets
are like LFD dependence models, but without designated single assignments and
local dependence. Moreover, in contrast with LFD, IF-logic is second-order and
non-axiomatizable. For a complete mathematical development of IF-logic, see [58].

A comparison between LFD and IF-logic poses a challenge, already noted for
CRS vs. IF-logic in [13]. IF-logic sees first-order logic as tied to linear dependen-
cies between quantifiers, and incorporates ‘branching quantifiers’, thereby moving
up to second-order complexity. In contrast, CRS sees FOL as too much tied to inde-
pendence, and weakens it to a decidable logic that allows for both dependence and
independence of variables. One obvious difference is that IF-logic takes standard
FOL as is, and adds syntax for independence. We made some remarks on the con-
nection of LFD with FOL in Section 3.2, and we have more precise results – but a
deeper treatment is a topic for a separate paper. But perhaps more importantly here,
in the terminology of Section 7.5, while LFD analyzes what might be called value

62As it happens, sets of assignments were used even earlier in dynamic semantics of natural language, in
order to model the meaning and anaphoric behavior of plural expressions, [21].

993A Simple Logic of Functional Dependence



dependencies between variables, IF-logic describes what might be called choice
dependencies between quantifiers. It is easy to see formally that LFD cannot express
choice dependencies, and our brief discussion of games showed that we would need
additional modalities over dependence universes. Even so, LFD and IF-logic also
share some traits, and cross-overs between the two are worth exploring.

For instance, one can enrich LFD with natural forms of branching quantifica-
tion on dependence models. For instance, the natural reading of the simplest Henkin
formula

[ ∀x1 ∃y1
∀x2 ∃y2

]

Px1x2y1y2

in a dependence model M = (O, I, A) is the assertion that

∃F : O(x1) → O ∃G : O(x2) → O ∀(o1, o2) ∈ O(x1,x2) (o1, o2, F (o1), G(o2)) ∈ I (P ) ∩O(x1,x2,y1,y2).

In other words: the witnessing functions have domains restricted to the corre-
sponding admissible values and return a tuple combination that not only satisfies P ,
but is actually realized by some admissible assignment of values to (x1, x2, y1, y2).
This seems to be the natural generalization to branching quantifiers of the semantic
reading of the LFD formula ∀x∃yPxy explained in Section 3.2. Similarly, one can
define LFD versions of the slash quantifiers from IF-logic. As happened in the case
of CRS versus FOL as well as with other logical systems, [4], this strategy of gener-
alizing to models with admissible tuples of values might well lower the complexity
of IF-logic. But again, we leave details to a further publication.

Independence and Randomness An innovative abstract first-order logic for proba-
bilistic independence is presented in [55], emerging from the study of randomness.
The calculus contains several axioms at the abstraction level of LFD, but also more
specialized principles such as the Steinitz Axiom for linear dependence discussed
in Section 7.2. For another broad approach to elementary qualitative principles
for dependence and independence, see the measurement-theoretical analysis of
probabilistic reasoning in [62].

Dependence Logic Väänänen’s dependence logic DL [71] was the first to intro-
duce explicit dependence atoms (for global dependence), a crucial device that we
have adopted in LFD. The language of DL is an extension of the language of first-
order logic, but interpreted over sets of assignments (called ‘teams’), instead of
single assignments (as in FOL), or combinations of a current assignment and a sur-
rounding team (as in LFD). This ‘set lifting’ semantics was first suggested in this
context in [48].63 Interpreting on sets of assignments lifts the meanings of stan-
dard propositional connectives, resulting in a richer vocabulary with a non-classical
logic. Moreover, the DL interpretation of the first-order quantifiers ranges over sets

63Set lifting as a general device has a long history in logical semantics, resulting in the theory of ‘com-
plex algebras’ which distinguish, amongst other things, different ‘inner’ and ‘outer‘ variants of Boolean
operations, [24]. E.g., the disjunction of DL is the inner version of Boolean union.
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of assignments, yielding a form of second-order quantification. By now, there is an
extensive body of theory on variations, extensions, and fragments of the DL frame-
work, which we cannot survey here. The reader is referred to the original source [71]
and to the extensive survey article [35] in the Stanford Electronic Encyclopedia of
Philosophy.

Comparing LFD with DL, one striking difference is between the ‘team semantics’
for DL on sets of assignments with global functional dependencies, and the local
semantics of LFD with single assignments inside teams, giving the central place to
local dependence. This difference may seem slight, but as observed earlier, the set
lifting brings with it some pressure towards non-classical logics.64 Another major
difference is the view of quantifiers, as briefly discussed above in connection with
IF-logic, and from a more classical angle, in Section 3.2. LFD quantifiers range over
values available inside one dependence model, thus respecting all current depen-
dence constraints. In contrast, DL quantifiers can evaluate in new teams (i.e., other
dependence models), thus ‘freeing’ the quantified variables from the constraints of
the old team. From the minimal standpoint of LFD, such ‘freeing quantifiers’ are nat-
urally viewed as composites of two different notions of logical interest: a dynamic
modality for relevant kinds of model change in a dependence universe, followed by
a model-internal LFD quantifier.65

Both views have their attractions. The LFD quantifiers fit well with an epistemic
interpretation (in which the current team comprises all the possibilities compati-
ble with one’s background knowledge), as well as with applications to complete
databases (where the current team stands for a complete state space, listing all the
states that can be generated by some dynamic process). Other dependence models
then only come in via informational update, or via process change. But in many other
settings, e.g., applications to more general partial databases, dynamical updating,
open systems, etc., the stronger DL quantifiers will be just what is needed, capturing
interesting properties that go beyond the resources of LFD.66

Finally, in terms of technical comparisons, there are various questions that can be
asked. One is the point, already mentioned in the Introduction, that the lower com-
plexity of LFD (inevitably) comes at a price of lower expressive power. Thus, it would
be of interest to match LFD (minus local dependence atoms) and its extensions with
some low-complexity fragments of DL, and in particular fragments with restricted
forms of quantification. Given the modal nature of our formalism, it might seem at
first sight that the appropriate comparison is with the system of ‘Modal Dependence

64For a system preserving classical semantics in a set-lifted setting, cf. the possibility semantics of [49].
65Valid laws for ‘freeing quantifiers’ depend on the model change relation chosen plus the choice of depen-
dence universes. E.g., quantifiers become second-order when the dependence universe contains all possible
variants of the current dependence model, i.e., all sets of assignments. But as remarked in Section 6.4,
one might also allow gaps in dependence universes, creating higher-level dependencies, and lowering
complexity of the logic.
66Many further themes in this paper have counterparts in the literature on more expressive DL formalisms.
For instance, dependence plus independence in a sense close to that of Section 6.3 is studied in [41] and
its follow-up literature, cf. [35]. In addition, studies of dependence with a classical logic base are found in
[38, 51].

995A Simple Logic of Functional Dependence



Logic’ in [72], or other propositional logics of dependence [73]. However, both of
these are purely propositional languages, with no variables over objects and no quan-
tification over them, however restricted. In fact, since CRS is known to have tight
connections with the Guarded Fragment of FOL, it would be more natural to expect
its extension LFD with dependence atoms to have interesting connections with some
corresponding fragment of DL. As a particular instance, how is LFD related to the
recent Guarded Fragment versions of DL introduced in [40]? Another interesting
line to pursue might be the earlier-mentioned ‘deconstruction’ of DL quantifiers into
dynamic modalities plus LFD modalities, which could lead to a richer intermediate
theory with various modalities over dependence universes. Indeed, it seems worth-
while to look for formalisms in between LFD and DL. The dependence universes in
Section 6.4 are an instance, since they represent a Henkin move of not considering
all sets of assignments, but just certain subfamilies, creating what might be called
higher-order dependencies when moving between dependence models. We suspect
that this will make the logic first-order, since one can describe this setting in a three-
sorted first-order language with variables over objects, assignments, and dependence
models.67

Logics of Questions We have noted at various places that LFD has informational
interpretations in terms of implications between questions, as discussed in a general
dynamic-epistemic setting in [6]. The logic of questions has a long history with clas-
sical sources such as [12] and [46]. The handbook article [44] surveys many themes
on the logic side, and [42] surveys themes focusing on natural language semantics.
For a modern perspective on dependence in terms of inquisitive logic of questions,
cf. [25]. For a comprehensive treatment of inquisitive logic, we refer to the modern
source [26].

Extended Epistemic Logic Connections between LFD and epistemic logics were
explained in Section 4. We cannot survey all points of contact, but general back-
ground can be found in [27]. As a special case, [57] is an early study of epistemic
models with our equality-based accessibility relations. Many of our dependence
themes are reflected in analogies between LFD and recent work on ‘extended epis-
temic predicate logics’ where agents can know not just propositions, but also objects,
[6, 67, 75]. These logics add ‘knowing wh’-constructions to propositional ‘know-
ing that’, and can be seen as well-chosen often decidable fragments of epistemic
predicate logic. Specific analogies include our theme of functional definability in
Section 2.3 and ‘knowledge of functions’, studied in [30], the conditional knowledge
of objects and facts by epistemic agents in Section 6.4 and [6, 75], and on logics for
public ‘inspection’ of values, [32].

67This is just one option. See [53] for an alternative way of reducing the complexity of DL.
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9 Conclusion

Dependence has a ubiquitous semantic sense of determination of values for some
variables by those of others. We have presented a decidable classical logic LFD for
reasoning about functional dependence, together with complete axiomatizations. The
proofs come in both first-order and modal style. Conceptually, these two comple-
mentary perspectives connect to the two manifestations of dependence highlighted
throughout this paper: ‘ontic’ in the world or in some dynamical system, and ‘infor-
mational’ connecting to knowledge and questions. Further language extensions, as
well as richer semantical settings, have been discussed in some detail.

Many open problems have been identified in this extension process, reflecting
mainly its semantic and model-theoretic spirit. But we have also shown that there is
room for a purely proof-theoretic analysis of LFD and its extensions, and perhaps as
a compromise between the model theory and proof theory: an analysis in universal
algebra would be illuminating.

Going beyond these standard logical perspectives, one can think of dependence
information-theoretically, in terms of values of dependent variables adding no Kol-
mogorov complexity to the given ones. But perhaps the greatest challenge left
unaddressed here is tying the qualitative logical LFD analysis to probabilistic notions
of correlation and dependence.68

A point of entry may be the analogy of dependence with consequence relations
noted in Section 2. LFD-style dependence goes by universal quantification over all
assignments. But as we observed, one can soften this, as in non-monotonic default
logics, by going to models where the semantic dependence holds only in the most
plausible cases, or only with high probability in some qualitative sense, [31]. In that
case, the agenda for LFD becomes wide open again.

Appendix A: Modal proofs of LFD decidability and completeness

To study LFD as a modal logic, we need to generalize the ’standard’ relational models
introduced in Section 3.4 to a wider class of relational models. Viewing LFD as a
modal language in the usual sense, with modalities DXϕ and atomic formulas Px
and DXy, our general relational models will be just ordinary Kripke models for this
language. This move allows us to apply to them well-known notions and methods
in modal logic, such as p-morphisms, unraveling, and filtration. In the following we

68There might even seem to be an essential mismatch, as independence is complexity-increasing in LFD,
while it is complexity-decreasing in probabilistic computation. Compare the undecidability of modal log-
ics that have commutation axioms, with the beneficial use of commutation results like Fubini’s Theorem in
probabilistic reasoning. This mismatch dissolves, however, by making a distinction. Regular mathematical
structures simplify computation, but their logical theory is more complex than that of arbitrary structures.
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will assume familiarity with these standard modal techniques. See [22] for definitions
and explanations.

So there are two main differences between general relational models and the stan-
dard models introduced earlier: (a) each relation =X for sets X ⊆ V is taken as
primitive, without being reduced to an intersection of basic relations=x , and (b) DXy

is treated as just another atom, whose semantics is given by a valuation (although one
subject to restrictions).

A1. Relational Semantics

Definition A.1 A relational model is a structure M = (A,=X, DXy, P x), where: A

is a set of possible worlds (“abstract assignments”); =X⊆ A×A are binary relations
on worlds, one for each set X ⊆ V of variables; Ds

Xy ⊆ P(V ) × V are relations
between sets of variables X and variables y, one for each world s ∈ A; and P s are
n-ary relations on variables, one for each n-ary predicate P and each world s. These
ingredients are required to satisfy four conditions:

(1) all relations =X are equivalence relations on A;
(2) all relations Ds satisfy Projection and Transitivity;
(3) if s =Y t and Ds

Xy for all y ∈ Y , then s =Y t and Dt
Xy for all y ∈ Y ;

(4) if s =X t and P sy for some {y1, . . . , ym} ⊆ X, then P ty;
(5) =∅ is the global relation on A (relating every two worlds)

The semantics of LFD on relational models is just as on dependence models, except
that the abstract relations s =X t , Ds

Xy and P sx are used instead of their concrete
counterparts.

Fact A.2 Standard relational models in the sense of Section 3.4 are exactly those
relational models satisfying the following two additional conditions:

(5) if s =X t and s =Y t , then s =X∪Y t .
(6) if s =X t implies s =y t holds for all t ∈ A, then Ds

Xy.

A2. Equivalence Between Relational Models and DependenceModels

We now show that the logic of relational models is the same as the logic of
dependence models.

To go from dependence models to relational models: we can just use the equiva-
lence between dependence models and standard relational models (cf. Fact 3.15 and
Fact 3.17).

But to go the other way, from relational models to dependence models, we need a
representation of relational models in terms of standard ones:

Proposition A.3 Every relational model is a p-morphic image of some standard
relational model (in the sense of Section 3.4).
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Proof The proof is essentially a variation of modal unravelling, making infinitely
many copies of each world.69

Let M = (A,=X, D, P ) be a relational model, and let s0 ∈ A be any designated
world. To construct a standard relational model Mst , take as worlds the set Ast of
all ‘histories’, i.e. all finite sequences h = (s0, X

1, s1, . . . , X
n, sn), with n ≥ 0 and

so, . . . , sn ∈ A satisfying sk−1 =Xk sk for all k = 1, n. We denote by last (h) := sn
the last state in history h, and by →X the natural one-step relation on histories,
given by h →X h′ iff h′ = (h, X, s′) (with last (h) =X s′ = last (h′)). The one-
step relations structure Ast can be viewed as a tree with root (s0) (where s0 is the
designated world), in which any two nodes h, h′ are connected by a unique non-
redundant path.

To structure this as a relational model, we define a new one-step relation
=→X,

incorporating all the one-step relations labelled by sets that locally determine X:

h
=→X h′ iff h→Y h′ for some Y with last (h) |= DY X.

Then the required equivalence relations =X on worlds/histories in Ast can be
taken to be the reflexive-transitive-symmetric closure of the relations

=→X. To check
the claims below, it may be useful to note that h =X h′ holds iff the unique non-
redundant path from h to h′ consists only of steps of the form hn

=→Yn hn+1, or
hn

=←Yn hn+1, with last (hn) |= DY X.
Finally, the valuation on atoms is given by truth at the last world in the history (in

the original model):

Dh
Xy iff last (h) |= DXy, P hx iff last (h) |= Px.

The fact that this definition yields a standard relational model Mst is an easy
verification.

To finish the proof, we define a map f : Ast → A, by putting f (h) := last (h)

for all h ∈ Ast . It is easy to check that f is a surjective p-morphism f from Mst

to M. (Surjectivity follows from the fact that every world s ∈ A satisfies s0 =∅ s,
by condition 5 on relational models, hence h = (s0, ∅, s) is a history with f (h) =
last (h) = s.)

Combining Fact 3.15, Propositions 3.17 and A.3, plus the preservation of modal
formulas under surjective p-morphisms (and so under surjective homomorphisms),
yields the following:

Corollary A.4 (Modal equivalence of relational and dependence models) The same
LFD formulas are valid on dependence models, relational models and standard
relational models.

69Note the similarity of the unraveled model in this proof and the tree construction in the proof of
Theorem 4.8. Indeed, the two decidability proofs are based on similar ideas, but there are also notable dif-
ferences. The proof in Section 4 is based on a syntactic construction (“type models”) and is very elaborate;
the proof of the key Truth Lemma is a very syntactic complex induction on formulas. In contrast, the proof
in this section is purely semantic, and it offers a shortcut, by relying on known results and techniques in
Modal Logic.
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A3. Decidability via Relational Models

The preceding detour into abstract relational models and the above Corollary A.4 on
modal equivalence can be used to give a second, more general proof of decidability
using the Modal Logic concept of filtration [22].

Proposition A.5 The language LFD has the Strong Finite Relational Model Prop-
erty: if ϕ is satisfied in some relational model M, then it is satisfied in a finite
relational model, whose size is bounded by a computable function of ϕ. As a
consequence, the logic LFD is decidable.

Proof Start with the singleton F = {ϕ}, and construct the finite set of formulas
Φ = ΦF as in Section 4.1 (whose size was bounded by a computable function of ϕ).

The filtrated modelMf has as worlds the equivalence classes [s] of original worlds
s ∈ A modulo Φ-equivalence ≡Φ (with respect to all formulas in Φ). Note that
there are only finitely many such classes (their number is bounded by a computable
function F(ϕ)).

To define the relations=X in the filtrated model, we take the following ‘dependent
filtration’:

[s] =X [t] iff (s |= θ iff s |= θ) for all θ ∈Φ with Free(θ)⊆{y ∈ V : s |= DXy}.
This is well defined (independent from the choice of representatives), and the def-
inition implies that {y ∈ V : s |= DXy} = {y ∈ V : t |= DXy} whenever
[s] =X [t].

As for the valuation: the truth values at [s] for atoms DXy, P x ∈ Φ are inherited
from the original truth values at s in M. The resulting finite relational model Mf is a
filtration of M in the usual sense. By the standard Filtration Lemma, [s] will satisfy
ϕ in Mf .

As usual, the Strong Finite Relational Model Property provides an obvious algo-
rithm for deciding satisfiability on relational models (and thus by Corollary A.4 also
on dependence models). Given formula ϕ generate all the relational models (up to
isomorphism) of size ≤ F(ϕ); check whether ϕ is satisfied in any of these models. If
so, ϕ is satisfiable; else, it is not.

It should be noted that in general the filtrated model is typically a non-standard
relational model, not a dependence model.

A4. Completeness via Relational Models

Completeness of LFD with respect to dependence models follows from Corollary A.4
together with the following result:

Lemma A.6 The calculus LFD is sound and strongly complete wrt general rela-
tional models.
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Proof Soundness is immediate: the conditions on relational models were chosen to
validate the matching axioms. For completeness, take the usual Henkin-style ‘canon-
ical model’ for LFD, considered as a basic modal logic. This canonical model is a
relational model, and the calculus is strongly complete for this model.

Appendix B: Restricted Cut Elimination and Subformula Property

As announced, it is convenient to absorb Weakening into the logical rules (cf. [70]
for this technique), while simultaneously restricting Projection and Transitivity to
variables that actually occur in the conclusion, and also restricting Cut to dependence
atoms between actually occurring variables. This can be done by first modifying the
axioms to

(a) Γ, ϕ � ϕ, Δ (b) Γ � DXx, Δ where x ∈ X ⊆ V ar(Γ ∪Δ),

while introduction rules are made ‘cumulative’, by repeating principal formulas in
the premises.

For instance, the left-introduction rule (DL) becomes

DXϕ, ϕ, Γ � Δ

DXϕ, Γ � Δ

Transitivity needs special treatment: in addition to being made cumulative, it has
to be restricted to relevant formulas, becoming the rule of ‘Restricted Transitivity’:

Γ � Δ, DXY, DXZ Γ � Δ, DY Z, DXZ

Γ � Δ, DXZ
where Y ⊆ V ar(Γ ∪Δ) ∪X ∪ Z

Likewise, the right-introduction rule (DR) needs to be modified to:

Γ � Δ, ϕ,DXϕ

DXY, Γ, Γ ′ � Δ, Δ′,DXϕ
where Free(Γ ∪Δ) ⊆ Y

Finally, we replace Cut by a restricted version (in which we also absorbed
Weakening):

(DA Cut)
Γ � Δ, DXy DXy, Γ � Δ

Γ � Δ
where X ∪ {y} ⊆ V ar(Γ ∪Δ)

A restricted-cut proof is a proof that uses only these modified rules. The following
observation shows how LFD allows for a tighter management of variables than FOL:

Lemma B.7 (Elimination of irrelevant variables)

– If Γ � DXY, Δ has a restricted-cut proof, andZ = X∩(V ar(Γ )∪Y∪V ar(Δ)),
then Γ � DZY, Δ has a restricted-cut proof.

– If Γ � DXϕ, Δ has a restricted-cut proof, and Z = X ∩ (V ar(Γ ) ∪ V ar(ϕ) ∪
V ar(Δ)), then Γ � DZϕ, Δ has a restricted-cut proof.

Using this lemma and a cursory inspection of the above modified rules, we obtain:
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Lemma B.8 (Subformula/Subterm Property) Let P be a restricted-cut proof of the
sequent Γ � Δ. Each formula θ in P is either of the form DXY with X ∪ Y ⊆
V ar(Γ ∪ Δ), or it is a subformula of some formula in Γ ∪ Δ. In particular, only
variables x ∈ V ar(Γ ∪Δ) occur in P .

Finally, we can prove our Restricted Cut Elimination theorem:

Every provable sequent has a restricted-cut proof (which thus involves only
subformulas of the sequent formulas, or dependence atoms for variables in the
sequent)

Proof To show this, first gradually eliminate Transitivity and Projection in favor of
their modified versions, using the above lemma when necessary. Similarly replace
all other rules except Cut by their cumulative versions. Finally, eliminate unrestricted
cuts in the usual way, by successively removing topmost maximal-rank cuts from a
given proof of a sequent Γ ∪Δ. Here, since DA Cut is permitted, one need not worry
about cut-formulas of the form DXY , with all variables occurring in the original
sequent Γ ∪ Δ. As a result, the additional axioms and rules for dependency are
innocuous: the cut-formula to be removed was never introduced by such rules. The
only case that presents any novelty is that of a dual-quantifier cut-formula DXϕ that
is principal in both antecedent and succedent: having been freshly introduced on both
sides.
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