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Using the framework of operator or Calderón preconditioning, uniform preconditioners are 
constructed for elliptic operators discretized with continuous finite (or boundary) elements. 
The preconditioners are constructed as the composition of an opposite order operator, 
discretized on the same ansatz space, and two identical diagonal scaling operators, whose 
matrix representation is the lumped mass matrix.
© 2021 The Authors. Published by Elsevier B.V. on behalf of IMACS. This is an open access 

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper deals with the construction of uniform preconditioners for negative and positive order operators, discretized 
by continuous piecewise polynomial trial spaces, using the framework of ‘operator preconditioning’ [8], see also [12,11,3,9].

For some d-dimensional closed domain (or manifold) � and an s ∈ [0, 1], we consider the (fractional) Sobolev space 
Hs(�) and its dual that we denote by H−s(�). Let (ST )T ∈T be a family of continuous piecewise polynomials of some fixed 
degree � w.r.t. uniformly shape regular, possibly locally refined, partitions.

Given some families of uniformly boundedly invertible operators

AT : (
ST ,‖ · ‖H−s(�)

) → (
ST ,‖ · ‖H−s(�)

)′
,

BT : (
ST ,‖ · ‖Hs(�)

) → (
ST ,‖ · ‖Hs(�)

)′
,

we are interested in constructing a preconditioner for AT using operator preconditioning with BT , and vice versa. To this 
end, we introduce a uniformly boundedly invertible operator DT : (

ST , ‖ · ‖H−s(�)

) → (
ST , ‖ · ‖Hs(�)

)′
, yielding precondi-

tioned systems D−1
T BT (D ′

T )−1 AT and (D ′
T )−1 AT D−1

T BT that are uniformly boundedly invertible.
In earlier research, [13,14], we already constructed such preconditioners in a more general setting where different ansatz 

spaces were used to define AT and BT . The setting studied in the current work, however, allows for preconditioners with 
a remarkably simple implementation.

A typical setting is that for some A : H−s(�) → Hs(�) and B : Hs(�) → H−s(�), both boundedly invertible and coercive, 
it holds that (AT u)(v) := (Au)(v) and (BT u)(v) := (Bu)(v) with u, v ∈ ST . An example for s = 1

2 is that A is the Single 
Layer Integral operator and B is the Hypersingular Integral operator. For this case, continuity of piecewise polynomial trial 
functions is required for discretizing B , but not for A, for which often discontinuous piecewise polynomials are employed. 
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Nevertheless, when the solution of the Single Layer Integral equation is expected to be smooth, e.g., when � is a smooth 
manifold, then it is advantageous to take an ansatz space of continuous (or even smoother) functions also for A.

An obvious choice for DT would be to consider (DT u)(v) := 〈u, v〉L2(�) . However, a problem becomes apparent when 
one considers the matrix representation DT of DT in the standard basis being the mass matrix: the inverse matrix D−1

T , 
that appears in the preconditioned system, is densely populated. In view of application cost, this inverse matrix has to be 
approximated, where it generally can be expected that, in order to obtain a uniform preconditioner, approximation errors 
have to decrease with a decreasing (minimal) mesh size, which will be confirmed in a numerical experiment. To circumvent 
this issue, we will introduce a DT that has a diagonal matrix representation, so that its inverse can be exactly evaluated.

1.1. Notation

In this work, by λ � μ we mean that λ can be bounded by a multiple of μ, independently of parameters which λ and 
μ may depend on, with the sole exception of the space dimension d, or in the manifold case, on the parametrization of the 
manifold that is used to define the finite element spaces on it. Obviously, λ � μ is defined as μ � λ, and λ � μ as λ � μ
and λ �μ.

For normed linear spaces Y and Z , in this paper for convenience over R, L(Y , Z ) will denote the space of bounded 
linear mappings Y → Z endowed with the operator norm ‖ · ‖L(Y ,Z ) . The subset of invertible operators in L(Y , Z )

with inverses in L(Z , Y ) will be denoted as Lis(Y , Z ).
For Y a reflexive Banach space and C ∈L(Y , Y ′) being coercive, i.e.,

inf
0 	=y∈Y

(C y)(y)

‖y‖2
Y

> 0,

both C and 
(C) := 1
2 (C + C ′) are in Lis(Y , Y ′) with

‖
(C)‖L(Y ,Y ′) ≤ ‖C‖L(Y ,Y ′),

‖C−1‖L(Y ′,Y ) ≤ ‖
(C)−1‖L(Y ′,Y ) =
(

inf
0 	=y∈Y

(C y)(y)

‖y‖2
Y

)−1
.

The set of coercive C ∈ Lis(Y , Y ′) is denoted as Lisc(Y , Y ′). If C ∈ Lisc(Y , Y ′), then C−1 ∈ Lisc(Y ′, Y ) and 
‖
(C−1)−1‖L(Y ,Y ′) ≤ ‖C‖2

L(Y ,Y ′)‖
(C)−1‖L(Y ′,Y ) .
Given a family of operators Ci ∈ Lis(Yi, Zi) (Lisc(Yi, Zi)), we will write Ci ∈ Lis(Yi, Zi) (Lisc(Yi, Zi)) uniformly in i, 

or simply ‘uniform’, when

sup
i

max(‖Ci‖L(Yi ,Zi),‖C−1
i ‖L(Zi ,Yi)) < ∞,

or

sup
i

max(‖Ci‖L(Yi ,Zi),‖
(Ci)
−1‖L(Zi ,Yi)) < ∞.

2. Construction of DT in the domain case

For some d-dimensional domain � and an s ∈ [0, 1], we consider the Sobolev spaces

Hs(�) := [L2(�), H1(�)]s,2, H−s(�) := Hs(�)′,
which form the Gelfand triple Hs(�) ↪→ L2(�)  L2(�)′ ↪→ H−s(�).

Remark 2.1. In this work, for convenience we restrict ourselves to Sobolev spaces with positive smoothness index which 
do not incorporate homogeneous Dirichlet boundary conditions and their duals. The proofs given below can however be 
extended to the setting with boundary conditions, see the arguments found in [13,14].

Let (T )T ∈T be a family of conforming partitions of � into (open) uniformly shape regular d-simplices. Thanks to the 
conformity and the uniform shape regularity, for d > 1 we know that neighbouring T , T ′ ∈ T , i.e. T ∩ T ′ 	= ∅, have uniformly 
comparable sizes. For d = 1, we impose this uniform ‘K -mesh property’ explicitly.

Fix � > 0. For T ∈T , let ST denote the space of continuous piecewise polynomials of degree � w.r.t. T , i.e.,

ST := {u ∈ H1(�) : u|T ∈ P� (T ∈ T )}.
Additionally, for r ∈ [−1, 1], we will write ST ,r as shorthand notation for the normed linear space 

(
ST , ‖ · ‖Hr(�)

)
.

Denote NT for the set of the usual Lagrange evaluation points of ST , and equip the latter space with �T = {φT ,ν :
ν ∈ NT }, being the canonical nodal basis defined by φT ,ν (ν ′) := δνν ′ (ν, ν ′ ∈ NT ). For T ∈ T , set hT := |T |1/d and let NT :=
T ∩ NT be the set of evaluation points in T . We will omit notational dependence on T if it is clear from the context, e.g., 
we will simply write φν .
293
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2.1. Operator preconditioning

Given some family of opposite order operators AT ∈Lisc(ST ,−s, (ST ,−s)
′) and BT ∈Lisc(ST ,s, (ST ,s)

′), both uniformly 
in T ∈T , we are interested in constructing optimal preconditioners for both AT and BT , using the idea of opposite order 
preconditioning ([8]).

That is, if one has an additional family of operators DT ∈ Lis(ST ,−s, (ST ,s)
′) uniformly in T ∈ T , then uniformly 

preconditioned systems for AT and BT are given by

D−1
T BT (D ′

T )−1 AT ∈Lis(ST ,−s,ST ,−s),

(D ′
T )−1 AT D−1

T BT ∈Lis(ST ,s,ST ,s),
(2.1)

see the following diagram:

ST ,−s (ST ,−s)
′

(ST ,s)
′ ST ,s

AT

(D ′
T )−1D−1

T

BT

.

In the following we shall be concerned with constructing a suitable family DT .

2.1.1. An obvious but unsatisfactory choice for DT
An option would be to consider (DT u)(v) := 〈u, v〉L2(�) (u, v ∈ ST ), being uniformly in L(ST ,−s, (ST ,s)

′). For showing 
boundedness of its inverse, let QT be the L2(�)-orthogonal projector onto ST then

‖D−1
T ‖−1

L((ST ,s)
′,ST ,−s)

= inf
0 	=u∈ST ,−s

sup
0 	=v∈Hs(�)

〈u, v〉L2(�)

‖u‖H−s(�)‖QT v‖Hs(�)

≥ ‖QT ‖−1
L(Hs(�),Hs(�)).

As follows from [13, Prop. 2.3], the converse is also true, i.e., uniform boundedness of ‖D−1
T ‖L((ST ,s)′,ST ,−s) is actually 

equivalent to uniform boundedness of ‖QT ‖L(Hs(�),Hs(�)) .
This uniform boundedness of ‖QT ‖L(Hs(�),Hs(�)) is well-known for families of quasi-uniform, uniformly shape regular 

conforming partitions of � into say d-simplices. It has also been demonstrated for families of locally refined partitions, for 
d = 2 including those that are generated by the newest vertex bisection (NVB) algorithm, see [4,6,5]. On the other hand, 
in [1] a one-dimensional counterexample was presented in which the L2(�)-orthogonal projector on a family of sufficiently 
strongly graded, although uniform K meshes, is not H1(�)-stable. Thus, in any case uniform H1(�)-stability cannot hold 
without assuming some sufficiently mild grading of the meshes.

Aside from this latter theoretical shortcoming, more importantly, there is a computational problem with the current 
choice of DT . The matrix representation of DT w.r.t. �T is the ‘mass matrix’ DT := 〈�T , �T 〉L2(�) . Its inverse D−1

T , 
appearing in the preconditioner, is densely populated, and therefore has to be approximated, where generally the error in 
such approximations has to decrease with a decreasing (minimal) mesh-size in order to arrive at a uniform preconditioner.

2.2. Constructing a practical DT

To avoid the aforementioned problems, we shall construct DT ∈ Lis(ST ,−s, (ST ,s)
′) with a diagonal matrix representa-

tion. To this end, we require some auxiliary space S̃T ⊂ H1(�) equipped with a local basis �̃T that is L2(�)-biorthogonal 
to �T and that has ‘approximation properties’. To be precise, let �̃T := {φ̃ν ∈ H1(�) : ν ∈ NT } be some collection that 
satisfies2:

〈φ̃ν , φν ′ 〉L2(�) = δνν ′ 〈1, φν〉L2(�),
∑

ν∈NT

φ̃ν = 1�,

‖φ̃ν‖Hk(�) � ‖φν‖Hk(�)

(
k ∈ {0,1}), supp φ̃ν ⊆ suppφν.

(2.2)

We will take DT := I ′T D̃T with D̃T and IT being defined and analyzed in the next two theorems.

Theorem 2.2. The operator D̃T : ST ,−s → (S̃T ,s)
′ , defined by (D̃T u)(v) := 〈u, v〉L2(�) , satisfies D̃T ∈ Lis(ST ,−s, (S̃T ,s)

′) uni-
formly in T ∈T .

2 This last condition can be replaced by φ̃ν having (uniformly) local support.
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Proof. This proof largely follows [13, Sect. 3.1], but because here we consider a Sobolev space H s(�) that does not incor-
porate homogeneous boundary conditions, it allows for an easier proof.

From the assumptions (2.2), it follows that the biorthogonal ‘Fortin’ projector PT : L2(�) → H1(�) onto S̃T with 
ran(Id − PT ) = S

⊥L2(�)

T exists, and is given by

PT u =
∑

ν∈NT

〈u, φν〉L2(�)

〈φ̃ν , φν〉L2(�)

φ̃ν .

Let T ∈ T , by (2.2) and the fact that 〈1, φν 〉L2(�) � ‖φν‖2
L2(�) , we find for k ∈ {0, 1}

‖PT u‖Hk(T ) �
∑
ν∈NT

‖φ̃ν‖Hk(T )

‖φν‖L2(�)

‖u‖L2(supp φν) � h−k
T ‖u‖L2(ωT (T )), (2.3)

with ωT (T ) := ⋃
{ν∈NT } suppφν . This shows supT ∈T ‖PT ‖L(L2(�),L2(�)) < ∞.

From the above inequality, and 
∑

ν∈NT φ̃ν = 1, we deduce that

‖(Id − PT )u‖H1(T ) = inf
p∈P0

‖(Id − PT )(u − p)‖H1(T )

� inf
p∈P0

‖u − p‖H1(T ) + h−1
T ‖u − p‖L2(ωT (T ))

� inf
p∈P0

h−1
T ‖u − p‖L2(ωT (T )) + |u|H1(T )

� |u|H1(ωT (T )),

with the last step following from the Bramble-Hilbert lemma. We conclude that supT ∈T ‖PT ‖L(H1(�),H1(�)) < ∞, and 
consequently by the Riesz-Thorin interpolation theorem, that

sup
T ∈T

‖PT ‖L(Hs(�),Hs(�)) < ∞.

This latter property guarantees that D̃T is uniformly boundedly invertible:

‖D̃T ‖L(ST ,−s,(S̃T ,s)
′) = sup

0 	=u∈ST ,−s

sup
0 	=v∈S̃T ,s

〈u, v〉L2(�)

‖u‖H−s(�)‖v‖Hs(�)

≤ 1,

‖D̃−1
T ‖−1

L((S̃T ,s)
′,ST ,−s)

= inf
0 	=u∈ST ,−s

sup
0 	=v∈S̃T ,s

〈u, v〉L2(�)

‖u‖H−s(�)‖v‖Hs(�)

= inf
0 	=u∈ST ,−s

sup
0 	=v∈Hs(�)

〈u, v〉L2(�)

‖u‖H−s(�)‖PT v‖Hs(�)

≥ ‖PT ‖−1
L(Hs(�),Hs(�)). �

Theorem 2.3. For IT : ST ,s → S̃T ,s being the bijection given by IT φν = φ̃ν (ν ∈ NT ), it holds that IT ∈ Lis(ST ,s, S̃T ,s) uni-
formly in T ∈T .

Proof. Note that we may write

IT u =
∑

ν∈NT

〈u, φ̃ν〉L2(�)

〈φν, φ̃ν〉L2(�)

φ̃ν and I−1
T u =

∑
ν∈NT

〈u, φν〉L2(�)

〈φ̃ν , φν〉L2(�)

φν.

Equivalently to (2.3), we see for k ∈ {0, 1} that

‖IT u‖Hk(T ) �
∑
ν∈NT

‖φ̃ν‖Hk(T )‖φ̃ν‖L2(�)

‖φν‖2
L2(�)

‖u‖L2(supp φν) � h−k
T ‖u‖L2(ωT (T )).

Following the same arguments as in the proof of Theorem 2.2, using that IT 1 = 1, then reveals that IT is uniformly 
bounded. Uniformly boundedness of I−1

T follows similarly. �
As announced earlier, we define DT ∈ L(ST ,−s, (ST ,s)

′) by DT := I ′T D̃T , so (DT u)(v) := 〈u, IT v〉L2(�) (u, v ∈ ST ). 
Combining the previous theorems gives the following corollary.
295
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Corollary 2.4. The operator DT is in Lis(ST ,−s, (ST ,s)
′) uniformly in T ∈T .

Remark 2.5. The matrix representation of DT w.r.t. �T given by

DT = 〈�T , IT �T 〉L2(�) = diag{〈1, φν〉L2(�) : ν ∈ NT },
which is diagonal and therefore easily invertible. The matrix DT is known as the lumped mass matrix.

Remark 2.6. The operator DT depends merely on the existence of a biorthogonal basis �̃T that satisfies (2.2). Indeed, this 
basis does not appear in the implementation of DT .

A possible construction of �̃T can be given using techniques from [13]. Consider some collection of local ‘bubble’ 
functions �T = {θν ∈ H1(�) : ν ∈ NT } that satisfy: 

∣∣〈θν, φν ′ 〉L2(�)

∣∣
� δνν ′ ‖φν‖2

L2(�)
, ‖θν‖Hk(�) � ‖φν‖Hk(�) (k ∈ {0, 1}), and 

supp θν ⊆ supp φν . Existence of such a collection can be shown by a construction on a reference d-simplex, and then using 
an affine bijection to transfer it to general elements, see [13, Sect. 4.1]. A suitable �̃T that satisfies (2.2) is then given by

φ̃ν := φν + 〈1, φν〉L2(�)

〈θν,φν〉L2(�)

θν −
∑

ν ′∈NT

〈φν,φν ′ 〉L2(�)

〈θν ′ , φν ′ 〉L2(�)

θν ′ .

We emphasize that the construction of a uniform preconditioner outlined in this subsection does not assume some 
sufficiently mild grading of the meshes.

2.2.1. Implementation
Taking �T as basis for both ST ,−s and ST ,s , the matrix representations of the preconditioned systems from (2.1) read as

D−1
T BT D−�

T AT and D−�
T AT D−1

T BT ,

where

AT := (AT �T )(�T ), BT := (BT �T )(�T ),

DT = D�
T := (DT �T )(�T ) = diag{〈1, φν〉L2(�) : ν ∈ NT }.

Alternatively, we could equip the spaces with the scaled nodal basis �̆T := D
− 1

2
T �T , so that the L2(�)-norm of any basis 

function is proportional to 1, yielding

ĂT := (AT �̆T )(�̆T ) = (D
− 1

2
T )� AT D

− 1
2

T ,

B̆T := (BT �̆T )(�̆T ) = (D
− 1

2
T )� BT D

− 1
2

T ,

D̆T := (DT �̆T )(�̆T ) = (D
− 1

2
T )� DT D

− 1
2

T = Id,

showing that B̆T is a uniform preconditioner for ĂT (and vice versa). To the best of our knowledge, so far this most 
easy form of operator preconditioning, where the stiffness matrix of some operator w.r.t. some basis is preconditioned by 
stiffness matrix of an opposite order operator w.r.t. the same basis, has not been shown to be optimal.

3. Manifold case

Let  be a compact d-dimensional Lipschitz, piecewise smooth manifold in Rd′
for some d′ ≥ d without boundary ∂. 

For s ∈ [0, 1], we consider the Sobolev spaces

Hs() := [L2(), H1()]s,2, H−s() := Hs()′.

We assume that  is given as the closure of the disjoint union of ∪p
i=1χi(�i), with, for 1 ≤ i ≤ p, χi : Rd →Rd′

being some 
smooth regular parametrization, and �i ⊂Rd an open polytope. W.l.o.g. assuming that for i 	= j, �i ∩ � j = ∅, we define

χ : � := ∪p
i=1�i → ∪p

i=1χi(�i) by χ |�i = χi .

Let T be a family of conforming partitions T of  into ‘panels’ such that, for 1 ≤ i ≤ p, χ−1(T ) ∩ �i is a uniformly 
shape regular conforming partition of �i into d-simplices (that for d = 1 satisfies a uniform K -mesh property).

Fix � > 0, we set

ST := {u ∈ H1() : u ◦ χ |χ−1(T ) ∈ P� (T ∈ T )},

296
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equipped with the canonical nodal basis �T = {φν : ν ∈ NT }.
For construction of an operator DT ∈ Lis(ST ,−s, (ST ,s)

′) one can proceed as in the domain case. A suitable collection 
�̃T that is L2()-biorthogonal to �T exists. Moreover, the analysis from the domain case applies verbatim by only changing 
〈·, ·〉L2(�) into 〈·, ·, 〉L2() . A hidden problem, however, is that the computation of DT = diag{〈1, φν〉L2() : ν ∈ NT } involves 
integrals over  that generally have to be approximated using numerical quadrature.

In [13] we solved this issue by defining an additional ‘mesh-dependent’ scalar product

〈u, v〉T :=
∑
T ∈T

|T |
|χ−1(T )|

∫
χ−1(T )

u(χ(x))v(χ(x))dx.

This is constructed by replacing on each χ−1(T ), the Jacobian |∂χ | by its average |T |
|χ−1(T )| over χ−1(T ).

By considering �̃T that is biorthogonal to �T with respect to 〈·, ·〉T , and the linear bijection IT given by IT φν = φ̃ν , 
one is able to show that the operator DT defined as (DT u)(v) := 〈u, IT v〉T satisfies the necessary requirements. For details 
we refer to [13]. The resulting matrix representation of DT w.r.t. �T is then given by DT = diag{〈1, φν〉T : ν ∈ NT }.

4. Numerical results

Let  = ∂[0, 1]3 ⊂R3 be the two-dimensional manifold without boundary given as the boundary of the unit cube, s = 1
2 , 

and ST the space of continuous piecewise polynomials of degree � w.r.t. a partition T . We will evaluate preconditioning 
of the discretized Single Layer Integral operator AT ∈ Lisc(ST ,−s, (ST ,−s)

′) and an (essentially) discretized Hypersingular 
Integral operator BT ∈Lisc(ST ,s, (ST ,s)

′).

The Hypersingular Integral operator B̃ ∈ L(H
1
2 (), H− 1

2 ()), is only-semi coercive, but solving B̃u = f for f with
f (1) = 0 is equivalent to solving Bu = f with B given by (Bu)(v) = (B̃u)(v) + α〈u, 1〉L2()〈v, 1〉L2() , for some fixed α > 0. 
This operator B is in Lisc(H

1
2 (), H− 1

2 ()), and we shall consider discretizations BT ∈ Lisc(ST ,s, (ST ,s)
′) of B . We found 

α = 0.05 to give good results in our examples.
Equipping both ST ,s and ST ,−s with the standard nodal basis �T = {φν : ν ∈ NT }, the matrix representations of the 

preconditioned systems from Sect. 2.2 read as

D−1
T BT D−�

T AT and D−�
T AT D−1

T BT ,

for DT = diag{〈1, φν〉L2() : ν ∈ NT }, AT = (AT �T )(�T ) and BT := (BT �T )(�T ).
We calculated (spectral) condition numbers of these preconditioned systems, where this condition number is given 

by κS (X) := ρ(X)ρ(X−1) with ρ(·) denoting the spectral radius. Note that the condition numbers of the preconditioned 
systems coincide, i.e.,

κS(D−1
T BT D−�

T AT ) = κS(D−�
T AT D−1

T BT ),

so we may restrict ourselves to results for preconditioning of AT .
We used the BEM++ software package [10] to approximate the application of the matrices AT and BT by hierarchical 

matrices based on adaptive cross approximation [7,2]. In particular, we assemble neither matrix AT nor BT .
As initial partition T⊥ = T1 of  we take a conforming partition consisting of 2 triangles per side, so 12 triangles in 

total, with an assignment of the newest vertices that satisfies the so-called matching condition. We let T be the sequence 
{Tk}k≥1 where the (conforming) partition Tk is found by applying both uniform and local refinements. To be precise, Tk
is constructed by first applying k uniform bisections to T⊥ , and then 4k local refinements by repeatedly applying NVB to 
all triangles that touch a corner of the cube. These partitions share both the difficulties of locally refined partitions (the 
presence of triangles with strongly different sizes) and that of uniform partitions (the diagonally scaled stiffness matrix has 
a condition number � 2k|s|).

4.1. Comparison preconditioners

Write G D
T := D−1

T BT D−�
T for the preconditioner constructed in Sect. 2.2. We will compare this with the preconditioner 

described in Sect. 2.1.1, for which the matrix representation is given by G M
T := M−1

T BT M−�
T with mass matrix MT = M�

T =
〈�T , �T 〉L2() . Because our partitions of the two-dimensional surface are created with NVB, we know that also the latter 
preconditioner provides uniformly bounded condition numbers. In contrast to D−1

T , the inverse M−1
T cannot be evaluated in 

linear complexity. We implemented the application of M−1
T by computing an LU-factorization of MT .

Table 1 compares the spectral condition numbers for the preconditioned Single Layer systems with trial spaces given by 
continuous piecewise linears and those by continuous piecewise cubics. The condition numbers κS (G D

T AT ) are uniformly 
bounded, but quantitatively the condition numbers κS (G M

T AT ) are better.
For completeness, despite the small increase of κS (G M

T AT ) when going from linear to cubic finite elements, there is no 
indication that with either G D

T or G M
T the condition numbers of the preconditioned system are not only uniformly bounded 

in the partition but also in the polynomial degree.
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Table 1
Spectral condition numbers, κS (G◦

T AT ) for ◦ ∈ {D, M}, of the preconditioned Single Layer sys-
tem discretized on {Tk}k≥1, by continuous piecewise linears (� = 1) in the middle columns and 
discretized by continuous piecewise cubics (� = 3) in the right columns. Here G D

T is the precon-
ditioner introduced in Sect. 2.2, whereas G M

T is the preconditioner described in Sect. 2.1.1 whose 
application requires an application of M−1

T , which we implemented using an LU-factorization.

Partition T Linears (� = 1) Cubics (� = 3)

hmin hmax dofs G D
T AT G M

T AT dofs G D
T AT G M

T AT

1.4 · 100 1.4 · 100 8 16.2 1.20 56 90.5 1.68
4.4 · 10−2 5.0 · 10−01 218 14.9 1.91 1946 87.9 2.08
1.3 · 10−3 3.5 · 10−01 482 14.7 2.04 4322 86.1 2.17
4.3 · 10−5 1.7 · 10−01 962 14.7 2.10 8642 85.0 2.21
1.3 · 10−6 8.8 · 10−02 2306 15.4 2.14 20738 84.9 2.23
4.2 · 10−8 4.4 · 10−02 7106 15.6 2.16 63938 84.9 2.24
1.3 · 10−9 2.2 · 10−02 25730 15.8 2.17 231554 84.8 2.25
4.1 · 10−11 1.1 · 10−02 99650 15.8 2.17 896834 84.7 2.25

Table 2
Spectral condition numbers κS (G(k)

T AT ) with G(k)
T the preconditioner 

from (4.1) that incorporates k Richardson iterations. The systems are dis-
cretized by continuous piecewise linears in the left columns and discretized 
by continuous piecewise cubics in the right columns.

Linears (� = 1) Cubics (� = 3)

dofs k = 2 k = 4 k = 6 dofs k = 2 k = 4 k = 6

8 2.26 1.29 1.22 56 10.1 3.99 2.65
218 3.05 2.07 1.94 1946 8.96 3.57 2.52
482 3.53 2.28 2.08 4322 8.80 3.59 2.52
962 3.79 2.44 2.19 8642 8.63 3.59 2.52
2306 3.98 2.52 2.24 20738 8.54 3.59 2.52
7106 4.18 2.57 2.27 63938 8.54 3.59 2.52
25730 4.35 2.61 2.28 231554 8.54 3.59 2.52
99650 4.47 2.65 2.29 896834 8.54 3.59 2.52

4.2. Improving the preconditioner quality

As observed in Table 1, the preconditioner G M
T appears to be of superior quality, but it has unfavourable computational 

complexity. It does suggest a way for improving G D
T : by replacing D−1

T with a better approximation of M−1
T , one may 

hope to improve the quality. To this end, we introduce damped (preconditioned) Richardson. Let 0 < λ− ≤ λmin(D−1
T MT ), 

λmax(D−1
T MT ) ≤ λ+ , R(0)

T := 0 and for k ≥ 0 define

R(k+1)
T := R(k)

T + ωD−1
T (Id − MT R(k)

T ), ω = 2

λ− + λ+
,

being the result of k Richardson iterations. Correspondingly define

G(k)
T := R(k)

T BT R(k)
T . (4.1)

It follows that G (1)

T = G D
T and limk→∞ G(k)

T = G M
T . Although we have no proof, we suspect that G (k)

T provides a uniform pre-

conditioner for AT due to the fact that R(k)

T approximates M−1
T , while preserving constant functions, being a key ingredient 

in the proofs of Theorems 2.2 and 2.3.
Values for λ− and λ+ can be found by calculating the extremal eigenvalues of the corresponding preconditioned mass 

matrix on a reference simplex, see e.g. [15]. For � = 1 this gives ω = 2(d+2)
d+3 , whereas for � = 3 and d = 2 we computed 

ω = 0.836.
Table 2 compares the condition numbers κS (G(k)

T AT ) for k ∈ {2, 4, 6}. We see that a few Richardson iterations drastically 
improve our preconditioner, making its quality on par with that of G M

T while having a favourable linear application cost.

Finally, to show that one cannot simply use any (iterative) method for approximating M−1
T , we consider the case where 

one approximates this inverse using a Jacobi preconditioner. The resulting preconditioner is then given by

G Jac
T := (diag MT )−1 BT (diag MT )−�. (4.2)

Table 3 clearly displays that this is not a uniformly bounded preconditioner, which we assume is due to the fact that 
(diag MT )−1 does not preserve constant functions for � > 1.
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Table 3
Spectral condition numbers κS (G Jac

T AT ) with 
G Jac
T from (4.2), and systems discretized by 

continuous piecewise cubics (� = 3).

dofs G Jac
T AT

56 62.6
1946 377.1
4322 495.6
8642 1016.9
20738 3067.8
63938 10928.3

5. Conclusion

Considering discretized opposite order operators AT and BT using the same ansatz space of continuous piecewise 
polynomial w.r.t. a possibly locally refined partition T , we consider matrices DT such that D−1

T BT D−�
T is a uniform 

preconditioner for AT , and D−�
T AT D−1

T for BT . The obvious choice for DT would be the mass matrix, however, it yields 
uniformly bounded condition numbers only under a mildly grading assumption on the mesh, and more importantly, it has 
the disadvantage that its inverse is dense. We proved that when taking DT as the lumped mass matrix the condition 
numbers are uniformly bounded, remarkably without a sufficiently mild grading assumption on the mesh, while obviously 
its inverse can be applied in linear cost.

In our experiments with locally refined meshes generated by Newest Vertex Bisection, the condition numbers with 
DT being the mass matrix are quantitatively better than those found with DT being the lumped mass matrix though. 
Constructing D−1

T as an approximation for the inverse mass matrix by a few preconditioned damped Richardson steps with 
the lumped mass matrix as a preconditioner, both the resulting matrix can be applied at linear cost and the observed 
condition numbers are essentially as good as with the inverse mass matrix.
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