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Abstract

We use Wagner’s weighted subgraph counting polynomial to prove that the par-
tition function of the anti-ferromagnetic Ising model on line graphs is real rooted
and to prove that roots of the edge cover polynomial have absolute value at most 4.
We more generally show that roots of the edge cover polynomial of a k-uniform hy-
pergraph have absolute value at most 2k, and discuss applications of this to the roots
of domination polynomials of graphs. We moreover discuss how our results relate to
efficient algorithms for approximately computing evaluations of these polynomials.
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1 Introduction

The investigation of the location of zeros of different partition functions of graphs and
hypergraphs is a topic gaining more and more interest. The reason for this is that these
partition functions are related to several topics such as statistical physics, combinatorics
and computer science. In statistical physics absence of complex zeros near the real axis
implies absence of phase transition (in the Lee-Yang sense [28]). In computer science it
is related to the design of efficient approximation algorithms for computing evaluations
of partition functions and graph polynomials. A recent approach by Barvinok [4] com-
bined with results from [24] shows that zero-free regions for graph polynomials imply fast
(polynomial time) algorithms for approximating evaluations when restricted to bounded
degree graphs.

In this note we give two new zero-free regions, one for the anti-ferromagnetic Ising
model on line graphs, and one for the edge cover polynomial. For both these polynomials
efficient approximation algorithms were known on the positive real line. For the Ising
model this was based on the Monte Carlo Markov chain approach [13], and for the edge
cover polynomial on correlation decay [20, 21] as well as on the Monte Carlo Markov
chain approach [6, 17]. Our results yield new efficient algorithms for these polynomials
on bounded degree graphs, not only for evaluations on the positive real line, but also
for complex evaluations. More importantly they further stress the connection between
absence of zeros and the existence of efficient algorithms.

Both our results are based on two short applications of a general technique of Wag-
ner [27].

The Ising model on line graphs

Our first example is the Ising model of line graphs. Let G = (V,E) denote a simple
graph and let z, b ∈ C. The partition function of the Ising model ZG(z, b) is defined as

ZG(z) = ZG(z, b) =
∑
U⊆V

z|U | · b|δ(U)|,

where δ(U) denotes the set of edges with one endpoint in U and one endpoint in U \ V .
In this paper, we fix b > 0 and consider the partition function ZG(z) as a polynomial in
z. The case b < 1 is often referred to as the ferromagnetic case, while b > 1 is referred to
as the anti-ferromagnetic case.

In this paper, we will investigate the anti-ferromagnetic Ising model for the class of
line graphs. The line graph of a graph G is a graph L(G) with vertices being the edges
of G and two edges being connected if they share a common vertex. In particular, in
Section 4 we prove the following theorems.

Theorem 1. Let G be a graph and let b > 1. Every root of ZL(G)(z, b) is real and negative.

We can also deduce some information on the location of the so-called Fisher zeros
when we put a bound on the maximum degree.
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Theorem 2. For any ∆ > 2 and 0 6 α < π/2, there exists an open set U∆,α ⊆ C
containing the interval [1,∞), such that if G has maximum degree at most ∆, then for
b ∈ U∆,α and λ ∈ {z ∈ C | | arg(z)| < π − 2α} we have

ZL(G)(λ, b) 6= 0.

In particular, ZL(G)(1, b) 6= 0 for all b ∈ U∆,α.

A way to interpret the previous theorem is that there is no phase transition of the
anti-ferromagnetic Ising-model on line graphs in the Fisher [14] sense. This phenomenon
was already observed by Syôzi in [26] for the Kagomé-lattice, which is the line graph of the
hexagonal lattice. Recently, a variant of the absence of phase transitions for line graphs
was also proven by Dyer, Heinrich, Jerrum, and Müller [13]. In particular, they proved
that for any choice of b and λ, there exists a fully polynomial time randomized algorithm
to approximate ZL(G)(λ, b). Using Theorem 2, one can show that with a uniform bound
on the maximum degree, we can obtain a deterministic algorithm for the same task.
Let us briefly explain. A successful approach for obtaining an approximation algorithm
was proposed by Barvinok [4], based on truncating the Taylor series of the logarithm of
partition functions over a connected zero-free domain. In [24], this method was improved
so as to run in polynomial time on bounded degree graphs. By combining this approach
(see also [22]) with the previous corollary and the existence of a zero-free disk around zero
from [25, Remark 24], we obtain the following corollary.

Corollary 3. For ∆ > 2 and 0 6 α < π/2, let U∆,α given by Theorem 2. Let b ∈ U∆,α

and ξ ∈ {z ∈ C | | arg(z)| < π − 2α}. Then for any ε > 0, there exists an algorithm
that given an n-vertex graph G of maximum degree at most ∆, computes a multiplicative
ε-approximation1 to ZL(G)(ξ, b) in time polynomial in n/ε.

Edge cover polynomial

The second polynomial we consider is the edge cover polynomial, which was introduced
for graphs in [2]. We consider here the obvious extension to hypergraphs.

Let H = (V,E) be a hypergraph. A subset of edges F ⊆ E is called an edge cover
if each vertex of H is contained in at least one edge of F . We define the edge cover
polynomial of H as

E(H, z) =
∑

F ⊆ E edge cover

z|F |.

In [11] it was proved that all the complex zeros of the edge cover polynomial of ordinary
graphs are contained in the open disk of radius (2+

√
3)2

1+
√

3
. Moreover, they showed that if

the minimum degree is large enough, then the zeros are contained in the open disk of
radius 4. The authors conjectured that the actual bound will be 4 for all graphs, cf. [11,
Conjecture 5.1].

Here we confirm this conjecture (see Section 3 for the proof):
1A multiplicative ε-approximation to a nonzero complex number ea is a number eb such that |a−b| 6 ε.
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Theorem 4. Let H be a hypergraph with largest edge of size k without isolated vertices.
Then

(i) E(H, z) 6= 0 if |z| > 2k,

(ii) if moreover k = 2, then E(G, z) 6= 0 if |z| > 4.

In fact we can prove a more refined result, which for graphs gives a zero-free region
containing the positive real line. We state here only the result for graphs, see Section 3
for the extension to hypergraphs and its proof.

Theorem 5. Let G be graph without isolated vertices. Then all roots of E(G, z) are
contained in the set {−(1− α)2 | |α| 6 1}.

See Figure 1 below for a picture of the set in Theorem 5.

Figure 1: Roots of edge cover polynomial of some graphs on 10 vertices and the boundary
of the set {−(1− α)2 | |α| 6 1}.

Combining the theorem above with Barvinok’s method [4] and the improvement
from [24], we obtain a fully polynomial time approximation scheme for approximating
the edge cover polynomial on the the complement of the set {−(1 − α)2 | |α| 6 1} on
bounded degree graphs. To do this one needs to interpolate from ‘infinity’. Equivalently,
one can interpolate the independence polynomial of the dual hypergraph (see below) from
zero. We omit further details, but refer to [4, 24], noting that in [24] hypergraphs are
not considered but the extension of the approach from [24] to hypergraphs is laid out
in [22]. We note that on the real line this a gives a completely different algorithm than
the one in [20, 21], which is based on decay of correlations. See also [6, 17] for randomized
algorithms based on Markov chains.
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Independent sets

It is important to note that the notion of an edge cover of a hypergraph H is strongly
related to independent sets of hypergraphs. We call a set of vertices A ⊆ V an independent
set, if no subset of A forms an edge of H (in [5] this is called a weak independent set).
In other words, a set A is independent if and only if any edge of H contains at least one
vertex from V \ A. Such a set is called a vertex cover. Let us denote the independence
polynomial of H by

I(H, z) =
∑

A⊆V independent

z|A|.

A natural way to describe a vertex cover of a hypergraph H is to consider an edge cover
in the dual hypergraph HT with vertex set E and edges {{e ∈ E | v ∈ e} | v ∈ V }. Then
it is not hard to see that

I(H, z) = z|V |E(HT , 1/z).

Thus we have the following corollary.

Corollary 6. Let H be a hypergraph of degree at most ∆. If |z| < 2−∆, then

I(H, z) 6= 0.

Domination polynomials

As an additional application we obtain a bound on the roots of the total domination
and domination polynomial that is independent of the number of vertices.

For a graph G a set S ⊆ V (G) is called a dominating set if for every u ∈ V (G)
we have either u ∈ S or there exists a neighbor v ∈ S of u. Let dk(G) denote the
number of dominating sets of size k in G. The domination polynomial is defined as
D(G, z) =

∑
k dk(G)zk. See [3, 1, 19] for further details.

Similarly, for a graph G a set S ⊆ V (G) is called a total dominating set if for every
u ∈ V (G) there exists a neighbor v ∈ S of u. Let d(t)

k (G) denote the number of dominating
sets of size k inG. The total domination polynomial is defined asDt(G, z) =

∑
k d

(t)
k (G)zk.

See [9, 12] for further details.
In [23] it is shown that D(G, z) has all its complex zeros in a disk of radius δ+1

√
2n − 1

around −1. (Here δ denotes the minimum degree.) In [18] the authors showed a similar
bound for Dt(G, z), namely all the complex zeros are in the disk of radius δ

√
2n − 1 around

−1. Observe that both bounds depend on the number of vertices of the graph.
For a graph G and a vertex v let NG(v) denote the set of neighbors of v, that is,

NG(v) = {u ∈ V | (u, v) ∈ E}. Let NG[v] = NG(v) ∪ {v}, this is called the closed
neighborhood of v. Let us define the hypergraph DG (resp. DG,t) on the vertex set V (G)
with edges {NG[v] | v ∈ V (G)} (resp. {NG(v) | v ∈ V (G)}). Now observe that the
(total) domination polynomial of G is an edge cover polynomial of DG (resp. DG,t), that
is, D(G, z) = E(DG, z) and Dt(G, z) = E(DG,t, z). By specializing Theorem 4 we obtain
that the roots of D(G, z) (resp. Dt(G, z)) are contained in a disk of radius 2∆(G)+1 (resp.
2∆(G)) around 0, assuming the graph G has no isolated vertices. (Here ∆ denotes the
maximum degree.)
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Corollary 7. Let G be a graph without isolated vertex and with maximum degree ∆. Then
the roots of the domination polynomial of G are contained in the disk of radius 2∆(G)+1.
The roots of the total domination polynomial of G are contained in the disk of radius
2∆(G).

Organization

In the next section we recall some notation and the main result of Wagner [27]. In
Section 3 we prove our results for the edge cover polynomial, and in Section 4 we prove
our results for the Ising model. In the final section we close with an open question and
some remarks.

2 Preliminaries

Let us recall some notations and results of Wagner [27].
Let A ⊂ C. We say that a multivariate polynomial p with variables z1, . . . , zn is

A-nonvanishing, if either p is constant zero or p(z1, . . . , zn) 6= 0 if all zi ∈ A.
Also we denote

• the sector S[θ] = {z ∈ C | | arg(z)| < θ} for some 0 6 θ < π;

• the open interior of disk κD = {z ∈ C | |z| < κ} for some 0 < κ;

• the open exterior of a disk ρE = {z ∈ C | |z| > ρ} for some 0 < ρ <∞.

In what follows we will use the degree sequence and the degree of a vertex. To em-
phasize the difference, we will use deg(H) for the degree sequence of a hypergraph H, and
dH(v) for the degree of a vertex v. Let us fix a hypergraph H = (V,E). Then associate to
each vertex v of H a sequence of complex numbers u(v) = (u

(v)
0 , . . . , u

(v)
dH(v)) and to every

edge e associate a complex number λe. We define the (multivariate) subgraph counting
polynomial of H with variables xv, v ∈ V , as

ZW(H, λ, u;x) =
∑
F⊆E

λFudeg(F )x
deg(F ),

where λF =
∏

e∈F λe, udeg(F ) =
∏

v∈V u
(v)
dF (v) and x

deg(F ) =
∏

v∈V x
dF (x)
v .

The strategy in [27] to obtain a zero-free region for ZW(H, λ, u;x) is based on properties
of two other polynomials. The first is the base polynomial of H, defined as,

Ω(H, λ, x) =
∏
e∈E

(
1 + λe

∏
v∈e

xv

)
and the other is the key polynomial of a vertex v, defined as

K(v)(z) =

dH(v)∑
i=0

(
dH(v)

i

)
u

(v)
i zi.

Now we are ready to state Wagner’s theorem.
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Theorem 8 (Theorem 3.2 of [27]). Let H, u, and λ be defined as above.

(i) If Ω(H, λ;x) is S[π/2]-nonvanishing and for each vertex v, K(v)(z) is S[π − α]-
nonvanishing, then ZW(H, λ, u;x) is S[π/2− α]-nonvanishing.

(ii) If Ω(H, λ;x) is κD-nonvanishing and for each vertex v, K(v)(z) is ρD-nonvanishing,
then ZW(H, λ, u;x) is κρD-nonvanishing.

(iii) If Ω(H, λ;x) is κE-nonvanishing and for each vertex v, K(v)(z) is ρE-nonvanishing
and of degree dH(v), then ZW(H, λ, u;x) is κρE-nonvanishing.

We note that this result is only stated for graphs in [27], but the extension to hy-
pergraphs that we present here is straightforward. For convenience of the reader we will
provide a proof, closely following Wagner’s proof for the graph case. Before we start, we
would further like to make two remarks.
Remark 9. From the definition of Ω(H, λ, x) it follows that if each hyperedge has size at
least 2, then Ω(H, λ, x) is S[π/2]-nonvanishing if and only if each λe > 0 and the size
of each hyperedge equals 2. Therefore part (i) of the theorem only applies to ordinary
graphs.
Remark 10. Another useful observation is the case when H is a k-uniform hypergraph.
Using the substitution xv = z1/k for each vertex v of H, the polynomial

ZW(H, λ, u;x) =
∑
F⊆E

λFudeg(F )z
|F |

is a one variable polynomial, since in a k-uniform hypergraph
∑

v∈V dF (v) = k|F |.
To prove Theorem 8 we will need the following lemma.

Lemma 11 (Schur-Szegő, Proposition 2.4(b) and (c) of [27]). Let P (z) =
∑

j cjz
j and

K(z) =
∑d

j=0

(
d
j

)
ujz

j be polynomials in one complex variable, with degP 6 d. The Schur-
Szegő composition of polynomials P (z) and K(z) is the polynomial Q(z) =

∑d
j=0 ujcjz

j.
For any κ > 0 and ρ > 0, if P (z) is ρD-nonvanishing and K(z) is κD-nonvanishing,
then Q(z) is κρD-nonvanishing. Similarly, if P (z) is ρE-nonvanishing and K(z) is κE-
nonvanishing and deg(K) = d, then Q(z) is κρE-nonvanishing.

Proof of Theorem 8. By Remark 9 above, part (i) is covered by Theorem 3.2 of [27]. We
therefore focus on the case that Ω(H, λ;x) is κD-nonvanishing and each key polynomial
K(v)(z) is ρD-nonvanishing. The proof for the case where D is replaced by E follows along
exactly the same lines.

We identify the vertex set V with {1, . . . , n}. We define a sequence of polynomials,
F0(x), F1(x), . . . , Fn(x) as follows. We set F0(x) := Ω(H, λ, x). For all 1 6 i 6 n we let
Fi(x) to be obtained as the Schur-Szegő composition of Fi−1(x) and the ith key polynomial
in the variable xi, Ki(xi) (the remaining variables being absorbed in the coefficients). By
induction one has

Fi(x) =
∑
F⊆E

λF

(
i∏

j=1

u
(j)
dF (j)

)
xdeg(F ),
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implying that Fn(x) = ZW((H, λ, u;x)).
We next show by induction that if ξ1, . . . , ξn are such that

ξj ∈ κρD if j < i and ξj ∈ ρD if j > i,

then Fi−1(ξ1, . . . , ξj−1, xi, ξi+1, . . . , ξn) is ρD-nonvanishing. The base case i = 1 follows
from the assumption. By Lemma 11 we immediately obtain the induction step. To see
that Fn(x) is κρD-nonvanishing, we apply Lemma 11 once more to Fn−1(ξ1, . . . , ξn−1, xn)
and Kn(xn), for any choice of ξ1, . . . , ξn−1 ∈ κρD, which is κD-nonvanishing by the above,
to obtain the desired result.

Our main goal will be to express the partition function of the Ising-model of a line
graph and the edge cover polynomial as a subgraph counting polynomial. We start with
the edge cover polynomial, as this is easiest one.

3 Edge cover polynomial

We start by giving two proofs of Theorem 4(i), by expressing the edge cover polynomial
as a subgraph counting polynomial in two different ways. After this we prove Theorem 5
and we conclude with proving that for graphs −4 cannot be a root of the edge cover
polynomial thereby concluding the proof of Theorem 4(ii).

3.1 First proof of Theorem 4(i)

Lemma 12. For a hypergraph H, the edge cover polynomial at ξ can be expressed as

E(H, ξ) = ZW(H, ξ, (0, 1, . . . , 1); 1).

Proof. We simply have to check the definition of the subgraph counting polynomial, that
is,

ZW(H, ξ, (0, 1, . . . , 1); 1) =
∑
F⊆E

ξ|F |
∏

v∈V (H)

1dF (v)>0 = E(H, ξ).

To apply Wagner’s theorem, we have to investigate the location of zeros of the key
polynomials. Let Ld(z) = (1 + z)d and Kd(z) = (1 + z)d − 1.

Lemma 13. For any d > 0, the polynomials

Ld(z) = (1 + z)d and Kd(z) =
d∑
i=1

(
d

i

)
zi = (1 + z)d − 1

are 2E-nonvanishing.

Proof. The statement is trivial for Ld(z). On the other hand, the roots of Kd(z) are
translations of the d-th root of unity by 1. Since the d-th roots of unity form vertices of a
regular d-gon, therefore by simple geometric argument, we obtain the desired statement.
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Let us fix a value ξ ∈ C, such that κ = |ξ| > 2k > 1.

Lemma 14. The base polynomial,

∏
e∈E

(
1 + ξ

∏
v∈e

xv

)
,

is κ−1/kE-nonvanishing.

Proof. This is clear since if each xv has absolute value at least κ−1/k, then∣∣∣∣∣ξ∏
v∈e

xv

∣∣∣∣∣ > κ
∏
v∈e

κ−1/k = κ1−|e|/k > 1.

Now we are ready to prove Theorem 4(i). We would like to show that E(H, ξ) 6= 0.
Consider the polynomial ZW(H, ξ, (0, 1, . . . , 1), z). We will use Theorem 8 to show that
the subgraph counting polynomial is not zero at z = 1. Indeed, as the key polynomials
are 2E-nonvanishing, we get from Theorem 8 that ZW(H, ξ, (0, 1, . . . , 1), z) is 2(κ−1/k)E-
nonvanishing, that is (1 − ε)E-nonvanishing for some ε > 0. As we are interested in the
value of this polynomial at z = 1, and since 1 ∈ (1− ε)E , we therefore obtain,

0 6= ZW(H, ξ, (0, 1, . . . , 1), 1) = E(H, ξ),

as desired.

3.2 Second proof of Theorem 4(i)

It will be convenient for us to define for a hypergraph H = (V,E) of largest edge size
k, its uniformization, Ĥ, by adding new extra vertices to edges, in a way that we obtain a
k-uniform hypergraph with same number of edges. Let the set of new vertices be denoted
by S and the set of edges of Ĥ by Ê.

Lemma 15. For a hypergraph H the edge cover polynomial can be expressed as

E(H, z) = ZW(Ĥ, 1, u; z1/k),

where u(v) = (0, 1, 1, . . . , 1) if v /∈ S and u(v) = (1, . . . , 1) otherwise.

Proof. Observe that a subset of edges E in H is an edge cover if and only if the corre-
sponding edges in Ĥ covers V (H)\S as well. Thus the edge covering polynomial of H and
the “relaxed edge cover polynomial” of Ĥ are the same. The lemma is now an immediate
corollary of the definition of the edge cover polynomial and Remark 10 in the previous
section.
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In order to apply Wagner’s theorem, we have to investigate the location of zeros of
the key polynomials Ld(z) = (1 + z)d and Kd(z) =

∑d
i=1

(
d
i

)
zi = (1 + z)d− 1. We already

proved the relevant properties of these polynomials in Lemma 13. Using this, we obtain
by Theorem 8, that

ZW(Ĥ, 1, u; z) =
∑

F⊆Ê covers V (H) \ S

z
∑
v∈V̂ dF (v) =

∑
F⊆Ê covers V (H) \ S

zk|F |

is 2E-nonvanishing. By substituting z 7→ z1/k, we obtain a polynomial that is 2kE-
nonvanishing, as desired.

3.3 The Cardioid-like region

In this section, we will strengthen Theorem 4. We will not use Theorem 8, but a
similar technique to find a zero-free region for the subgraph-counting function.

The following lemma will play the role of Asano-contraction in the main proof. This
lemma is a slight modification of [15, Lemma 7].

Lemma 16. Let p(z) =
∑d

k=0 akz
k such that ad 6= 0. Assume that p(z) 6= 0 if z /∈ K for

some K ⊆ C closed set. Then
q(z) = adz + a0

has its (unique) root contained in (−1)d+1Kd.

Proof. Let p(z) = ad(z + ξ1) . . . (z + ξd), where ξi ∈ −K. If we denote the root of q(z) by
z0, then

z0 = −a0

ad
= −adξ1 . . . ξd

ad
∈ (−1)d+1Kd.

We will call the previous polynomial transformation the Asano-contraction of p(z)
over the variable z of degree d.

The idea of the proof is that we use Asano-contraction iteratively for a rightly chosen
multivariate polynomial. The issue that could occur is that the resulting polynomial does
not have the correct degree so that we cannot apply Asano-contraction again. To rule
out this case, we have to relax the definition of the edge cover polynomial by saying there
are vertices where we can use any number of edges similarly to the subgraph counting
polynomial of the previous subsection.

Definition 17. Let H be a hypergraph with E(H) = {e1, . . . , em} edges, and let S be a
subset of V (H). Then we define

• the base-polynomial

ΩH,S(ze1 , . . . , zem) =
∏
v∈S

(∏
e:v∈e

(1 + ze)

)∏
v/∈S

(∏
e:v∈e

(1 + ze)− 1

)
;
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• for 0 6 k 6 m the intermediate polynomials as

PH,S,0(z) = ΩH,S(z),

and PH,S,k(z) as the Asano-contraction of PH,S,k−1(z) over the variable zek of degree
|ek|;

• the edge-cover polynomial of H relaxed over S as

E(H, S, z) = PH,S,m(z, . . . , z);

• B = {α ∈ C | |α + 1| > 1}, and Tk = C \ {(−1)k+1
∏k

i=1 αi | α1, . . . , αk /∈ B}, in
particular, T1 = B;

• Notation: TH,k = T|e1| × · · · × T|ek| ⊆ Ck.

Remark 18. It is important to understand the meaning of PH,S,m(ze1 , . . . , zem). Note that
it is a multilinear polynomial since after an application of the Asano contraction to the
variable ze the resulting polynomial will be linear in this variable. So this polynomial can
be written as ∑

F⊆E(H)

aF
∏
e∈F

ze.

Now let us understand the coefficient aF . This means that whenever e ∈ F we chose
the degree |e| term from the previous multivariate polynomial, and whenever e /∈ F we
chose the constant term. Now observe that if v /∈ S, then there is no constant term in∏

v∈e(1 + ze)− 1. This means that we should choose at least one edge covering v into F ,
otherwise aF = 0. For v ∈ S there is no such requirement since there is a constant term
in
∏

v∈e(1 + ze). So aF = 1 if the elements of F cover every vertex not in S. They may
cover some vertices from S, but they do not need to. So the meaning of

E(H, S, z) = PH,S,m(z, . . . , z)

is that it counts the edge sets F with weight z|F | if it covers all vertices not in S. Thus
E(H,∅, z) is the classical edge cover polynomial of the hypergraph H.

Theorem 19. Let H = (V,E) be a hypergraph. For any set S ⊆ V containing all isolated
vertices of H, and k > 0, the polynomial

PH,S,k(z)

is non-zero and TH,k ×Bm−k-nonvanishing.

Proof. We will prove the statement by induction on k. If k = 0, then the statement is
trivial for any S ⊆ V (G), since for any vertex the polynomials∏

v∈e

(1 + ze) and
∏
v∈e

(1 + ze)− 1
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are Bm-stable.
Let us assume that k > 1. Then, by induction, we have PH,S,k−1(z) is TH,k−1×Bm−k+1-

nonvanishing non-zero polynomial. Fix (ξ1, . . . , ξk−1) ∈ TH,k−1, and τk+1, . . . , τm ∈ B.
Then,

p(z) = PH,S,k−1(ξ1, . . . , ξk−1, z, τk+1, . . . , τm)

is a non-zero B-stable polynomial or the zero-polynomial.
We claim that p(z) is a polynomial of degree |ek|. This is true, since the coefficient of

z|ek| in p(z) is exactly

PH−ek,S∪ek,k−1(ξ1, . . . , ξk−1, τk+1, . . . , τm),

which is not the zero polynomial by induction. (Since new additional isolated vertices of
H− ek are in ek.)

If we denote
q(z) = PH,S,k(ξ1, . . . , ξk−1, z, τk+1, . . . , τm),

then q(z) is exactly the Asano-contraction of p(z) over z of degree |ek|. By Lemma 16 we
have that q(z) 6= 0 if z ∈ T|ek|.

Thus, we proved that for any choice of (ξ1, . . . , ξk−1, ξk) ∈ TH,k and τk+1, . . . , τm ∈ B,
the polynomial

PH,S,k(ξ1, . . . , xk, τk+1, . . . , τm) 6= 0,

as desired.

Theorem 5 follows directly from this result, taking S = ∅ and realizing that the set
T2 is equal to the complement of the set {−(1− α)2 | |α| 6 1}, see the next lemma.

Lemma 20. The set T2 ⊆ C is exactly C \ {−(1− α)2 | |α| 6 1}.
In the forthcoming proof ]BAC means the angle at A determined by the lines BA

and AC.

Proof. The statement is equivalent with the the following statement. Let R = {z | |(−1)−
z| 6 1}, then the sets R1 = {z2 | z ∈ R} and R2 = {z1z2 | z1, z2 ∈ R} are the same.
Clearly, R1 ⊆ R2 so we only need to prove the opposite containment. Note that both
R1 and R2 are star convex from the point 0, so it is enough to prove that if w ∈ R2,
then there exists a w′ such that arg(w′) = arg(w) and |w′| > |w|. So we assume that
z1, z2 ∈ R are on the boundary of R, and w = z1z2. We show that if we choose z′ to be
the intersection of the boundary of R with the angle bisector of the angle determined by
z1, 0, z2, then w′ = z′2 satisfies the above conditions.

To see this we need the following geometric fact. Let ABC be a triangle and let D be
the intersection of the circumscribed circle of ABC and the angle bisector of ∠BAC. Let
E be the intersection of the angle bisector of ∠BAC and the side BC. Then |AB| · |AC| =
|AD| · |AE|. This is because the triangles ABD and AEC are similar: ]BAD = ]EAC
since AD is an angle bisector, and ]ADB = ]ACE by the inscribed angle theorem (see
Figure 2 for a picture describing this). Hence |AB| · |AC| = |AD| · |AE| 6 |AD|2.

Applying this to A = 0, B = z1, C = z2, D = z′ we get the claim that for w = z1z2

and w′ = z′2 we have arg(w′) = arg(w) and |w′| > |w|.
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D

E

Figure 2: Proof of the geometric fact from Lemma 20.

3.4 The evaluation at z0 = −4

The main goal of this subsection is to finish the proof of Theorem 4(ii) and thereby
confirming Conjecture 5.1 of [11]. By Theorem 5 a root of the edge cover polynomial can
have absolute value 4 only if it is equal to −4. As we will show, this case cannot occur.

We need the following lemma.

Lemma 21. Let G = (V,E) be a multigraph on m edges and let S ⊂ V be a set of vertices
containing all isolated vertices of G. If E(G,S,−4) = 0 and e = (u, v) ∈ E, then either
E(G− e, S ∪ {u, v},−4) = 0 or e is not a loop and E(G/e, S,−4) = 0.

Proof. Suppose for contradiction that E(G− e, S ∪ {u, v},−4) 6= 0 and if e is not a loop,
then E(G/e, S,−4) 6= 0. Assume that the edges are ordered in a way such that em = e.
To proceed, we have to discuss a few cases depending the size of e, and on the number of
endpoints of e = (u, v) being in S.

If u = v, that is, e is a loop, then the polynomial

PG,S,m(−4, . . . ,−4, z)

is a linear T1 = B-nonvanishing polynomial that is zero at −4. This could only happen, if
this is the zero polynomial, in which case the ‘main coefficient’ E(G− e, S ∪{u},−4) = 0,
a contradiction.

For the remainder we may assume that u 6= v. If u, v ∈ S, then we have

0 = E(G,S,−4) = (−4 + 1) · E(G− e, S,−4).

Thus E(G− e, S ∪ {u, v},−4) = 0, a contradiction.
So we may assume that not both u and v are contained in S. The polynomial

q(z) = PG,S,m(−4, . . . ,−4, z),
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is a non-zero linear polynomial with a zero at −4. Indeed, since the main coefficient is
E(G− e, S ∪ {u, v},−4) 6= 0. Next, consider the polynomial

p(z) = PG,S,m−1(−4, . . . ,−4, z).

This is a polynomial of degree 2, which is B-nonvanishing. Since q(z) is the Asano-
contraction of p(z), the two zeros ξ1, ξ2 of p(z) satisfy ξ1ξ2 = 4. On the other hand, we
know that p(z) is a B-nonvanishing polynomial, therefore, ξ1 = ξ2 = −2. In particular,
the constant term and the linear term of p(z) are equal. We obtain that the constant
term is equal to E(G− e, S,−4) and the linear term is equal to E(G− e, S ∪ {u},−4) +
E(G− e, S ∪ {v},−4). Therefore we obtain in case u, v /∈ S, that E(G− e, S,−4) equals

E(G− e, S ∪ {u},−4) + E(G− e, S ∪ {v},−4)

= (E(G− e, S,−4) + E(G− u, S,−4)) + (E(G− e, S,−4) + E(G− v, S,−4)) .

From which it follows that

0 = E(G− e, S,−4) + E(G− u, S,−4) + E(G− v, S,−4) = E(G/e, S,−4),

as desired. Otherwise, we may assume by symmetry, that u ∈ S and v /∈ S, in which case
we obtain that E(G− e, S,−4) equals

E(G− e, S ∪ {u},−4) + E(G− e, S ∪ {v},−4)

=E(G− e, S,−4) + E(G− e, S ∪ {u, v},−4),

implying that E(G− e, S ∪ {u, v},−4) = 0, a contradiction. This finishes the proof.

As an immediate corollary we obtain that −4 cannot be a root of the edge cover
polynomial.

Corollary 22. Let G = (V,E) be a multigraph and let S ⊆ V be a set containing all
isolated vertices of G. Then

E(G,S,−4) 6= 0.

Proof. For the sake of contradiction, assume that there exists such an example. Let G
be a counterexample with the minimum number of edges. If G has no edge, then S = V ,
thus, E(G,S, z) = 1. Therefore, we may assume that G has an edge. Let e ∈ E(G). Then,
by the previous lemma, either E(G− e, S ∪ {u, v},−4) = 0 or E(G/e, S,−4) = 0. But in
each case, the number of edges is strictly less than the number of edges of G that leads
us to a contradiction.

4 The antiferromagnetic Ising-model on line graphs

We begin by expressing the partition function of the Ising model on a line graph in
terms of the underlying graph.

the electronic journal of combinatorics 28(4) (2021), #P4.14 14



Lemma 23. For a line graph L = L(G), the partition function of the Ising model has the
following form

ZL(G)(z
2) = b|E(L)|

∑
F⊆E

∏
v∈V

b−(dG(v)−dF (v)
2 )−(dF (v)

2 )zdF (v).

Proof. Since the vertex set of L(G) coincides with the edges of G, therefore

ZL(G)(z
2, b) =

∑
U⊆V (L(G))

z2|U | · b|δL(G)(U)| =
∑

F⊆E(G)

z2|F | · b|δL(G)(F )|.

To express δL(G)(F ), observe that L(G) can be covered by edge disjoint cliques Qv,
where each clique corresponds those edges of G containing the vertex v. Therefore, to
count the number of edges in δL(G)(F ) we can take the disjoint union

δL(G)(F ) =
⋃

v∈V (G)

E(Qv) ∩ δL(G)(F ).

Let us assume that Qv is a clique of size d and |F ∩ Qv| = f , i.e. degG(v) = d and
degF (v) = f . Then clearly,

|E(Qv) ∩ δL(G)(F )| = f(d− f) =

(
d

2

)
−
(
f

2

)
−
(
d− f

2

)
.

Thus,

|δL(G)(F )| =
∑

v∈V (G)

[(
dG(v)

2

)
−
(
dF (v)

2

)
−
(
dG(v)− dF (v)

2

)]
,

and

ZL(G)(z
2) =

∑
F⊆E(G)

b
∑
v∈V (G) (

dG(v)
2 )−(dF (v)

2 )−(dG(v)−dF (v)
2 )z

∑
v degF (v)

= b|E(L(G))|
∑

F⊆E(G)

∏
v∈V

b−(dG(v)−dF (v)
2 )−(dF (v)

2 )zdF (v).

We now observe that

ZL(G)(z) = b|E(L(G))|ZW(G, 1, (b−(dG(v)−i
2 )−(i2))

dG(v)
i=0 ; z1/2).

The relevant base polynomial is given by for a graph G = (V,E),

Ω(G, 1, x) =
∏
e∈E

(
1 +

∏
v∈e

xv

)

and is clearly S[π/2]-nonvanishing (and D-nonvanishing). Therefore, by Theorem 8, to
prove Theorem 1, it is enough to show that the key polynomials have only real roots, as
we will show in the next lemma.
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For the remainder of this section, let us for fixed b > 1, denote the relevant key
polynomials by

Kd(z) =
d∑
i=0

(
d

i

)
b−(d−i2 )−(i2)zi. (4.1)

Lemma 24. For any d > 0 we have

Kd+1(z) = b−dKd(bz) + zKd(b
−1z).

Proof. By definition,

Kd+1(z) =
d+1∑
i=0

(
d+ 1

i

)
b−(d+1−i

2 )−(i2)zi

=
d+1∑
i=0

((
d

i

)
+

(
d

i− 1

))
b−(d+1−i

2 )−(i2)zi

=
d∑
i=0

(
d

i

)
b−(d+1−i

2 )−(i2)zi +
d∑
i=0

(
d

i

)
b−(d−i2 )−(i+1

2 )zi+1

=
d∑
i=0

(
d

i

)
b−(d−i2 )−(i2)b−(d−i1 )zi + z

d∑
i=0

(
d

i

)
b−(d−i2 )−(i2)b−(i1)zi

= b−dKd(bz) + zKd(b
−1z).

Lemma 25. For any real number b > 1 and integer d > 1 the key polynomial

Kd(z) =
∑
i

(
d

i

)
b−(d−i2 )−(i2)zi

has simple negative real roots, i.e., it is S[π]-nonvanishing. Moreover, the largest root
z

(d)
0 < 0 of Kd(z) has absolute value at most |z(d)

0 | < b−d.

Proof. To prove the statement, we will show the following stronger statement: For any
d > 1 the polynomial Kd(z) has distinct zeros 0 > z

(d)
1 > · · · > z

(d)
d and for any 1 6 i 6

d− 1
z

(d)
i+1

z
(d)
i

> b2.

We will prove this statement by induction on d using the identity of Lemma 24,
namely, Kd+1(z) = b−dKd(bz) + zKd(b

−1z). If d = 1, then the above statement on the
zeros trivially holds. Assume that the statement is true for some d > 1. Let P1(z) =
Kd(bz) and P2(z) = zKd(b

−1z) and let a1 > a2 > · · · > ad be the zeros of P1(z) and let
0 = b1 > b2 > · · · > bd+1 be the zeros of P2(z). We refer to Figure 3 for a schematic figure
displaying the ideas of the proof.
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b4

z
(3)
3

a3 b3

z
(3)
2

a2 b2

z
(3)
1

a1 b1

0

·b2 ·b2 ·b2

sign(K4(z)) + − + + − − +

Figure 3: A schematic figure of the location of the zeros of K3(z), P1(z) and P2(z).

We claim that ai > bi+1 and bi > ai for any 0 6 i 6 d. This is true indeed, since

ai
bi+1

=
b−1z

(d)
i

bz
(d)
i

= b−2 < 1

and for i > 1

bi
ai

=
bz

(d)
i−1

b−1z
(d)
i

<
b2

b2
= 1.

Therefore, the sequences ai and bi interlace, i.e. bd+1 < ad < bd < . . . < b2 < a1 < b1 = 0.
Since the sign of b−dP1(z) + P2(z) = Kd+1(z) at the endpoints of the interval [ai, bi] are
different, therefore we know for sure that there is a zero of Kd+1(z) in the interval [ai, bi]
for any 1 6 i 6 d. To indicate a d + 1th zero of Kd+1(z), observe that P1(z) and P2(z)
has different sign on (−∞, bd+1) and P2(z) has larger degree.

Since we found d+1 disjoint intervals containing at least one zero of Kd+1(z), therefore
each will contain exactly one zero, i.e., Kd+1(z) has simple zeros z(d+1)

0 > · · · > z
(d+1)
d+1 .

To prove that the consecutive zeros are bounded, note that we have

z
(d+1)
i+1

z
(d+1)
i

>
bi+1

ai
=

bz
(d)
i

b−1z
(d)
i

= b2.

Finally, note that |z(d+1)
0 | < |a1| = b−1|z(d)

0 |, which by induction is bounded by
b−dz

(1)
0 = b−d−1.

Remark 26. One could also easily obtain the real-rootedness of the polynomials Kd(z) as
follows. Let Pd(z) =

∑
i>0 b

−(i2)zi. Then it is well known (see e.g. [7]) that Pd(z) is a
real rooted polynomial, therefore P ∗d (z) = zdPd(1/z) is also real rooted. Observe that the
Schur-product of Pd(z) and P ∗d (z) is exactly Kd(z), and since the Schur product preserves
real-rootedness, we obtained that Kd(z) has only real roots.

Now we have all the ingredients to prove the Theorem 1.

Proof of Theorem 1. By Lemma 23, we can express ZL(G)(z, b) as a specialization of the
multivariate subgraph counting polynomial, where each key polynomial coincides with
one of the members of {Kd(z) | d > 1}. By Lemma 25, we know each key polynomial
has to be real rooted, i.e., each K(v)(z) has no roots in {z ∈ C | | arg(z)| < π}. Choosing
α = 0 in Theorem 8 we obtain the desired statement.
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Next we prove Theorem 2.

Proof of Theorem 2. Let 0 < α < π/2 be fixed and take C = {z ∈ C | | arg(z)| > π− α}.
Let us consider the following two variable polynomials

Kd(z, t) =
∑
i

(
d

i

)
t(
d−i
2 )+(i2)zi

for some 1 6 d 6 ∆.
We know from Lemma 25 that for any fixed b > 1, all the roots of Kd(z, b

−1) are in
int(C). By continuity we can find an open neighborhood Vb of b−1, such that 0 /∈ Vb and
for any 1 6 d 6 ∆ and τ ∈ Vb the polynomialKd(z, τ) has all its zeros contained in int(C).
Let U := ∪b>1V

−1
b . Then U is an open set containing [1,∞) and for any b′ ∈ U we have

that the key polynomial Kd(z, 1/b
′) has no zeros contained in {z ∈ C | | arg(z)| < π−α}.

Following the same argument as in the previous theorem, by the combination of
Lemma 23 and Theorem 8, we obtain that for any b′ ∈ U the polynomial ZL(G)(λ, b

′) has
no root in {z ∈ C | | arg(z)| < π − 2α}. In particular ZL(G)(1, b

′) 6= 0 for all b′ ∈ U .

In a similar manner we can prove the following extensions:

Proposition 27. For any graph G and values bv > 1, a vector of variables λ = (λv)v∈V ,
the multivariate polynomial

FL(G)(λ, (bv)v∈V ) :=
∑
F⊆E

∏
v∈V

b
−(dG(v)−dF (v)

2 )−(dF (v))
2 )

v λdF (v)
v

is weakly Hurwitz-stable, i.e. S[π/2]-nonvanishing.
Moreover, for any ∆ > 2 and 0 < α < π/2 there exists a [1,∞) ⊆ U∆,α, such that the

following holds: for any graph G of maximum degree ∆ and any bv ∈ U∆,α, the polynomial

FL(G)(λ, (bv)v∈V ) 6= 0

if λv ∈ {z ∈ C | | arg(z)| < π − 2α}.

4.1 Disk around zero

A priori, we know from [25, Remark 24], that for any graph H of maximum degree
at most ∆ > 2 the polynomial ZH(λ) has no root in a disk around 0 of radius for some
0 < r < 1/b. This is the last ingredient to conclude Corollary 3.

For the sake of completeness and also as one more example for Wagner’s theorem, we
will describe a zero-free disk around zero for every fixed b > 1. Let us denote by κd,b the
absolute value of the shortest zero of the key polynomial Kd(z) from (4.1). Then:

Proposition 28. Let G be a graph of maximum degree at most ∆ > 2, then

ZL(G)(z, b) 6= 0,

if |z| < κ2
∆,b.
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Proof. From Lemma 25 we know that the polynomials Kd(z) for 1 6 d 6 ∆ are non-zero
in a disk of radius κ∆,b. The polynomial (1+xy) is D-nonvanishing, thus the corresponding
base polynomial is also D-nonvanishing. Thus by the second part of Theorem 8, if none
of the key polynomials vanishes in a disk of radius κ∆,b, then the corresponding subgraph
counting polynomial

ZL(G)(z, b) = b|E(L(G))|ZW(G, 1, (b−(dG(v)−i
2 )−(i2))

dG(v)
i=0 ; z1/2)

will be zero free in a disk of radius κ2
∆,b.

5 Further remarks

To finish the paper we would like to give two remarks.
One might wonder about the location of the zeros of the edge cover polynomials. First

of all, if we look the closure of all possible zeros of E(H, z), then we would obtain the
whole complex plane, since already the closure of the zeros of domination polynomials are
dense in C (see [8]). But what happens, if we consider zeros of the edge cover polynomial
of graphs? For instance, the closure of zeros of the edge cover polynomial of paths is dense
in [−4, 0] (see [11] ), therefore the described region in Theorem 5 is tight for real zeros.

Question 29. Is the set of zeros of edge-cover polynomials of graphs dense in the cardioid
{−(1− α)2 | |α| 6 1}?

(a) A claw-free graph with ZG(λ, b) =
λ6+(4b3+2b)λ5+(b6+11b4+3b2)λ4+
(12b5 + 8b3)λ3 + (b6 + 11b4 + 3b2)λ2 +
(4b3 + 2b)λ+ 1

(b) A claw-free graph with ZG(λ, b) =
λ6+(2b5+4b3)λ5+(b8+12b6+2b4)λ4+
(16b7 + 4b5)λ3 + (b8 + 12b6 + 2b4)λ2 +
(2b5 + 4b3)λ+ 1

Figure 4: Claw-free graphs where ZMC
G (λ) = λ2(1 + λ2) is not real-rooted.

Our second remark concerns the Ising model. Another famous anti-ferromagnetic
model is the hard-core model, whose partition function is essentially the independence
polynomial of graphs. It is well known that independence polynomials of line graphs
have only real zeros [16]. Moreover, according to a theorem of Chudnovsky and Seymour
[10], the independence polynomial has only real zeros also for claw-free graphs. Thus, the
natural question whether the anti-ferromagnetic Ising model ZG(λ, b) has only real zeros
for claw-free graphs for any choice of b > 1 arises. The answer to this question is no. To
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see why, let us fix a graph G, such that ZG(λ) is real rooted for any b > 1. Also, denote
by M the size of a largest cut in the graph G. Then as b→∞

ZG(λ, b)

bM
→
∑
S⊆V

λ|S|1S realizes the maximum cut =: ZMC
G (λ)

has to be a real rooted polynomial. For the claw-free graphs in Figure 4 this is not case.
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