
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

On capital allocation for a risk measure derived from ruin theory

Delsing, G.A.; Mandjes, M.R.H.; Spreij, P.J.C.; Winands, E.M.M.
DOI
10.1016/j.insmatheco.2022.02.001
Publication date
2022
Document Version
Final published version
Published in
Insurance: Mathematics and Economics
License
CC BY

Link to publication

Citation for published version (APA):
Delsing, G. A., Mandjes, M. R. H., Spreij, P. J. C., & Winands, E. M. M. (2022). On capital
allocation for a risk measure derived from ruin theory. Insurance: Mathematics and
Economics, 104, 76-98. https://doi.org/10.1016/j.insmatheco.2022.02.001

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:27 Jul 2022

https://doi.org/10.1016/j.insmatheco.2022.02.001
https://dare.uva.nl/personal/pure/en/publications/on-capital-allocation-for-a-risk-measure-derived-from-ruin-theory(3ae42fd3-a1d2-4302-9035-3b4449107faa).html
https://doi.org/10.1016/j.insmatheco.2022.02.001


Insurance: Mathematics and Economics 104 (2022) 76–98
Contents lists available at ScienceDirect

Insurance: Mathematics and Economics

www.elsevier.com/locate/ime

On capital allocation for a risk measure derived from ruin theory

G.A. Delsing a,b,∗, M.R.H. Mandjes a,c, P.J.C. Spreij a,d, E.M.M. Winands a,b

a Korteweg-de Vries Institute, University of Amsterdam, Science Park 107, 1098 XH Amsterdam, the Netherlands
b Rabobank, Croeselaan 18, 3521 CB Utrecht, the Netherlands
c CWI, Science Park 123, 1098 XG Amsterdam, the Netherlands
d Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received April 2021
Received in revised form December 2021
Accepted 3 February 2022
Available online 22 February 2022

JEL classification:
C690
C320

Keywords:
Risk capital allocation
Gradient allocation method
Value-at-risk (VaR)
Ruin probability
Insurance risk

This paper addresses allocation methodologies for a risk measure inherited from ruin theory. Specifically, 
we consider a dynamic value-at-risk (VaR) measure defined as the smallest initial capital needed to 
ensure that the ultimate ruin probability is less than a given threshold. We introduce an intuitively 
appealing, novel allocation method, with a focus on its application to capital reserves which are 
determined through the dynamic VaR measure. Various desirable properties of the presented approach 
are derived including a limit result when considering a large time horizon and the comparison with the 
frequently used gradient allocation method. In passing, we introduce a second allocation method and 
discuss its relation to the other allocation approaches. A number of examples illustrate the applicability 
and performance of the allocation approaches.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Ruin theory (or risk theory) focuses on analyzing models that describe a company’s vulnerability to ruin by studying the riskiness of 
a firm’s reserves. The probability of ruin, i.e., the probability that the capital reserve level of a firm drops below zero, is often used as an 
insolvency measure. Starting from the seminal works by Cramér (1930) and Lundberg (1903), a substantial research effort has been spent 
on determining the ruin probability in a broad range of risk models. In the basic model, the evolution of the capital reserves of a firm 
over time experiences fluctuations due to losses incurred (amounts claimed in the insurance context) and premiums earned. Initially, the 
focus of ruin theory has been on the probability of ultimate ruin, i.e., the probability that the capital reserve level ever drops below zero 
given the initial capital reserve u. Later these results have been extended in many ways, most notably (i) ruin in finite time, (ii) more 
general loss/claim arrival processes, and (iii) asymptotics of the ruin probability for u large. We refer to e.g., Asmussen and Albrecher 
(2010) for a detailed account. Whereas most of the existing literature primarily considers the univariate risk setting describing a single 
capital reserve process, in practice firms often have multiple lines of business. This warrants the study into multivariate risk processes, 
see e.g., the overview in Chapter XIII.9 of Asmussen and Albrecher (2010). Various dependence structures have been considered, such as 
the introduction of common environmental factors, see e.g., Loisel (2007), or a shared claims process, see e.g., Picard et al. (2003).

Ruin theory originating in the actuarial sciences, has become a commonly used tool in the insurance industry. It also has applications 
in operational risk (see e.g., Kaishev et al. (2008)), credit risk (see e.g., Chen and Panjer (2009)), and various related fields.

Traditionally, a firm’s risk of insolvency is managed through the control of the initial capital reserve. For instance, companies tune this 
initial capital reserve level, say u, such that their loss within a certain period does not exceed u with a given (low) probability. This risk 
measure is often referred to as the value-at-risk (VaR). In many branches of industry, such as insurance and banking, regulation imposes 
restrictions on the capital reserves: these have to be at least equal to some appropriate VaR over a 1-year horizon. In this paper we work 
with a risk measure which is defined as the smallest amount of initial capital needed to guarantee a certain probability of solvency over 
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a specified period. As this risk measure can also be seen as the VaR of the maximal aggregate loss encountered over the period, we refer 
to this as the dynamic VaR measure. This dynamic VaR risk measure, derived from actuarial ruin theory, was first mentioned by Cheridito 
et al. (2006) and is based on the infinite time ruin probability. Later, in Trufin et al. (2011) & Mitric and Trufin (2016), various properties 
of this risk measure were examined.

As mentioned above, in practice there are good motives to consider the multivariate counterpart of the conventional univariate risk 
model. Indeed, many firms want their total initial capital to be allocated over multiple business lines. A first reason for this is that it allows 
them to transfer the cost of holding capital to clients. In the second place, the allocation of expenses across business lines is a necessary 
activity for financial reporting purposes. Finally, capital allocation provides a useful device for assessing and comparing the performance 
of the different lines of business including the quantification of risk.

A variety of capital allocation principles have been proposed in literature. The study of capital allocation can be traced back to the 
work of LeMaire (1984) discussing capital allocations in a game-theoretic framework. Cummins (2000) provides an overview of several 
methods for capital allocation in the insurance industry. One of the most important and intensively studied capital allocation methods is 
the gradient allocation method, also sometimes referred to as the Euler allocation method, which has been proposed by several authors, see 
Tasche (2007) for an overview. It is based on the idea of allocating capital according to the infinitesimal marginal impact of each individual 
risk. In Tasche (1999), the author argues that allocation based on the gradient principle is the only allocation method that provides the 
right signals for performance measurement.

In most of the existing literature on allocation methods the risk is modeled via the terminal value of the risk process at a given time 
horizon T . A challenge, however, lies in incorporating path-dependent information in the allocation method (e.g., considering the event 
of capital reserves dropping below 0 before T ), being of interest specifically when focusing on ruin-based risk measures. As mentioned 
by Assa et al. (2016), it is particularly difficult to apply existing allocation methods to ruin-based risk measures such as the dynamic 
VaR measure. Although scarce, ruin-based allocation methods have been proposed in literature, see e.g., Dhaene et al. (2003), Frostig 
and Denuit (2009), Li et al. (2015) and Cai et al. (2017). In these works the authors minimize certain multivariate ruin probabilities to 
obtain the optimal capital allocation across the risk processes or business lines. Another approach was taken by Assa et al. (2016) who 
reverse-engineer a risk measure with the purpose of addressing the non-trivial problem of capital allocation in a ruin theory context.

In this paper we first propose a novel capital allocation method when the underlying risk process is of multivariate Lévy type. This 
capital allocation is based on the contribution (at the time of ruin, that is) of each of the individual risk processes to the change in the total 
aggregated capital reserve level. It thus yields an intuitive way of allocating capital taking into account the path-dependent information, 
and does not require any optimization to be performed. Several other desirable properties of the method will be highlighted. The special 
case of a multivariate Brownian motion, for which an explicit allocation is found, is dealt with separately. Furthermore, we provide, under 
certain conditions, an asymptotic result for the allocation in the specific case that ruin over an infinitely long time interval is considered.

Secondly, we show that for some particular cases (including multivariate scaled Brownian motions with drift) that our new allocation 
method gives the same capital allocations as the well-known gradient capital allocation method applied to the dynamic VaR measure. 
To our knowledge, this is the first time in literature that the gradient allocation method is applied to the dynamic version of the VaR 
measure. In passing we present a second new allocation method, which, when properly defined, is shown to give the same allocations as 
the first new allocation method when considering an infinite time horizon. The second allocation method is based on the contribution, 
at the time the supremum of the total aggregated risk process is attained, of each of the individual risk processes to the total aggregated 
capital reserve level (conditional on the level of the supremum of the total aggregated risk process). We conclude this paper by a series 
of numerical experiments highlighting some of the differences between the new allocation methods.

This paper is organized as follows. Section 2 provides a formal model description and some preliminaries including the dynamic VaR 
measure. Then in Section 3 we propose our novel capital allocation approach, including treatments of (i) the special case of a multivariate 
Brownian motion, and (ii) the setting in which the time horizon T is infinite. Section 4 establishes the relation with the gradient capital 
allocation method and presents an alternative new allocation method. Numerical examples are provided in Section 5.

2. Risk model and risk measure

In this section we introduce our risk model and the risk measure which we focus on throughout this paper. In our setup the risk 
process is a multidimensional process, whereas the risk measure is defined in terms of the sum of these processes.

2.1. Risk model

We start by constructing the aggregated risk (or loss) process S(·). To this end, consider the d-dimensional real-valued Lévy process
{S(t), t ≥ 0} on the probability space (�, F , P ), where S(t) = (S1(t), . . . , Sd(t))� . We take d ≥ 2 and assume Si(0) = 0 for all i. The 
process can be characterized by its Lévy exponent κS (·), which is given for ϑ := (ϑ1, . . . , ϑd)

� ∈Rd by

E
[

e〈ϑ,S(t)〉]= etκS (ϑ);
see e.g., Sato (1999) or Bertoin (1996). The notation 〈·, ·〉 denotes the usual inner product and the domain of the Lévy exponents includes 
imaginary numbers. The Lévy exponent of the process S(·) is necessarily of the form

κS (ϑ) = 〈c,ϑ〉 + 1

2
〈ϑ,�ϑ〉 +

∫
Rd

(
e〈ϑ,y〉 − 1 − 〈ϑ, y〉1D(y)

)
�(d y),

where c := (c1, . . . , cd)
� ∈Rd , � := (�i j))i, j∈{1,...,d a symmetric non-negative definite matrix on Rd and D := {y : |y| ≤ 1} the closed unit 

ball. One refers to (c, �, �) as the characteristic triplet. The first term corresponds to a deterministic drift, the second term to a diffusion 
part, and the third term to the process’ jumps. Regarding this third part, �(·) is often referred to as the Lévy measure on Rd − {0}, and 
satisfies �((0, . . . , 0)) = 0 and 

∫
d

(|y|2 ∧ 1
)
�(d y) < ∞. In this paper we often introduce assumptions of the form E 

[∣∣S(t)
∣∣]< ∞ for all 
R
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t . As a consequence of Theorem 25.3 in Sato (1999) (as highlighted in Example 25.12 in Sato (1999)) this condition holds true if and only 
if 
∫
|x|>1 |x|�(dx) < ∞. As a result, the condition E 

[∣∣S(t)
∣∣]< ∞ for all t is also equivalent to E 

[∣∣S(1)
∣∣]< ∞.

We define the aggregated risk process by

S(·) :=
d∑

i=1

Si(·),

which by Proposition 11.10 of Sato (1999) is again a Lévy process, whose Lévy exponent is denoted by κ(·). In a ruin context, we let 
u − S(t) represent the capital surplus at time t of the entire firm (defined as the sum of its separate lines of business), given that the 
initial capital reserve level was u > 0. This means that the probability of ruin over some time horizon can be expressed as the probability 
that the risk/loss process S(·) exceeds the level u at some point over the time horizon, i.e.,

ψ(u, T ) := P (τ (u) ≤ T ) = P

(
sup

t∈[0,T ]
S(t) ≥ u

)
, ψ(u,∞) := P (τ (u) < ∞) = P

(
sup

t∈[0,∞)

S(t) ≥ u

)
,

where the time of ruin is then defined as

τ (u) := inf{t ≥ 0 : S(t) ≥ u}.
In this paper we focus on techniques pertaining to the determination of an appropriate initial capital reserve level u for the aggregated 

risk process S(·) by imposing a bound on the probability of ruin, and subsequently allocating the capital u over the individual risk 
processes.

2.2. Risk measure derived from ruin theory

In this subsection we present the dynamic VaR measure for the aggregated risk process {S(t)}t∈[0,T ) to determine capital reserves. This 
risk measure has been derived from ruin theory and was introduced by Trufin et al. (2011). The dynamic VaR measure is defined as the 
minimum initial capital reserve level u such that the probability of ruin is below a given threshold. In other words, for (typically small) 
α ∈ [0, 1], aggregated risk process S(·), and time horizon T > 0,

VaRα(S, T ) := inf{u ≥ 0 |ψ(u, T ) ≤ α}. (1)

In the remainder of this paper special attention will be paid to the allocation of capital when the capital reserve level has been determined 
by this dynamic VaR measure.

Desirable properties of risk measures have been extensively analyzed in literature. For a more extensive account of risk measures and 
their properties we refer to, e.g., the original works by Artzner et al. (1997, 1999). These works coin the concept of a coherent risk measure 
by introducing a list of four axioms. In the context of the infinite time ruin probability, VaRα(S, ∞) and its properties have been studied 
by Trufin et al. (2011). In line with those results, the dynamic VaR measure with a finite time horizon satisfies the following axioms:

Axiom 1 (Translation Invariance) For γ ∈R, VaRα(S + γ , T ) = VaRα(S, T ) + γ .
Axiom 2 (Positive Homogeneity) For every γ > 0, VaRα(γ S, T ) = γ VaRα(S, T ).
Axiom 3 (Monotonicity) For S1(t) ≤ S2(t) a.s. for all t ∈ [0, T ) then VaRα(S1, T ) ≤ VaRα(S2, T ).

Note that in this context S(·) is referred to as a ‘loss’. The remaining axiom (generally not satisfied by VaR-type risk measures) for a 
coherent risk measure is sub-additivity, i.e.,

Axiom 4 (Sub Additivity) VaRα(S1 + S2, T ) ≤ VaRα(S1, T ) + VaRα(S2, T ).

In case the risk processes are scaled Brownian motions with drift, the risk measure VaRα(S, ∞) is also sub-additive. This is explicitly 
shown in Section 4.2.

3. A capital allocation approach

In this section we focus on the allocation of capital of the aggregated risk process S(·) over the individual risk processes Si(·). More 
specifically, we introduce an intuitively appealing novel method to allocate the (initial) capital reserve level of the aggregated risk process 
u to capital reserves for the individual risk processes ui based on the risk contribution of the processes at the time of ruin. Special focus 
is given to its application to capital reserves which are determined through the dynamic VaR measure. In addition to presenting some 
nice properties of the proposed allocation method, in particular over an infinite time horizon, we also find an explicit expression for the 
special case of scaled Brownian motions with drift.

3.1. The capital allocation method and its properties

As mentioned in Section 2.2, an intuitive way to determine the (initial) capital level u for the aggregated risk process S(·) =∑d
i=1 Si(·)

is by use of the dynamic VaR measure. In other words, by determining the minimum reserve level needed to ensure that the probability 
of ruin is below some threshold α, i.e., P (S(τ (u)) ≥ u) ≤ α. A natural way to determine the contribution of risk process Si(·) (or business 
line i) to u, is to consider its contribution to S(τ (u)). Given the capital reserve level u for the aggregated process {S(t)}t∈[0,T ] , we propose 
to allocation Ki(u, S, T ) to the ith risk process Si(·), where
78
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Ki(u, S, T ) := ci(u, S, T ) u, ci(u, S, T ) := E[Si(τ (u)) |τ (u) ≤ T ]
E[S(τ (u)) |τ (u) ≤ T ] . (2)

For the infinite time horizon we consider the allocation Ki(u, S, ∞) := ci(u, S, ∞) u, with

ci(u, S,∞) := E[Si(τ (u))|τ (u) < ∞]
E[S(τ (u))|τ (u) < ∞] .

The ci(u, S, T ) add up to 1 (but are not necessarily positive), entailing that for ui := Ki(u, S, T ) we have 
∑d

i=1 ui = u. This is known as 
the full allocation principle, which evidently is a desirable property for an allocation method. More properties of this allocation method are 
discussed below. To ensure that the allocation method is properly defined we assume from this point onward that P (τ (u) ≤ T ) > 0.

Remark 1. When the capital level u is determined using the dynamic VaR measure presented in Equation (1), the proposed capital 
allocation method gives, for risk process i,

AVaRα
i (S, T ) := Ki(VaRα(S, T ), S, T ).

Various desirable properties of allocation methods can be found in literature, see for example, Denault (2001) for an introduction into 
coherent allocation principles. We now present some properties of the allocation Ki(u, S, T ).

Property 1. The allocation Ki(u, S, T ) possesses the following properties:

(i) The allocated risk measure Ki(u, S, T ) is positively homogeneous, that is, Ki (u, γ Si, T ) = γ Ki(u, S, T ) for any constant γ > 0.
(ii) The allocation satisfies the full allocation principle, that is, 

∑d
i=1 Ki(u, S, T ) = u.

(iii) If E[S(τ (u))|τ (u) < T ] = u, then the allocated risk is deterministic when the marginal risk is deterministic, i.e., Ki(u, S, T ) = si if Si(·) ≡ si is 
deterministic.

Proof. All properties follow directly from definition (2). �
3.2. Infinite horizon

In this subsection we are interested in the properties of the allocation method as given by (2) when considering an infinite time 
horizon, i.e., the case T = ∞. To avoid trivialities, we assume throughout that the process S(·) is a Lévy process with negative drift, i.e., 
κ ′(0) < 0 and that it is not the negative of a subordinator (in which case ψ(u, ∞) = 0 for all u > 0). Suppose we are in the light-tailed 
regime, in the sense that the equation κ(ϑ) = 0 has a real positive solution. This root, typically referred to as the ‘Cramér root’, we denote 
by ϑ∗ ∈ (0, ∞).

We apply now an exponential change of measure. Following (Kyprianou, 2006, Section 3.3) we introduce the alternative measure Q
defined on F := σ(S(t), t ≥ 0). The restrictions of Q and P to the σ -algebras Ft := σ(S(u), u ≥ t), conveniently denoted Qt and Pt , are 
assumed to be mutually absolutely continuous with likelihood ratio process Z = {Zt , t ≥ 0}, a martingale under P , taking the form (recall 
κ(ϑ∗) = 0)

Zt = eϑ∗ S(t)−κ(ϑ∗)t = eϑ∗ S(t).

For a stopping time τ , we will use that the measures Q and P restricted to the σ -algebra Fτ , these restrictions denoted Qτ and Pτ , are 
also mutually absolutely continuous, with likelihood ratio Zτ on the set {τ < ∞}, see (Jacod and Shiryaev, 2013, Section III.3) for further 
details on measure transformations. Below we apply this to τ = τ (u).

Furthermore, with S(t) := (S1(t), . . . , Sd(t))� having a density function f PS(t)(x) under P for x = (x1, . . . xd)
� ∈Rd , under Q the density 

becomes

f QS(t)(x) = f PS(t)(x) eϑ∗∑
i xi .

For a more comprehensive overview of this exponential change of measure, often referred to as exponential tilting, we refer the reader to 
section 3.3 in Kyprianou (2006).

Under the exponential change of measure, the process S(·) is still a Lévy process (see Theorem 3.9 in Kyprianou (2006)). Concretely, 
under the alternative measure Q the Lévy exponent of the multivariate process S is given by

κQ
S (ϑ) := κS (ϑ + ϑ∗1) − κS (ϑ∗1),

where 1 denotes the unit vector of dimension d. Similarly, κQ(ϑ) = κ(ϑ + ϑ∗) − κ(ϑ∗) denotes the Lévy exponents of the process S(·)
under the new measure. As a result, we find EQ[S(1)] = (κQ)′(0) = κ ′(ϑ∗) > 0 (which follows from the fact that κ(ϑ) → ∞ as ϑ → ∞, 
the convexity of κ(·) and κ(0) = 0), which gives Q(τ (u) < ∞) = 1. We find,

EQ[Si(t)] = E
[

Si(t)eϑ∗ S(t)
]

= ∂

∂ϑi
E
[

e〈ϑ,S(t)〉] ∣∣∣∣∣
ϑ=ϑ∗1

= t mi, (3)

with
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m :=
d∑

i=1

mi, mi := ∂

∂ϑi
E
[

e〈ϑ,S(1)〉] ∣∣∣∣∣
ϑ=ϑ∗1

= eκS (ϑ∗1) ∂κS (ϑ)

∂ϑi

∣∣∣∣∣
ϑ=ϑ∗1

.

Here it has been used that, in case it exists, the mean of the position of a Lévy process at time t is linear in t (and that the exponentially 
twisted version of a Lévy process is again a Lévy process).

Remark 2. Note that in case there is a positive drift, i.e., E[S(1)] = κ ′(0) > 0, then we find that P (τ (u) < ∞) = 1 and a change of measure 
is not necessary to ensure that the time of ruin is finite.

We first present a Lemma that is needed in the proof of the main result of this section, Theorem 1.

Lemma 1. Suppose that EQ
[|Si(1)|p]< ∞ for all i and p ≥ 1. Then under the probability measure Q, for i = 1, . . . , d,

(i)

Si(τ (u))

u
− mi

m
a.s.−−→ 0 as u → ∞;

(ii) {∣∣∣∣ Si(τ (u))

u
− mi

m

∣∣∣∣
p

, u ≥ 1

}
is uniformly integrable;

(iii)

EQ

∣∣∣∣ Si(τ (u))

u
− mi

m

∣∣∣∣
p

→ 0 as u → ∞.

Proof. (i) Follows directly from Theorem 5.1 from Gut (1996).
(ii) We use a similar approach as in Gut (1975). Note that by the definition of a Lévy process for integer n ≥ 1, S(n) =∑n

k=1 S(k) −
S(k − 1) is a sum of i.i.d. random variables. For the finite stopping time τ (u) under the filtration FQ we define the positive, integer 
valued stopping time τ ′(u) (under the same filtration) as follows:

τ ′(u) = 1 for 0 ≤ τ (u) ≤ 1 and τ ′(u) = n for n − 1 < τ(u) ≤ n. (4)

The integer valued stopping time τ ′(u) can be seen as the stopping of the random walk S(n) with i.i.d. random variables. Next, let

Ui(n) := sup
n−1≤s≤n

|Si(s) − Si(n − 1)|.

Then {Ui(n), n ≥ 1} is a i.i.d. sequence of random variables with finite expectation under Q due to EQ |Si(1)| < ∞, i.e.,

EQ [Ui(n)p]= EQ [Ui(1)p]=EQ

[
sup

0≤s≤1
|Si(s)|p

]
< ∞. (5)

The last inequality follows from Lemma 2.3 of Gut (1975) (see also Section 3 in Gut (1975) for a similar application). Furthermore,∣∣Si(τ (u)) − Si(τ
′(u))

∣∣≤ 2Ui(τ
′(u)).

For all i = 1, . . . , d we then get for u > 0,∣∣∣∣ Si(τ (u))

u

∣∣∣∣
p

≤ 2p−1
∣∣∣∣ Si(τ (u)) − Si(τ

′(u))

u

∣∣∣∣
p

+ 2p−1
∣∣∣∣ Si(τ

′(u))

u

∣∣∣∣
p

≤ 2p−1
(

2Ui(τ
′(u))

u

)p

+ 2p−1
∣∣∣∣ Si(τ

′(u))

u

∣∣∣∣
p

, (6)

where the first inequality follows from a combination of triangle inequality and Jenssen’s inequality.
As a result of Theorem 3.7.1 of Gut (2009) we know that{(

τ ′(u)

u

)p

, u ≥ 1

}
is uniformly integrable.

By Theorem 1.6.1 of Gut (2009) we then get that 
{∣∣∣ Si(τ

′(u))
u

∣∣∣p , u ≥ 1
}

is uniformly integrable and 
{(

Ui(τ
′(u))

u

)p
, u ≥ 1

}
is uniformly inte-

grable using (5). As a result of Lemma A.1.3 of Gut (2009) together with (6) we get that 
{∣∣∣ Si(τ (u))

u

∣∣∣p , u ≥ 1
}

is uniformly integrable and 
the final result follows.

(iii) This follows from Theorem A.1.1 of Gut (2009) together using the results of (i) and (ii). �
Theorem 1. Let EQ [|Si(1)|] < ∞ for all i = 1, . . . , m. Then the limiting allocated proportion of capital is given by

lim
u→∞ ci(u, S,∞) = mi

m
, with m :=

d∑
mi and mi := ∂

∂ϑi
E
[

e〈ϑ,S(1)〉] ∣∣∣∣∣ ∗
(7)
i=1 ϑ=ϑ 1
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Proof. Using expression (3) and Lemma 2.3 Gut (1996), which gives E[S(τ (u))|τ (u) < ∞] = u + o(u) as u → ∞, we need to prove that

lim
u→∞

E[Si(τ (u))|τ (u) < ∞]
u

= EQ[Si(1)]
EQ[S(1)] . (8)

First we note that

E[Si(τ (u))|τ (u) < ∞]
u

=
EQ

[
Si(τ (u))e−ϑ∗ S(τ (u))

]
uψ(u,∞)

(9)

= EQ

[(
Si(τ (u))

u
− mi

m

)
e−ϑ∗ S(τ (u))

ψ(u,∞)

]
+ mi

m
. (10)

Here it should be borne in mind that Q(τ (u) < ∞) = 1 and that consequently the likelihood ratio dPτ
dQτ

on Fτ (u) equals Z−1
τ (u) = e−ϑ∗ S(τ (u)) , 

Q-a.s. The equality (10) follows from the fact that EQ
[

e−ϑ∗ S(τ (u))

ψ(u,∞)

]
= 1.

We are left to prove

lim
u→∞EQ

∣∣∣∣∣
(

Si(τ (u))

u
− mi

m

)
e−ϑ∗ S(τ (u))

ψ(u,∞)

∣∣∣∣∣= 0, (11)

due to the ‘Cramér-Lundberg’ result for Lévy process (see Bertoin and Doney (1994)) there is a positive constant C such that 
ψ(u, ∞)eϑ∗u → C as u → ∞; actually, C = limu→∞ eϑ∗uEQ

[
e−ϑ∗ S(τ (u))

]
. Furthermore, S(τ (u)) ≥ u ≥ 0 gives 0 ≤ e−ϑ∗ S(τ (u))

ψ(u,∞)
≤ e−ϑ∗u

ψ(u,∞)
< ∞

and implies that C ∈ (0, 1]. Notice that for δ ∈ (0, C) and u sufficiently large,

EQ

∣∣∣∣∣
(

Si(τ (u))

u
− mi

m

)
e−ϑ∗ S(τ (u))

ψ(u,∞)

∣∣∣∣∣≤ e−ϑ∗u

ψ(u,∞)
EQ

∣∣∣∣ Si(τ (u))

u
− mi

m

∣∣∣∣
≤ e−ϑ∗u

(C − δ)e−ϑ∗u
EQ

∣∣∣∣ Si(τ (u))

u
− mi

m

∣∣∣∣= 1

(C − δ)
EQ

∣∣∣∣ Si(τ (u))

u
− mi

m

∣∣∣∣ .
We obtain by Lemma 1, for u → ∞

EQ

∣∣∣∣ Si(τ (u))

u
− mi

m

∣∣∣∣→ 0.

This proves the result. �
In the special case that the aggregated process S(·) is a spectrally negative Lévy process, i.e. a process which does not contain positive 

jumps and the Lévy measure has support on (−∞, 0] only, Theorem 1 holds true for all u > 0. This statement is formalized in Theorem 2. 
It is a result of the fact that the lack of positive jumps of the spectrally negative Lévy process allows us to write S(τ (u)) = u on {τ (u) < ∞}
(see Section 8.1 in Kyprianou (2006)). For a more extensive overview of spectrally negative Lévy processes, we refer the reader to Chapter 
VII in Bertoin (1996) or Chapter 8 in Kyprianou (2006).

Theorem 2. For a spectrally negative Lévy process S(·), suppose that for every t ≥ 0 and for all i = 1, . . . , d, EQ
[∣∣Si(t)

∣∣]< ∞. Then, if m > 0 and 
any u > 0,

ci(u, S,∞) = mi

m
. (12)

Proof. By the definition of ci(u, S, ∞) and the relation between P and Q,

ci(u, S,∞) = E[Si(τ (u)) |τ (u) < ∞]
E[S(τ (u)) |τ (u) < ∞] =

EQ
[

Si(τ (u))e−ϑ∗ S(τ (u))
]

EQ
[

S(τ (u))e−ϑ∗ S(τ (u))
] = EQ [Si(τ (u))]

EQ [S(τ (u))]
, (13)

where the last equality follows from the spectral negativity of S(·) which allows us to write S(τ (u)) = u on {τ (u) < ∞} (see Section 8.1 
in Kyprianou (2006)). As a result of Theorem 3.1 of Gut (1975) and by the assumption that EQ[|S(1)|] < ∞ we have EQ[τ (u)] < ∞. By 
Wald’s equation in continuous time, as stated on page 380 of Doob (1990), we thus have that EQ[Si(τ (u))] and EQ[S(τ (u))] exist and 
are given by

EQ[Si(τ (u))] = EQ[Si(1)]EQ[τ (u)] < ∞, EQ[S(τ (u))] = EQ[S(1)]EQ[τ (u)] < ∞.

Substituting this into Equation (13) gives the final result. Note that this is properly defined due to the fact that EQ[S(1)] = m > 0 as 
derived before. �
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Remark 3. In Corollary 1 of Hall (1970) more general conditions are given to guarantee the existence of EQ [Si(τ (u))] and EQ [S(τ (u))]. 
We will now briefly mention them. If either (i) there exists a real ϑi > 0 such that EQ

[
e−ϑi Si(1)

] ≤ 1, or (ii) EQ [Si(1)] = 0, then 
EQ [Si(τ (u))] exists and is given by EQ[Si(τ (u))] = EQ[Si(1)] EQ[τ (u)]. To derive the latter, we have made use of the fact that 
limt→∞ Si(t)/t = EQ[Si(1)] almost surely under the Q-measure by Theorem 36.5 of Sato (1999). With κQ

i (·) denoting the Lévy ex-

ponent of the process Si(·), condition (i) above is equivalent to the existence of a real ϑi < 0 such that κQ
i (ϑi) ≤ 0. The same reasoning 

also applies to EQ [S(τ (u))].

Remark 4. Under the conditions of Theorems 1 & 2, the allocation fraction over an infinite time horizon does not depend on the capital 
level u. This is an attractive property as it reflects robustness of the allocation with respect to u. In particular when the capital level u is 
determined by the dynamic VaR measure VaRα(S, ∞), the allocation fraction AVaRα

i (S, ∞) is not influenced by the value of the dynamic 
VaR risk measure nor the confidence level α. In practice this means that the allocation fractions are the same when considering capital 
levels based on tail risk events or more business as usual scenarios.

3.3. Special case: Brownian motion

In this subsection we simplify the risk model of Section 2 by considering only the diffusion part of the Lévy process. We assume 
that the processes Si(·) are scaled Brownian motions with drift. Due to the fact that these processes are continuous and obey various 
convenient properties, the proposed capital allocation method (2) can be made explicit.

Concretely, the risk processes in this subsection are assumed to be of the form Si(·) := rit + Bi(t), where B(t) := (B1(t), . . . , Bd(t))� is 
a d-dimensional Brownian motion with zero drift and covariance matrix

E[B(t)B(t)�] = � t,

such that � := (σ 2
i, j)i, j∈{1,...,d} with σ 2

i, j = σ 2
j,i = ρi, jσi,iσ j, j for correlations ρi, j ∈ [−1, 1]. In this case S(t) :=∑d

i=1 Si(t) is also a Brownian 
motion with drift r :=∑d

i=1 ri and variance coefficient σ 2 :=∑d
i, j=1 σ 2

i, j (assumed to be strictly positive, to rule out trivial cases). Note 
that this is a spectrally negative Lévy process and due to the continuous sample paths of Brownian processes, there is no overshoot at 
the first passage time, i.e., S (τ (u)) = u, and its supremum equals its maximum. As a result, Theorem 2 can be applied to scaled Brownian 
motions with drift.

In the next theorem we present an explicit expression for the proposed allocation method (2). It considers the case of a finite time 
horizon. Below, �(·) denotes the cumulative distribution function of a standard normal random variable.

Theorem 3. For the multivariate scaled Brownian motion with drift the allocated initial reserve of component i ∈ {1, . . . , d} is given by

Ki(u, S, T ) = E [Si(τ (u)) |τ (u) ≤ T ] = E [τ (u) |τ (u) ≤ T ]

(
ri −

∑d
j=1 σ 2

i, j

σ 2
r

)
+
∑d

j=1 σ 2
i, j

σ 2
u, (14)

where

E [τ (u) |τ (u) ≤ T ] = u

r
×

�
(−u+rT

σ
√

T

)
− e

2ur
σ2 �

(−u−rT
σ

√
T

)
�
(−u+rT

σ
√

T

)
+ e

2ur
σ2 �

(−u−rT
σ

√
T

) .

Proof. First note that the denominator in ci(u, S, T ) equals u due to the fact that S(·) has continuous sample paths. This gives 
Ki(u, S, T ) = E [Si(τ (u)) |τ (u) ≤ T ]. By introducing the notation fτ (u)(θ) as the probability density function of the first passage time 
τ (u) and fτ (u),Si(τ (u)) (θ, s) as the joint density of the first passage time and Si(τ (u)), we can write

E [Si(τ (u)) |τ (u) ≤ T ] = 1

P (τ (u) ≤ T )

T∫
0

∞∫
−∞

sfτ (u),Si(τ (u)) (θ, s)ds dθ.

The next step is to obtain the density fτ (u),Si(τ (u)) (θ, s) from Proposition 5.1 of Chuang (1996) as

fτ (u),Si(τ (u)) (θ, s) = fτ (u) (θ) f Si(θ) | S(θ) (s | u) ,

where f Si(θ) | S(θ) (s | u) denotes the conditional density of Si(θ) given S(θ). This is the result of first conditioning on σ(S(t), t ≤ θ) (i.e. 
the path of S(t)t∈[0,θ]) and then making use of the Markov property for correlated Brownian motions as given in Theorem 4.1 of Chuang 
(1996). Substituting this into the equation above and using the distributional properties of bivariate Brownian motions we obtain,

E [Si(τ (u)) |τ (u) ≤ T ] =
T∫

0

E [Si(θ) | S(θ) = u]
fτ (u) (θ)

P (τ (u) ≤ T )
dθ

=
T∫ ((

ri − Cov (Si(θ), S(θ))

Cov (S(θ), S(θ))
r

)
θ + Cov (Si(θ), S(θ))

Cov (S(θ), S(θ))
u

)
fτ (u) (θ)

P (τ (u) ≤ T )
dθ
0
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=
(

ri −
∑d

j=1 σ 2
i, j

σ 2
r

) T∫
0

θ fτ (u) (θ)

P (τ (u) ≤ T )
dθ +

∑d
j=1 σ 2

i, j

σ 2
u

=
(

ri −
∑d

j=1 σ 2
i, j

σ 2
r

)
E [τ (u) |τ (u) ≤ T ] +

∑d
j=1 σ 2

i, j

σ 2
u,

where we have used that

E [τ (u) |τ (u) ≤ T ] =
∫ T

0 θ fτ (u) (θ) dθ

P (τ (u) ≤ T )
. (15)

For the denominator in the equation above we note that (see e.g., Theorem 2.1 of He et al. (1998)),

P (τ (u) ≤ T ) = P

(
sup

0≤t≤T
S(t) ≥ u

)
= �

(−u + rT

σ
√

T

)
+ e

2ur
σ2 �

(−u − rT

σ
√

T

)
. (16)

The density fτ (u) (θ) can be derived from the above expression by differentiation with respect to T . The numerator in (15) is then given 
by

T∫
θ=0

θ fτ (u) (θ) dθ =
T∫

θ=0

u

σ
√

2πθ
e
− (u−rθ)2

2σ2θ dθ = u

r

(
�

(−u + rT

σ
√

T

)
− e

2ur
σ2 �

(−u − rT

σ
√

T

))
. (17)

The final result follows by substituting Equations (16) & (17) into (15). �
To see that Theorem 3 gives the same result as Theorem 2 in the infinite time horizon regime, we consider the cases r < 0 and r > 0

separately.

• When r < 0, letting T → ∞ in (14) gives

Ki(u, S,∞) = −u

r

(
ri −

∑d
j=1 σ 2

i, j

σ 2
r

)
+
∑d

j=1 σ 2
i, j

σ 2
u = u

(
2
∑d

j=1 σ 2
i, j

σ 2
− ri

r

)
. (18)

For r < 0, the supremum of a Brownian motion over an infinite time horizon is exponentially distributed with rate −2r/σ 2 (see 
Section 6.8 of Resnick (2002)), and thus

P (τ (u) < ∞) = P

(
sup

t∈[0,∞)

S(t) > u

)
= e

2r
σ2 u

< 1.

In this case the existence of ϑ∗ , as the positive solution to lnE 
[
eϑ S(t)

]= (ϑr + 1
2 ϑ2σ 2)t = 0, is guaranteed and given by ϑ∗ = −2r/σ 2. 

By taking the derivative, we obtain

mi = ∂

∂ϑi
e
∑d

j=1 ϑ j r j+ 1
2

∑d
j,k=1 ϑ jϑkσ

2
j,k

∣∣∣∣
ϑ=ϑ∗1

= ri − 2r

σ 2

d∑
j=1

σ 2
j,i, m =

d∑
i=1

mi = −r.

This also gives

Ki(u, S,∞) = u

(
2
∑d

j=1 σ 2
i, j

σ 2
− ri

r

)
.

• In case r > 0, letting T → ∞ in (14) gives

Ki(u, S,∞) = u

r

(
ri −

∑d
j=1 σ 2

i, j

σ 2
r

)
+
∑d

j=1 σ 2
i, j

σ 2
u = u

ri

r
.

When r > 0, we are in the trivial case where P (τ (u) < ∞) = 1 and we do not have to do a change of measure (effectively implying 
that ϑ∗ > 0 does not exist). In this case we can apply Wald’s identity under the P -measure. The existence of the Wald identity for 
the Brownian case is explicitly mentioned in Hall (1970). As a result, we find

u = E [S(τ (u)) |τ (u) < ∞] = E [S(τ (u))] = E [S(1)]E [τ (u)] = rE [τ (u)] ,

which gives E [τ (u)] = u
r . By similar reasoning we find

Ki(u, S,∞) =E [Si(τ (u)) |τ (u) < ∞] = riE [τ (u)] = u
ri

r
,

which coincides with limiting result of (14) when T → ∞.
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Remark 5. In the Brownian setting, the allocation fractions over an infinite time horizon ci(u, S, ∞) do not depend on the capital level u. 
This gives rise to a stable, robust allocation method. This property only holds when considering an infinite time horizon: for finite T there 
evidently is a dependence on u. In terms of the dynamic VaR measure, the allocation fractions AVaRα

i (S, ∞) do not change due to the 
value of the dynamic VaR measure which is given by VaRα(S, ∞) = σ 2

2r ln(α) for r < 0. As a result the allocation fractions are insensitive 
to the confidence level α.

4. Comparison with gradient allocation

In this section we analyze a well-known allocation method, namely the gradient allocation. We start by presenting a number of general 
results, and then provide explicit results for the Brownian case.

4.1. General results

The gradient allocation method is based on the idea of allocating capital according to the infinitesimal marginal impact of each risk 
process to the risk measure. In this subsection we will present the gradient allocation for capital determined by the dynamic VaR measure 
defined in (1). Under certain conditions, this gradient capital allocation can be expressed as a function of the location of the supremum 
of the aggregated risk process. This gives rise to a new allocation method. We show that for some risk processes, the AVaRα capital 
allocation method, as defined in the previous section, coincides with the gradient capital allocation for capital determined by the dynamic 
VaR measure.

We proceed with a few words on the existing literature in relation to our work. The gradient allocation approach is also referred to 
as the Euler allocation method due to its relation with Euler’s theorem on homogeneous functions of degree 1. As mentioned, it is based 
on the idea of allocating risk according to the infinitesimal marginal impact of each individual risk. Several papers have been written on 
the topic, highlighting the importance and practical use of the gradient allocation method; see e.g., Tasche (1999, 2007). In Tasche (1999)
the author derives an expression for the gradient allocation method applied to the quantile-based risk measure VaR for random variables 
under some smoothness conditions. This VaR risk measure considers the distribution of the sum of random variables, i.e.,

inf

{
x ≥ 0

∣∣∣∣∣P
(

d∑
i=1

Xi ≥ x

)
≤ α

}
,

and should not be confused with the dynamic VaR presented in Section 2.2. The dynamic VaR considers the probability of ruin over time 
of an aggregated risk process. The additional time component inherent in the ruin probability complicates matters significantly. We will 
follow a similar logic as used in Tasche (1999) to find an expression for the gradient allocation applied to the dynamic VaR measure under 
some smoothness conditions.

To properly define the gradient allocation method for the dynamic VaR measure, it is useful to introduce the weight variables x =
(x1, . . . , xd)

� ∈Rd with Zi,T (xi) := supt∈[0,T ]
∑d

j �=i S j(t) + xi Si(t) and the function

qVaRα
i,T

(xi) := VaRα

⎛
⎝ d∑

j �=i

S j + xi Si, T

⎞
⎠= VaRα

(
Zi,T (xi), T

)
,

where VaRα is as defined in Equation (1). When qVaRα
i,T

(xi) is differentiable (in xi ), the gradient allocation method applied to the dynamic 
VaR type measure is defined by

GVaRα
i (S, T ) :=

∂qVaRα
i,T

(xi)

∂xi

∣∣∣∣∣
xi=1

.

However, in general the quantile function qVaRα
i,T

(xi) will not be differentiable in xi . By the implicit function theorem, as stated in Ap-

pendix A, the quantile function is differentiable in xi = 1 when the following three conditions hold:

1. P
(

Zi,T (xi) ≤ qVaRα
i,T

(xi)
)

= α in a neighborhood of xi = 1.

2. P
(

Zi,T (xi) ≤ y
)

is continuously differentiable in y in an open interval around qVaRα
i,T

(xi).

3. P
(

Zi,T (xi) ≤ y
)

differentiable in xi in an open interval around xi = 1.

Under these conditions the gradient allocation method applied the dynamic VaR measure can be computed as

GVaRα
i (S, T ) = −∂P

(
Zi,T (xi) ≤ y

)
/∂xi

∂P
(

Zi,T (xi) ≤ y
)
/∂ y

∣∣∣∣∣
xi=1,y=qVaRα

i,T
(xi)

. (19)

In Theorem 4 we show that under some smoothness assumptions on the multivariate stochastic process S(·) = (S1(·), . . . , Sd(·))� , this 
gradient capital allocation exists and can be expressed in terms of the location of the supremum of aggregated the risk process S(·). For 
this purpose we introduce the set of times at which the supremum is reached:

A∗
i,T (xi) :=

⎧⎨
⎩t ∈ [0, T ] :

d∑
j �=i

S j(t) + xi Si(t) = sup
s∈[0,T ]

d∑
j �=i

S j(s) + xi Si(s)

⎫⎬
⎭ ,
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with t∗
i,T (xi) as the minimum of A∗

i,T (xi) in case it is non-empty. When A∗
i,T (xi) is empty we set t∗

i,T (xi) = ∞. Over an infinite horizon 
(T = ∞) we use similar notation: A∗

i,∞(xi) and t∗
i,∞(xi), respectively. We often omit the dependence on i and xi when xi = 1, i.e.

A∗
T :=

{
t ∈ [0, T ] :

d∑
i=1

Si(t) = sup
s∈[0,T ]

d∑
i=1

S j(s)

}
,

with t∗
T as the minimum of A∗

T . Over an infinite time horizon we adopt the notation A∗∞ and t∗∞ . In the case of Lévy processes excluding 
compound Poisson processes, the supremum over a finite horizon is obtained at a unique point in time almost surely, i.e., when A∗

i,T (xi, ω)

is non-empty it is a singleton a.s. (see page 171 in Kyprianou (2006)). Before proceeding with the stochastic case we first introduce 
a lemma concerning the differentiability of functions. In view of the applications in Section 5, we content ourselves with functions and 
processes that have continuous paths (as in the Brownian case) and those that have upward jumps with drift (as in the Compound Poisson 
case with drift).

Lemma 2. Let f : [0, T ] × R>0 �→ R with f (t, x) := p(t) + xq(t) and assume that for all positive x the maximum of t �→ f (t, x) over 0 ≤ t ≤ T
equals the supremum and is uniquely attained in tx with value f (x) := f (tx, x). If one of the following two assumptions is satisfied:

1. p(t) and q(t) are continuous functions of t,
2. p(t) and q(t) are functions for which the location of the maximum lies within a finite set of points for all positive x, i.e. for all positive x we have 

tx ∈ T for a finite set T := {T1, . . . , Tn}. The time points Ti ∈ [0, T ] are independent of x.

Then

∂

∂x
f (x) = q(tx).

Proof. We will treat the two assumptions separately, starting with the first assumption. Under assumption 1, the functions f (t, x) and 
∂ f (t, x)/∂x = q(t) are continuous in both t and x. We may now apply Danskin’s Min-Max Theorem (see Theorem 1 in Danskin (1966)). 
According to this theorem, the right derivative of f (x) in x is given by q(tx), where we have used that the location of the maximum is 
uniquely obtained in tx . The left derivative is minus the directional derivative in the direction of the −x axis, which also gives q(tx) by the 
unique location of the maximum. The final result now follows.

We now proceed with a proof of the result under assumption 2. Following the proof of Proposition 2.1 in Oyama and Takenawa (2018)
we have

f (tx, x + z) − f (tx, x) ≤ f (x + z) − f (x) ≤ f (tx+z, x + z) − f (tx+z, x),

which can be rewritten as

p(tx) + (x + z)q(tx) − (p(tx) + xq(tx)) ≤ f (x + z) − f (x)

≤ p(tx+z) + (x + z)q(tx+z) − (p(tx+z) + xq(tx+z)) ,

i.e.,

zq(tx) ≤ f (x + z) − f (x) ≤ zq(tx+z).

This gives,{
q(tx) ≤ f (x+z)− f (x)

z ≤ q(tx+z), for z > 0

q(tx+z) ≤ f (x+z)− f (x)
z ≤ q(tx), for z < 0.

The final result follows when q(tx+z) → q(tx) for z → 0. We will now show this holds true under assumption 2. Under this assumption, 
the maximum of f (t, x) is obtained in one of the finite number of points T := {T1, . . . , Tn}, i.e. tx ∈ T . As the maximum is considered to 
be uniquely obtained, f (x) − f (t, x) > 0 for all t ∈ T \ {tx}. We now consider the function f (t, x + z) and its unique maximum tx+z ∈ T . 
We set

δ = min
t∈Tq

∣∣∣∣ f (x) − f (t, x)

q(tx) − q(t)

∣∣∣∣, Tq = {t ∈ T \ {tx} : q(t) �= q(tx)}.

In case Tq is empty, we set δ = 1. For small |z| ≤ δ and all t ∈ T \ {tx}, we have f (x) > f (t, x) and

f (tx, x + z) − f (t, x + z) = f (x) − f (t, x) + z(q(tx) − q(t)) > 0.

In other words, for small |z|, the maximum of f (t, x + z) is obtained in tx+z = tx and thus q(tx+z) = q(tx). �
Lévy processes Si(t) with sample paths of the types q(t (or similarly p(t)) as specified in Lemma 2 include continuous Lévy processes, 

i.e. scaled Brownian motions with drift, and compound Poisson processes with non-zero drift. These processes are used in the examples 
in Section 5. The proof of the next theorem can be found in Appendix B.
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Theorem 4. Consider multivariate Lévy processes S(·) = (S1(·), . . . , Sd(·)) on the probability space (�, F , P ). For small δ, δ > 0 and xi ∈ [1 −
δ, 1 + δ], assume that the individual processes Si(·) and the aggregated process 

∑d
j �=i S j(·) + xi Si(·) are either continuous, i.e. scaled Brownian 

motions with drift, or compound Poisson processes with negative drift and positive jumps. Denote yi → f i,xi (yi) as the density of the random variable 
Zi,T (xi) := supt∈[0,T ]

∑d
j �=i S j(t) + xi Si(t) at the point yi ∈ [qVaRα

i,T
(xi) − δ, qVaRα

i,T
(xi) + δ] which we assume exists. Furthermore, if the following 

conditions hold,

(i) The density f i,xi (yi) < ∞ is continuous in yi, xi for all xi ∈ [1 − δ, 1 + δ] and yi ∈ [qVaRα
i,T

(xi) − δ, qVaRα
i,T

(xi) + δ].
(ii) For each xi , f i,xi (qVaRα

i,T
(xi)) > 0.

(iii) E 
[

Si(t∗
i,T (xi))

∣∣ Zi,T (xi) = yi

]
and E 

[
|Si(t∗

i,T (xi))|
∣∣ Zi,T (xi) = yi

]
exist and are continuous in yi, xi for all xi ∈ [1 − δ, 1 + δ] and yi ∈

[qVaRα
i,T

(xi) − δ, qVaRα
i,T

(xi) + δ].
(iv) E 

[
supt∈[0,T ]

∣∣Si(t)
∣∣]< ∞.

Then the gradient allocation method applied to the dynamic VaR type risk measure, i.e. gradient capital allocation, exists and is given by

GVaRα
i (S, T ) = E

[
Si(t

∗
T )

∣∣∣∣ sup
t∈[0,T ]

S(t) = VaRα(S, T )

]
. (20)

Especially when one cannot analytically determine the gradient capital allocation by differentiation as in (19), and one has to resort 
to simulation, the above result provides a practical way to determine the gradient capital allocation. Numerical evaluation of the gradient 
capital allocation (19) can be computationally expensive due to the derivatives. For the Gaussian case, without the additional time com-
ponent in the determination of capital, a similar result has been derived (see Tasche (1999), and Gourieroux et al. (2000)) and has found 
broad application in practice. In fact, expression (20) can be seen as the extension of the results found in Tasche (1999) (Lemma 5.3 and 
Remark 5.4) and Gourieroux et al. (2000) with respect to time. Note that there is a similarity between assumptions (i)-(iii) in Theorem 4
and the assumptions imposed in Tasche (1999).

Remark 6. We note that the scope of Theorem 4 could be extended to multivariate stochastic processes in a natural way whenever the 
sample paths of the processes are of the types specified in Lemma 2. This includes for example Markov-modulated Brownian motions. 
Furthermore, we note that the negative drift assumption for compound Poisson processes can be replaced by positive drift as well by 
noting that for positive drifts the supremum can be reached in the time points of the jumps of the Poison process or at the final time 
horizon T .

Expression (20) suggests yet another allocation method for the allocation of the capital reserve level u:

K i(u, S, T ) := E[Si(t
∗
T ) | S(t∗

T ) = u, t∗
T ≤ T ], ci(u, S, T ) := K i(u, S, T )

u
. (21)

As before, for the infinite time horizon we define

K i(u, S,∞) := E[Si(t
∗∞) | S(t∗∞) = u, t∗∞ < ∞], ci(u, S,∞) := K i(u, S,∞)

u
.

Note that this allocation method cannot be evaluated when t∗
T = ∞ almost surely, i.e., when A∗

T is empty. When it can be evaluated, 
the allocation method also satisfies the properties highlighted in Section 3.1, i.e., the allocated risk measure is positively homogeneous, 
deterministic when the marginal risk is deterministic and admits the full allocation principle.

When the capital level u is determined using the dynamic VaR measure, this allocation method gives for component i,

AVaR
α
i (S, T ) := K i

(
VaRα(S, T ), S, T

)
.

Whenever the conditions of Theorem 4 are satisfied, we find GVaRα
i (S, T ) = AVaR

α
i (S, T ).

4.2. Special case: Brownian motion

In this subsection we show the implications of the results presented in the previous subsection for the special case of scaled Brownian 
motion with drift. Throughout we use the same notation as introduced in Section 3.3. We start by deriving an explicit expression for the 
new allocation method (21) in the theorem below.

Theorem 5. For the multivariate scaled Brownian motion with drift and finite time horizon T , the allocated capital reserve of component i ∈ {1, . . . , d}
is given by

K i(u, S, T ) = E
[

Si
(
t∗

T

) | S(t∗
T ) = u

]= E
[
t∗

T | S(t∗
T ) = u

](
ri −

∑d
j=1 σ 2

i, j

σ 2
r

)
+
∑d

j=1 σ 2
i, j

σ 2
u,

where
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E
[
t∗

T | S(t∗
T ) = u

]= u

⎛
⎝−r + σ e

− (u+rT )2

2σ2 T

√
2π T �

(−u−rT
σ

√
T

)
⎞
⎠

−1

.

Proof. For Brownian processes considered over a finite time horizon T , A∗
T is non-empty and t∗

T is thus properly defined due to the fact 
that for Brownian motions the supremum is actually attained (i.e., it is equal to the maximum). In fact, t∗

T is finite and almost surely 
unique for finite T (see page 158 in Kyprianou (2006), or Lemma 49.4 in Sato (1999)). As a result, we find

K i(u, S, T ) = E
[

Si
(
t∗

T

) | S(t∗
T ) = u

]
.

We introduce the notation f S(t∗T ),t∗T (x, θ), ft∗T | S(t∗T ) (θ | x), and f S(t∗T )(x) to denote the joint probability density function of S(t∗
T ) and t∗

T , the 
conditional density function of t∗

T conditional on S(t∗
T ), and the density function of the maximum of the process S(·), respectively, which 

are properly defined for 0 ≤ x < ∞ and 0 ≤ θ ≤ T . By conditioning on the location of the maximum t∗
T and using standard results for the 

conditional mean of a bivariate Brownian motion, we obtain

E
[

Si(t
∗
T ) | S(t∗

T ) = u
]=

T∫
θ=0

E [Si(θ) | S(θ) = u] ft∗T | S(t∗T ) (θ | u)dθ

=
T∫

θ=0

((
ri − Cov (Si(θ), S(θ))

Cov (S(θ), S(θ))
r

)
θ + Cov (Si(θ), S(θ))

Cov (S(θ), S(θ))
u

)
ft∗T |S(t∗T ) (θ | u)dθ

=
(

ri −
∑d

j=1 σ 2
i, j

σ 2
r

) T∫
θ=0

θ ft∗T | S(t∗T ) (θ | u)dθ +
∑d

j=1 σ 2
i, j

σ 2
u

T∫
θ=0

ft∗T | S(t∗T ) (θ | u)dθ

=
(

ri −
∑d

j=1 σ 2
i, j

σ 2
r

)
E
[
t∗

T | S(t∗
T ) = u

]+
∑d

j=1 σ 2
i, j

σ 2
u.

For the conditional expectation we have

E
[
t∗

T | S(t∗
T ) = u

]=
∫ T

0 θ f S(t∗T ),t∗T (u, θ)dθ

f S(t∗T )(u)
. (22)

The density function f S(t∗T )(u) can be derived from its cumulative distribution function as presented in e.g., He et al. (1998), i.e.,

f S(t∗T )(u) = 1

σ
√

T
φ

(
u − rT

σ
√

T

)
− 2r

σ 2
e

2ur
σ2 �

(−u − rT

σ
√

T

)
+ 1

σ
√

T
e

2ur
σ2 φ

(−u − rT

σ
√

T

)
, (23)

where �(·) and φ(·) denote the cumulative distribution and probability density function of a standard normal random variable, respec-
tively. We now focus on finding an expression for 

∫ T
0 θ ft∗T ,S(t∗T )(θ, u) dθ . The joint density ft∗T ,S(t∗T )(θ, u) is known: as given in Shepp 

(1979),

ft∗T ,S(t∗T )(θ, u) =
u∫

−∞

1

πσ 4

u(u − x)

θ3/2(T − θ)3/2
e

(
− u2

2θ
− (u−x)2

2(T −θ)
+rx− r2 T

2

)
σ−2

dx.

This gives

T∫
0

θ ft∗T ,S(t∗T )(θ, u)dθ =
u∫

−∞

T∫
0

1

πσ 4

u(u − x)

θ1/2(T − θ)3/2
e

(
− u2

2θ
− (u−x)2

2(T −θ)
+rx− r2 T

2

)
σ−2

dθdx

=
u∫

−∞

√
2u

σ 3
√

π T
e

(
− (2u−x)2

2T +rx− r2 T
2

)
σ−2

dx = 2u

σ 2
e

2ur
σ2

u∫
−∞

1

σ
√

2π T
e

−(x−2u−rT )2

2σ2 T dx

= 2u

σ 2
e

2ur
σ2 �

(−u − rT

σ
√

T

)
, (24)

where we have made use of the identity, for a > 0, b > 0,

T∫
0

ab

πθ1/2(T − θ)3/2
e− a2

2θ
− b2

2(T −θ) dθ = 2a√
2π T

e− (a+b)2
2T .

This identity is easy to check by taking the Laplace transforms (with respect to T , that is) of both sides using (5.28) and (5.30) on page 
41 of Oberhettinger and Badii (1973). Substituting (23) and (24) into (22) gives the final result. �
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The above theorem only considers a finite time horizon as this guarantees that the maximum of the process is almost surely attained. 
For an infinite time horizon, we separately consider the two instances r ≥ 0 and r < 0. In the first instance we have limt→∞ S(t) = ∞
and the supremum of the Brownian process S(·) is infinite and thus not attained at a finite point in time. In other words, t∗∞ = ∞. In the 
second instance, as pointed out in Section 3.3, the maximum of the process S(·) is an exponentially distributed random variable. Taking 
the limit of Theorem 5 with respect to T → ∞ for r < 0, we find E 

[
t∗∞ | S(t∗∞) = u, t∗∞ < ∞]= −u/r and subsequently

E
[

Si
(
t∗∞
) | S(t∗∞) = u, t∗∞ < ∞]= u

(
2
∑d

j=1 σ 2
i, j

σ 2
− ri

r

)
.

Note that this result coincides with the allocation method presented in Section 3, i.e., Equation (18). This connection is a consequence 
of the fact that E 

[
t∗∞ | S(t∗∞) = u, t∗∞ < ∞]= E [τ (u) |τ (u) < ∞]. As we are in the continuous case, note that S(τ (u)) = u. Furthermore, 

conditional on S(t∗
T ) = u, the location of the maximum, t∗

T , is the same as the first passage time of the level u, τ (u) conditioned on 
supτ (u)≤t≤T S(t) = u. At the first time the supremum is attained we assume S(t∗

T ) = u and thus S(τ (u)) ≯ u. As a result we find

E
[
t∗

T | S(t∗
T ) = u, t∗

T ≤ T
]= E

[
τ (u)

∣∣∣∣∣τ (u) ≤ T , sup
τ (u)≤t≤T

S(t) = u

]
.

For finite T , the random variable supτ (u)≤t≤T S(t) is dependent on τ (u) as it impacts the length of the time horizon over which the 
supremum is considered. Considering an infinite time horizon (T = ∞), the equality becomes

E
[
t∗∞ | S(t∗∞) = u, t∗

T < ∞]= E

[
τ (u)

∣∣∣∣∣τ (u) < ∞, sup
τ (u)≤t<∞

S(t) = u

]
. (25)

The random variable supτ (u)≤t<∞ S(t) is independent of τ (u) and is therefore redundant in the latter conditional expectation.
Theorem 4 points out the relationship between the gradient capital allocation method and the allocation method K (u, S, T ) as intro-

duced in (21). We will now show, by easy computation, that for scaled Brownian motions with drift, the conditions (i)-(iv) of Theorem 4
are satisfied. As a result, the gradient capital allocation is given by (20) and Theorem 5 can be used to make this explicit. We use the 
same numbering as in Theorem 4.

(i) First note that, for fixed T , the drift and variance of the random variable

Zi,T (xi) := sup
t∈[0,T ]

d∑
j �=i

S j(t) + xi Si(t)

are given by r(xi) = r + (xi − 1)ri and σ 2(xi) = σ 2 + 2(xi − 1) 
∑d

j=1 σ 2
j,i + (xi − 1)2σ 2

i,i , respectively. Both are continuous functions 
in xi . The density of the supremum process of a scaled Brownian motion with drift r and variance parameter σ 2 was given in (23), 
which can be seen to be a continuous function of r and σ 2. As a result, the density f i,xi (·) is also continuous in xi . Furthermore, the 
density is finite for finite u, r(xi) and finite σ(xi), T > 0.

(ii) The density, as mentioned in the item above, is also greater than zero for finite u, r(xi) and finite σ(xi), T > 0.

(iii) The conditional expectation E 
[

Si(t∗
i,T (xi)) | Zi,T (xi) = yi

]
can be made explicit by use of Theorem 5 and can be seen to be continuous 

in xi and yi . Using a similar approach as in Theorem 5, the conditional expectation E 
[
|Si(t∗

i,T (xi))|
∣∣ Zi,T (xi) = yi

]
can be derived 

explicitly by conditioning on the location of the maximum and using Lemma 3. The resulting expression is continuous in both xi and 
yi due to the continuity of all the functions involved.

(iv) Note that

E

[
sup

t∈[0,T ]
∣∣Si(t)

∣∣]≤ |ri |T + σiE

[
sup

t∈[0,T ]
∣∣B(t)

∣∣] ,

where B(t) is a standard Brownian motion. For a standard Brownian motion it can be derived that

E

[
sup

t∈[0,T ]
∣∣B(t)

∣∣]=
√

π

2
;

this follows by integrating the tail probabilities of supt∈[0,T ]
∣∣B(t)

∣∣ which can be found in Borodin and Salminen (2002) (Part II, 
Chapter 3, Formula 1.1.4). As a result, supt∈[0,T ]

∣∣Si(t)
∣∣ has a finite mean when |ri |, σi < ∞.

It should be pointed out that in the Brownian case, the gradient allocation method applied to the dynamic VaR measure can also 
be derived explicitly by straightforward differentiation of the dynamic VaR measure. Considering an infinite horizon (T = ∞) and r < 0, 
the supremum is exponentially distributed with parameter −2r/σ 2. More specifically, we find VaRα(S, ∞) = σ 2

2r ln(α). Furthermore, by 
differentiation the gradient capital allocation can be determined as

GVaRα
i (S,∞) = ln(α)

2r2∑d
j=1 σ 2

j,i − rirσ 2

3
,

GVaRα
i (S,∞)

α = 2
∑d

j=1 σ 2
j,i

2
− ri

,

2r VaR (S,∞) σ r
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Fig. 1. Allocation fractions of the first risk process. The figure shows (solid lines) AVaRα
1 (S, T )/VaRα(S, T ) = c1(VaRα(S, T ), S, T ) and (dashed lines) GVaRα

1 (S, T )/VaRα(S, T ) =
c1(VaRα(S, T ), S, T ) as a function of the time horizon T for multiple values of α. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

which is in line with the results obtained before.
We conclude this section by briefly mentioning an appealing property of the gradient allocation method for Brownian risk processes. 

Consider two Brownian risk processes S1(·) and S2(·), we find, by an elementary computation, VaRα(S1, ∞) + VaRα(S2, ∞) ≥ VaRα(S1 +
S2, ∞). This is known as the sub-additivity property, see Axiom 4 in Section 2.2. By Theorem 3.1 of Buch and Dorfleitner (2008) it then 
follows that the so-called ‘no undercut’ property is satisfied for the gradient allocation of this risk measure, i.e.,

∑
i∈N

GVaRα
i (S,∞) ≤ VaRα

(∑
i∈N

Si,∞
)

for all subsets N of {1, . . . , d}.

5. Numerical examples

In this section we present a series of illustrative examples featuring the allocation methods presented in the previous sections.

5.1. Brownian motion

This example considers the multivariate Brownian motion process as in Sections 3.3 and 4.2, adopting the same notation. In those 
sections we have derived explicit expressions for the two proposed capital allocation methods, Ki(u, S, T ) and K i(u, S, T ). In particular, 
we considered the instance where capital u is determined by the dynamic VaR measure and its corresponding allocations AVaRα

i (S, T )

and AVaR
α
i (S, T ). The AVaR

α
i (S, T ) allocation has been shown to coincide with the gradient allocation method GVaRα

i (S, T ) in Section 4.2. 
The same section also illustrates that the two newly proposed allocation methods coincide when considering an infinite time horizon, i.e., 
AVaRα

i (S, ∞) = AVaR
α
i (S, ∞). These capital allocation fractions, when considering an infinite time horizon, do not depend on the capital 

level u (or α when using the dynamic VaR measure to determine capital). In this subsection we assess the difference between the two 
new allocation methods over a finite time horizon and their sensitivities towards the capital reserve level u.

We consider a simplified setting with two risk processes S1(·) and S2(·). Both processes have unit variance σ1,1 = σ2,2 = 1 and the 
correlation between the Brownian motions is given by ρ = 0.5. We set r = (−2, −1) as the drift vector, ensuring that the negative 
drift assumption is satisfied. For the infinite time horizon we obtain the allocation fractions m1/m = c1(u, S, ∞) = c1(u, S, ∞) = 1

3 and 
m2/m = 2

3 . In Fig. 1 we have plotted the allocation fraction of the first risk process S1(·) for the newly proposed allocation methods, 
i.e. AVaRα

1 (S, T )/VaRα
1 (S, T ) and AVaR

α
1 (S, T )/VaRα(S, T ) as a function of the time horizon T for various values of α. Lower values of 

α correspond to higher values of VaRα(S, T ) and vice versa. The figure illustrates that the allocation methods align for very short time 
horizons (for which the risk is divided equally) and converge to the same limit, 1

3 for the first risk process (or business line), over a long 
time horizon. For the intermediate time horizons, the two allocation methods differ and the difference becomes more substantial when α
increases.

In Fig. 2 we have again plotted, for the first risk process (or business line), the two newly proposed allocation fractions but now 
allocating general capital reserve level u instead of VaRα(S, T ). The left panel shows c1(u, S, T ) and c1(u, S, T ) as a function of u for 
various time horizons T . The allocations become less sensitive to the capital level u as the time horizon T increases. The right panel of 
Fig. 2 illustrates the allocation fraction as a function of the time horizon for positive drift r = (2, 1). In this case, the allocation fraction 
c1(u, S, T ) converges towards r1

r = 2
3 when T → ∞, as has been pointed out in Section 3.3. The allocation c1(u, S, T ), however, does not. 

As discussed in Section 4.2, this allocation method is not properly defined for an infinite time horizon in case of positive drifts. When u is 
large relative to the time horizon (and the other parameters), the two allocation methods are comparable. This is a result of the fact that 
for relatively large u, both the expectations E 

[
t∗ | S(t∗ ) = u

]
and E [τ (u) |τ (u) ≤ T ] approach T in case of positive drifts.
T T
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Fig. 2. Left panel: Allocation fractions of the first risk process, c1(u, S, T ) and c1(u, S, T ), as functions of u for multiple values of T . Right panel: Allocation fractions of the 
first risk process c1(u, S, T ) and c1(u, S, T ), as functions of T for multiple values of u in case of positive drift parameters r = (2, 1).

5.2. Spectrally negative Lévy process

Consider a spectrally negative multivariate Lévy process S(·) = (S1(·), . . . , Sd(·))� . This means that the process does not contain positive 
jumps, i.e., the Lévy measure has support on (−∞, 0] only. For more general properties of spectrally negative Lévy processes we refer the 
reader to Chapter VII in Bertoin (1996) or Chapter 8 in Kyprianou (2006). The aggregated process S(·) is also a spectrally negative Lévy 
process. Equivalently, the paths are skip-free upwards and ruin can only be caused by the drift and diffusion parts. Due to the absence of 
upwards jumps, we have S(τ (u)) = u almost surely (given that τ (u) < ∞). In this example the focus lies on the first proposed allocation 
method Ki(u, S, T ) and its quantification according to Theorem 2 and Remark 3.

In the spectrally negative case, it is known that the exponential moments of the Lévy process are finite for all real ϑ ≥ 0: for ϑ ≥ 0 we 
have E[eϑ S(t)] < ∞. As a result, for ϑ ≥ 0, the function κ(ϑ) is the Laplace exponent which is strictly convex by Holder’s inequality and 
limϑ→∞ κ(ϑ) = ∞. As before, we will assume a negative drift E[S(1)] = κ ′(0) < 0 (i.e., default can only be caused by the diffusion part), 
so as to rule out the situation of almost sure ruin. It then follows that κ(ϑ) has a real positive zero ϑ∗ > 0. See also Theorem XI.2.3. in 
Asmussen and Albrecher (2010).

By similar reasoning there exists a real ϑ > 0 such that κQ(−ϑ) = κ(−ϑ + ϑ∗) ≤ 0 and thus EQ
[
e−θ S(1)

] = eκ(−θ+ϑ∗) ≤ 1. By Re-
mark 3, EQ [S(τ (u))] exists and is given by

EQ [S(τ (u))] = EQ [S(1)]EQ [τ (u)] .

The existence of EQ [Si(τ (u))] follows when: 1) EQ [|Si(1)|] < ∞ (result by Doob (1990) page 380, also used in Theorem 2), or, 2) 
there exists a real ϑ < 0 such that κQ

i (ϑ) = κS (ϑei + ϑ∗1) − κS (ϑ∗1) ≤ 0. Here we have used the notation ei to denote the vector of 
dimension d with all entries 0 except for the i-th entry which is 1. Note that in the special case where the Lévy processes S1(·), . . . , Sd(·)
are independent of each other, condition 2) is satisfied when the individual risk process has a positive drift under the Q-measure, i.e. 
EQ[Si(1)] = κ ′

i (ϑ
∗) > 0.

In case EQ [Si(τ (u))] has been proven to exist, it is given by

EQ[Si(τ (u))] = EQ[Si(1)]EQ[τ (u)].
When both EQ[S(τ (u))] and EQ[Si(τ (u))] exist, expression (12) for an infinite time horizon holds true.

In the infinite time horizon case, it is also possible to derive an expression for the dynamic VaR measure and by differentiation obtain 
an expression for the gradient capital allocation. By Theorem XI.2.3 of Asmussen and Albrecher (2010), the infinite time ruin probability is 
of an exponential form: ψ(u, ∞) = e−ϑ∗u . The dynamic VaR measure is then determined as VaRα(S, ∞) = −(1/ϑ∗) ln(α). Whenever the 
gradient allocation is properly defined, it is given by

1

(ϑ∗)2

∂ϑ∗(xi)

∂xi

∣∣
xi=1,

where ϑ∗(xi) denotes the ‘Cramér root’ of the process 
∑

j �=i S j(·) + xi Si(·).

5.3. Compound Poisson with drift

This subsection models the risk process by a compound Poisson model with drift as is popular in insurance risk modeling (the well 
known Cramér-Lundberg model). We assume that the jumps of the individual processes are independent and identically exponentially 
distributed. The focus lies on finding expressions for the proposed capital allocation methods AVaRα

i (S, ∞) and AVaR
α
i (S, ∞) over an 

infinite time horizon. Furthermore, we compare these new capital allocation methods to the gradient allocation method when applied to 
the dynamic VaR measure, i.e. GVaRα(S, ∞). Finally, we present some numerical work.
i
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We start by specifying the model in more detail. Risk process i is independent of the other risk processes and defined as

Si(t) := −rit +
Ni(t)∑
k=1

Zi,k,

where the Poisson arrival process Ni(·) is independent of the jump sizes Zi,k and has rate βi , respectively. For risk process i, the jump 
sizes Zi,k are i.i.d. and exponentially distributed with parameter θ and moment generating function F̂ Z (ϑ) = θ/(θ − ϑ) which are the 
same for all i. The Poisson processes Ni(·) and jump size sequences (Zi,k)k are independent across i. For risk process i the Lévy exponent 
is given by

κi(ϑ) := −ϑri + βi

(
F̂ Z (ϑ) − 1

)
= −ϑri + βi

ϑ

θ − ϑ
.

By evaluation of the moment generating function, we will show that the aggregated risk process S(t) :=∑d
i=1 Si(t) has constant fees 

r :=∑d
i=1 ri , compound Poisson jumps with arrival rate λ :=∑d

i=1 βi , and i.i.d. exponentially distributed jump sizes Z with parameter θ
(and m.g.f. F̂ Z (·)), i.e.

E [exp (ϑ S(t))] =
d∏

i=1

exp
(
−rit + βit( F̂ Z (ϑ) − 1)

)
= exp

(
−ϑrt + λt( F̂ Z (ϑ) − 1)

)
.

This gives the Lévy exponent of the aggregated risk process S(·) as κ(ϑ) = −ϑr + λϑ/(θ − ϑ). By a similar argumentation we also find

E [exp (〈ϑ, S(t)〉)] = exp (tκS (ϑ)) = exp

(
−

d∑
i=1

ϑirit + λt

(
d∑

i=1

βi

λ
F̂ Z (ϑi) − 1

))
.

To rule out the trivial situation where the ultimate ruin probability equals 1, we assume a negative drift, i.e. r > λ
θ

. The negative drift 
assumption implies S(t) → −∞ and sup0≤t<∞ S(t) < ∞ almost surely. Under this assumption the change of measure (to the Q-measure) 
that was presented in Section 3 can be applied. To this end, we take ϑ∗ as the positive solution to κ(ϑ) = 0 which gives ϑ∗ = θ − λ

r and 
find

mi = ∂

∂ϑi
E
[

e〈ϑ,S(1)〉] ∣∣∣∣∣
ϑ=ϑ∗1

= −ri + βi
θ

(θ − ϑ∗)2
= −ri + βiθ

r2

λ2
,

such that m =∑d
i=1 mi = −r + θ r2

λ
. By Theorem 1, limu→∞ ci(, S, ∞) = mi/m whenever EQ [|Si(1)|] < ∞ for all i.

Under the Q-measure, we find, analogous to the computations in Section IV.4 of Asmussen and Albrecher (2010) that the jump size 
Z is again exponentially distributed with rate θQ = θ − ϑ∗ = λ

r and that the jump arrivals are still Poisson distributed with parameter 
β
Q
i = βi

θ
θ−ϑ∗ = βi

λ
θr. As a consequence we also find λQ = θr.

For the aggregated risk process S(·) with exponential jump sizes, the infinite time ruin probability is known and given by (see Chapter 
IV, Section 5 in Asmussen and Albrecher (2010)):

ψ(u,∞) = λ

θr
e−ϑ∗u = λ

θr
e−(θ−λ/r)u. (26)

From this we can extract the value at ruin, i.e.

VaRα(S,∞) = − 1

ϑ∗ ln

(
αθr

λ

)
.

In the remainder of this section we will consider the three allocation methods discussed in this paper, i.e.

1. AVaRα
i (S, ∞) (through Ki(u, S, ∞)), and,

2. AVaR
α
i (S, ∞) (through K i(u, S, ∞)),

3. GVaRα
i (S, ∞).

To derive an expression for ci(u, S, ∞) and Ki(u, S, ∞) (and subsequently AVaRα
i (S, ∞)) for general u we, unfortunately, cannot use 

Wald’s first identity as in Theorem 2. In order to derive an expression for these allocation quantities we will condition on the deficit at 
ruin and the time or ruin. For the numerator in the expression of ci(u, S, ∞), as given in (2), we then find

E
[

Si(τ (u))
∣∣τ (u) < ∞]= 1

ψ(u,∞)
EQ

[
e−ϑ∗ S(τ (u))Si(τ (u))

]

= 1

ψ(u,∞)

∞∫
0

∞∫
u

e−ϑ∗xEQ [Si(t) | S(t) = x, τ (u) = t] f Qτ (u),S(τ (u))(t, x)dx dt,

where f Qτ (u),S(τ (u))
(t, x) denotes the joint density function of τ (u) and S(τ (u)). The value of the process at the time of ruin can be 

written as S(τ (u)) = u + ξ(u), with overshoot ξ(u). The overshoot is exponentially distributed with parameter θ (or θQ under Q) and 
independent of the time of ruin (see also Proposition V.1.1 in Asmussen and Albrecher (2010)). As a result we find
91



G.A. Delsing, M.R.H. Mandjes, P.J.C. Spreij et al. Insurance: Mathematics and Economics 104 (2022) 76–98
E
[

Si(τ (u))
∣∣τ (u) < ∞]= 1

ψ(u,∞)

∞∫
0

∞∫
u

e−ϑ∗xEQ [Si(t) | S(t) = x] f Qτ (u)(t) f QS(τ (u))(x)dx dt, (27)

where f Qτ (u)(t) denotes the probability density function of the time of ruin τ (u) and f QS(τ (u))(x) denotes the probability density function 
of S(τ (u)). Next, we find that the conditional expectation EQ [Si(t) | S(t) = x] can be derived explicitly by noting that, for fixed ni and nk ,

EQ

⎡
⎣ ni∑

j1=1

Zi, j1

∣∣∣∣∣
ni∑

j1=1

Zi, j1 +
nk∑

j2=1

Zk, j2 = y

⎤
⎦= ni

ni + nk
y.

After some tedious but straightforward calculations this gives

EQ [Si(t) | S(t) = x] = β
Q
i∑d

j=1 β
Q
j

(x + rt) − rit.

By substituting this result into Equation (27), we find

E
[

Si(τ (u))
∣∣τ (u) < ∞]= 1

ψ(u,∞)

β
Q
i∑d

j=1 β
Q
j

∞∫
u

∞∫
0

e−ϑ∗xxf Qτ (u)(t) f QS(τ (u))(x)dt dx

+ 1

ψ(u,∞)

⎛
⎝ β

Q
i∑d

j=1 β
Q
j

r − ri

⎞
⎠ ∞∫

u

∞∫
0

e−ϑ∗xt f Qτ (u)(t) f QS(τ (u))(x)dt dx (28)

We will now discuss the two double integrals separately. The first double integral can be written as

EQ
[

S(τ (u))e−ϑ∗ S(τ (u))
]

= − ∂

∂ϑ∗E
Q
[

e−ϑ∗ S(τ (u))
]

= − ∂

∂ϑ∗ e−ϑ∗u θQ

θQ + ϑ∗ = e−ϑ∗u θQ

θQ + ϑ∗

(
u + 1

θQ + ϑ∗

)
, (29)

where we have used that S(τ (u)) = u + ξ(u), with overshoot ξ(u) exponentially distributed with parameter θQ under Q and Laplace 
transform EQ

[
e−ϑ∗ξ(τ (u))

]
= θQ/(θQ + ϑ∗).

The second double integral can be written as

EQ
[
τ (u)e−ϑ∗ S(τ (u))

]
= e−ϑ∗uEQ [τ (u)]EQ

[
e−ϑ∗ξ(u)

]
= EQ [τ (u)] e−ϑ∗u θQ

θQ + ϑ∗ . (30)

As a consequence of Wald’s identity we furthermore have that

EQ [τ (u)] = EQ [S(τ (u))]

EQ [S(1)]
= u + 1/θQ

m
. (31)

Substituting (29), (30) and (31) back into equation (28) gives

E
[

Si(τ (u))
∣∣τ (u) < ∞]= e−ϑ∗u

ψ(u,∞)

θQ

θQ + ϑ∗

⎛
⎝ β

Q
i∑d

j=1 β
Q
j

(
u + 1

θQ + ϑ∗

)
+
⎛
⎝ β

Q
i∑d

j=1 β
Q
j

r − ri

⎞
⎠ u + 1/θQ

m

⎞
⎠ .

Substituting the known expression for the ultimate ruin probability (26), we finally find

E
[

Si(τ (u))
∣∣τ (u) < ∞]= β

Q
i∑d

j=1 β
Q
j

(
u + 1

θQ + ϑ∗

)
+
⎛
⎝ β

Q
i∑d

j=1 β
Q
j

r − ri

⎞
⎠ u + 1/θQ

m
.

By summation over i we get E 
[

S(τ (u))
∣∣τ (u) < ∞]= u + 1/θ and by the definition of ci(u, S, ∞) we find

ci(u, S,∞) = β
Q
i∑d

j=1 β
Q
j

+
⎛
⎝ β

Q
i∑d

j=1 β
Q
j

r − ri

⎞
⎠ u + 1/θQ

m(u + 1/θ)
, Ki(u, S,∞) = ci(u, S,∞)u.

For u → ∞ this expression coincides with mi/m as has been proven in Theorem 1.
By similar argumentation we can also derive an expression for the allocations K i(u, S, ∞) given in Equation (21). By the negative drift 

assumption, the supremum of the process S(·) is almost surely finite. Analogue to the derivation of (25), we can rewrite the expression of 
K i(u, S, ∞) which is dependent on t∗∞ in terms of τ (u), i.e.
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K i(u, S,∞) =E
[

Si(t
∗∞)
∣∣ S(t∗∞) = u, t∗∞ < ∞]= E

[
Si(τ (u))

∣∣∣∣ S(τ (u)) = u, τ (u) < ∞, sup
τ (u)≤t<∞

S(t) = u

]

=E
[

Si(τ (u))
∣∣ S(τ (u)) = u, τ (u) < ∞]=

∫∞
0 xe−ϑ∗u f QSi(τ (u)),S(τ (u))(x, u)dx

e−ϑ∗u f QS(τ (u))(u)

=EQ [Si(τ (u))
∣∣ S(τ (u)) = u

]=
∞∫

0

EQ [Si(t) | S(t) = u, τ (u) = t] f Qτ (u) | S(τ (u))(t | u)dt

=
∞∫

0

EQ [Si(t) | S(t) = u] f Qτ (u)(t)dt. = β
Q
i∑d

j=1 β
Q
j

u +
⎛
⎝ β

Q
i∑d

j=1 β
Q
j

r − ri

⎞
⎠ ∞∫

0

t f Qτ (u)(t)dt

= β
Q
i∑d

j=1 β
Q
j

u +
⎛
⎝ β

Q
i∑d

j=1 β
Q
j

r − ri

⎞
⎠ u + 1/θQ

m
,

where f QSi(τ (u)),S(τ (u))(x, y) denotes the joint probability density function of Si(τ (u)) and S(τ (u)).

Unlike Ki(u, S, ∞), the allocations K i(u, S, ∞) do sum up to u as expected. One should also note that ci(u, S, ∞) converges to 
ci(u, S, ∞) (or equivalently mi/m) for u → ∞.

The gradient capital allocations can be derived by differentiation of the ruin probability as mentioned in Section 4 or by use of 
Theorem 4. With respect to the former, note that the aggregated process 

∑d
j �=i S j(t) + xi Si(t) no longer has exponential claims but phase-

type PH(γ , M(xi)) distributed claims, where we have used the same notation as in Drekic et al. (2004) with

γ = (γ1, . . . , γd) =
(

β1

λ
, . . . ,

βd

λ

)
, M(xi) = diag{−θ, . . . ,−θ/xi, . . . ,−θ}.

The infinite time ruin probability can be found by performing a number of matrix operations (see Chapter IX, Section 3 in Asmussen and 
Albrecher (2010)), i.e.

P

⎛
⎝ sup

t∈[0,∞)

d∑
j �=i

S j(t) + xi Si(t) ≥ u

⎞
⎠= γ +(xi)e

(
M(xi)−M(xi)eγ +

)
ue, γ +(xi) = −λ

r
γ M(xi)

−1, (32)

where e is the column vector of length d with all components equal to one. By differentiation of (32) (as mentioned in Section 4), the 
gradient allocations GVaRα

i (S, ∞) can be found.
We note that this example is also captured under Theorem 4. In the next numerical section, we show that the gradient allocation 

method coincides with AVaR
α
i (S, T ) (the result of Theorem 4) even on an infinite time horizon.

5.3.1. Numerical example
For the numerical results and comparison between the different allocation methods we consider the two-dimensional case (d = 2) and 

use a setup that aligns with the one considered in Asmussen (1984).

◦ We consider the case that the jump sizes are exponentially distributed with parameter θ = 1.
◦ The drift rates are given by r1,2 ≡ r = 1.
◦ The individual jump intensities are given by β1 = 0.85 and β2 = 0.95.

With these parameter settings, the negative drift assumption of the aggregated risk process S(·) is satisfied. In the right panel in Fig. 3
we present the allocation fractions GVaRα

1 (S,∞)/VaRα(S,∞), VaR
α
(S,∞)/VaRα(S,∞), and AVaRα

1 (S,∞)/VaRα(S,∞) for the first risk 
process (or business line) S1(·) as a function of u. The allocation fraction c1(u, S, ∞) can be seen to converge to c1(u, S, ∞) (and thus 
also mi/m) as u becomes large. The left panel in Fig. 3 shows the same convergence for α → 0 when considering the allocation of the mea-
sure VaRα(S, ∞). This figure also illustrates that, similar to the Brownian case, GVaRα

1 (S, ∞)/VaRα(S, ∞) and AVaR
α
1 (S, ∞)/VaRα(S, ∞)

coincide.
Fig. 4 presents the allocation fractions GVaRα

1 (S,∞)/VaRα(S,∞), AVaRα
1 (S,∞)/VaRα(S,∞) and AVaR

α
1 (S,∞)/VaRα(S,∞), and their 

sensitivity towards some of the underlying parameters. When both risk processes become less risky (see the left panel in Fig. 4), the 
allocation fractions move towards a more even risk distribution. The current parameter setup also shows a relatively high impact of a 
change in the jump intensities. In the right panel of Fig. 4, the jump intensities are adjusted favorably for the first risk process resulting 
in negative risk/capital allocations.

6. Concluding remarks

This paper has addressed methodologies to allocate capital reserves to multiple risk process (to be thought of as e.g., business lines). 
We introduced an intuitively appealing, novel allocation method, with a focus on its application to capital reserves which are determined 
through a dynamic VaR type measure. Various desirable properties of the presented approach were derived including a limit result when 
considering a large time horizon and the comparison with the frequently used gradient allocation method. In passing we introduced a 
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Fig. 3. Allocation fractions of the first risk process as a function of α and u for β1 = 0.85, β2 = 0.95, θ = 1, r1 = 1, r2 = 1. The left panel: GVaRα
1 (S,∞)/VaRα(S,∞), 

VaR
α
(S,∞)/VaRα(S,∞)/VaRα(S,∞), and AVaRα

1 (S,∞)/VaRα(S,∞) as functions of α. Right panel: c1(u, S, ∞) and c1(u, S, ∞) as a function of u.

Fig. 4. Allocation fractions of the first risk process AVaRα
1 (S,∞)/VaRα(S,∞), AVaR

α
1 (S,∞)/VaRα(S,∞) and GVaRα

1 (S,∞)/VaRα(S,∞) as a function of α. Left panel: β1 =
0.85, β2 = 0.95, θ = 1, r1 = 1.5, r2 = 1.5. Right panel: β1 = 0.8, β2 = 1, θ = 1, r1 = 1, r2 = 1.

second allocation method, and discussed its relation to the other allocation approaches. A number of examples illustrated the applicability 
and performance of the allocation approaches.

Theorem 4, featuring the gradient allocation method applied to the dynamic VaR measure, has been tailored to our needs and captures 
the examples given in Section 5.1 & 5.3. One could further investigate whether an extension or adjustment of Theorem 4 can be made to 
include more risk processes. This requires a different approach as the current result and proof require the maximum of the aggregated 
process to be obtained. Furthermore, the current proof relies on the differentiability (with respect to an individual risk process) of the 
sample path of the maximum aggregated process.

Follow-up research could also relate to necessary and sufficient conditions for diversification and concentration properties of the 
allocated risk measures. Examples include the ‘no undercut’ property, which has been established for the Brownian case when considering 
an infinite time horizon. For a finite time horizon and other risk processes these types of properties have not been dealt with in this 
paper.
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Appendix A. Supporting results

The following result is Theorem 9.4 in Loomis and Sternberg (1990). Note that it is a slightly different version of the classical Implicit 
Function Theorem.

Theorem A.1 (Implicit Function Theorem). Let X × P be an open subset of R ×R and let f : X × P → R be differentiable. Suppose the derivative 
Dx f of f with respect to x is continuous on X × P . Assume that Dx f (x, p) is invertible where the point (x, p) in the interior of X × P . Let

y = f (x, p).
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Then there are neighborhoods U ⊂ X and W ⊂ P of x and p on which f (x, p) = y uniquely defines x as a function of p. That is, there is a function 
ξ : W → U such that:

a. f (ξ(p), p) = y for all p ∈ W .
b. For each p ∈ W , ε(p) is the unique solution to f (x, p) = y lying in U . In particular, then

ξ(p) = x.

c. ξ is differentiable on W , and

∂ξ

∂ p
= −

(
∂ f

∂x

)−1
∂ f

∂ p

Lemma 3. Consider the bivariate normal distribution(
X1
X2

)
∼ N

((
μ1
μ2

)
,

(
σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

))
.

The conditional distribution of |X1| given X2 = x2 is

E
[|X1|

∣∣X2 = x2
]= (μ1 + ρ

σ1

σ2
(x2 − μ2)

)
(1 − 2�(c)) + 2σ1

√
1 − ρ2φ (c) ,

where c = −μ1−ρ
σ1
σ2

(x2−μ2)

σ1
√

1−ρ2
.

Proof. First note that we can write X1 = μ1 + σ1

(
ρ X2−μ2

σ2
+√1 − ρ2 Z

)
, where Z is a standard normal random variable independent of 

X2. This gives

E
[|X1|

∣∣X2 = x2
]= E

[∣∣∣∣μ1 + σ1

(
ρ

x2 − μ2

σ2
+
√

1 − ρ2 Z

)∣∣∣∣
]

.

Conditioning on the events X1 > 0 and X1 ≤ 0 we find

E
[|X1|

∣∣X2 = x2
]=(μ1 + ρ

σ1

σ2
(x2 − μ2)

)
(P (Z > c) − P (Z ≤ c))

+ σ1

√
1 − ρ2

(
E
[

Z
∣∣Z > c

]
P (Z > c) −E

[
Z
∣∣Z ≤ c

]
P (Z ≤ c)

)
=
(
μ1 + ρ

σ1

σ2
(x2 − μ2)

)
(1 − 2�(c)) + 2σ1

√
1 − ρ2φ(c)

where we have used that E 
[

Z
∣∣Z ≤ c

]
P (Z ≤ c) = ∫ c

−∞ zφ(z)dz = − 
∫ c
−∞ φ′(z)dz = −φ(c) and similarly E 

[
Z
∣∣Z > c

]
P (Z > c) = φ(c). �

Appendix B. Proof of Theorem 4

Proof. Without loss of generality we will prove the result for i = 1. We define the function F1(y1, x1) for x1 ∈ (1 − δ, 1 + δ) and y1 ∈
(qVaRα

1,T
(x1) − δ/2, qVaRα

1,T
(x1) + δ/2) by

F1(y1, x1) := P (Z(x1) ≤ y1) = E
[
1Z(x1)≤y1

]
,

where we have omitted the dependence of Z1,T (x1) on 1, T .
First, we show that the function F1(y1, x1) is: 1) continuously differentiable in y1, and, 2) differentiable in x1 for x1 ∈ (1 − δ, 1 + δ)

and y1 ∈ (qVaRα
1,T

(x1) − δ/2, qVaRα
1,T

(x1) + δ/2).

1) To prove the continuous differentiability with respect to y1 we note that ∂ F1
∂ y1

(y1, x1) = f1,x1 (y1), which is assumed to be continuous in 
x1 and y1 in the given interval by assumption (i). Furthermore, by the same assumption, it is continuous on a closed bounded interval 
and thereby finite.

2) To prove the differentiability of F1(y1, x1) with respect to x1 we will approximate the discontinuous indicator function with a smoother 
function g , which for ε small enough such that 0 < ε ≤ δ/2, is given by

gε,y1(z) =

⎧⎪⎨
⎪⎩

1, for y1 − z > ε
1
2 + y1−z

2ε , −ε ≤ y1 − z ≤ ε

0, for y1 − z < −ε

.

Note that the derivative is given by

g′
ε,y1

(z) =
{

0, for |y1 − z| > ε

− 1 , for |y1 − z| < ε
,

2ε
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where the derivative does not exist when |y1 − z| = ε . For the interval of z where then derivative exists and is non-zero we have 
(y1 − ε, y1 + ε) ⊆ (qVaRα

1,T
(x1) − δ, qVaRα

1,T
(x1) + δ). As a result of the continuity of Z(x1), as in (i), the probability that |y1 − Z(x1)| = ε

is zero. We will focus on showing that E[gε,y1(Z(x1))] is differentiable in x1 and that its derivatives may be computed by taking 
the derivative inside the expectation. To prove this we invoke the dominated convergence theorem. To this end, we first establish 
the differentiability of the sample paths of gε,y1(Z(x1)). Using similar notation as in Bertoin (1996) and Sato (1999), we note that 
∂

∂x1
gε,y1(Z(x1, ω)) for fixed ω ∈ � exists almost everywhere (except when |Z(x1, ω) − y1| = ε but this event is of probability zero). 

Furthermore, when the derivative exists it is given by

∂

∂x1
gε,y1(Z(x1,ω)) = g′

ε,y1
(Z(x1,ω))

∂

∂x1
Z(x1,ω).

The differentiability of Z(x1, ω) w.r.t. x1 can be obtained using Lemma 2. Lévy processes excluding compound Poisson processes (with-
out drift), almost surely obtain the supremum over a finite time horizon at a unique point in time (see page 171 in Kyprianou (2006)). 
Continuous Lévy processes as well as compound Poisson processes with non-zero drift and positive jumps both attain their supremum, 
i.e. the supremum is in fact a maximum. As a result, we have A∗

1,T (x1, ω) non-empty and a singleton. In other words, the supremum 
is uniquely attained in t∗

1,T (x1, ω). We will now show that Z(x1, ω) is differentiable w.r.t. x1 with ∂
∂x1

Z(x1, ω) = S1(t∗
1,T (x1), ω) by 

making use of Lemma 2 and considering the two instances of Si(·) separately: 1) continuous processes, and, 2) compound Poisson 
processes with negative drift and positive jumps. First note that, the function Z(x1, ω) maximizes over is of the form p(t) + x1q(t), 
where p(t) =∑d

j �=1 S j(t, ω) and q(t) = S1(t, ω).

(a) In case the processes Si(·) have continuous sample paths then p(t) and q(t) are continuous functions and by Lemma 2 we have 
∂

∂x1
Z(x1, ω) = S1(t∗

1,T (x1), ω).
(b) For compound Poisson processes it is well-known that over a finite interval the number of jumps is also almost surely finite, 

this property is often referred to as finite activity. As a result, the compound Poisson process 
∑d

j �=1 S j(·) + x1 S1(·) with negative 
drift and positive jumps can only attain its maximum at a finite number of time points almost surely. These time points coincide 
with the jump times of the individual compound Poisson processes Si(·). As these jump times do not depend on x1, we have 
∂

∂x1
Z(x1, ω) = S1(t∗

1,T (x1), ω) by Lemma 2.

We conclude that ∂
∂x1

Z(x1, ω) = S1(t∗
1,T (x1), ω) almost surely and almost everywhere (excluding the points where |Z(x1, ω) − y1| = ε), 

g′
ε,y1

(Z(x1, ω)) = − 1
2ε1|Z(x1,ω)−y1|≤ε . This gives almost surely,

∂

∂x1
gε,y1(Z(x1)) = − 1

2ε
1|Z(x1)−y1|<ε S1(t

∗
1,T (x1)).

Note that we always have∣∣∣∣ gε,y1(Z(x1 + h,ω)) − gε,y1(Z(x1,ω))

h

∣∣∣∣≤ 1

2ε
sup

0≤t≤T

∣∣S1(t,ω)
∣∣,

where the majorizing function does not depend on x1 and its expectation E 
[ 1

2ε sup0≤t≤T

∣∣S1(t)
∣∣] is finite by assumption (iv) and the 

fact that ε > 0. Hence, using the dominated convergence theorem to interchange the expectation and the limit, we have

∂

∂x1
E[gε,y1(Z(x1))] = lim

h→0
E

[
gε,y1(Z(x1 + h,ω)) − gε,y1(Z(x1,ω))

h

]

= E

[
lim
h→0

gε,y1(Z(x1 + h,ω)) − gε,y1(Z(x1,ω))

h

]
= E

[
∂

∂x1
gε,y1(Z(x1))

]
.

Conditioning on the supremum process then gives

∂

∂x1
E
[

gε,y1(Z(x1))
]= −

y1+ε∫
y1−ε

1

2ε
E
[

S1(t
∗
1,T (x1))|Z(x1) = z

]
f1,x1(z)dz

ε→0−−−→ −E
[

S1(t
∗
1,T (x1))|Z(x1) = y1

]
f1,x1(y1),

where the limit follows from the fundamental theorem of calculus by noting that the expression inside the integral is continuous in by 
assumptions (i) and (iii).

Introducing the notation l(x1) := −E 
[

S1(t∗
1,T (x1))|Z(x1) = y1

]
f1,x1 (y1), we will continue to show that ∂ F1(y1,x1)

∂x1
= l(x1). Using the 

new notation we have already shown that ∂
∂x1

E 
[

gε,y1(Z(x1))
] ε→0−−−→ l(x1). By integration (of x1) we would like to retrieve an expression 

for E 
[

gε,y1(Z(x1))
]
. In order to do so, we will interchange the integral (from 0 to x1) and the limit (ε → 0). To this end, note that

∣∣∣∣∣ ∂

∂x1
E
[

gε,y1(Z(x1))
] ∣∣∣∣∣≤E

[∣∣∣∣ ∂

∂x1
gε,y1(Z(x1))

∣∣∣∣
]

=
y1+ε∫

y1−ε

1

2ε
E

[∣∣S1(t
∗
1,T (x1))

∣∣∣∣∣∣Z(x1) = z

]
f1,x1(z)dz

≤ M1M2 < ∞.
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Here we have used that by the continuity of f1,x1 (z) on the bounded interval x1 ∈ [1 − δ, 1 + δ] and z ∈ [qVaRα
1,T

(x1) − δ, qVaRα
1,T

(x1) + δ]
by assumption (i), there exists some finite M1 independent of x1 and z such that f1,x1 (z) ≤ M1 on the same interval. Similarly we find 
M2 (also independent of x1 and z) as a bound for E 

[
|S1(t∗

1,T (x1))|
∣∣Z(x1) = z

]
by assumption (iii). As a result, we have shown that ∣∣ ∂

∂x1
E 
[

gε,y1(Z(x1))
] ∣∣ is dominated by some finite constant M1 M2 independent of ε . Invoking the dominated convergence theorem, 

we interchange the integral (from 0 to x1) and the limit (ε → 0) and find for some constant c,

E
[

gε,y1(Z(x1))
] ε→0−−−→ c +

x1∫
0

l(x)dx.

As E 
[

gε,y1(Z(x1))
] ε→0−−−→ F1(y1, x1), we have

F1(y1, x1) = c +
x1∫

0

l(z)dz.

We can then consider the integrand in the point x1, l(x1), as the derivative of F1(y1, x1) w.r.t. x1, i.e.

∂

∂x1
F1(y1, x1) = −E

[
S1(t

∗
1,T (x1))

∣∣∣∣Z(x1) = y1

]
f1,x1 (y1) ,

which is finite-valued by assumptions (i) and (iii) for all x1 ∈ (1 − δ, 1 + δ) and y1 ∈ (qVaRα
1,T

(x1) − δ/2, qVaRα
1,T

(x1) + δ/2).

We have now shown that the function F1(y1, x1) is: 1) continuously differentiable in y1, and, 2) differentiable in x1 for x1 ∈ (1 − δ, 1 + δ)

and y1 ∈ (qVaRα
1,T

(x1) − δ/2, qVaRα
1,T

(x1) + δ/2).
From the continuity of f1,x1 (y1) w.r.t. y1 at y1 = qVaRα

1,T
(x1) for all x1 ∈ (1 − δ, 1 + δ) by assumption (i), we obtain,

F1(qVaRα
1,T

(x1), x1) = 1 − α.

By the Implicit Function Theorem A.1 and the differentiabilities derived in items 1) & 2) above, qVaRα
1,T

(x1) is a differentiable function of 
x1 ∈ (1 − δ, 1 + δ) with

∂qVaRα
1,T

(x1)

∂x1
= −

(
f1,x1

(
qVaRα

1,T
(x1)

))−1 ∂

∂x1
F (y1, x1)

∣∣∣∣
y1=qVaRα

1,T
(x1)

=E
[

S1(t
∗
1,T (x1))

∣∣Z(x1) = qVaRα
1,T

(x1)
]
.

The final result follows by setting x1 = 1. �
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Loomis, L., Sternberg, S., 1990. Advanced Calculus, revised edition. Jones and Bartlett Publishers.
Lundberg, F., 1903. Approximerad framställning af sannolikhetsfunktionen: Återförsäkering af kollektivrisker. Almqvist & Wiksell.
Mitric, I., Trufin, J., 2016. On a risk measure inspired from the ruin probability and the expected deficit at ruin. Scandinavian Actuarial Journal 10, 932–951.
Oberhettinger, F., Badii, L., 1973. Tables of Laplace Transforms. Springer-Verlag.
Oyama, D., Takenawa, T., 2018. On the (non)-differentiability of the optimum value function when the optimal solution is unique. Journal of Mathematical Economics 76, 

21–32.
Picard, P., Lefévre, C., Coulibaly, I., 2003. Multirisks model and finite-time ruin probabilities. Methodology and Computing in Applied Probability 5, 337–353.
Resnick, S., 2002. Adventures in Stochastic Processes. Birkhäuser, Basel.
Sato, K., 1999. Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.
Shepp, L., 1979. The joint density of the maximum and its location for a Wiener process with drift. Journal of Applied Probability 16 (2), 423–427.
Tasche, D., 1999. Risk contributions and performance measurement. Technical documents. Munich University of Technology.
Tasche, D., 2007. Euler allocation: theory and practice. Technical documents. Fitch Ratings, London.
Trufin, J., Albrecher, H., Denuit, M., 2011. Properties of a risk measure derived from ruin theory. The Geneva Risk and Insurance Review 36, 174–188.
98

http://refhub.elsevier.com/S0167-6687(22)00015-4/bib4E939A5CA4F7A61F77D179B2C3A65132s1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bibC5F83766F5EC0BD1D6842EBCEAB3876Cs1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bibD60A56335A0551411FE2AEFEC07D6601s1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bib96B826928C4C74677F451CB356957CAAs1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bib8F8096CDCC97E614059525A35828960Bs1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bib8F8096CDCC97E614059525A35828960Bs1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bib1DD76E4D4412F0EE4BEDD374E00797C5s1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bibE18E8FFB1B2B1687B3659F35DF77F0C8s1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bibD215245A217A2114536C4DFC152B3CA2s1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bibD5A5DB780E6339BF112A5C129213C75Cs1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bibC9B6CE9B2BB2DDE381DF044A042A8608s1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bib674D909EA58A12FF5856FC2609061A91s1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bib674D909EA58A12FF5856FC2609061A91s1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bib03FE69EE1FCC0D1DAE0DF2E4FA0E2D6Bs1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bib863C01F073DF3E67FBA37E7732E1243Cs1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bib8F3425FF8BDFF6D1707AB8AABC78600Fs1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bib9A452B43B945E2AB7580735003BFCE6As1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bib449197220457E75E82FFB320E5BD00C6s1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bibBB1A687AC0ADC0A83C008BCC1F3D7522s1
http://refhub.elsevier.com/S0167-6687(22)00015-4/bibCC3A7D95F485EFCB748B66C3027AA7E9s1

	On capital allocation for a risk measure derived from ruin theory
	1 Introduction
	2 Risk model and risk measure
	2.1 Risk model
	2.2 Risk measure derived from ruin theory

	3 A capital allocation approach
	3.1 The capital allocation method and its properties
	3.2 Infinite horizon
	3.3 Special case: Brownian motion

	4 Comparison with gradient allocation
	4.1 General results
	4.2 Special case: Brownian motion

	5 Numerical examples
	5.1 Brownian motion
	5.2 Spectrally negative Lévy process
	5.3 Compound Poisson with drift
	5.3.1 Numerical example


	6 Concluding remarks
	Declaration of competing interest
	Appendix A Supporting results
	Appendix B Proof of Theorem 4
	References


