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Abstract. Nonsymmetric interpolation Laurent polynomials in n variables are intro-
duced, with the interpolation points depending on q and on a n-tuple of parameters
τ = (τ1, . . . , τn). When τi = stn−i, Okounkov’s 3-parameter BCn-type interpolation
Macdonald polynomials are recovered from the nonsymmetric interpolation Laurent poly-
nomials through Hecke algebra symmetrisation with respect to a type Cn Hecke algebra
action. In the Appendix we give some conjectures about extra vanishing, based on
Mathematica computations in rank two.

1. Introduction

The goal of this paper is to introduce and solve a special class of Newton type
interpolation problems for Laurent polynomials in several variables. An important
special case leads to nonsymmetric analogs of Okounkov’s [26], [27] BCn-type
interpolation Macdonald polynomials.
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1.1. Background: (non)symmetric interpolation polynomials

Denote by C[y]Sn the ring of symmetric polynomials in n variables y = (y1, . . . , yn).
Let Λ+

n be the set of partitions of length at most n. Associate to a function

Ω+ : {1, . . . , n} × Z≥0 → C

(called a grid) the interpolation points Υ+(λ) := (Ω+(1, λ1), . . . ,Ω+(n, λn)) ∈ Cn
(λ ∈ Λ+

n ). Okounkov [27] showed that under explicit generic conditions on the grid
function Ω+ there exists, for each λ ∈ Λ+

n , a I+
λ (y) ∈ C[y]Sn of total degree at

most |λ| := λ1 + · · ·+ λn satisfying

I+
λ (Υ+(µ)) = 0

for all µ ∈ Λ+
n \ {λ} with |µ| ≤ |λ| and satisfying I+

λ (Υ+(λ)) 6= 0. Imposing the
normalization condition I+

λ (Υ+(λ)) = 1 fixes I+
λ (y) uniquely (often a different

normalization is used, but this one is the most convenient choice in the present
paper).

Okounkov [27, Def. 4.4] calls a grid perfect when the extra vanishing property
I+
λ (Υ+(µ)) = 0 holds true for all λ, µ ∈ Λ+

n such that λ * µ, where ⊆ is the natural
inclusion order on Λ+

n . For generic q, s, t ∈ C∗ the grid

Ω+(i,m) := stn−iqm +
1

stn−iqm
(1.1)

is perfect, and all other perfect grids can be obtained from (1.1) by replacing the
grid values Ω+(i,m) by aΩ+(i,m) + b where a ∈ C∗ and b ∈ C are independent of
i and m (but they may depend on the parameters) and by taking limits (see [27]).

The interpolation polynomials I+
λ (y) (λ ∈ Λ+

n ) associated to the grid (1.1)
are Okounkov’s [26] 3-parameter family of BCn-type interpolation Macdonald
polynomials. They admit explicit q-integral and combinatorial representations (see
[26], [28]) while a generalized binomial formula provides an explicit expansion of
the Koornwinder polynomial in the I+

λ (y); see [26], [28]. Rains [31, Thm. 3.2]
characterized the I+

λ (y) as eigenfunctions of a linear q-difference operator acting
on y1, . . . , yn as well as the parameter s.

An important degenerate perfect grid is

Ω+(i,m) := tn−iqm. (1.2)

In this case, the corresponding interpolation polynomials I+
λ (y) (λ ∈ Λ+

n ) are
the interpolation Macdonald polynomials of Knop and Sahi [35], [10], having the
Macdonald polynomials as their top homogeneous components. Their fundamental
properties (q-difference equations, extra vanishing, q-integral formula, combinato-
rial formula, binomial formula) were obtained at the end of the past century [10],
[24], [25], [35].

The theory of symmetric interpolation polynomials associated to perfect grids
originates from the study of the Capelli identity and its generalisations; see [14],
[34]. By now various classes of symmetric interpolation polynomials I+

λ (y) asso-
ciated with perfect grids have been realised as eigenvalues of Capelli operators or as
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images under the Harish-Chandra isomorphism of quantum immanants (see, e.g.,
[19], [20], [23], [28], [34], [38] and references therein). They have found applications
in the theory of multivariable special functions associated to classical root systems
(see, e.g., [1], [26], [31], [33]), exactly solvable models (see, e.g., [20], [28], [35]), and
infinite dimensional harmonic analysis on Lie groups and symmetric spaces [29]. An
important recent development is the generalisation of the BCn-type interpolation
Macdonald polynomials to the elliptic level; see [4], [32].

Macdonald and Koornwinder polynomials have natural nonsymmetric counter-
parts, see [2], [21], [37]. They are the joint polynomial eigenfunctions of Cherednik’s
commuting q-difference reflection operators, which in turn constitute part of Che-
rednik’s [3] polynomial representation of the double affine Hecke algebra in terms
of Demazure–Lusztig operators.

Nonsymmetric counterparts Iα(y) ∈ C[y] (α ∈ Zn≥0) of the interpolation polyno-

mials I+
λ (y) were introduced in [10], [35] for grids of the form

Ω(i,m) := τiq
m. (1.3)

The associated interpolation points are Υ(β) := uβ(Υ+(β+)) ∈ (C∗)n (β ∈ Zn≥0),

where β+ ∈ Λ+
n denotes the unique partition in the Sn-orbit of β and uβ ∈ Sn is the

element of smallest length such that uβ(β+) = β (here we follow the notations from
Section 2 for the permutation actions of Sn on (C∗)n and Zn). Up to normalization,
Iα(y) ∈ C[y] is characterized as the nonzero polynomial of degree at most |α| such
that Iα(Υ(β)) = 0 for all β ∈ Zn≥0 \ {α} satisfying |β| ≤ |α|.

Note that in the principal specialization τi := tn−i, the grid (1.3) reduces
to the grid (1.2). In this case, the Iα(y) (α ∈ Zn≥0) are nonsymmetric analogs
of the interpolation Macdonald polynomials whose top degree components are
nonsymmetric Macdonald polynomials. They satisfy extra vanishing conditions,
have a natural duality property, are simultaneous eigenfunctions on inhomogeneous
versions of Cherednik operators, and they admit explicit binomial and evaluation
formulas, see [10], [36], [39].

1.2. Nonsymmetric interpolation Laurent polynomials

In this paper, we introduce nonsymmetric counterparts of the interpolation polyno-
mials I+

λ (y) for the grid

Ω+(i,m) := τiq
m +

1

τiqm
. (1.4)

In the principal specialization τi := stn−i, the grid (1.4) reduces to the perfect grid
(1.1) underlying the BCn-type interpolation Macdonald polynomials.

In case of the grid (1.4), it is instrumental to look for nonsymmetric analogs of
the symmetric interpolations within the space C[x±1] of Laurent polynomial in n
variables x = (x1, . . . , xn). Consider C[y] as the subalgebra of C[x±1] generated
by yi := xi + x−1

i . Then C[y]Sn is the algebra C[x±1]Wn of Wn-invariant Laurent
polynomials, where Wn is the type Cn Weyl group acting by permutations and
inversions of the variables. Note that the interpolation points for I+

λ (y) in terms
of the x-variables are given by

Υ(µ) := (Ω(1, µ1), . . . ,Ω(n, µn)) (µ ∈ Λ+
n ),
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with Ω the type An−1 grid defined by (1.3).
The Weyl group Wn acts on (C∗)n by permutations and inversions, and on Zn

by permutations and sign changes. Write β+ ∈ Λ+
n for β ∈ Zn the unique partition

in the Wn-orbit of β, and wβ ∈ Wn for the element of smallest length such that
wβ(β+) = β. We call |α| := |α1|+· · ·+|αn| the degree of the monomial xα ∈ C[x±1]
(α ∈ Zn).

Our main result is as follows (see Section 4).

Theorem 1.1. Assume q ∈ C∗ is not a root of unity, and denote by Tn the generic
set of parameters τ = (τ1, . . . , τn) defined by (3.3). For τ ∈ Tn and α ∈ Zn there
exists a unique Laurent polynomial Gα(x) = Gα(x; q, τ) ∈ C[x±1] of degree at most
|α| satisfying Gα(α) = 1 and

Gα(β) = 0 (β ∈ Zn \ {α} : |β| ≤ |α|),

where β := wβ(Υ(β+)) (see (2.3) for the notation in bold). Furthermore,

I+
λ (y) =

∑
α∈Wnλ

Gα(x) (λ ∈ Λ+
n )

with I+
λ (y) the symmetric interpolation polynomial relative to the grid (1.4).

The proof of the existence of the interpolation polynomials I+
λ (y) and Iα(y)

are based on explicit recursion relations, which allow a direct proof by induction
to the degree (see [27, Prop. 2.7] and [35, Cor. 4.4]). We revisit the proof for
I+
λ (y) with the grid (1.4) from the Laurent polynomial perspective in Section 3. It

forms a convenient starting point for the much more elaborate inductive proof of
Theorem 1.1, which is given in Section 4.

The nonsymmetric interpolation polynomials Gα(x; q, s, t) (α ∈ Zn) with para-
meters τ = (τ1, . . . , τn) specialized to the τi := stn−i are nonsymmetric analogs of
Okounkov’s BCn-type interpolation Macdonald polynomials. In this case, the BCn-
type interpolation Macdonald polynomials can alternatively be reobtained from the
Gα(x; q, s, t) by symmetrising with respect to a type Cn Hecke algebra action on
C[x±1] in terms of Demazure–Lusztig type operators (see Section 5). It is a first
indication that the Gα(x; q, s, t) are amenable to the Hecke algebra techniques from
[10], [36], [39]. The missing ingredient from this perspective is the interpretation
of the Gα(x; q, s, t) as simultaneous eigenfunctions of commuting inhomogeneous
Cherednik-type operators. This would allow one to involve double affine Hecke
algebra techniques in deriving a binomial formula for nonsymmetric Koornwinder
polynomials, and in deriving nonsymmetric analogs of extra vanishing and duality
(compare with [10, 39] for type A). We expect this to be the key step towards
further applications of the nonsymmetric BCn-type interpolation polynomials in
the theory of nonsymmetric Macdonald–Koornwinder polynomials, algebraic com-
binatorics, and exactly solvable models.

In the Appendix, we give a conjecture about the extra vanishing, based on
Mathematica computations in rank two.

Acknowledgments. The authors thank Siddhartha Sahi and Eric Rains for valu-
able discussions and comments. The second and third author thank Masatoshi
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Noumi for sharing with us his insight on BCn-symmetric interpolation polynomials.
A substantial part of Sections 3 and 4 is based on material in the master’s thesis by
the first author under supervision of the last two authors (University of Amsterdam,
Faculty of Science, 2017). We thank the referees for valuable comments that led
to significant improvements of the text.

2. Preliminaries

Throughout the paper, we assume that q ∈ C∗ := C \ {0} is not a root of unity.
For a ∈ C, the q-shifted factorial is given by (a; q)k := (1−a)(1−qa) · · · (1−qk−1a)
(k = 1, 2, . . .) and (a; q)0 := 1. We also write (a1, . . . , ar; q)k := (a1; q)k · · · (ar; q)k.

Let n ∈ Z>0. Write

Λn := Zn, [1, n] := {1, . . . , n}, [1, n) := {1, . . . , n− 1},

where [1, n) is taken to be empty if n = 1.
For x = (x1, . . . , xn) ∈ Cn and α = (α1, . . . , αn) ∈ Λn put

|α| := |α1|+ · · ·+ |αn| (weight of α),

na(α) := #{i | αi = a} if a ∈ Z,
xα := xα1

1 · · ·xαnn (Laurent monomial),

xI :=
∏
i∈I

xi if I ⊆ [1, n].

When we write I = {i1, . . . , ik} ⊆ [1, n] for a subset of [1, n] of cardinality k, then
we will always assume the ordering i1 < i2 < · · · < ik of its elements. We write Ic

for the complement of I in [1, n].
A Laurent polynomial f in the n complex variables x has the form

f(x) =
∑
α∈Λn

cαx
α (2.1)

with cα ∈ C and cα 6= 0 for only finitely many α. The degree of f in (2.1) is
defined by

deg(f) := max
{
|α|
∣∣ cα 6= 0

}
; deg(f) := −∞ if f is identically zero.

Note that deg(fg) ≤ deg(f) + deg(g), but equality does not necessarily hold.
This means that the degree function defines a filtration on the algebra Pn :=
C[x±1

1 , . . . , x±1
n ] of Laurent polynomials in x, but not a grading. The filtration is

Pn =
⋃∞
d=0 Pn,d with Pn,d the subspace of Pn consisting of Laurent polynomials

of degree at most d. Write G
(
Pn
)

=
⊕∞

d=0 Gn,d for the associated graded algebra,
with the dth graded piece given by

Gn,d := Pn,d/Pn,d−1

with Pn,−1 := {0}. We write [f ]d := f + Pn,d−1 ∈ Gn,d for f ∈ Pn,d.
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Let Wn = {±1}n o Sn be the Weyl group associated with the root system of
type Cn (and Bn and BCn). Then σ ∈ {±1}n and π ∈ Sn act on Λn (and Cn) by

(σα)j := σjαj , (πα)j := απ−1(j) (α ∈ Λn or Cn, j = 1, . . . , n). (2.2)

Equivalently, if e1, . . . , en is the standard basis of Rn then σ(ej) = σj ej and
π(ej) = eπ(j). Since 2πiΛn is invariant under the action of Wn, we can exponentiate
its action on Cn to an action on (C∗)n. We will write this action in bold. Then

(σx)j := x
σj
j , (πx)j := xπ−1(j) (x ∈ (C∗)n, j = 1, . . . , n) (2.3)

and (wx)α = xw
−1α (x ∈ (C∗)n, w ∈ Wn, α ∈ Λn). The action of Wn on (C∗)n

induces an action of Wn on Laurent polynomials (2.1) by

(wf)(x) := f(w−1x) (f ∈ Pn, w ∈Wn, x ∈ (C∗)n). (2.4)

Thus (wf)(x) := xwα if f(x) = xα. Note that |wα| = |α| for w ∈Wn and α ∈ Λn.
In particular, deg(wf) = deg(f) for w ∈ Wn and f ∈ Pn. Hence the Wn-action
on Pn is an action by filtered algebra automorphisms and induces a Wn-action by
graded algebra automorphisms on the associated graded algebra G(Pn). We write
PWn
n , PWn

n,d and GWn

n,d for the subspaces of Wn-invariant elements in Pn, Pn,d and

Gn,d, respectively. By construction the associated graded algebra G(PWn
n ) of the

filtered algebra PWn
n =

⋃∞
d=0 P

Wn

n,d is isomorphic to G(Pn)Wn =
⊕∞

d=0 G
Wn

n,d .
If n > 1 then we write

x′ := (x1, . . . , xn−1)

for the n − 1 complex variables obtained from x by removing xn. Similarly, if
τ = (τ1, . . . , τn) is a n-tuple of complex numbers, then we write

τ ′ := (τ1, . . . , τn−1).

Sometimes we also need to remove an arbitrary complex variable xk from x. In
that case we write

x(k) := (x1, . . . , xk−1, xk+1, . . . , xn).

A similar notation will be employed for n-tuples of complex numbers. Note that
x′ = x(n) and τ ′ = τ (n).

For the root system R of type Cn we take βi := ei − ei+1 (i = 1, . . . , n − 1)
and βn := 2en as the simple roots. Then the set R+ of positive roots consists of
the vectors ei ± ej (i < j) and 2ei (i = 1, . . . , n). Write R− = −R+ for the set
of negative roots. Denote the simple reflections corresponding to the simple roots
by s1, . . . , sn. Each w ∈Wn can be written as a product of simple reflections. The
minimal number of factors in such a product representing w is called the length
`(w) of w. The length of w is also equal to the number of positive roots sent to
negative roots by w; see [7, Lem. 10.3A] or [8, Cor. 1.7]. If w = si1 · · · sir with
r = `(w) (a reduced expression of w ∈ Wn) then wk := sik · · · sir gives a reduced
expression for wk (k = 1, . . . , r) and the r − k + 1 positive roots sent by wk to
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negative roots are precisely the positive roots sirsir−1 · · · sij+1β
ij (j = k, . . . , r);

see [8, Sect. 1.7]. The element w0 of maximal length in Wn is w0 = − idRn .

By a partition we mean λ ∈ Λn with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The length
`(λ) ∈ {0, 1, . . . , n} of λ is the index such that λi = 0 iff i > `(λ). Denote the
set of partitions of length at most n by Λ+

n . For α ∈ Λn there exists a unique
partition α+ ∈ Λ+

n in the Wn-orbit {wα}w∈Wn
. If α ∈ Zn≥0 then α+ can also be

characterized as the unique partition in the Sn-orbit {πα}π∈Sn . For m ≤ n, we
embed Λ+

m ↪→ Λ+
n by (λ1, . . . , λm) 7→ (λ1, . . . , λm, 0, . . . , 0).

On Λ+
n the dominance partial ordering ≤ and inclusion partial ordering ⊆ are

defined by

λ ≤ µ iff λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi (i = 1, . . . , n), (2.5)

λ ⊆ µ iff λi ≤ µi (i = 1, . . . , n).

A partition λ has weight |λ| = λ1 + · · ·+ λn. If λ ≤ µ then |λ| ≤ |µ|.
For λ ∈ Λ+

n write Wn,λ ⊆Wn for the stabilizer subgroup of λ. Then by [7, Lem.
10.3B], the subgroup Wn,λ (λ ∈ Λ+

n ) is a parabolic subgroup of Wn; i.e., Wn,λ is
generated by the simple reflections it contains. Write Wλ

n for the set of u ∈ Wn

satisfying `(uv) = `(u) + `(v) for all v ∈ Wn,λ. Then Wλ
n is a complete set of

representatives of Wn/Wn,λ (see [8, Sect. 1.10] for details).

Definition 2.1. For α ∈ Λn denote by wα = σαπα (σα ∈ {±1}n, πα ∈ Sn) the

unique element in Wα+

n such that wα(α+) = α.

Define the function sgn: R → {±1} by sgn(a) := 1 if a ≥ 0 and sgn(a) := −1
if a < 0. The following explicit description of σα and πα, due to Sahi [37, p. 277],
plays an important role in what follows.

Lemma 2.2. Let α ∈ Λn. Then

σα = (sgn(α1), . . . , sgn(αn)),

and πα ∈ Sn is the unique permutation satisfying the following two properties:

(a) α+ = (|απα(1)|, . . . , |απα(n)|);

(b) Let a ∈ Z≥0 such that na(α+) > 0. Denote by j1 < j2 the indices such that
{j | α+

j = a} = {j1, j1 + 1, . . . , j2 − 1}.
(1) If j1≤j<j1+na(α) then απα(j) =a ≥ 0 and πα(j) is increasing in j,

(2) if j1 + na(α)≤j<j2 then απα(j) =−a<0 and πα(j) is decreasing in j.

Remark 2.3. Alternatively, πα ∈ Sn is the unique permutation such that, for i < j,

π−1
α (i) < π−1

α (j) ⇔ |αi| > |αj | or 0 ≤ αi = ±αj . (2.6)

See also [37, p. 277] for a short formulation of what is essentially the description
of πα in Lemma 2.2, and for an example.
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3. Interpolation theorem for BCn-symmetric Laurent polynomials

Following [30], we call a Laurent polynomial (2.1) BCn-symmetric if it is inva-
riant under the Weyl group Wn. A basis of the linear space of BCn-symmetric
Laurent polynomials is given by the symmetrized monomials

mλ(x) :=
∑

µ∈Wnλ

xµ (λ ∈ Λ+
n ).

The Laurent polynomial mλ has degree |λ|, and

mλ =
|Wλ

n |
|Wn|

m̃λ, where m̃λ(x) :=
∑
w∈Wn

xwλ.

Lemma 3.1. Let a ∈ C\{0}. Let λ ∈ Λ+
n−1 ↪→ Λ+

n (n > 1).

(a) There are constants cµ (µ ∈ Λ+
n−1, µ ≤ λ) with cλ 6= 0 such that

mλ(x′, a) =
∑
µ≤λ

cµmµ(x′) (3.1)

as identity in PWn−1

n−1 .

(b) There are constants dµ (µ ∈ Λ+
n−1, µ ≤ λ) with dλ 6= 0 such that

mλ(x′) =
∑
µ≤λ

dµmµ(x′, a) (3.2)

as identity in PWn−1

n−1 .
(c) For every BCn−1-symmetric Laurent polynomial f in x′ of degree d, there

exists a BCn-symmetric Laurent polynomial g in x of degree d such that
g(x′, a) = f(x′).

Proof. (a) Denote the length of λ ∈ Λ+
n−1 by `. Then

m̃λ(x′, a) =

n∑
j=1

(aλj +a−λj ) m̃λ(j)(x′) = 2(n−`)m̃λ(x′)+
∑̀
j=1

(aλj +a−λj ) m̃λ(j)(x′).

The result now follows from the fact that λ(j) < λ for j = 1, 2, . . . , `.
(b) From (3.1) we get

mλ(x′) = c−1
λ mλ(x′, a)−

∑
µ<λ

c−1
λ cµmµ(x′).

Now (3.2) follows by induction on the weight of the partition.

(c) By (3.2), if f=mλ∈PWn−1

n−1 then we can take g=
∑
µ∈Λ+

n−1; µ≤λ dµmµ. �
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Write RA := {ei − ej | 1 ≤ i 6= j ≤ n} ⊂ R, which is a root subsystem in R of
type An−1. Then we define the parameter domain Tn by

Tn := {τ ∈ (C∗)n | τβ 6∈ qZ ∀β ∈ R \RA & τβ 6∈ qZ\{0} ∀β ∈ RA}, (3.3)

where τα ∈ C∗ (α ∈ Λn) stands for the monomial xα evaluated at τ ∈ (C∗)n.
In other words, τ ∈ (C∗)n belongs to Tn if τiτj 6∈ qZ for 1 ≤ i ≤ j ≤ n and
τiτ
−1
j 6∈ qZ\{0} for 1 ≤ i < j ≤ n. Note that s := (s, . . . , s) ∈ Tn for s ∈ C∗

satisfying s2 6∈ qZ, and Tn is invariant under scalar multiplication by q. For µ ∈ Λ+
n

define µ = (µ1, . . . , µn) ∈ (C∗)n by

µi := qµiτi. (3.4)

The map µ 7→ µ is injective on Λ+
n . Sometimes we write µ = µ(q, τ) and µi =

µi(q, τ) if it is important to specify the dependence on q, τ .

Remark 3.2. We will develop the theory of symmetric and nonsymmetric inter-
polation Laurent polynomials for parameters (q, τ) with q ∈ C∗ not a root of unity
and τ ∈ Tn (see (3.3)). It is easy to check that the results also hold true with q
and τj rational indeterminates, and for (q, τ) with 0 < |q| < 1 and 0 < |τ1| <
· · · < |τn| < 1. The latter case requires straightforward adjustments to the proofs
of Corollary 4.3 and Lemma 4.9.

The following two properties of the interpolation points will play an important
role in what follows:

µ(q, τ) = (µ(q, τ ′), τn) (µ ∈ Λ+
n−1 ↪→ Λ+

n ),

µ(q, τ) = (µ− 1)(q, qτ) (µ ∈ Λ+
n : µn > 0),

(3.5)

with µ(q, τ ′) = (qµ1τ1, . . . , q
µn−1τn−1) for µ ∈ Λ+

n−1 the interpolation point in
(C∗)n−1. Put

Λ+
n,d := {µ ∈ Λ+

n | |µ| ≤ d} (d ∈ Z≥0).

Proposition 3.3. Let n ∈ Z>0, d ∈ Z≥0 and τ ∈ Tn. For every map f : Λ+
n,d → C

there exists a unique BCn-symmetric Laurent polynomial f of degree ≤ d such that
f(µ(q, τ)) = f(µ) for all µ ∈ Λ+

n,d.

Proof. First note that both the space PWn

n,d of BCn-symmetric Laurent polynomials
in x of degree at most d and the space of complex-valued functions on the set
{µ | µ ∈ Λ+

n,d} have dimension |Λ+
n,d|. Therefore, surjectivity of the linear map

which restricts a BCn-symmetric Laurent polynomial to the set of interpolation
points {µ | µ ∈ Λ+

n,d} implies injectivity, so that existence implies uniqueness.
To prove existence we will use induction on n + d. If n + d = 1, so (n, d) =

(1, 0), then Λ+
1,0 = {(0)} and 0 = τ1 and there is nothing to prove (take f to be

the appropriate constant function). Suppose that the existence of f , with (n, d)

replaced by (ñ, d̃), is true for ñ + d̃ < n + d for all possible parameters in Tñ and
all possible maps Λ+

ñ,d̃
→ C. Fix f : Λ+

n,d → C and τ ∈ Tn and let µ be µ(q, τ). To
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establish the induction step, we need to prove the existence of f ∈ PWn

n,d satisfying

f(µ) = f(µ) for all µ ∈ Λ+
n,d.

We first construct g ∈ PWn

n,d satisfying the partial interpolation property

g(µ) = f(µ) (µ ∈ Λ+
n,d with µn = 0). (3.6)

First assume n > 1. By induction, there exists a BCn−1-symmetric Laurent
polynomial g̃ in x′ of degree at most d such that

g̃
(
µ(q, τ ′)

)
= f(µ, 0) (µ ∈ Λ+

n−1,d). (3.7)

By Lemma 3.1(c) there exists a BCn-symmetric Laurent polynomial g in x of
degree at most d such that g(x′, τn) = g̃(x′). Then

g
(
µ(q, τ ′), τn

)
= f(µ, 0) (µ ∈ Λ+

n−1,d).

Now the first formula of (3.5) gives (3.6). If n = 1 then put g(x) := f(0), where
g has degree d ≥ 0. Then, in particular, g(τ1) = f(0). This concludes the proof of
(3.6) in all cases.

Note that (3.6) already concludes the proof of the induction step when n > d.
Indeed, in this case we can simply take f = g since µn = 0 for all µ ∈ Λ+

n,d.
To complete the induction step we thus may and will assume from now on that

d ≥ n. We make the Ansatz that the symmetric interpolation Laurent polynomial
f we are searching for is of the form

f(x) = g(x) + h(x)

n∏
i=1

(xi − τn)(x−1
i − τn) (3.8)

with g as constructed above and h ∈ PWn

n,d−n. Then f(µ) = f(µ) for all µ ∈ Λ+
n,d

with µn = 0. The identity f(µ) = f(µ) will also hold for µn > 0 if h satisfies

h(µ) =
f(µ)− g(µ)∏n

i=1(µi − τn)(µ−1
i − τn)

(µ ∈ Λ+
n,d with µn > 0). (3.9)

Note that, since τ ∈ Tn, no factors in the above denominator vanish. Hence what
remains to show is the existence of a BCn-symmetric Laurent polynomial h ∈
PWn

n,d−n satisfying (3.9).
Note that we have a bijection

{µ ∈ Λ+
n,d | µn > 0} ∼−→ Λ+

n,d−n

given by µ 7→ µ − 1 := (µ1 − 1, . . . , µn − 1). By the induction hypothesis, there
exists a h ∈ PWn

n,d−n such that

h(ν(q, qτ)) =
f(ν + 1)− g(ν + 1)∏n

i=1

(
(ν + 1)i − τn

)(
(ν + 1)

−1

i − τn
) (ν ∈ Λ+

n,d−n).

By the second formula of (3.5) we have

ν + 1 = ν(q, qτ) (ν ∈ Λ+
n,d−n),

hence we conclude that h ∈ PWn

n,d−n satisfies the desired interpolation property
(3.9). This concludes the proof of the induction step. �

In view of Proposition 3.3 we can give the following definition.
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Definition 3.4. Fix τ ∈ Tn. The BCn-symmetric interpolation Laurent polyno-
mial of degree λ ∈ Λ+

n is the unique BCn-symmetric Laurent polynomial Rλ(x; q, τ)
in n variables x of degree at most |λ| such that Rλ(λ; q, τ) = 1 and

Rλ(µ; q, τ) = 0 ∀µ ∈ Λ+
n,|λ| \ {λ},

where µ := µ(q, τ).

It follows from Proposition 3.3 that {Rλ(x; q, τ) | λ ∈ Λ+
n,d} is a linear basis

of PWn

n,d .
The following two properties, which correspond to [27, Prop. 2.4] and [27,

Prop. 2.7], respectively, in Okounkov’s setup, easily follow from Definition 3.4,
Proposition 3.3 and the two special properties (3.5) of the interpolation points.

Proposition 3.5. Let τ ∈ Tn.

(a) For λ ∈ Λ+
n−1 ↪→ Λ+

n we have

Rλ((x′, τn); q, τ) = Rλ(x′; q, τ ′),

with on the left-hand side the interpolation Laurent polynomial in n vari-
ables and on the right-hand side the interpolation Laurent polynomial in
n− 1 variables.

(b) For λ ∈ Λ+
n with λn > 0 we have

Rλ(x; q, τ) = Rλ−1(x; q, qτ)

n∏
i=1

(xi − τn)(x−1
i − τn)

(λi − τn)(λ
−1

i − τn)
.

Set Λ+
n,−1 := ∅ and write Λ̂+

n,d := Λ+
n,d \ Λ+

n,d−1 for the partitions of length at

most n and weight d. Then {[mλ]d | λ ∈ Λ̂+
n,d} is a linear basis of GWn

n,d . Furthermore,

by Proposition 3.3, {[Rλ]d | λ ∈ Λ̂+
n,d} is also a linear basis of GWn

n,d . In particular,

deg(Rλ(x; q, τ)) = |λ| (λ ∈ Λ+
n ).

The following important property is less immediate.

Proposition 3.6. Let τ ∈ Tn and λ ∈ Λ̂+
n,d. The coefficient cλ,λ in the expansion

Rλ(x; q, τ) =
∑
µ∈Λ+

n,d
cλ,µmµ(x) (cλ,µ ∈ C) is nonzero.

Proof. It suffices to show that the coefficient of [mλ]d in the expansion of [Rλ]d in

terms of the linear basis {[mµ]d | µ ∈ Λ̂+
n,d} of GWn

n,d is nonzero. We prove this by
induction on n+ d. For n = 1, the result follows from Example 3.7. To prove the
induction step we need to consider two cases.

If λn > 0 then d ≥ n and

[Rλ]d =

(
n∏
i=1

τn

(λi − τn)(τn − λ
−1

i )

)
[Rλ−1]d−n[m1]n (3.10)
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in G(PWn
n ) by Proposition 3.5(b). The result now immediately follows from the

induction hypothesis.
If λn = 0 then first consider Rλ(x′; q, τ ′). By the induction hypothesis, mλ(x′)

occurs with nonzero coefficient in the linear expansion of Rλ(x′; q, τ ′) in the basis

{mµ(x′) | µ ∈ Λ+
n−1,d} of PWn−1

n−1,d . By the Proof of Lemma 3.1(c), there exists

g ∈ PWn

n,d such that

g(x′, τn) = Rλ(x′; q, τ ′)

and such that mλ(x) occurs with nonzero coefficient in the linear expansion of g(x)
in the basis {mµ(x) | µ ∈ Λ+

n,d} of PWn

n,d . Fixing this choice of g, there exists by

(the proof of) Proposition 3.3 a unique h ∈ PWn

n,d−n such that

Rλ(x; q, τ) = g(x) + h(x)

n∏
i=1

(xi − τn)(x−1
i − τn) (3.11)

in PWn

n,d (if d < n, then (3.11) should be read as Rλ(x; q, τ) = g(x) and the proof
below goes through with the obvious adjustments). Hence

[Rλ]d = [g]d + (−τn)n[h]d−n[m1]n

in G(PWn
n ), and the result follows from the fact that the linear expansion of

[h]d−n[m1]n ∈ GWn

n,d in the basis {[mµ]d | µ ∈ Λ̂+
n,d} of GWn

n,d only involves the
basis elements [mµ]d with µn > 0. �

Example 3.7. If n = 1 then the interpolation parameter τ ∈ T1 is a complex
number s ∈ C∗ satisfying s2 6∈ qZ. We denote the corresponding symmetric
interpolation Laurent polynomial R(`)(x; q, τ) in one variable x by R`(x; q, s) for
` ∈ Z≥0. Then

R`(x; q, s) =
(sx, sx−1; q)`
(q`s2, q−`; q)`

(3.12)

and the coefficient of m`(x) in the linear expansion of R`(x; q, s) with respect to
the basis {mk(x) | 0 ≤ k ≤ `} of P+

1,` is

(−s)`q`(`−1)/2(
q`s2, q−`; q

)
`

.

Write ρ = (ρ1, . . . , ρn) with ρi := tn−i, and stρ := (stρ1 , . . . , stρn) for s, t ∈ C∗.
Note that ρ + (1, . . . , 1) = 1

2

∑
α∈R+ α. Furthermore, if stρ ∈ Tn then t 6∈ qZ\{0}

and s2 6∈ qZ.

Definition 3.8 (cf. [26]). Let s, t ∈ C∗ such that stρ ∈ Tn. Then we call

Rλ(x; q, s, t) := Rλ(x; q, stρ)

the BCn-type interpolation Macdonald polynomial of degree λ ∈ Λ+
n .

The specialization τ = stρ of the parameters τ is called the principal specializa-
tion. By Definition 3.4 and (3.4), Rλ(x; q, s, t) is the BCn-symmetric Laurent
polynomial of degree |λ| such that

Rλ(qµstρ; q, s, t) = δλ,µ (µ ∈ Λ+
n , |µ| ≤ |λ|). (3.13)
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It is related to Okounkov’s polynomial P ∗λ (x; q, s, t) from [26, Def. 1.1] by the
formula

Rλ(x; q, s, t) =
P ∗λ (xt−ρs−1; q, t, s)

P ∗λ (qλ; q, t, s)
.

For the BCn-type interpolation Macdonald polynomials, part (a) of Proposition
3.5 is [26, Prop. 2.2], part (b) of Proposition 3.5 is [26, Prop. 2.1], and Proposition
3.6 is a special case of [26, Cor. 5.4].

The BCn-type interpolation Macdonald polynomials form a distinguished class
of BCn-symmetric Laurent interpolation polynomials. They satisfy various special
properties, such as the extra vanishing property

Rλ(qµstρ; q, s, t) = 0 if λ * µ, (3.14)

and they admit explicit binomial, combinatorial and integral formulas; see [26],
[27]. The combinatorial formula [26, Thm. 5.2] allows to obtain more precise
information on the expansion components of Rλ(x; q, s, t) in symmetric monomials,
while the binomial formula [26, Thm. 7.1] provides the explicit expansion of Koorn-
winder polynomials in terms of BCn-type interpolation Macdonald polynomials.

Remark 3.9. The interpolation grid for the BCn-type interpolation Macdonald
polynomials naturally appears in the theory of Koornwinder polynomials in the
following way. Koornwinder polynomials are the BCn-symmetric Laurent polyno-
mial eigenfunctions of the commuting Koornwinder–van Diejen q-difference ope-
rators [6, 13], depending on five parameters a, b, c, d, t. These operators generate a
commutative algebra isomorphic to PWn

n through the Harish-Chandra isomorphism
(cf. [15, §2]). Through this isomorphism, the eigenvalues of the Koornwinder–van
Diejen q-difference operators are described by the evaluation morphisms PWn

n → C,

p 7→ p(qλstρ) (λ ∈ Λ+
n ), where s =

√
q−1abcd.

4. Interpolation theorem for nonsymmetric Laurent polynomials

We extend definition (3.4) of the interpolation points µ from µ ∈ Λ+
n to µ ∈ Λn

as follows. Put τ ∈ Tn, with Tn defined by (3.3). For α ∈ Λn, we define α =
(α1, . . . , αn) ∈ Cn by

αi := qαi
(
τπ−1
α (i)

)sgn(αi)
. (4.1)

Here πα is as in Lemma 2.2. We write α = α(q, τ) and αi = αi(q, τ) if we need to
emphasize the dependence of α on the parameters.

Recall the actions (2.2), (2.3), (2.4) of Wn on Λn, (C∗)n and Pn, respectively.
The resulting action of Wn on the interpolation points α ∈ (C∗)n can be described
as follows.

Lemma 4.1. Let α ∈ Λn.

(a) Let j ∈ [1, n]. If sjα 6= α then sjα = sjα.
(b) If j ∈ [1, n) and αj = αj+1 then

αj/αj+1 =
(
τπ−1
α (j)/τπ−1

α (j)+sgn(αj)

)sgn(αj)
. (4.2)

(c) If αn = 0 then αn = τn.
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Remark 4.2. In case of the special specialisation τ = st
ρ

, part (a) of Lemma 4.1
was observed by Sahi [37, Proof of Thm. 5.3], and parts (b) and (c) were observed
in [40, Remark 4.7].

Proof of Lemma 4.1. First we prove (a). For j = n, this reduces by (4.1) and the
assumption snα 6= α to showing that π−1

snα = π−1
α . It follows immediately from

Lemma 2.2 that these two permutations are equal. For j < n, the statement of
(a) reduces by (4.1) to showing that π−1

sjα = π−1
α ◦ sj if sjα 6= α. Also the equality

of these two permutations under the given condition follows immediately from
Lemma 2.2.

Similarly the proofs of (b) and (c) reduce by (4.1) to respectively showing that
π−1
α (j+1) = π−1

α (j)+sgnαj and π−1
α (n) = n. Both statements immediately follow

from Lemma 2.2 taking into account the assumption. �

Corollary 4.3. Let τ ∈ Tn.

(a) For all α ∈ Λn we have α = wαα+.
(b) The map Λn → (C∗)n, α 7→ α, is injective.

(c) We have αβ
j

6= 1 for j ∈ [1, n] and α ∈ Λn such that sjα 6= α.

Proof. (a) By Definition 2.1, equation (3.4), Lemma 2.2(a), and equation (4.1) we
have

(wαα+)i = (σαπαα+)i =
(
παα+

)sgnαi

i
=
(
α+
)sgnαi

π−1
α (i)

=
(
q
α
π
−1
α (i)τπ−1

α (i)

)sgnαi
=
(
q|αi|

)sgnαi(
τπ−1
α (i)

)sgnαi

= qαi
(
τπ−1
α (i)

)sgnαi
= αi .

(b) This follows from the explicit expression (4.1) using the fact that q is not a
root of unity and that τ ∈ Tn (see (3.3)).

(c) By part (b) of the Corollary and Lemma 4.1(a) we have for sjα 6= α that

sjα=sjα 6= α. Hence αβ
j

=αj/αj+1 6=1 for j<n and αβ
j

=α2
n 6=1 for j=n. �

For d ∈ Z≥0 and I = {i1, . . . , ik} ⊆ [1, n] put

Λn,d := {µ ∈ Λn | |µ| ≤ d},
R(n, d, I) := {α ∈ Λn,d | αj 6= 0 for all j and αj 6= −1 if j ∈ Ic},
T (n, d, I) := {α ∈ Λn,d | αj 6= 0 if j ∈ Ic}.

Note that

R
(
n, d, [1, n]

)
= T (n, d,∅), T

(
n, d, [1, n]

)
= Λn,d.

Furthermore,

R(n, d, I) = ∅ if d− n < 0; T (n, d, I) = ∅ if d− n+ |I| < 0.

Proposition 4.4. Let n ∈ Z>0, d ∈ Z≥0, τ ∈ Tn. Let I = {i1, . . . , ik} ⊆ [1, n] be
a set of cardinality k.
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(a) For every map f : R(n, d, I)→ C there exists a Laurent polynomial f ∈ Pn
such that

f(α(q, τ)) = f(α) ∀α ∈ R(n, d, I),

deg
(
xJf(x)

)
≤ d− n+ k ∀ J ⊆ I.

(4.3)

(b) For every map f : T (n, d, I)→ C there exists a Laurent polynomial f ∈ Pn
such that

f(α(q, τ)) = f(α) ∀α ∈ T (n, d, I),

deg
(
xJf(x)

)
≤ d ∀J ⊆ Ic.

(4.4)

Remark 4.5. Note that statement (b) for I = ∅ is statement (a) for I = [1, n].

Proof of Proposition 4.4. If f is a map on an empty set then choose f identically
zero. Thus statement (a) holds trivially when d < n and statement (b) holds
trivially when d < n− k.

If (n, d) = (1, 0) then statement (a), and statement (b) for I = ∅, are true by
the remark in the previous paragraph. For statement (b) with I = {1} note that
T (1, 0, {1}) = {0}, hence we can take f(x) to be the constant polynomial f(0).

Now let n + d ≥ 2. Suppose that all the statements of the Proposition, with
(n, d) replaced by (ñ, d̃), are true for all subsets I ⊂ [1, ñ] and all τ ∈ Tñ when

ñ+ d̃ < n+d. We will then successively prove statements (a) and (b) by induction
on the cardinality |I| of the subset I ⊆ [1, n].

Proof of statement (a). We may assume that d ≥ n.
First consider the case I = ∅. Note that

R(n, d,∅) = {α ∈ Λn,d | αj 6= 0,−1 for all j}.

Fix a map f : R(n, d,∅) → C and τ ∈ Tn. We prove the existence of a Laurent
polynomial f ∈ Pn,d−n such that f(α(q, τ)) = f(α) for all α ∈ R(n, d,∅) by
solving a related interpolation problem on the set T (n, d − n, [1, n]) = Λn,d−n,
using statement (b) with shifted parameters qτ ∈ Tn.

Consider for this the bijection

α 7→ β : R(n, d,∅)
∼−→ T (n, d− n, [1, n]), βi := αi − sgn(αi). (4.5)

Note that sgn(βi) = sgn(αi) and, using (2.6), πβ = πα. Hence, by (4.1), α(q, τ) =
β(q, qτ). By the induction hypothesis, statement (b) with τ replaced by qτ is valid
for the function β 7→ f(α) (β ∈ T (n, d− n, [1, n])). Hence there exists f ∈ Pn,d−n
such that f(β(q, qτ)) = f(α) for all β ∈ T (n, d − n, [1, n]). But f ∈ Pn,d−n then
also satisfies f(α(q, τ)) = f(α) for all α ∈ R(n, d,∅), which completes the proof of
statement (a) for I = ∅.

Let k > 0 and assume that statement (a) is true for all f
∨

: R(n∨, d∨, I∨)→ C
when n∨ + d∨ ≤ n + d, τ∨ ∈ Tn∨ and with I∨ ⊆ [1, n∨] of cardinality < k. (Note
that for n∨ + d∨ < n + d this assumption already holds by our earlier induction
hypothesis.) Let I = {i1, . . . , ik} ⊆ [1, n] be a set of cardinality k, τ ∈ Tn, and
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consider a function f : R(n, d, I)→ C. We prove the existence of an interpolation
Laurent polynomial f ∈ Pn satisfying (4.3) by splitting the interpolation problem
in two pieces. For this we use the disjoint union

R(n, d, I) = R∨(n, d, I) tR(n, d, I\{i1})

with

R∨(n, d, I) := {α ∈ R(n, d, I) | αi1 = −1}.

The first step is to prove the existence of a Laurent polynomial g ∈ Pn such
that

g(α(q, τ)) = f(α) ∀α ∈ R∨(n, d, I),

deg
(
g(x)xK) ≤ d− n+ k − 1 ∀K ⊆ I \ {i1}.

(4.6)

For n = 1, we have d ≥ 1 and I = {1}, hence R∨(1, d, {1}) = {−1}. In this case, we
can take g(x) to be the constant polynomial f(−1). Assume that n > 1. In this case,
we solve the interpolation problem (4.6) by rewriting it as an interpolation problem
for a function on R(n−1, d−1, J) with J := {i2−1, i3−1, . . . , ik−1} ⊆ [1, n−1].

Consider the bijection

α 7→ γ : R∨(n, d, I)
∼−→ R(n− 1, d− 1, J)

with γ := α(i1) = (α1, . . . , αi1−1, αi1+1, . . . , αn). In other words, γi = αi∨ for
i ∈ [1, n) with i∨ := i if i < i1 and i∨ := i+ 1 if i1 ≤ i < n.

The interpolation points behave under this bijection in the following manner. By
the explicit description of πα (see Lemma 2.2) we have π−1

α (i1) = n and π−1
α (i∨) =

π−1
γ (i) (i ∈ [1, n)) for α ∈ R∨(n, d, I). Then, by (4.1) we have

αi∨(q, τ) = γi(q, τ
′) (1 ≤ i < n),

αi1(q, τ) = q−1τ−1
n

(4.7)

for α ∈ R∨(n, d, I).
Consider the function g∨ : R(n − 1, d − 1, J) → C, defined by g∨(γ) := f(α).

Since |J | < k the induction hypothesis (either the one on the sum of the number
of variables and the weight, or the one on the size of the subset) implies that
statement (a) is true for g∨ and τ ′ ∈ Tn−1. Hence there exists a Laurent polynomial
g∨ ∈ Pn−1 such that g∨(γ(q, τ ′)) = f(α) for all γ ∈ R(n − 1, d − 1, J), satisfying
the degree conditions deg

(
g∨(x′)xK

)
≤ d−n+ k− 1 for all K ⊆ J . Define g ∈ Pn

by g(x) := g∨(x(i1)), then it follows that g satisfies (4.6). This completes the first
step.

As a second step we add an appropriate term to g to obtain the desired inter-
polation properties for the full set R(n, d, I). Note that Laurent polynomials f of
the form

f(x) = g(x) + (x−1
i1
− qτn)h(x) (4.8)
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with h ∈ Pn all satisfy f(α(q, τ)) = f(α) for α ∈ R∨(n, d, I) in view of (4.7). The
interpolation property f(α(q, τ))=f(α) is then also satisfied for α∈R(n, d, I\{i1})
if

h(α(q, τ)) =
f(α)− g(α(q, τ))

αi1(q, τ)−1 − qτn
(
α ∈ R(n, d, I\{i1})

)
. (4.9)

Note that the right-hand side is well defined, since the conditions (3.3) on the
parameters together with (4.1) and the fact that αi1 6= −1 imply that the deno-
minator is nonzero.

Due to the induction hypothesis, we are allowed to apply statement (a) to the
function

h(α) :=
f(α)− g(α(q, τ))

αi1(q, τ)−1 − qτn
(
α ∈ R(n, d, I\{i1})

)
.

This gives a Laurent polynomial h ∈ Pn fulfilling (4.9) and satisfying the degree
conditions deg

(
h(x)xK

)
≤ d − n + k − 1 for all K ⊆ I \ {i1}. Then f given by

(4.8) satisfies f(α(q, τ)) = f(α) for all α ∈ R(n, d, I). Furthermore, by the degree
properties of g and h the degree conditions deg(f(x)xJ) ≤ d− n+ k for all J ⊆ I
are satisfied. Hence f satisfies (4.3) as desired.

Proof of statement (b). The proof is along the same lines as the proof of statement
(a), but there are subtle differences in the combinatorics.

We may assume that d ≥ n − k. If I = ∅ then the statement is correct due to
Remark 4.5.

Let k > 0 and assume that statement (b) is true for all f
∧

: R(n∧, d∧, I∧)→ C
when n∧+d∧ ≤ n+d, τ∧ ∈ Tn∧ and I∧ ⊆ [1, n∧] is a set of cardinality < k. (Note
that for n∨ + d∨ < n + d this assumption already holds by our earlier induction
hypothesis.) Let I = {i1, . . . , ik} ⊆ [1, n] be a set of cardinality k and consider
a function f : T (n, d, I) → C. We have to prove the existence of an interpolation
Laurent polynomial f ∈ Pn satisfying (4.4).

Consider this time the decomposition

T (n, d, I) = T∧(n, d, I) t T (n, d, I\{ik})

with
T∧(n, d, I) := {α ∈ T (n, d, I) | αik = 0}.

We claim that there exists g ∈ Pn such that

g(α(q, τ)) = f(α) ∀α ∈ T∧(n, d, I),

deg
(
g(x)xK

)
≤ d ∀K ⊆ Ic.

(4.10)

For n = 1, we have d ≥ 1 and I = {1}, hence T∧(1, d, {1}) = {0} and we can take
g(x) to be the constant polynomial equal to f(0). For n > 1, consider the bijection

α 7→ δ : T∧(n, d, I)
∼−→ T (n− 1, d, I \ {ik})

with δ := α(ik). In other words, δi := αi∧ (i ∈ [1, n)) with i∧ defined by i∧ := i
if i < ik and i∧ := i + 1 if ik ≤ i < n. As in the proof of statement (a) one then
shows that

αi∧(q, τ) = δi(q, τ
′) i ∈ [1, n),

αik(q, τ) = τn
(4.11)
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for α ∈ T∧(n, d, I). By the induction hypothesis (either the induction hypothesis
on the sum of the number of variables and the weight, or the induction hypothesis
on the size of the subset), there exists g∧ ∈ Pn such that g∧(δ(q, τ ′)) = f(α) for
δ ∈ T (n − 1, d, I \ {ik}) and satisfying the degree conditions deg

(
g∧(x′)xK

)
≤ d

for all K ⊆ (Ic ∪ {ik}) ∩ [1, n − 1]. Then g ∈ Pn, defined by g(x) := g∧(x(ik)),
satisfies (4.10).

Now define h : T (n, d, I \ {ik})→ C by

h(α) :=
f(α)− g(α(q, τ))

αik(q, τ)− τn
(α ∈ T (n, d, I \ {ik})).

Note that the right-hand side is well defined, since the conditions (3.3) on the
parameters together with (4.1) and the fact that αik 6= 0 imply that the denomina-
tor is nonzero. By the induction hypothesis, there exists h ∈ Pn such that h(α(q, τ))
= h(α) for all α ∈ T (n, d, I\{ik}) which satisfies the degree conditions deg

(
h(x)xK

)
≤ d for all K ⊆ Ic ∪ {ik}. Furthermore, with this choice of h and (4.11) it is clear
that

f(x) := g(x) + (xik − τn)h(x)

satisfies the desired interpolation property f(α(q, τ)) = f(α) for all α ∈ T (n, d, I).
By the degree conditions on g(x) and h(x), we have deg

(
f(x)xJ

)
≤ d for all J ⊆ Ic,

which completes the proof of statement (b). �

Theorem 4.6. Let τ ∈ Tn. For every map f : Λn,d → C there exists a unique
Laurent polynomial f ∈ Pn,d such that f(α(q, τ)) = f(α) for all α ∈ Λn,d.

Proof. Denote by Fq,τn,d the space of complex-valued functions on

Sq,τn,d := {α(q, τ) | α ∈ Λn,d}.

Then, by Corollary 4.3(b), the space Fq,τn,d has dimension |Λn,d|. Define the linear

map φq,τn,d : Pn,d → Fq,τn,d by φq,τn,d(f) := f |Sq,τn,d . Proposition 4.4(b) with I = [1, n]

implies that φq,τn,d is surjective. Then φq,τn,d is also injective, since both vector spaces

Pn,d and Fq,τn,d are of dimension |Λn,d|. Hence φq,τn,d is a linear isomorphism, which
implies the theorem. �

In the remainder of this section, we fix τ ∈ Tn and write α := α(q, τ) for α ∈ Λn.
In view of Theorem 4.6, we can give the following definition.

Definition 4.7. The (nonsymmetric) interpolation Laurent polynomial of degree
α ∈ Λn is the unique Laurent polynomial Gα(x; q, τ) in n variables x of degree at
most |α| such that Gα(α; q, τ) = 1 and

Gα(β; q, τ) = 0 ∀β ∈ Λn,|α| \ {α}.

Theorem 4.6 implies that {Gα(x; q, τ) | α ∈ Λn,d} is a linear basis of Pn,d.
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Example 4.8. Recall from Example 3.7 that for n = 1 the interpolation para-
meter τ ∈ T1 is given by a complex number s satisfying s2 6∈ qZ. We write
G(`)(x; q, τ) for ` ∈ Z by G`(x; q, s). Then the Laurent polynomial G`(x; q, s) has

degree at most |`| and is characterized by the equations G`(q
kssgn(k); q, s) = δ`,k

for k ∈ Z with |k| ≤ |`|. It follows that

G`(x; q, s) =

(
qsx, sx−1; q

)
`(

q1+`s2, q−`; q
)
`

, ` ∈ Z≥0,

G−`(x; q, s) =
q`sx

(
qsx; q

)
`−1

(
sx−1; q

)
`+1(

q`s2; q
)
`+1

(
q1−`; q

)
`−1

, ` ∈ Z>0.

(4.12)

Furthermore, for n > 1,

Gα(x; q, s) :=

n∏
i=1

Gαi(xi; q, s) (α ∈ Λn)

with (recall) s = (s, . . . , s) ∈ Tn.

As in Section 3, one concludes from Theorem 4.6 that {[Gα]d | α ∈ Λ̂n,d} is a

linear basis of Gn,d, where Λ̂n,d := Λn,d \ Λn,d−1 and Λn,−1 := ∅. In particular,

deg
(
Gα(x; q, τ)

)
= |α| (α ∈ Λn).

Recall from Proposition 3.6 that the coefficient of mλ(x) in the linear expansion of
the symmetric interpolation Laurent polynomial Rλ(x; q, τ) in symmetric mono-
mials mµ(x) (µ ∈ Λ+

n ) is nonzero. For the nonsymmetric interpolation Laurent
polynomial Gα(x; q, τ) we have the following result.

Lemma 4.9. Let α ∈ Λn. The coefficients cαγ (q, τ) ∈ C in the linear expansion

Gα(x; q, τ) =
∑

γ∈Λn,|α|

cαγ (q, τ)xγ (4.13)

are rational functions in the variables q, τ1, . . . , τn. The rational function represent-
ing cαα(q, τ) for q not a root of unity and τ ∈ Tn, is nonzero.

Proof. We will prove that the cαγ (q, τ) are rational in q, τ by considering them
for fixed α as solutions of a linear system with rational coefficients. We use the
notations introduced in the proof of Theorem 4.6. Let d ∈ Z≥0 and set m := |Λn,d|.
Identify Λn,d with [1,m] by fixing an enumeration of the elements in Λn,d. This
provides vector space identifications∑

γ∈Λn,d

dγx
γ 7→

(
dγ
)
γ

: Pn,d
∼−→ Cm, f 7→

(
f(γ(q, τ))

)
γ

: Fq,τn,d
∼−→ Cm.

The linear isomorphism φq,τn,d : Pn,d
∼−→ Fq,τn,d is then represented by the invertible

matrix
A(q, τ) :=

(
β(q, τ)γ

)
β,γ
∈ GLm(C).
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Let {eα | α ∈ Λn,d} be the standard basis of Cm. Then Definition 4.7 implies that

(
cαγ (q, τ)

)
γ

= A(q, τ)−1eα ∀α ∈ Λn,d,

and Example 4.8 shows that cαα(q, s) 6= 0 if s ∈ C∗ and s2 6∈ qZ. The result now
follows from the fact that the matrix coefficients of A(q, τ) are rational functions
in q, τ1, . . . , τn. �

For n = 1 we find from (3.12) and (4.12) that

R`(x; q, s) = G`(x; q, s) +G−`(x; q, s) (` ∈ Z≥0).

This generalizes to arbitrary n ≥ 1 as follows.

Theorem 4.10. Let Rλ(x) = Rλ(x; q, τ) and Gα(x) = Gα(x; q, τ) be the sym-
metric and nonsymmetric interpolation polynomials as given by Definitions 3.4
and 4.7, respectively. For λ ∈ Λ+

n and α ∈ Λn we have

Rλ(α) = Rλ(α+), Rλ(x) =
∑

β∈Wnλ

Gβ(x). (4.14)

Proof. The first formula in (4.14) follows immediately from part (a) of Corol-
lary 4.3.

Let λ ∈ Λ+
n and write Hλ :=

∑
β∈Wnλ

Gβ . Then, by the definitions of Rλ and
Gβ , and by part (a) of the theorem, Rλ and Hλ are Laurent polynomials of degree
at most |λ| satisfying Rλ(α) = δα+,λ = Hλ(α) (α ∈ Λn,|λ|). By Theorem 4.6, we
conclude that Rλ = Hλ. �

Remark 4.11. An analogous statement as Theorem 4.10 holds true for Sahi’s [35]
symmetric and nonsymmetric interpolation polynomials, with essentially the same
proof.

Consider the principal specialization τi = stn−i of τ ∈ Tn. The explicit formula
(4.1) for the interpolation point α (α ∈ Λn) then takes the form

αi = qαi
(
stn−π

−1
α (i)

)sgn(αi)
(i ∈ [1, n]). (4.15)

If s =
√
q−1abcd then αi (4.15) corresponds to the eigenvalue of Noumi’s Y -

operator Yi for the nonsymmetric Koornwinder polynomial Eα(x; a, b, c, d; q, t) of
degree α, see [37, §6] (compare with Remark 3.9 for the symmetric theory). Note
that for τ = stρ, the second formula in (4.14) gives the expansion of the BCn-
type interpolation Macdonald polynomial Rλ(x; q, s, t) in terms of the interpolation
Laurent polynomials Gβ(x; q, s, t) (β ∈Wnλ). This is an analogue for interpolation
polynomials of the expansion formula expressing Koornwinder polynomials as
linear combination of nonsymmetric Koornwinder polynomials, see [40, Thm. 6.6].
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Definition 4.12. Let s, t ∈ C∗ such that stρ ∈ Tn. Then we call Gα(x; q, s, t) :=
Gα(x; q, stρ) the nonsymmetric BCn-type interpolation Macdonald polynomial of
degree α ∈ Λn.

Observe that Gα(x; q, s, t) is the unique Laurent polynomial of degree ≤ |α|
satisfying Gα(α; q, s, t) = 1 and Gα(β; q, s, t) = 0 (β ∈ Λn,|α| \ {α}), with α given
by (4.15).

In the following section and in the Appendix, we present first steps towards
answering the question whether the nonsymmetric BCn-type interpolation Mac-
donald polynomials satisfy extra vanishing properties and admit explicit binomial
formulas. For Knop’s [10] type An−1 nonsymmetric interpolation Macdonald poly-
nomials, extra vanishing and explicit binomial formulas were derived in [10], [35],
[39]. Their proofs lean on a generalization of Cherednik’s action of the double affine
Hecke algebra on polynomials in n variables for which the type An−1 nonsymmetric
interpolation Macdonald polynomials are common eigenfunctions of the resulting
Y -operators.

It is not known whether the nonsymmetric BCn-type interpolation Macdonald
polynomials Gα(x; q, s, t) satisfy extra vanishing properties. In the Appendix, we
will present the outcome of computer algebra computations describing extra va-
nishing for Gα(x; q, s, t) when n = 2 and |α| = 4.

5. The action of Demazure–Lusztig operators

We introduce an action of the type Cn Hecke algebra on the space of Laurent
polynomials in n variables, defined in terms of Demazure–Lusztig operators. We
explicitly compute its action on nonsymmetric BCn-type interpolation Macdonald
polynomials. Similar to the type An−1 case in [10], [35], the Hecke algebra tech-
niques in this section can only be applied when taking the principal specialization
τ = stρ.

Recall our notations associated with root system Cn in Section 2.

Definition 5.1 (Hecke algebra of type Bn or Cn). Let Hn(t, tn) be the complex
unital associative algebra with generators T1, . . . , Tn, parameters t, tn ∈ C∗, and
defining relations

TiTi+1Ti = Ti+1TiTi+1, i ∈ [1, n− 2],

Tn−1TnTn−1Tn = TnTn−1TnTn−1,

TiTj = TjTi, |i− j| > 1,

(Ti − ti)(Ti + 1) = 0, i ∈ [1, n],

with ti := t for i ∈ [1, n).

Remark 5.2. The relations (Ti − ti)(Ti + 1) = 0 are related to the usual Hecke

relations (T̃i − t̃i)(T̃i + t̃−1
i ) = 0 [18, (4.1.1)] by the substitutions t̃i = t

1/2
i , T̃i =

t
−1/2
i Ti. (Sahi [37, §2.3] has Hecke relations as in [18] with t̃i = t

1/2
i .)

The trivial one-dimensional representation χ of Hn(t, tn) is characterized by
χ(Ti) = ti for i ∈ [1, n]. For a reduced expression w = si1 · · · sir of w ∈ Wn
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define Tw ∈ Hn(t, tn) by Tw := Ti1 · · ·Tir . This is independent of the choice of the
reduced expression; see [9, Prop. 1.15]. Define the Hecke symmetrizer of Hn(t, tn)
by

C+ :=
∑
w∈Wn

Tw, (5.1)

then

hC+ = χ(h)C+ = C+h (h ∈ Hn(t, tn)); (5.2)

cf., e.g., [18, (5.5.7), (5.5.9)].

Noumi [21] introduced a one-parameter family of representations of Hn(t, tn)
on Pn in terms of Demazure–Lusztig type operators [16, Prop. 3.6]. Concretely, it
is given by

Tj 7→ t+
xj − txj+1

xj − xj+1
(sj − 1), j ∈ [1, n),

Tn 7→ tn +
(1− ax−1

n )(1− bx−1
n )

1− x−2
n

(sn − 1),

with a, b ∈ C such that ab = −tn. As we shall see in Proposition 5.5, the specializa-
tion of the Hecke parameters t, tn and the representation parameters a, b that is
needed for the application to nonsymmetric BCn-type interpolation Macdonald
polynomials is tn = −1 and a = s, b = s−1 with s ∈ C∗. Noumi’s representation
then takes the following form.

Lemma 5.3. Let s, t ∈ C∗. The maps Tj 7→ H
(t)
j (j ∈ [1, n)) and Tn 7→ H

(s)
n with

H
(t)
j := t+

xj − txj+1

xj − xj+1
(sj − 1), j ∈ [1, n), (5.3)

H(s)
n := −1 +

(1− sx−1
n )(1− s−1x−1

n )

1− x−2
n

(sn − 1) (5.4)

define a one-parameter family of representations πs : Hn(t,−1)→ End(Pn) on Pn.

In the following lemma, we show that πs preserves the degree-filtration on Pn.

Lemma 5.4. Let s, t ∈ C∗. Then Pn,d (d ∈ Z≥0) is a Hn(t,−1)-submodule of Pn
with respect to the action πs.

Proof. We have to prove that H
(s)
n (xα) and H

(t)
j (xα) (j ∈ [1, n)) are Laurent

polynomials of degree at most |α|. Clearly, it is sufficient to prove the first claim
for n = 1 and the second claim for n = 2 and j = 1.

A straightforward computation gives that

H
(s)
1 (xk) = −

k∑
i=0

x2i−k −
k∑
i=1

x2i−k + (s+ s−1)

k∑
i=1

x2i−k−1
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for k ∈ Z, where we use the convention that
∑`
i=k fi is equal to 0 if k = `+ 1 and

equal to −
∑k−1
i=`+1 fi if k > ` + 1 (then formally,

∑`
i=k fi =

∑∞
i=k fi −

∑∞
i=`+1 fi

for all k, ` ∈ Z). Similarly,

H
(t)
1 (xk1x

`
2) = −

k−∑̀
i=1

xi+`1 x−i+k2 + t

k−∑̀
i=0

xi+`1 x−i+k2 .

It follows from these formulas that H
(s)
1 (xk) and H

(t)
1 (xk1x

`
2) are Laurent polyno-

mials of degree |k| and |k|+ |`|, respectively (for the second case observe that the
set {(ξ, η) ∈ R2 | |ξ|+ |η| ≤ d} is convex). �

The action of Demazure–Lusztig type operators on normalized nonsymmetric
Koornwinder polynomials was determined explicitly in [40, Prop. 7.8(ii)], and on
nonsymmetric interpolation Macdonald polynomials in [39, Lem. 10(1)]. For non-
symmetric BCn-type interpolation Macdonald polynomials, we have the following
result.

Proposition 5.5. Let α ∈ Λn such that stρ ∈ Tn. Write Gα = Gα(·; q, s, t) for
the nonsymmetric BCn-type interpolation Macdonald polynomial of degree α, and
α for the interpolation point (4.15).

(a) Let j ∈ [1, n). Then

H
(t)
j Gα = tGα if sjα = α,

H
(t)
j Gα = −Gα +

αj+1 − tαj
αj+1 − αj

(
Gsjα +Gα

)
if sjα 6= α.

(5.5)

(b) We have

H(s)
n Gα = −Gα +

(1− sαn)(1− s−1αn)

1− α2
n

(
Gsnα +Gα

)
. (5.6)

In particular, if snα = α then H
(s)
n Gα = −Gα by Lemma 4.1(c).

Remark 5.6. Note that the right-hand sides of (5.5) and (5.6) are well defined by
part (c) of Corollary 4.3. Note furthermore that in (5.5) the second formula does
not reduce to the first formula if we would assume sjα = α. Indeed, part (b) of
Lemma 4.1 in case of the principal specialization τi = stn−i (i ∈ [1, n]) implies
that

αj/αj+1 = t (j ∈ [1, n), α ∈ Λn with sjα = α). (5.7)

Hence the right-hand side of the first formula in (5.5) equals (2t + 1)Gα when
sjα = α (j ∈ [1, n)).

Proof of Proposition 5.5. (a) The starting point is the formula (from (5.3))

(
H

(t)
j Gα

)(
β
)

= tGα
(
β
)

+
βj − t βj+1

βj − βj+1

(
Gα
(
sjβ

)
)−Gα

(
β
))

(5.8)
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for β ∈ Λn. For β ∈ Λn,|α| \ {α}, we then have by Lemma 4.1 that

(
H

(t)
j Gα

)(
β
)

=


0 if sjβ 6= α,

βj − t βj+1

βj − βj+1

if sjβ = α.
(5.9)

Now take β = α and first consider the case that sjα = α. Then (5.9) implies that

H
(t)
j Gα ∈ Pn,|α| vanishes at the interpolation points β with β ∈ Λn,|α| \{α}, while

we get from (5.8) and Lemma 4.1 that(
H

(t)
j Gα

)
(α) = tGα(α) = t.

This proves the first formula of (5.5).

Now suppose that sjα 6= α. Then (5.9) implies that H
(t)
j Gα ∈ Pn,|α| vanishes

at the interpolation points β for β ∈ Λn,|α| \ {α, sjα}. Furthermore, by (5.8) and
Lemma 4.1,

(
H

(t)
j Gα

)
(sjα) =

αj+1 − tαj
αj+1 − αj

,
(
H

(t)
j Gα

)
(α) =

(t− 1)αj
αj − αj+1

.

Hence the Laurent polynomial

F := H
(t)
j Gα −

αj+1 − tαj
αj+1 − αj

Gsjα −
(t− 1)αj
αj − αj+1

Gα

of degree at most |α| vanishes at all the interpolation points β with β ∈ Λn,|α|,
which forces F ≡ 0. We conclude that

H
(t)
j Gα =

αj+1 − tαj
αj+1 − αj

Gsjα +
(t− 1)αj
αj − αj+1

Gα.

Rewriting the right-hand side yields the second formula of (5.5).
(b) The proof proceeds similar to the proof of (a), now starting with the formula

(from (5.3))

(
H(s)
n Gα

)(
β
)

=−Gα
(
β
)
+

(
1−sβ−1

n

)(
1−s−1β

−1

n

)
1−β−2

n

(
Gα
(
snβ

)
−Gα

(
β
))

(5.10)

for β ∈ Λn. By Lemma 4.1, the formula reduces for β ∈ Λn,|α| \ {α} to

(
H(s)
n Gα

)(
β
)

=


0 if snβ 6= α,(

1− sβ−1

n

)(
1− s−1β

−1

n

)
1− β−2

n

if snβ = α.
(5.11)

If snα = α, then it follows from part (c) of Lemma 4.1 in case of principal

specialization that αn = s, hence (H
(s)
n Gα)(α) = −Gα(α) = −1 by (5.10). We
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conclude that H
(s)
n Gα = −Gα if snα = α, which agrees with (5.6). If snα 6= α,

then observe that, by (5.10) and Lemma 4.1,

(
H(s)
n Gα

)
(snα) =

(1− sαn)(1− s−1αn)

1− α2
n

,
(
H(s)
n Gα

)
(α) =

2α2
n − (s+ s−1)αn

1− α2
n

.

Continuing the proof as in part (a) readily leads to the formula (5.6). �

Recall from Lemma 5.3 the representation πs of H(t,−1) on Pn and from (5.1)
the Hecke symmetrizer C+.

Lemma 5.7. Let s, t ∈ C∗. The map πs(C+) restricts to a map Pn,d → PWn

n,d .

Proof. The fact that f+ := πs(C+)f is Wn-invariant for f ∈ Pn follows from
the following standard argument in Cherednik–Macdonald theory: by (5.2), f+

satisfies (H
(t)
j − t)f+ = 0 (j ∈ [1, n)) and (H

(s)
n + 1)f+ = 0. By the explicit forms

(5.3), (5.4) of the Demazure–Lusztig operators, this is equivalent to sjf
+ = f+

for j ∈ [1, n) and snf
+ = f+. The map πs(C+) preserves Pn,d by Lemma 5.4. �

Lemma 5.8. Let s, t ∈ C such that stρ ∈ Tn. Then

πs(C+)Gα = cstαRα+ (5.12)

for all α ∈ Λn, with cstα :=
(
πs(C+)Gα

)
(α+).

Proof. To prove (5.12) it suffices, in view of the previous lemma, to show that(
πs(C+)Gα

)
(µ) = 0

for all µ ∈ Λ+
n,|α| \ {α

+}. But by Proposition 5.5 we have

πs(C+)Gα =
∑

γ∈Wnα

dαγ Gγ

for certain coefficients dαγ ∈ C. Each Gγ vanishes at µ (µ ∈ Λ+
n,|α| \ {α

+}) since

Λ+
n,|α| \ {α

+} ⊆ Λn,|γ| \ {γ} ∀ γ ∈Wnα. �

We end this section by computing cstλ = (πs(C+)Gλ)(λ) for λ ∈ Λ+
n . Fix

λ ∈ Λ+
n . Put Cλ+ :=

∑
u∈Wλ

n
Tu and C+,λ :=

∑
v∈Wn,λ

Tv. Since `(uv) = `(u)+`(v)

for u ∈Wλ
n and v ∈Wn,λ, it follows that

C+ = Cλ+C+,λ (5.13)

in Hn(t,−1). With χ the trivial one-dimensional representation of Hn(t,−1) we
see by Proposition 5.5 that

πs(C+,λ)Gλ = χ(C+,λ)Gλ. (5.14)
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What remains is to compute (πs(C
λ
+)Gλ)(λ). Let R = Rs∪R` be the decomposition

of the root system R of type Cn in short and long roots (by convention, for n = 1
we write Rs = ∅ and R` = R). We define two Wn-invariant functions R→ C by

κβ :=

{
t if β ∈ Rs,
s if β ∈ R`,

υβ :=

{
1 if β ∈ Rs,
−s−1 if β ∈ R`.

Define for β ∈ R the rational function

cβ(x) :=
(xβ

∨ − κβ)(xβ
∨

+ υβ)

x2β∨ − 1
,

where β∨ := 2β/‖β‖2 denotes the co-root of β. Then H
(t)
j = t+ cβj (x)(sj − 1) for

j ∈ [1, n) and H
(s)
n = −1 + cβn(x)(sn − 1). Furthermore, for α ∈ Λn with sjα 6= α

we have

cej+1−ej (α) =
αj+1 − tαj
αj+1 − αj

, j ∈ [1, n),

c−en(α) =
(1− sαn)(1− s−1αn)

1− α2
n

,

which are exactly the coefficients appearing in (5.5) and (5.6). Hence we have

πs(Tj)Gα=−Gα+c−βj (α)
(
Gsjα+Gα

)
(j∈ [1, n] α∈Λn with sjα 6=α) (5.15)

by Proposition 5.5.
Recall the longest element w0 = − idRn in Wn. Let wλ0 ∈ Wλ

n be the minimal
coset representative of the coset w0Wn,λ.

Theorem 5.9. Let s, t ∈ C such that stρ ∈ Tn. Then

πs(C+)Gλ = cstλRλ

for λ ∈ Λ+
n , with

cstλ = χ(C+,λ)
∏

β∈R+∩(wλ0 )−1R−

c−β(λ).

Proof. Fix λ ∈ Λ+
n and write λ− := w0(λ) = wλ0 (λ) for the antidominant element

in the orbit Wnλ. By (5.13), (5.14), Lemma 5.8 and Theorem 4.10 we have

χ(C+,λ)πs(C
λ
+)Gλ = πs(C+)Gλ = cstλRλ = cstλ

∑
α∈Wnλ

Gα,

so it suffices to show that(
πs(C

λ
+)Gλ

)
(λ−) =

∏
β∈R+∩(wλ0 )−1R−

c−β(λ).
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Using Proposition 5.5, the coefficient eλλ− in the expansion

πs(Twλ0 )Gλ =
∑

γ∈Wnλ

eλγGγ

is the same as the coefficient of Gλ− in the expansion of πs(C
λ
+)Gλ in nonsymmetric

BCn-type interpolation Macdonald polynomials. Hence it suffices to show that

eλλ− =
∏

β∈R+∩(wλ0 )−1R−

c−β(λ).

Choose a reduced expression wλ0 = si1 · · · sir . By the proof of Corollary 4.3(a), the
elements λk := sik · · · sirλ ∈ Wnλ (1 ≤ k ≤ r + 1, with λr+1 := λ) are pairwise
distinct. In particular, λk = sikλk+1 6= λk+1 (1 ≤ k ≤ r) and λ1 = λ−. It follows
from Corollary 4.3(c) that c−βik (λk+1) is well defined for k ∈ [1, r], and part (a)
of Lemma 4.1 implies that

c−βik (λk+1) = c−sir ···sik+1
βik (λ).

The coefficient eλλ− can now be computed using Proposition 5.5 and (5.15),

eλλ− = c−βi1 (λ2) · · · c−βir−1 (λr)c−βir (λr+1)

= c−sir ···si2βi1 (λ) · · · c−sirβir−1 (λ)c−βir (λ)

=
∏

β∈R+∩(wλ0 )−1R−

c−β(λ),

where the third equality follows from the well-known description of the set of
positive roots mapped by wλ0 to negative roots in terms of the reduced expression
wλ0 = si1 · · · sir (see Section 2). �

A. Appendix

For n = 2, |α| ≤ 4, and pseudo-random parameters q, s, t from {1/100, 2/100, . . .
. . . , 99/100}, we computed the zeros of β 7→ Gα(β; q, s, t) for β = (β1, β2) ∈ Λ2

satisfying β1, β2 ∈ {−10, . . . , 10} using Wolfram Mathematica [41], and checked the
results by computing the zeros once more for a second choice of pseudo-random
parameters. We present in Figures 1–9 the outcome of these computations for
|α| = 4.

The meaning of the colours of the dots in the pictures is as follows:

• cross: α = (α1, α2).
• circle: (0, 0).
• black dots: β 6= (0, 0) for which β is an interpolation point; i.e., β ∈ Λ2,|α|

and β 6= α.
• grey dots: β ∈ {−10, . . . , 10}×2 for which β is an extra vanishing point.
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Figure 1. α = (4, 0) Figure 2. α = (3, 1)

Figure 3. α = (2, 2) Figure 4. α = (1, 3)

Figure 5. α = (0, 4)

Figure 6. α = (−1, 3)
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Figure 7. α = (−2, 2) Figure 8. α = (−3, 1)

Figure 9. α = (−4, 0)

We have not included pictures for (α1, α2) with α2 < 0 because the following
symmetry

G(α1,−α2)((β1, β2); q, s, t) = 0 iff G(α1,α2)((β1,−β2); q, s, t) = 0

holds true in all the computed cases.
All our pictures, including the ones not displayed here, are in agreement with

the following conjecture about the zero set

Zα := {β ∈ Λn | Gα
(
β; q, s, t

)
= 0}

for q, s, t ∈ C∗ with q not a root of unity and stρ ∈ Tn.

Conjecture A.1. Let α ∈ Λn, β ∈ Wnα. Let Vβ consist of all µ ∈ Λn such that,
for i = 1, . . . , n, µi ≥ βi, µi ≤ βi or µi ∈ Z according to whether βi > 0, βi < 0
or βi = 0, respectively. Let V 0

β consist of all µ ∈ Λn such that, for i = 1, . . . , n,
µi > βi, µi < βi or µi ∈ Z\{0} according to whether βi > 0, βi < 0 or βi = 0,
respectively. Then there are sets Vβ(α) with V 0

β ⊆ Vβ(α) ⊆ Vβ (β ∈ Wnα) and

Vα(α) = Vα such that Zα is the complement in Λn of
⋃
β∈Wnα

Vβ(α).
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Remark A.2. If α ∈ Λ+
n (i.e., α is a partition) then for all β ∈Wnα,

Vβ∩Λ+
n ⊆ {µ ∈ Λ+

n | µ ⊇ α}, hence Vβ(α)∩Λ+
n ⊆ Vα(α)∩Λ+

n = {µ ∈ Λ+
n | µ ⊇ α}.

Thus Conjecture A.1 implies that, for α a partition, Zα ∩ Λ+
n consists of all

partitions µ which do not include the partition α. Compare with the case of
Okounkov’s BCn-type interpolation Macdonald polynomials; see (3.14).

Our pictures suggest possible characterizations of the sets Vβ(α) in Conjec-
ture A.1. These seem to be quite similar to the case of root system of type A (see
[10, Thm. 4.5]) if n = 2, α1 > 0, α2 ≥ 0, or possibly for general n, α1, . . . , αn−1 > 0,
αn ≥ 0. In contrast, in Figures 6 and 8, where α1 < 0, we see that λ ∈ Vα(β) is
not always given by one set of inequalities for λ1, λ2.

In [10, §4] Knop introduced a new partial order on Zn≥0 to describe the extra
vanishing of the type An−1 nonsymmetric interpolation Macdonald polynomials.
Knop’s order relation between two elements α, β ∈ Zn≥0 can be described in

terms of inequalities of the entries of the corresponding partitions α+, β+ ∈ Λ+
n ,

with the strictness or non-strictness of the inequalities depending on the defining
permutation π = uαu

−1
β (here uα, uβ ∈ Sn are the permutations of shortest lengths

such that uα(α+) = α and uβ(β+) = β). One may wonder whether the extra
vanishing of the nonsymmetric BCn-type interpolation Macdonald polynomials
Gα(x; q, s, t) can be formulated in terms of a hyperoctahedral version of Knop’s
partial order, with the strictness or nonstrictness of the entries of the associated
partitions α+, β+ ∈ Λ+

n now described in terms of wαw
−1
β ∈Wn for α, β ∈ Λn.
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