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a b s t r a c t 

Arrival processes to service systems often display (i) larger than anticipated fluctuations, (ii) a time- 

varying rate, and (iii) temporal correlation. Motivated by this, we introduce a specific non-homogeneous 

Poisson process that incorporates these three features. The objective is to develop a staffing rule for a 

many-server system facing such an arrival process. So as to obtain approximations for its performance, 

we first consider the situation of the arrival process being fed into the corresponding infinite-server sys- 

tem. Using the square-root staffing principle leads to a staffing rule that acknowledges the three features. 

After a slight rearrangement of servers over the time slots, we succeed to stabilize system performance 

even under highly varying and strongly correlated conditions. We fit the arrival stream model to real data 

from an emergency department and demonstrate (by simulation) the performance of the novel staffing 

rule. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The design of staffing algorithms for service systems has been 

ttracting a great deal of interest ever since Erlang published 

is first papers. The delay experienced by the system’s users is 

redominantly caused by the inherent randomness in the arrival 

tream. From a managerial point of view, it is natural to address 

his randomness in such a way that operational costs and cus- 

omer satisfaction are balanced. An important complication that 

ecently received a lot of attention is that, as has been observed 

n various empirical studies, the variance of the arrival stream 

s larger than the corresponding mean; this phenomenon, called 

verdispersion, is not captured by standard Poisson processes. The 

hallenge that arises is to develop staffing algorithms that are 

ased on more sophisticated, realistic arrival stream models. See 

 Green, Kolesar, & Whitt, 2007; He, Liu, & Whitt, 2016; Jennings, 

andelbaum, Massey, & Whitt, 1996; Liao, Koole, van Delft, & 

ouini, 2012 ),and in particular the recent surveys ( van Leeuwaar- 

en, Mathijsen, & Zwart, 2019; Whitt, 2018 ), for related work 

n the design of staffing rules for service systems with overdis- 

ersed input. Such staffing rules have broad application poten- 

ial, in settings that include call center environments ( Aksin, Ar- 

ony, & Mehrotra, 2007; Bassamboo, Randhawa, & Zeevi, 2010; 

orst, Mandelbaum, & Reiman, 2004; Gans, Koole, & Mandelbaum, 
∗ Corresponding author. 

E-mail addresses: jmaheemskerk@gmail.com (M. Heemskerk), 

.r.h.mandjes@uva.nl (M. Mandjes), bwjmathijsen@gmail.com (B. Mathijsen). 
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003; Whitt, 1999 ), cloud computing ( van Leeuwaarden, Mathijsen, 

 Sloothaak, 2016; Tan, Feng, Meng, & Zhang, 2012 ), and health 

are delivery ( Maman, 2009 ). Staffing in stochastic service systems. 

ue to the intrinsic stochastic variability of most service systems, 

hey are naturally described by a stochastic model. More specifi- 

ally, queueing models have proven to reveal ‘good’ staffing rules; 

hey determine the number of staff needed to effectively but ef- 

ciently cope with the demand imposed on the system. Evidently, 

ny staffing rule should be such that the average workload brought 

n per time unit is smaller than the system capacity, to make sure 

hat the delays experienced by patients remain bounded. Moreover, 

ertain performance targets are set to guarantee the patients a spe- 

ific ‘Quality-of-Service’ (QoS) level, which is typically expressed in 

erms of waiting time. The objective of the system operator is, on 

he other hand, to bring the utilization level as close as possible 

o 1, so as to control operational cost by efficiently using the re- 

ources. Staffing rules aim to strike a proper balance between the 

nterests of the patients and the system operator. 

The goal that is often strived for is to design a service system 

n such a way that its patients go into service more or less im- 

ediately upon arrival ( Jennings et al., 1996; Whitt, 1999 ). Con- 

equently, a commonly chosen service-level agreement (SLA) is 

o bound the probability of delay by some (typically small) QoS 

arameter ε > 0 ( Borst et al., 2004; Janssen, van Leeuwaarden, 

 Zwart, 2011; Zhang, van Leeuwaarden, & Zwart, 2012 ). In the 

ypical situation that the arrival rate varies over time, this delay 

robability is clearly time-dependent too. The manager’s objective 

ould be to set up a staffing schedule that minimizes the opera- 
 under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ional costs under the constraint that the delay probability, at any 

oint of time, does not exceed ε. The ideal staffing algorithm is 

ne that stabilizes the probability of delay over time around some 

alue close to ε, bringing the system in the so-called Quality-and- 

fficiency-Driven (QED) regime ( Halfin & Whitt, 1981 ). Note that, 

n case there are periods where the algorithm induces a probabil- 

ty of delay significantly smaller than ε, it would mean that (at 

east locally) ‘too many’ resources are deployed; the variability in 

he arrival stream is anticipated suboptimally. Realistically modeling 

he arrival process. Queueing models have been used intensively to 

escribe and understand congestion phenomena that arise in case 

f scarce resources. As a first step in designing a realistic model, it 

s key to study the arrival process at hand. We will continue this 

ntroduction with a short recap on the properties that should be 

resent in a realistic arrival stream model. 

A common assumption in queueing theory is that of Poisso- 

ian arrivals, entailing that the mean and variance of the number 

f arrivals (roughly) match. However, it is often observed that ser- 

ice systems face arrival streams that are highly variable (mean �
ariance; overdispersion), while in specific cases systems have to 

eal with almost deterministic arrivals (variance � mean; under- 

ispersion). As an example of the latter, consider service systems 

n healthcare with scheduled yet not necessarily punctual arrivals 

so that arrival epochs randomly fluctuate around the appointed 

rrival time), as studied in e.g., Jouini & Benjaafar (2009) , Kim, Vel, 

hitt, & Cha (2015) and Kim, Whitt, & Cha (2017) . In such settings

learly some sort of ‘induced deterministicness’ plays a role, in the 

ense that arrivals are actively being directed to (or away from) the 

ystem. In this thesis however, we will focus on ‘undirected’ arrival 

treams only. 

For ‘undirected’ arrival streams, overdispersion is a phe- 

omenon commonly found in data. Examples where one could ex- 

ect to encounter overdispersed arrivals include a call center of a 

ank, an insurance company and an emergency department in a 

ospital; see e.g. Bassamboo et al. (2010) , Kim & Whitt (2014a) , 

im & Whitt (2014b) and Liao et al. (2012) . In such settings, ar-

ivals are usually triggered (or inhibited) by occasional events or 

un-)favorable circumstances which can cause unforeseen peaks (or 

ips) on top of the usual daily patterns. This so-called ‘random en- 

ironment’ gives rise to an effect commonly referred to as param- 

ter uncertainty ( Bassamboo et al., 2010; Whitt, 1999 ), which nat- 

rally leads to overdispersion. 

Speaking of daily patterns: in nearly all practical applications, 

he mean number of arrivals is not constant over time (e.g. over 

he course of the day) and follows a predictable pattern. It must be 

oted that the variability that causes overdispersion is of a differ- 

nt nature than the variability induced by nonstationarity. Nonsta- 

ionarity can be modeled by a non-homogeneous Poisson proces, 

eplacing the constant arrival rate of a Poisson process by a (deter- 

inistic) time-varying one. However, for non-homogeneous Pois- 

on processes the mean and variance of the number of arrivals still 

atch, hence such processes fail to capture the entirety of the de- 

ired dynamics observed in arrival processes. Nevertheless, nonsta- 

ionarity is another important feature of a real-life arrival process 

 Green & Kolesar, 1991; Green, Kolesar, & Svoronos, 1991; Whitt, 

991 ) and as such should be incorporated in any realistic arrival 

tream model as well. 

Besides being overdispersed and having a time-varying rate, 

 realistic arrival stream might even have dependencies between 

he numbers of arrivals in disjoint time intervals. That is to say: 

t’s highly unlikely that the random environment affects the ar- 

ival stream in an i.i.d. fashion over the different intervals; the ef- 

ects at hand possibly play a role for a longer period of time. In-

eed, arrival data often exhibits these kinds of dependencies, e.g. 

n call centers ( Ibrahim, L’Ecuyer, Regnard, & Shen, 2012; Ibrahim, 

e, L’Ecuyer, & Shen, 2016 ). Existing staffing methods. As mentioned, 
901 
ur objective is to develop a staffing rule such that the delay prob- 

bility is sufficiently low, uniformly over time. With this rather 

tringent service-level requirement in mind it is fairly natural to 

pproximate the system relying on its infinite-server counterpart. 

he famous square-root staffing principle is based on exactly this 

bservation. In the classical setting (M/G/ ∞ with arrival rate R and 

nit-mean service times) it uses that the steady-state number of 

usy servers is Poisson distributed with mean R . By asymptotic 

ormality the coefficient of variation (i.e., standard deviation di- 

ided by the mean) has the approximate form 1 / 
√ 

R , and that the 

teady-state probability of delay in a corresponding finite-server 

etting with s servers, say p s (R ) can be approximated by 

p s (R ) ≈ 1 − �

(
s − R √ 

R 

)
or large R , with �(·) the distribution function of a standard Nor- 

al random variable. For β such that 1 − �( β) = ε we find for the 

equired number of servers ( Whitt, 1992; 1993 ) 

 = R + β
√ 

R . (1) 

ote that Eq. (1) has an appealing interpretation: the number of 

ervers s should evidently be taken larger than the expected work- 

oad R , with the extra term β
√ 

R (‘uncertainty hedge’) being of the 

ame order as the natural load fluctuations of the workload pro- 

ess. Refinements of order smaller than 

√ 

R are explored in e.g. 

anssen et al. (2011) ; Mathijsen, Janssen, van Leeuwaarden, & Zwart 

2018) ; Zhang et al. (2012) . 

Although the excess probability P (M > s ) corresponding to the 

nfinite-server system (with M denoting the stationary number of 

usy servers in this M/G/ ∞ queue) is likely to be smaller than 

he probability of delay in its finite-server counterpart, still square- 

oot staffing rules have shown to give accurate results ( Borst et al., 

004; Janssen et al., 2011 ). This can be explained by the fact that 

s R grows large, the hedge β
√ 

R prevents congestion more and 

ore effectively. 

So far we discussed the situation of a constant Poissonian ar- 

ival rate. For large-scale systems the predominant assumption in 

he literature is that patients arrive according to a time-varying 

oissonian arrival rate. Staffing algorithms for non-homogeneous 

oisson processes (NHPPs) have been studied for several decades; 

e refer to (Whitt, 2018, Section 4) for an excellent overview, cov- 

ring in greater detail all concepts touched upon below. 

If the arrival process is an NHPP with nonstationary arrival rate 

(·) , then the number of arrivals N(s, t) in the interval [ s, t) , with

 < t , is Poisson distributed with parameter 

 t 

s 

λ(r) d r. 

ote that such a non-homogeneous arrival process not yet exhibits 

verdispersion ( E N(s, t) = V ar ( N(s, t) ) ). For the resulting model 

/G/ ∞ -based staffing rules cannot be applied directly, but various 

pproaches have been proposed. 

In a first approach, the nonstationarity is essentially ignored: 

ne uses a simple stationary approximation (SSA), based on a sta- 

ionary model in which the arrival rate is chosen equal to the long- 

un average ( Rothkopf & Oren, 1979 ). This method performs poorly 

n most scenarios ( Green et al., 1991 ), for example when the actual 

ate is slowly varying with respect to the service time or when the 

elative amplitude (level of nonstationarity) of the rate is larger 

han 10%. A second approach is the pointwise stationary approx- 

mation (PSA) ( Green & Kolesar, 1991; Green et al., 1991; Whitt, 

991 ), which considers the system at time t as if it has dealt with 

n arrival rate λ(t) with s t servers from the start (i.e., assuming 

teady state), thus ignoring nonstationarity in a different way. This 

ethod works well in settings where the arrival rate changes suf- 
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ciently slowly ( Green & Kolesar, 1991; Whitt, 1991 ), so it covers 

cenarios on the other side of the spectrum. 

As a comprimise between the two extremes, Whitt (1991) sug- 

ests the average stationary approximation (ASA) that generalizes 

oth SSA and PSA, replacing the arrival rate at time t with 

¯
t = 

E S 

a 

∫ t 

t−a/ E S 

λ(r) d r 

or some positive constant a and mean service time E S. An alter- 

ative to this was proposed by Jennings et al. (1996) , saying that 

ne could replace R in the staffing formula by m ∞ 

(t) , the expected 

offered load’ in an infinite-server system with time-dependent ar- 

ival rate λ(t) at time t: 

 ∞ 

(t) = E 

∫ t 

t−S 

λ(r) d r, 

here S denotes the service time. They showed that this method 

tabilizes the probability of delay close to some target value at 

ll times, independently of the arrival rate being slowly varying 

r not. Importantly, in Jennings et al. (1996) asymptotic normality 

as used to arrive at the approximation, hence their method fol- 

ows the tradition of the square-root staffing procedure described 

bove. 

As mentioned above, NHPP models fail to exhibit overdis- 

ersion, a phenomenon observed across various types of ser- 

ice systems; see e.g., Chen & Henderson (2001) , Jongbloed & 

oole (2001) , Kim & Whitt (2014a) , Robbins, Medeiros, & Harrison 

2010) and Steckley, Henderson, & Mehrotra (2009) . The parameter 

ncertainty underlying overdispersion potentially jeopardizes the 

ffectiveness of the square-root rule, typically leading to overopti- 

istic staffing algorithms. This complication was brought forward 

n many studies, e.g. in Avramidis, Deslauriers, & L’Ecuyer (2004) , 

assamboo et al. (2010) , Gans et al. (2003) , Grassmann (1988) , 

urvich, Luedtke, & Tezcan (2010) , Jongbloed & Koole (2001) , Kim 

 Whitt (2014a) , Mathijsen et al. (2018) , Mehrotra, Ozlük, & Saltz- 

ann (2010) , Steckley et al. (2009) and Zan (2012) ; we specifi- 

ally refer to (Whitt, 2018, Section 5) for a broad overview, also 

ncluding techniques to test for overdispersion. Different methods 

ere proposed to overcome this issue; typically a Poisson mix- 

ure is used to model parameter uncertainty. That is, the deter- 

inistic Poissonian arrival rate is replaced by a sampled one; see 

assamboo & Zeevi (2009) , Chen & Henderson (2001) , Grassmann 

1988) , Jongbloed & Koole (2001) , Koçaga, Armony, & Ward (2015) ,

aman (2009) , Mathijsen et al. (2018) and Whitt (1999) for exam- 

les. 

Relatively little attention has been paid to staffing rules in the 

ontext of arrival processes in which the numbers of arrivals in 

isjoint intervals are dependent. 

A study that is, in terms of scope, related to ours is He et al.

2016) , developing a broad framework that allows for incorporating 

verdispersion. It in particular includes a rule of thumb (He et al., 

016, Eq. (4.2)) that quantifies the additional number of servers 

eeded in the overdispersed setting compared to the same set- 

ing with a deterministic (but potentially time-varying) Poisson ar- 

ival rate. Notably, the validity of this rule is made rigorous under 

 heavy-traffic scaling. Contributions and organization. The contri- 

utions of this paper are twofold. In the first place, we present 

 flexible model for the arrival process, based on Heemskerk, van 

eeuwaarden, & Mandjes (2017) , that can deal with (any level of) 

verdispersion, nonstationarity and dependencies between arrivals 

f consecutive time slots. The challenge being to come up with 

 model that remains of practical use/computationally tractable, 

e believe that the model proposed here is among the simplest 

odels with these three properties. Moreover, fitting data to our 

odel is a relatively straightforward task. The model is presented 

n Section 2.1 
902 
In the second place, we develop staffing rules meeting the cri- 

eria mentioned in the introduction, to go with this comprehensive 

et simple model for the arrival stream. It requires low computa- 

ional cost to determine staffing prescriptions based on these rules. 

n Section 2.2 we present the new staffing rule. Subsequently, in 

ection 2.3 we present a case study based on a healthcare-related 

ata set. In its most basic form, our staffing rule does not succeed 

n stabilizing the delay probability around the targeted ε, but after 

n elementary rearrangement of servers this problem is overcome. 

his leads to a much improved version of the staffing rule that was 

ntroduced in Section 2.2 . 

In the rest of the paper we work out the details necessary for 

mplementation and further asses the performance of the proposed 

taffing rules. Section 3 presents straightforward statistical proce- 

ures to estimate the modeling parameters. We perform the es- 

imation procedure both for a real data set from an emergency 

epartment, and for a stylized example. In Section 4 we perform 

xtensive experiments to assess the performance of our staffing 

ule in settings with overdispersion, a time-varying arrival rate, 

nd temporal correlation. Here, we incorporate impatience into the 

odel (as in reality, customers might abandon the system before 

heir service begins), in order to analyze how this affects the per- 

ormance. Finally, Section 5 concludes the paper. 

Importantly, the data we use in our empirical study, collected 

t the SEELab of the Technion (Haifa, Israel), is open to the public. 

his allows the interested reader to replicate our experiments, and 

o test the staffing procedure we propose. The data records contain 

he arrival times and LoS of each patient that visited the ED. For 

ore background on the dataset, we refer to e.g. Armony et al. 

2015) and Whitt & Zhang (2017) ; see https://seelab.net.technion. 

c.il/ as well. 

. Model and staffing rule 

In this section we first present our arrival stream model meet- 

ng the criteria mentioned in the introduction (overdispersion, 

ime-varying rate, correlation between disjoint time intervals). Our 

odel is arguably the simplest among all models satisfying these 

equirements. It is relatively compact and only requires a few in- 

ut parameters. We then introduce a suitable staffing rule to match 

uch arrival streams. It is new compared to the earlier described 

ethods in the introduction, as it combines all three features of 

ealistic arrival processes while still using the concept of square- 

oot staffing, where the mean under the square-root is replaced 

y the variance of the number of customers in the approximative 

nfinite-server system. We conclude the section by an illustrative 

ase study, in which we demonstrate the procedure and its perfor- 

ance. 

.1. Model description 

The model we consider could be termed a mixed M t /G/s t queue 

ith infinite waiting room. We systematically introduce the com- 

onents of the model, starting with the arrival process. Arrival pro- 

ess . In our setup the arrival process is a Cox process, i.e., a time-

ependent Poisson process with random arrival rate. At time t , the 

rrival rate is �(t) � 0 . This �(t) consists of a deterministic trend 

(t) (capturing the daily pattern), which is inflated by a stochas- 

ic busyness factor that incorporates the desired overdispersion and 

emporal correlation. As a consequence, the model proposed pos- 

esses the three desired properties. 

More specifically, the arrival rate is built up as follows. Fol- 

owing common practice, we assume that λ(t) is piecewise con- 

tant on time intervals of fixed size �. For t ∈ [ j�, ( j + 1)�) we

an therefore write λ(t) = λ j . We introduce a sequence of random 

ariables W ≡ { W j } j∈ Z , which are independent and distributed as 

https://seelab.net.technion.ac.il/
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Table 1 

Summary statistics of the hospital ED. 

Start day 1-4-1999 

End day 17-7-2003 

Total # days 1569 

Total # weeks 224 

# Arrivals per day 324.59 

Mean LOS (min.) 109 

St. dev. LOS (min.) 114 
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 random variable W � 0 ; we normalize them such that E W = 1 ,

nd assume V ar ( W ) < ∞ . The busyness factor of slot j is affected 

y the current value of the W process ( W j , that is), but also by

he previous I values ( W j−I up to W j−1 ). The parameter I ∈ N re-

ects the amount of dependence between the stochastic arrival 

ates pertaining to consecutive disjoint slots. Let N be the total 

umber of time slots of size � in the considered time frame, i.e. 

 = 24 when � = 1 hour and the considered time frame is a day.

he level of dependence from previous values of the W process 

s dealt with in an autoregressive way, with parameter α ∈ (0 , 1) . 

oncretely, this means that for t ∈ [ j�, ( j + 1)�) the stochastic ar-

ival rate is given by 

(t) = λ j ·
(

c α

I ∑ 

	 =0 

α	 W j−	 

)
; (2) 

ere c α := (1 − α) / (1 − αI+1 ) is a normalizing constant that en-

ures that the busyness factor has mean 1: 

 

( 

I ∑ 

	 =0 

α	 W j−	 

) 

= 

1 − αI+1 

1 − α
= 

1 

c α
. 

t means that the busyness factor gets a new value every � time 

nits; thus, �−1 can be regarded as the sampling frequency . Note 

hat the process W is not observable; as we show later, in our 

taffing formula we just need to know V ar ( W ) . 

The values λ j reflect the mean arrival rates during the indi- 

idual time slots. When assuming periodicity in the data (e.g., 

aily and weekly patterns), one can estimate these values in a 

traightforward way from historic data. The value of � is situation- 

ependent; one often picks 5, 10 or 15 minutes. This leaves us with 

stimating α, I, and V ar ( W ) . The procedure we followed is that 

e use standard least-squares tools to estimate α and V ar ( W ) for 

iven I; this we do for multiple values of I, so as to select an ‘op-

imal’ I. We elaborate on these estimation issues in Section 3 . Ser- 

ice times. The patients’ service times are independent and iden- 

ically distributed samples from a general non-negative distribu- 

ion; we denote the underlying random variable by S, and write 

 (t) := P (S > t) . In the numerical experiments in Sections 2.3 and

 we focus on the case of exponentially distributed service times 

with mean μ−1 ), but in the staffing rule one could pick in prin- 

iple any distribution. Number of servers. At time t , the number of 

ervers is s t . The value of s t is as determined in Section 2.2 . We

ssume that services are always completed, even if s t drops to a 

alue that is insufficient to serve all patients present; as this as- 

umption is fairly natural in practice this is the way the system 

ynamics will be modeled in the simulation experiment. 

.2. Staffing rule 

The staffing rule we propose is essentially an adaptation of the 

lassical square-root staffing rule in Eqn. (1) : for some constant 

> 0 , 

 t = m ∞ 

(t) + β
√ 

v ∞ 

(t) ; (3) 

ere m ∞ 

(t) and v ∞ 

(t) are the mean queue length and variance of

he mixed M t /G/ ∞ counterpart of the mixed M t /G/s t system in- 

roduced in Section 2.1 . Note that given an overdispersed arrival 

tream, the term β
√ 

v ∞ 

(t) (the hedge) is larger than in the classi- 

al SRS rule, where it would equal β
√ 

m ∞ 

(t) . 

The use of such a rule is justified by asymptotic normality, 

hich is backed by the results in Heemskerk et al. (2017) . The ini-

ial choice for the constant β is (with �(·) the normal CDF): 

= �−1 (ε) . (4) 
903 
t is expected that this choice is not optimal, given the approxima- 

ive nature of the procedure. In fact, β is always smaller than opti- 

al, since the actual number of customers in a finite-server system 

ill be higher than predicted by an infinite-server proxy (where 

ach customer is served immediately upon arrival and hence can 

eave without waiting). The idea is to slightly tweak the value 

in order to more closely attain the desired service level (i.e., 

 ( delay ) < ε). More importantly, irrespective of the level the shape 

f s t as a function of time should ensure a delay probability that 

s relatively flat over time. This depends mostly on the shape of 

 ∞ 

(t) and v ∞ 

(t) . 

Hence, the next step is to determine expressions for m ∞ 

(t) and 

 ∞ 

(t) . Following the approach of Heemskerk et al. (2017) , we de-

uce that the queue-length process of an infinite-server queue fed 

y a Cox process arrival process with arrival rate �(t) is again a 

ox process. More specifically, the distribution of the number of 

atients at time t is Poisson with random parameter 

 (t) = 

∫ t 

−∞ 

�(s ) P (S > t − s ) d s. (5)

e thus obtain that 

 ∞ 

(t) = E R (t) = E 

[ ∫ ∞ 

0 

�(t − s ) P (S > s ) d s 

] 
(6) 

nd, by the law of total variance (conditioning on �(s ) , for s ∈
−∞ , t] ), 

 ∞ 

(t) = V ar ( R (t) ) 

= E [ V ar ( M(t) ) | �(·))] + V ar ( E [ M(t) | �(·)] ) 

= m ∞ 

(t) + V ar 

(∫ ∞ 

0 

�(t − s ) P (S > s ) d s 

)
. (7) 

s an aside, note that indeed m ∞ 

(t) � v ∞ 

(t) , which reflects the

verdispersion that we introduced. These expressions can easily 

e simplified using the observation that �(t) is piecewise con- 

tant. For the case that S is exponentially distributed, μ∞ 

(t) and 

 ∞ 

(t) can be evaluated in closed form in t = n � with n ∈ N ; see

ppendix Appendix A . 

.3. Case study: MOL staffing for overdispersed hospital arrival data 

We continue by illustrating our approach and its performance 

n a case study. The data set used was provided by the SEELab, and 

riginates from the emergency department (ED) of an Israeli hos- 

ital. It contains 5-min resolution arrival counts of a 4-year time 

eriod (1999–2003), which covers a total of 1569 days. The aver- 

ge arrival volume per day, exceeding 300 arrivals, is sufficienty 

arge and the mean length of stay (LOS) is almost 2 h. 

We aggregate different weekdays separately, which implies that 

e have N = 224 observations for each day of the week (see 

able 1 ). Fig. 1 presents the sample mean and variance of the 

umber of arrivals per slot for a 5, 10, 15, 30 and 60 min res-

lution, based on these 224 observations. When considering the 

ourly mean arrival rates (same timescale as LOS) for each hour of 

he week it is fairly variable: with a time average of 14, its mini- 

um is 2.1 and its maximum 33.2. In conclusion, the level of non- 

tationarity is high and the rate is rapidly changing with respect to 
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Fig. 1. Mean (black) and variance (red) of the number of arrivals in each time slot for various resolutions. The week starts at Thursday, as the first day arrival data was 

recorded was a Thursday. The dashed blue line in the 60 min resolution plot shows the sum of the variances in the corresponding 30 min time slots. The gap between 

the dashed blue line and the red line indicate the presence of nonnegative correlation between the number of arrivals in consecutive time slots. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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he LOS. Note that this means that both the SSA and PSA methods, 

s mentioned in the introduction, would not be accurate. 

An observation from Fig. 1 is that different weekdays indeed 

how different patterns in the arrival stream and also the level 

f overdispersion and nonstationarity is visibly different although 

ata has already been averaged over 224 samples. Note for exam- 

le that Sunday (in Fig. 1 the 4th day) is an exceptionally busy day

ith high peaks in the mean and variance, in contrast to Friday 

nd Saturday (i.e., Israeli weekend). 

Furthermore, observe that the (positive) difference between the 

ean and the variance increases with the chosen resolution, but 

nly when choosing a resolution larger than 30 minutes overdis- 

ersion becomes more apparent in the plots. Comparing the values 

orresponding to the different subfigures in Fig. 1 , it shows that 
904 
he growth in the variance is still roughly linear. In fact, our model 

redicts what we observe in Fig. 1 : the variance in the number of 

rrivals (just like the mean) grows roughly linear in the length of 

he time slot, but due to the presence of (nonnegative) correlation 

etween rates in consecutive time slots, an extra term should be 

dded to the variance when aggregating data from smaller time 

lots. On top of this visualization of the sample means and vari- 

nces, we can also compute the empirical covariance matrix to 

uantify the correlations between the arrival counts in all differ- 

nt time slots, for each of the resolutions. 

When fitting the model to the arrival data we find that choos- 

ng the parameters α, I and V ar ( W ) differently for different week- 

ays significantly improves the fit. As this modeling decision also 

ffects the staffing rule and the subsequent performance analysis, 
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Table 2 

Fitted parameters for Wednesday, Hospital 3. 

I α V ar ( W ) MSE ∗ MSE Gain (%) 

Poisson – – – 7.435 0.0 0 0% 

0 – 0.017 5.562 5.974 19.645% 

1 1.000 0.041 5.207 4.343 41.583% 

2 1.000 0.060 4.267 3.476 53.244% 

3 1.000 0.075 3.389 2.998 59.681% 

4 1.000 0.089 2.821 2.685 63.881% 

5 1.000 0.102 2.569 2.463 66.872% 

6 0.907 0.112 2.344 2.342 68.501% 

7 0.879 0.121 2.182 2.231 69.992% 

8 0.866 0.129 2.246 2.120 71.481% 

9 0.867 0.138 2.234 2.015 72.905% 

10 0.866 0.146 2.098 1.936 73.963% 

11 0.861 0.152 1.949 1.894 74.520% 

Table 3 

Fitted parameters for Sunday, Hospital 3. 

I α V ar ( W ) MSE ∗ MSE Gain (%) 

Poisson – – – 12.253 0.0 0 0% 

0 – 0.015 9.818 9.752 20.4% 

1 1.00 0.034 11.212 7.485 38.9% 

5 1.00 0.084 6.238 4.566 62.7% 

10 0.81 0.11 4.414 4.158 66.1% 
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e decided to simplify reality and examine only isolated Sundays 

n the rest of this case study. Note that consequently we pretend 

hat Sundays succeed one another, so that time slots around mid- 

ight are correlated in the model although in reality there is a 

eek of (ignored) events in between. It is expected that the er- 

or resulting from this simplification is small as the arrival volume 

s small around midnight, and even smaller for small values of I. 

In the rest of this subsection we will present our rule’s per- 

ormance when staffing a multi-server system where the ar- 

ival stream is taken from the data set, restricted to Sundays. In 

ection 4 we present a systematic evaluation using stylized input. 

Given � = 1 hour and I = 10 (where we intentionally pick a 

arge value of I to be on the safe side), we find by the statis-

ical inference procedure that will be described in Section 3 (cf. 

able 2 ) that α = 0 . 81 and V ar ( W ) = 0 . 11 are the best fit for the

ata. As this will be the input for the simulation, we expect that 

sing these parameters for the staffing rule will give the best re- 

ult. To check this, we will also generate the delay probabilities 

f we plug in different parameter settings in the staffing rule, i.e., 

 = 0 , 1 , 5 (with corresponding α and V ar ( W ) as given in Table 3 ).

s in Table 1 , the mean length of stay is 109 minutes, so the hourly

ervice rate to be used in the simulation is μ = 60 / 109 ≈ 0 . 55 . 

Fig. 2 shows the empirical mean and variance obtained from 

he simulation, which determines the probability distribution of 

he number of patients per time slot. Observe that the theoreti- 

al values at the end of the time slot, as given in Eqs. (13) and

14) , more or less coincide with these empirical values; see Fig. 2 .

he prescribed number of servers in time slot n depends on the 

ervice level that was set and is chosen according to the staffing 

ule in Eq. (3) , with t = n � and β as in Eq. (4) . We compare

 ∈ { 0 . 01 , 0 . 05 , 0 . 1 } ; see the solid gray lines in Fig. 2 . 

Next, the empirical probability of exceeding the staffing level in 

n infinite-server system is computed using the simulation results. 

s the staffing rule is based on analysis of infinite-server systems, 

t can be expected that this probability behaves well: asymptotic 

ormality predicts that it should be close to the required level ε in 

very time slot, which implicitly says that the service level should 

e more or less stable. However, Fig. 3 shows that the exceedance 

robability sometimes crosses the required service level and does 

ot follow a smooth straight line. 
905 
This can partly be explained by rounding errors (note that the 

tooths’ in the lines are often caused by a difference of 1 server), 

nd moreover it is noted that asymptotic results in the end are just 

pproximations. All in all the performance of this very straightfor- 

ard and easy-to-use staffing rule is satisfying. But importantly, 

he infinite-server results can of course only be used as a proxy. 

he actual delay probabilities from the finite-server setting (where 

he staffing rule dictates the number of patients that can be served 

t a time) will be significantly larger due to queueing caused by 

he waiting patients. If this queueing bias would result in a uni- 

orm shift upwards, the staffing rule would still prove perfectly 

seful, as we can easily tune the delay probability down by tweak- 

ng β . Unfortunately this is not the case; Fig. 3 shows a heavy 

pike around noon, so the system is locally performing unaccept- 

bly poorly. Note that in the (finite-server) setting with abandon- 

ents the performance would certainly be better, depending on 

he abandonment rate. Now, instead of going immediately into ser- 

ice as in the infinite-server setting, all customers initiate an ex- 

onential clock (with a rate that might even be comparable to the 

ervice rate) right upon arrival, for potential abandonment of the 

ystem. The infinite-server proxy is way more accurate in such a 

etting. In Section 4 we will consider this adaptation, but for now 

e try to further improve the staffing rule for the basic setting (i.e., 

he setting without abandonments). 

Note that, although for most of the day the delay probability 

eems rather stable, around noon it takes on values twice the tar- 

eted service level. Comparing Fig. 2 , we find that around noon, 

hich is not incidentally precisely the area where the increase 

n load is extremely high (due to nonstationarity of the arrival 

tream), the prescribed number of servers follows the same slope 

s that of the square-root of the variance. However, apparently this 

s not enough; the system can not deal with the backlog that is 

apidly building up around noon. Based on this observation, we 

ook up a heuristic that could potentially overcome this hurdle: 

he hedge β
√ 

v ∞ 

(t) is replaced by a more involved one, that ac- 

ounts for extreme fluctuations in the arrival rate in settings where 

he level of nonstationarity is high. Slope heuristic. Let v n the ratio 

etween the variance in time slot n + 1 and n . The idea is to scale

p the number of servers when v n 	 1 while mildly reducing the 

umber of servers when v n < 1 , without significant changes in the 

otal number of staffed servers over the day. It is important to only 

ake subtle changes, so that the ‘shape’ (viz., Fig. 2 ) prescribed by 

he infinite-server proxy stays unaltered. Consequently, we are af- 

er an increasing function f (x ) with the property that 

 f (x ) − 1 | ≤ | x − 1 | . 
unctions f δ (x ) = x δ with 0 < δ ≤ 1 satisfy these conditions and

ave the advantage that they can easily be tuned via the parameter 

. We arrive (for t = n �) at 

 

m 

n � = m ∞ 

(n �) + β (v n ) 1 /δ
√ 

v ∞ 

(n �) , (8) 

or n = 1 , . . . , 24 . Then δ can be picked such that the variance of

he resulting delay probability (given a staffing level according to 

 

δ
n �

for n = 1 , . . . , 24 ) is minimized. Alternatively, a few values for

are compared to arrive at a value for which this variance is rela- 

ively small. ♦

emark 2.1. Note that Eq. (8) simplifies to Eq. (3) if λ(t) is con-

tant. The heuristic introduces an extension to the staffing rule that 

as originally proposed to account for nonstationarity; if there is no 

onstationarity present ( λ(t) ≡ λ), the slope-adapted rule reduces to 

he original rule, in which case the latter’s performance is satisfactory. 

Moreover, note that in the infinite-server setting performance 

ould not improve by using the rule in Eqn. (8) ; in this setting Eqn.

3) is the best we can get. That is to say, implementation of this 

euristic is useful in situations where an extremely steep slope in the 
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Fig. 2. Mean, variance and staffing rules given different service-level agreements. 

Fig. 3. Exceedance vs delay probability for different service levels. Each service level is designated by a different color, where the dashed line describes the effective delay 

probability for the finite-server system under study and the dotted line describes the exceedance probability for the infinite-server proxy. 
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rrival rate causes an avalanche of queueing patients once the number 

f servers is restricted. ♦

Fig. 4 compares the performance of the slope-adapted staffing 

ule (cf. Eq. (8) ) with that of the originally proposed staffing rule 

cf. Eq. (3) ). We observe better stability with (approximately) the 

ame number of servers (in the example of Fig. 4 the total number 

f servers for both rules differs by 2 or 3 servers) and (on average)

 slightly smaller delay probability. Nevertheless, the delay proba- 

ilities still exceed the targeted service level ε. Hence, the simple 

daptation of choosing a higher value of β in Eq. (3) would further 

mprove performance. 

. Statistical procedures 

In this section we describe how to determine, based on histor- 

cal data, the parameters in the arrival stream model introduced 
906 
n Section 2 , i.e., λ j for j = 0 , . . . , N − 1 , α, I, and V ar ( W ) . Given a

alue � > 0 it is enough to know, for each j: �̄ j , the average num-

er of arrivals in � j := [ j�, ( j + 1)�) , and � := �(α, V ar ( W ) ) ,

he covariance matrix, representing for j = 0 , . . . , N − 1 and k =
 , . . . , I the (nonnegative) covariance between the number of ar- 

ivals in � j and � j+ k (note that here and in what follows, the 

ndices in the subscripts should be taken modulo N; for the sake 

f readability we do not write that explicitly). Deterministic trend. 

he average number of arrivals �̄ j should correspond to the aver- 

ge over values of the mixed Poisson random variable with random 

arameter 

j := λ j · c α

I ∑ 

	 =0 

α	 W j−	 , 

ith c α := (1 − α) / (1 − αI+1 ) . Using that E � j = λ j , the W j have

nit mean and that c α is a normalizing constant, the �̄ j are unbi- 
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Fig. 4. Using the slope-adapted staffing rule improves the stability of the delay probability. The delay probabilities with no tuning (dashed lines) coincide with those in 

Fig. 3 . The dotted lines depict the delay probabilities after tuning and are clearly more stable than before. With δε denoting the selected δ for service level ε, δ0 . 1 = 3 / 8 , 

δ0 . 05 = 1 / 3 and δ0 . 01 = 1 / 4 . 
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sed estimators for the λ j . Covariance matrix. Recall that the covari- 

nce of two independent mixed Poisson random variables (mean- 

ng that the enveloping Poisson random variables are independent) 

ith dependent parameters equals the covariance of the parame- 

ers. In addition, recall that the variance of a mixed Poisson ran- 

om variable is the sum of the expectation and variance of its pa- 

ameter. 

Given that I ≤ � (N − 1) / 2 � (cf. Appendix C ), we obtain the fol-

owing expressions for the entries of the covariance matrix: 

j, j = E � j + V ar 
(
� j 

)
= λ j + λ2 

j c 
2 
α

1 − α2(I+1) 

1 − α2 
V ar ( W ) ; (9) 

j, j+ k = � j+ k, j = C ov (� j , � j+ k ) 

= λ j λ j+ k c 
2 
αC ov 

( 

I ∑ 

	 =0 

α	 W j−	 , 

I ∑ 

	 =0 

α	 W j+ k −	 

) 

(10) 

= λ j λ j+ k c 
2 
ααk 1 − α2(I−k +1) 

1 − α2 
V ar ( W ) , (11) 

here it’s noted that � j, j+ k = � j+ k, j = 0 for k > I . Let C k (α, I ) :=
 

2 
ααk 1 −α2(I−k +1) 

1 −α2 . Then Eqs. (9) and (11) can be captured by 

j, j+ k = � j+ k, j = λ j 

(
1 { k =0 } + λ j+ k C k (α, I) V ar ( W ) 

)
, (12) 

or k = 0 , 1 , . . . , I (and 0 otherwise). Note that by l’Hôpital’s rule 

im ↑ 1 C k (α, I) = lim 

α↑ 1 c 
2 
ααk 1 − α2(I−k +1) 

1 − α2 
= 

I − k + 1 

(I + 1) 2 
. 

ence we set C k (1 , I) := (I − k + 1) / (I + 1) 2 . Procedure for α, I and

 ar ( W ) . The idea is to vary I in an outer loop and to estimate 

and V ar ( W ) (for any given I); one could then compare how 

uch gain is made by using different I with respect to the base 

ase where I = V ar ( W ) = 0 (standard Poisson) and I = 0 (no corre-

ation). Subsequently, it makes sense to select the largest I that is 

 significant improvement over I − 1 (or over the standard Poisson 

ase, where I = V ar ( W ) = 0 ). Note that the model only allows for

alues of I ranging from 0 to 11. 

To be able to determine the values of α and V ar ( W ) given λ j , 

j+ k and I, we need the empirical covariance matrix � derived 

rom the arrival data. Note that an estimate of any two nonzero en- 

ries of � provides enough information to solve for α and V ar ( W ) , 
907 
fter having equated them to the expression in Eq. (12) . However, 

ach nonzero pair leads to a different solution. We wish to deter- 

ine values for α and V ar ( W ) such that the theoretical covari- 

nce matrix �(α, V ar ( W ) ) as given by Eq. (12) is the ‘best’ ap-

roximation for �. Therefore, the next step in the procedure is to 

inimize the average of the entrywise mean squared errors, where 

e sum over the entries for which the theoretical covariance ma- 

rix is nonzero (noting that the number of nonzero entries, being 

qual to N(2 I + 1) , depends on the choice of I). In Table 2 this

alue is labeled with MSE ∗, with a separate column for the ex- 

ct MSE values where all entries of the empirical covariance ma- 

rix are taken into account. The gain is computed as the relative 

ain in (exact) MSE compared to the standard Poisson case (where 

 = V ar ( W ) = 0 ). We observe that from I = 5 , not much improve-

ent is still to be gained, so I = 5 seems to be a good choice when

e aim for moderate complexity and a good fit. Some more exam- 

les. In Table 3 the same procedure is used to obtain the best fit 

or I = 0 , 1 , 5 , 10 , which are used in the case study in Section 2.3 .

imilar gain percentages in MSE are obtained by choosing I larger, 

lthough in Table 2 I = 5 and I = 10 achieve a better fit than in

able 3 . At the same time, the variance of W as well as the corre-

ation parameter α is consistently smaller in the data set that cor- 

esponds to Sundays; although total arrival volume is larger here, 

emporal correlation and overdispersion seems to be less promi- 

ent. 

We add a theoretical example to assess the precision of this 

inimization method. With the λ j as above, set α∗ = V ar ( W ) ∗ = 

 . 5 and I ∗ = 5 . As these parameters together define the arrival pro-

ess, this gives a certain covariance matrix Cov ∗. We use the min- 

mization method to find, given some choice of I ∈ { 0 , 1 , . . . , 7 } ,
he optimal values for α and V ar ( W ) in terms of the MSE of 

ov (α, V ar ( W ) ) with respect to Cov ∗. The results can be found 

n Table 4 , together with the corresponding MSE. Observe that 

he method recovers the true values α∗ and V ar ( W ) ∗ in case we 

et I = I ∗ = 5 . For lower degree of correlation, it is found that a

arger value for α (more dependence) is compensated by a smaller 

alue for V ar ( W ) (less overdispersion), however apart from the 

ase I = 4 choosing I too small inevitably leads to a big loss in 

recision. For I = 4 the MSE is acceptably small. On the other 

and, setting I too large leads only to small errors, which means 

hat selecting a value I above the true value leads to marginal 

ifferences. 
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Table 4 

Fitted parameters given I and corresponding MSE. 

I α V ar ( W ) MSE 

Poisson – – 0.00 

0 1.00 0.172 87.8 

1 0.871 0.343 18.5 

2 0.561 0.425 3.99 

3 0.518 0.467 0.775 

4 0.505 0.489 0.104 

5 0.500 0.500 0 

6 0.499 0.507 0.0240 

7 0.498 0.510 0.0415 

8 0.496 0.510 0.0483 

Table 5 

Parameter setting base case. 

N = 17.5 I = 5 

p = 0.8 α = 1 

μ = 0.5 V ar(W) = 0.1 
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. Performance 

In this section we extend the numerical work on the perfor- 

ance of the presented staffing rules in the finite-server setting 

ith the described arrival stream, based on simulations instead of 

ata. The primary goal is to assess the individual effects of non- 

tationarity, temporal correlation and overdispersion. Moreover, we 

tudy the effect of abandonment (occurring at rate θ ) on the gap 

etween the finite-server system and its infinite-server proxy. Note 

hat in any service system that involves waiting, it is natural to 

ave a (possibly small) positive abandonment rate. We predom- 

nantly focus on the performance of our basic staffing rule, i.e., 

ithout the slope heuristic being in place; see also the discussion 

t the end of this section. 

We start with a particular stylized instance for the arrival 

tream, again inspired by the hospital data (in that we set up our 

nstance such that the levels of overdispersion, nonstationarity and 

emporal correlation are comparable to their counterparts in the 

ospital data). The daily pattern is represented by a sine function 

ith a cycle length of 24 hours (with � = 1 hour), having a dip

arly in the morning (at 4:30) and a peak late in the afternoon (at 

6:30). That is, 

j = N + pN · sin 

(
2 π

24 

( j + 13 . 5) 
)

for j = 0 , . . . , 23 , 

here N is the system size and p reflects the level of nonstation- 

rity. The parameters are set as in Table 5 . 

Note that, in line with the setting discussed in Section 2.3 , the 

ystem under consideration is fairly small, whereas the level of 

onstationarity is rather strong. The service rate being relatively 

ow, this means that the patient ‘sees’ effectively different arrival 
Table 6 

Delay probability obtained through simulation, for the setting without no

when setting V ar ( W ) = 0 , in the third column the correlation structure

dictated by our model given the stated parameter setting (see Table 5 ). 

√ 

v ∞ s 

no abandonments 

ε = 0 . 1 mild abandonments 44 

max abandonments 

no abandonments 

ε = 0 . 05 mild abandonments 46 

max abandonments 

no abandonments 

ε = 0 . 01 mild abandonments 50 

max abandonments 

908 
ates during its stay, and hence nonstationarity can not be ignored. 

he correlation structure is abundantly present and the level of 

verdispersion seems mild (though nonzero). 

Table 6 presents the staffing levels for 3 × 3 different settings. 

e consider the setting without overdispersion (column 1), our 

odel with overdispersion and correlation (column 2), and the set- 

ing without correlation (column 3). In addition, abandonments are 

ncorporated to three different extents: the abandonment rate is 

= a · μ, for a = 0 , 0 . 5 , 1 (‘no’, ‘mild’ or ‘max’). Observe that in-

orporating abandonments does not affect the prescription for the 

taffing level (simply because it is not included in our staffing 

ule). Note that in this table we took p = 0 , to study the effects

f V ar (W ) and I, in isolation from the effect of a possible nonsta-

ionarity. 

Importantly, although V ar ( W ) seems small, the effect of it be- 

ng positive on the size of the hedge (i.e., on 

√ 

v ∞ 

) is substantial, 

s can be concluded by comparing columns 1 and 3 in Table 6 . On

he other hand, taking I > 0 slightly mitigates this effect; com pare 

olumns 2 and 3 in Table 6 . Below, in a next experiment, we study

he impact of nonstationarity, in an instance with a (wildly fluctu- 

ting) daily pattern. 

We find that in this instance with a stationary deterministic 

aily pattern, performance does not change significantly when a 

orrelation structure is added to the model, where it is noted that 

e account for it in the staffing rule (in this case that means that 

ewer servers were used to achieve approximately the same de- 

ay probability). We do however need significantly more servers to 

ttain a comparable level for the delay probability when switch- 

ng from the ‘no overdispersion’ setting (column 1) to the setting 

ith overdispersion (column 3), which of course is the motiva- 

ion for the staffing rule introduced in this paper. Note that perfor- 

ance gets worse anyway, despite the complication in the number 

f servers. 

From Table 6 it becomes apparent that the performance is 

uch better in settings with a positive abandonment rate. Never- 

heless, we see that even without a daily pattern, the coefficient β
eeds to be tuned somewhat to make sure that the delay probabil- 

ties match the targeted probabilities, partly due to the overdisper- 

ion (the first column displays better performance) and partly due 

o the inaccuracy of the infinite-server proxy (when abandonments 

re incorporated performance gets better until it is nearly perfect). 

emarkably, only in the cases where ε = 0 . 1 with no/mild aban- 

onments, the performance actually got worse when correlation 

as left out; this indicates that, despite the fact that the proxy is 

east accurate in this case, apparently having dependence between 

rrival rates ‘helps’ here. 

We proceed by studying the impact of nonstationarity. The 

lots in Fig. 5 correspond to the nine instances of Table 6 , but

ow with p = 0 . 8 . We observe that incorporating only mild aban-

onments already significantly improves the performance of our 
nstationarity (we set p = 0 ). The first column gives the probability 

 is ignored ( I = 0 ). The middle column is the delay probability as 

standard I > 0 I = 0 

5.91 s 7.02 s 8.06 

0.098 0.12 0.13 

0.086 45 0.10 46 0.11 

0.079 0.093 0.10 

0.051 0.055 0.068 

0.046 48 0.048 49 0.060 

0.043 0.044 0.056 

0.011 0.017 0.016 

0.010 52 0.015 55 0.015 

0.0099 0.014 0.014 
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Fig. 5. Delay probability in finite-server setting. The nine instances correspond to those of Table 6 , but now with p − 0 . 8 . 

Fig. 6. Delay probability in finite-server setting, staffing level determined with slope-adapted staffing rule. Here δ from Eq. (8) is of the form δ = 

k 
24 

, for the value of k that 

maximally stabilizes the delay probability. 
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taffing rule; this is in line with our expectation, as the infinite- 

erver proxy is more accurate for finite-server models with aban- 

onments. Note that the finite-server setting endowed with an 

bandonment rate θ = μ coincides with the infinite-server setting, 

he setting in the last row of plots. The somewhat erratic nature of 

he delay probability is due to inevitable rounding errors resulting 

rom the fact that the number of servers needs to be integer. 

In the first column we have set V ar ( W ) to zero (Subfigures ( a ),

 d ) and ( g )), in the arrival stream as well as in the staffing rule.
909 
iven that the delay probabilities in this setting define some sort 

f baseline for the performance (this should be the easiest set- 

ing to handle), it is remarkable that the performance does not 

et (significantly) worse when taking into account overdispersion 

nd correlation. In that sense, our staffing rule is prescribing the 

orrect number of servers. The plots even suggest slight improve- 

ent in many settings. Comparing the overdispersed setting where 

orrelation is left out (column 3, i.e., Subfigures ( c ), ( f ) and ( i ))

ith the setting with both overdispersion and correlation (column 
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, i.e., Subfigures ( b ), ( e ) and ( h )), there is only a very slight im-

rovement in performance over all plots with different abandon- 

ent rates and staffing levels. That is, our rule accounts well for 

verdispersion, but it is struggling slightly harder to deal with the 

orrelation structure. However, it can be concluded that nonsta- 

ionarity is the main factor that complicates achieving stable delay 

robabilities, mostly in the setting without abandonments. 

In order to make a fair comparison with the case study in 

ection 2.3 , it is necessary to apply the slope-adapted staffing rule 

cf. Eq. (8) ) here as well. We will only apply it to the case with no

bandonments, hence we generated the counterparts of Fig. 5 ( a )–

 c ): see Fig. 6 ( a )–( c ). From Fig. 6 it can be concluded that the

lope-adapted staffing rule indeed very well succeeds in stabilizing 

he delay probabilities over the day. Clearly, further improvement 

ould be made by tweaking β , to get the stabilized probabilities 

elow the targeted level. The resulting improvement is not shown, 

s the procedure is straightforward and its effect is as expected. 

The main conclusion of the numerics presented in this section 

s that, across this series of representative experiments, our staffing 

ule performs well. In case the abandonment rate is sufficiently 

igh, one can apply the basic rule; if not, then we advise to use 

he adapted version with the slope heuristic being in place. 

. Conclusion and discussion 

In this paper we propose new staffing rules for a specific queue- 

ng model with overdispersed and nonstationary input with tem- 

oral correlation. The objective is to stabilize the delay probability 

hroughout the day around a fixed target value, which the final 

taffing rule developed succeeds to do. 

In the numerical experiments in Section 2.3 , we first tested the 

riginally proposed staffing rule that was based on an infinite- 

erver proxy. Essentially due to the underlying nonstationarity, the 

asic rule performs suboptimally (but when adding abandonments 

o the model, we observe much improved performance, due to 

he fact in this context the infinite-server model provides a more 

ccurate proxy). Importantly, when adapting the basic rule just 

lightly, the performance improves drastically. Indeed, augmenting 

ur staffing rule by the slope heuristic , the delay probability stabi- 

izes (already in the setting without abandonments!). 

The observed performance is robust for the choice of param- 

ters for overdispersion and temporal correlation; as long as the 

ombination of parameters results in an accurate estimate for 

he variance in the number of arriving customers, the prescribed 

slope-adapted) staffing level is appropriate. In Appendix B , it is 

hown that this variance is decreasing in α and I and at the same 

ime increasing in V ar ( W ) , so that different parameter settings can 

esult in the same variance. Although the statistical procedure in 

ection 3 does not lead to a unique ‘optimal’ choice for the param- 

ters α, I and V ar ( W ) , because of this robustness it is sufficient to 

elect a reasonable parameter setting. 

Note that the implementation of nonstationarity in the model is 

ather straightforward: fitting a constant arrival rate to fixed time 

lots is the simplest and also a widely used procedure to imple- 

ent time-of-day or time-of-week effects. It is remarked, though, 

hat the discontinuities might cause poor predictions close to the 

lot boundaries. Therefore, in Zheng & Glynn (2017) a slight adap- 

ation is suggested: it is proposed to use piecewise linear (hence 

ontinuous) rates. 

One of the main advantages of our approach relates to the un- 

erlying model’s low dimensionality. In this respect, it is first re- 

arked that any model used should involve estimating the daily 

attern (represented by the intensities λ j ): irrespective of whether 

ur model is used or an alternative Coxian model (to generate 

he random perturbations around the daily pattern), the intensi- 

ies λ j have to be estimated. Obviously, once the daily pattern has 
910 
een filtered out, one would like to work with the simplest model 

ossible, so that the required estimation effort is minimized. In 

ur setup we (by construction) have E W ≡ 1 , so that the param- 

ters left are only V ar (W ) and α (and I, but, as argued, optimiz- 

ng the value of I is less critical). Our experiments indicate that 

ur low-dimensional model already provides an accurate fit. One 

ould try to improve the fit by working with other models, such 

s the Markovian Arrival Process Neuts (1979) , but this is typically 

t the cost of having to estimate a larger number of parameters. 

n addition, when using a MAP, one needs to estimates parameters 

ertaining to the unobservable background process, which is typi- 

ally rather involved (see e.g. de Gunst, Knapik, Mandjes, & Sollie, 

019; Okamura, Dohi, & Trivedi, 2009 ); our approach circumvents 

his complication. 
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ppendix A. Computations for infinite-server queue 

In this appendix we calculate m ∞ 

(t) and v ∞ 

(t) in terms of λ(t) ,

and V ar ( W ) , which can be extracted from arrival data by means 

s proposed in Section 3 . Let F̄ (s ) := P (S > s ) . In this appendix we

onsider exponentially distributed service times, but similar cal- 

ulations can be done for other distributions in a straightforward 

anner. 

Let t = n � for some n ∈ Z ≥0 . We assume that λ(s ) is a peri-

dic step function with step size � and cycle length N (i.e., λ(0) = 

(N�) ) and write λk := λ(t) for t ∈ [ k �, (k + 1)�) for some non-

egative value λk . As a consequence, for λ0 , . . . , λN−1 , we have 

k = λ	 if k mod N = 	 mod N. 

Let us start with evaluating m ∞ 

(t) for this setting of periodic 

(·) and exponential service times (with mean μ−1 ). In the first 

lace, an elementary calculation reveals that Eq. (6) simplifies to 

with t = n �), 

 ∞ 

(t) = E 

[ ∫ ∞ 

0 

�(t − u ) F̄ (u ) d u 

] 
= 

1 − e −μ�

μ

∞ ∑ 

j=1 

λn − j (e −μ�) j−1

or j = 1 , . . . , N, we introduce (using the periodicity) 

j (n ) := 

∞ ∑ 

	 =1 

λn −(	 −1) N− j (e −μ�) (	 −1) N+ j−1 

= λn − j (e −μ�) j−1 
∞ ∑ 

	 =1 

(e −μ�N ) 	 −1 = λn − j ·
e −μ�( j−1) 

1 − e −μ�N 
. 

his leads to an expression for m ∞ 

(t) in terms of a finite sum: 

 ∞ 

(t) = 

1 − e −μ�

μ

N ∑ 

j=1 

κ j ( n ) = 

1 − e −μ�

1 − e −μ�N 

1 

μ

N ∑ 

j=1 

λn − j e 
−μ�( j−1) . 

(13) 
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We now move on to compute v ∞ 

(t) . To this end, we define 

( j) := λ j c α

∫ (n − j)�

(n − j−1)�
F̄ (u ) d u. 

he idea is to rearrange the contributions to the random arrival 

ate due to each of the W j in the expression for v ∞ 

(t) in Eq. (7) : 

 ar 

(∫ ∞ 

0 

�(t − u ) F̄ (u ) d u 

)

= V ar 

( 

∞ ∑ 

j=1 

λn − j 

(
c α

I ∑ 

	 =0 

α	 W n − j−	 

)∫ j�

( j−1)�
F̄ (u ) d u 

) 

= V ar 

( 

∞ ∑ 

j=1 

(
λn − j c α

∫ j�

( j−1)�
F̄ (u ) d u 

) I ∑ 

	 =0 

α	 W n − j−	 

) 

= V ar 

( 

∞ ∑ 

j=1 

γ (n − j) 
I ∑ 

	 =0 

α	 W n − j−	 

) 

= V ar 

( 

∞ ∑ 

j=1 

( I∧ ( j−1) ∑ 

	 =0 

α	 γ (n − j + 	 ) 
)

W n − j 

) 

oting that the W j are independent and identically distributed, the 

xpression in the previous display becomes 

 ar ( W ) 

I ∑ 

j=1 

( j−1 ∑ 

	 =0 

α	 γ (n − j + 	 ) 
)

2 + V ar ( W ) 

∞ ∑ 

j= I+1 

( I ∑ 

	 =0 

α	 γ (n − j + 	 ) 
)

2 

= V ar ( W ) c 2 α
(e μ� − 1) 2 

μ2 

∞ ∑ 

j=1 

( I∧ ( j−1) ∑ 

	 =0 

α	 λn − j+ 	 e −μ( j−	 )�
)

2 , 

here we use that 

I∧ ( j−1) ∑ 

	 =0 

α	 γ (n − j + 	 ) 
)

2 

= 

( 

I∧ ( j−1) ∑ 

	 =0 

α	 λn − j+ 	 c α
∫ ( j−	 )�

( j−	 −1)�
F̄ (u ) d u 

) 2 

= c 2 α · (e μ� − 1) 2 

μ2 
B j 

ith 

 j := 

( I∧ ( j−1) ∑ 

	 =0 

α	 λn − j+ 	 (e −μ�) j−	 

)
2 . 

he next step is again to exploit the periodicity. For this we study 
 ∞ 

j=1 B j , under the assumption I < N (which is fairly natural). El- 

mentary calculus reveals that v ∞ 

(t) can be expressed as a finite 

um, due to 

∞ 

 

j=1 

B j = 

∞ ∑ 

j=1 

( I∧ ( j−1) ∑ 

	 =0 

α	 λn −( j−	 ) (e −μ�) j−	 

)
2 

= 

∞ ∑ 

j=1 

α2 j 
( I∧ ( j−1) ∑ 

	 =0 

λn −( j−	 ) 

(
e −μ�

α

) j−	 )
2 

= 

N ∑ 

j=1 

∞ ∑ 

k =1 

α2 j 
( I∧ ( j−1) ∑ 

	 =0 

λn −( j−	 ) −(k −1) N 

(
e −μ�

α

) j−	 +(k −1) N )
2 

= 

N ∑ 

j=1 

(α2 j 
( I∧ ( j−1) ∑ 

	 =0 

λn −( j−	 ) 

(
e −μ�

α

) j−	 )
2 

+ 

∞ ∑ 

k =1 

α2 j 
( I ∑ 

	 =0 

λn −( j−	 ) −kN 

(
e −μ�

α

) j−	 + kN )
2 ) 

= 

I ∑ 

j=1 

α2 j 
( ( j−1) ∑ 

	 =0 

λn −( j−	 ) 

(
e −μ�

α

) j−	 )
2 
911 
+ 

N ∑ 

j= I+1 

α2 j 
( I ∑ 

	 =0 

λn −( j−	 ) 

(
e −μ�

α

) j−	 )
2 

+ 

N ∑ 

j=1 

α2 j 
∞ ∑ 

k =1 

(
e −μ�

α

)2 kN ( I ∑ 

	 =0 

λn −( j−	 ) 

(
e −μ�

α

) j−	 )
2 
)

= 

I ∑ 

j=1 

α2 j 
( ( j−1) ∑ 

	 =0 

λn −( j−	 ) 

(
e −μ�

α

) j−	 )
2 

+ 

N ∑ 

j= I+1 

α2 j 
( I ∑ 

	 =0 

λn −( j−	 ) 

(
e −μ�

α

) j−	 )
2 

+ 

1 

α2 N e 2 μ�N − 1 

N ∑ 

j=1 

α2 j 
( I ∑ 

	 =0 

λn −( j−	 ) 

(
e −μ�

α

) j−	 )
2 
)
. 

ote that for convergence of the infinite series, we have to assume 

hat e −μ� < α. 

The final expression for v ∞ 

(t) is as follows: 

v ∞ 

(t) = V ar ( W ) c 2 α
(e μ� − 1) 2 

μ2 
·

N ∑ 

j=1 

α2 j · D j , 

here D j := 

( ( j−1) ∧ I ∑ 

	 =0 

λn −( j−	 ) 

(
e −μ�

α

) j−	 )
2 

+ 

1 

α2 N e 2 μ�N − 1 

( I ∑ 

	 =0 

λn −( j−	 ) 

(
e −μ�

α

) j−	 )
2 . (14) 

ppendix B. Variance of the arrival process as a function of the 

arameter space 

In this appendix we show that the variance of the arrival pro- 

ess is decreasing in α and I and increasing in V ar ( W ) . With the 

onstationary doubly-stochastic arrival rate process �(t) given by 

q. (2) , we get a nonstationary mixed Poisson arrival process. This 

rocess is overdispersed, which becomes visible once we write 

own its variance: 

 ar 
((

Poisson (�(t)) 
))

= λ j + λ2 
j 

(1 − α) 2 

(1 − αI+1 ) 2 
1 − α2(I+1) 

1 − α2 
V ar ( W ) , 

(15) 

hich is larger than λ j as the second term at the right-hand side 

f Eq. (15) is positive for V ar ( W ) > 0 . It is hence directly seen that

q. (15) is increasing in V ar ( W ) . Observe that the factor 

(1 − α) 2 

(1 − αI+1 ) 2 
1 − α2(I+1) 

1 − α2 
= 

1 − α

1 + α

1 + αI+1 

1 − αI+1 
(16) 

epends both on α and I. We state and prove that Eq. (16) is 

strictly) decreasing in α and I. Note that indeed 

1 + αI+1 

1 − αI+1 
< 

1 + αI 

1 − αI 
for I = 0 , 1 , . . . , 

or all α ∈ (0 , 1) . Now consider the function f I (α) = 

1 −α
1+ α

1+ αI 

1 −αI for

ome I > 1 (for I = 1 we find this function is constant; note that

his corresponds to the case where I = 0 in our model, i.e. there is

o correlation between past time slots). After taking the logarithm 

nd differentiating, we end up with the condition that the function 

s (strictly) decreasing if 

αI−1 ( 
1 

1 + αI 
+ 

1 

1 − αI 
) < 

1 

1 + α
+ 

1 

1 − α
. 

ewriting gives 

αI−1 < 

I−1 ∑ 

k =0 

α2 k = 

{
αI−1 + 

∑ (I−1) / 2 −1 

k =0 

(
α2 k + α2(I−1 −k ) 

)
if I is odd ∑ I/ 2 −1 

k =0 

(
α2 k + α2(I−1 −k ) 

)
if I is even 

, 



M. Heemskerk, M. Mandjes and B. Mathijsen European Journal of Operational Research 296 (2022) 900–913 

a

A

e

e  

i  

 

k

m

N

I

T  

h  

r

�

f

c

E  

w  

c

λ

H

s  

r

N

i  

f  

c  

v

 

t

p

a

m

i  

c

R

A  

A

A  

B  

B  

B

C  

G  

G

G

G  

G  

d  

G  

H  

H  

H  

I  

I  

J  

J  

J  

J

K  

K  

K

K

K  

v  

v

L  

M

M  

M

N

O  

R  

R

S  

T  

W

nd these two cases are easy to check individually, since αI−1 < 

1 
2 

(
α2 k + α2(I−1 −k ) 

)
for all relevant k . 

ppendix C. Constraint on I

In this appendix we explain why we take I, the number of 

lapsed time slots that affect the busyness factor, to be at most 

qual to � (N − 1) / 2 � . Note that the number of nonzero entries

n the covariance matrix equals N(2 I + 1) , as for each time slot

j = 0 , . . . , N − 1 we have a nonzero entry on the diagonal and for

 = 1 , . . . , I both � j, j+ k and � j, j−k are nonzero. Of course the di- 

ension of the matrix only allows for N 

2 entries. In other words: 

(2 I + 1) ≤ N 

2 must hold, i.e., 

 ≤ � (N − 1) / 2 � . (17) 

o be even more precise, strictly it is only required to set I ≤ � N/ 2 � ,
owever in the case where N is even, for k = I = N/ 2 we should

eplace Eq. (11) by 

j, j+ N/ 2 = � j+ N/ 2 , j = C ov (� j , � j+ N/ 2 ) 

= λ j λ j+ N/ 2 c 
2 
αC ov 

( 

I ∑ 

	 =0 

α	 W j−	 , 

I ∑ 

	 =0 

α	 W j+ k −	 

) 

= λ j λ j+ N/ 2 c 
2 
ααN/ 2 

V ar ( W ) , (18) 

or j = 0 , . . . , N − 1 . 

The following example serves as an illustration of the compli- 

ation that arises when I is not restricted as in Eq. (17) . 

xample 1. Let N = 24 . Then Eq. (11) holds for k = 1 , . . . , 11 (when

e pick I = 11 ). If we were to choose I = 12 and used Eq. (10) for the

ovariance between arrivals in �0 and �12 , we would get 

0 λ12 c 
2 
αC ov 

(
αI W 12 + · · · + αW 23 + W 0 , α

12 W 0 + · · · + αW 11 + W 12 

)
. (19) 

owever, the second occurence of W 12 in Eq. (19) is incorrect and 

hould be written as W 

′ 
12 : it is describes an i.i.d. copy of W 12 . As a

esult, the covariance just equals λ0 λ12 c 
2 
αα12 

V ar ( W 0 ) (cf. Eq. (18) ). 

ote that it’s in fact still possible to write all nonnegative covariances 

n a 24 × 24 -matrix. Namely, for I = 11 still N entries equal zero; as

or I = 12 and k = N/ 2 = 12 the entries � j, j+ k and � j, j−k happen to

oincide (for j = 0 , . . . , N − 1 ), these N values exactly fill up the ‘pre-

iously unoccupied’ entries. 

If however, we had chosen I = 13 , we would need to write both

he covariance between arrivals in �0 and �13 (where time slot �0 

asses first) and the covariance between arrivals in �13 and the �0 

fter (i.e., �13 passes first) on the same entry, but their values do not 

atch. ♦

All in all, we see that it makes sense to exclude (for simplic- 

ty) I > � (N − 1) / 2 � from the parameter space, to ensure that the

orrelation in our model does not exceed intraday level. 
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